整式乘法(平方差公式)
平方差公式
平方差公式一、内容和内容解析【内容】八年级上册第15章第2节乘法公式---平方差公式【内容解析】整式乘法的平方差公式是把特殊形式的多项式相乘写成公式的形式,既为符合公式特征的整式乘法运算带来简便;又为后续学习用公式法分解因式奠定基础;同时平方差公式将在九年级“一元二次方程”中有广泛地应用。
“平方差公式”又是初中阶段的第一个公式,无论是公式的探究过程,还是结构特征的剖析都是学习其它公式的基础。
所以“平方差公式”是一个重要公式。
基于上述分析,确定本节的教学重点是;理解并掌握平方差公式及其结构特征;会运用此公式进行计算。
二、目标和目标解析【目标】1、了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题。
2、经历平方差公式产生的过程,体验知识的产生与发展,积累数学活动的经验,感受利用归纳、转化、数形结合等数学思想与方法解决数学问题的策略。
3、在探索平方差公式的过程中,培养学生观察、归纳、概括的能力,同时在解决问题过程中学会与他人合作交流。
在公式的学习及运用中积累解题的经验、体会成功的喜悦,增强学生学数学、用数学的兴趣,【目标解析】1、了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题。
让学生经历特例—归纳—猜想—验证—用数学符号表示,这一数学活动过程,进一步发展学生的符号感、推理能力、归纳能力,让学生能清楚地知道公式中a 、b 各代表什么,并在运用中与平方差公式的结构特征联系起来分析解答题目。
2、在探索平方差公式的过程中,培养学生观察、归纳、概括的能力,体会数形结合、转化等思想。
让学生能够认识到从具体到抽象,从特殊到一般,找寻规律,自我归纳,建立解决同类问题的模型,并能了解公式的几何意义及运用转化的思想解决数学问题。
3、通过探索新知,应用新知这一过程,创设自主探究与合作交流的学习气氛。
体验知识的产生与发展,积累数学活动的经验,在公式的学习及运用中积累解题的经验、体会成功的喜悦,增强学生学数学、用数学的兴趣,三、教学问题诊断分析学生的认知基础:第一、七年级学生已有用字母表示数的基础。
沪教版七年级 整式乘法公式,带答案
乘法公式课时目标1. 学会用文字和字母表示平方差公式,知道平方差公式的结构特征.2. 在数的简捷运算、代数式的化简求值及解方程中正确、熟悉地运用平方差公式.3. 学会用文字和字母表示完全平方公式,知道完全平方公式的结构特征.4. 理解平方差公式和完全平方公式中的字母,既可以表示数,又可以表示单项式或多项式等.5. 在运用乘法公式时,逐步树立代换的思想,利用字母的意义,灵活进行乘法运算,如公式的逆用和配方.知识精要一.平方差公式()()__________a b a b +-=注:公式中的 ,a b 既可表示一个数,也可以表示单项式,多项式等代数式. 二、完全平方公式2()__________a b +=2()_______________a b -=推广:2222()222a b c a b c ab ac bc ++=+++++22222()2222a b c d a b c d ab bc cd da +++=+++++++ 三、乘法公式的变形应用 (1)平方差公式的常见变形 ● 位置变化如()()__________a b b a +-= ● 符号变化如()()()()a b a b b a b a ---=--⋅-+⎡⎤⎡⎤⎣⎦⎣⎦22()b a =--22a b -=2222()()()()()a b a b a b a b a b a b ---=-+-=--=-+● 系数变化如()()()()ma mb a b m a b a b +-=+-22()m a b =- (2)完全平方公式的常见变形 ● 符号变化如2222()()2a b a b a ab b --=+=++或 2222()()2a b a b a ab b -+=-=-+ ● 移项变化222()2a b a ab b +=++(1)22___________a b →+=222()2a b a ab b -=-+(2)22____________a b →+=22(1)(2)()()4a b a b ab -=+--=(3)立方和(差)公式:22()()__________a b a ab b +-+=热身练习7. 填空题1. 计算:)121)(121(+---a a =_________________2. 计算:11()()33n n x x -+=______________________3. 计算:2211()(________)24x y x y -+=-4. 将多项式21x +加上一个单项式后,使它能成为另一个整式的完全平方,你 添加的这个单项式可以是____________.(只要填一个符合题意的即可)5. 22222()()()_________x y x y x y -+-+=6. 2222(9)(9)(9)x x x -+--_____________=8. 选择题7.下列运算不能用平方差公式的是( )A.()()a b b a ---B.2222()()m n n m -+C.(13)(31)a a -+D.()()a b a b +-- 8.下列各式的计算中正确的是( )A.22(3)(3)3m n m n m n +-=-B.2(23)(23)29x x x +-=-C.222(2)24x y x xy y +=++D.22(1)21x x x --=++ 9.已知2244(34)169x y A y x --⋅=-,则A 等于( ) A.2234x y - B.2243y x - C. 2234x y -- D. 2234x y +10.在一块直径为a +b 的圆形场上,分别划出一个直径为a ,另一个直径为b 的小的圆形场地上植满花卉,剩余的部分铺设草皮,试求需铺设草的场地面积. (用,,a b π的代数式表示)精解名题1.分组讨论探索:你们能理解下列图形所表达的恒等式? 试写出来,并说出图形的意义(1)a+ a = a a + a恒等式__________________________(2) b=a= + + +恒等式__________________________2.计算:(1) 2(1)(1)(1)x x x+-+;(2) (1)(1)x y x y+---(3)21495033⨯3.已知,x y a xy b+==.求:(1)22x y+(2)33yx+4.求证:四个连续整数的积加上1的和,一定是整数的平方.5.用完全平方公式推导“个位数字为5的两位数的平方数”的计算规律.6.某高级中学得到政府投资,进行了校园改造建设,他们的操场原来是长方形,改建后变为正方形,正方形的边长比原来的长方形的长少6米,比原来长方形的宽多了6米,问操场的面积比原来大了还是小了?相差多少平方米?7.将多项式29x x +加上一个整式后,使它能成为另一个整式的完全平方,你有哪些方法,请尽量写出不同的解法.备选例题一.用平方差公式解题 1.计算:2432(12)(12)(12)(12)1+++++2.计算:1)13()13)(13)(13(23242+++++3.计算:)1611)(411)(211(+++错误!未找到引用源。
平方差和完全平方公式及经典例题
平方差和完全平方公式及经典例题专题一:平方差公式例1:计算下列各整式乘法。
①位置变化$(7x+3y)(3y-7x)$②符号变化$(-2m-7n)(2m-7n)$③数字变化$98\times102$④系数变化$(4m+n)(2m-n)-24$⑤项数变化$(x+3y+2z)(x-3y+2z)$⑥公式变化$(m+2)(m-2)(m^2+4)$变式拓展训练:变式1】$(-y-x)(-x+y)(x^2+y^2)(x^4+y^4)$变式2】$(2a-\frac{b}{3})^2-\frac{(b-4a)^2}{33}$变式3】$1002-992+982-972+\cdots+22-12$专题二:平方差公式的应用例2:计算$2004-2004^2\times2005\times2003$的值为多少?变式拓展训练:变式1】$(x-y+z)^2-(x+y-z)^2$变式2】$301\times(302+1)\times(302^2+1)$变式3】$(2x+y-z+5)(2x-y+z+5)$变式4】已知$a$、$b$为自然数,且$a+b=40$。
1)求$a^2+b^2$的最大值;(2)求$ab$的最大值。
专题三:完全平方公式例3:计算下列各整式乘法。
①位置变化:$(-x-\frac{y}{2})(\frac{y}{2}+x)$②符号变化:$(-3a-2b)^2$③数字变化:$197^2$④方向变化:$(-3+2a)^2$⑤项数变化:$(x+y-1)^2$⑥公式变化$(2x-3y)^2+(4x-6y)(2x+3y)+(2x+3y)^2$变式拓展训练:变式1】$a+b=4$,则$a^2+2ab+b^2$的值为()A.8B.16C.2D.4变式2】已知$(a-b)^2=4$,$ab=12$,则$(a+b)^2$=_____变式3】已知$x+y=-5$,$xy=6$,则$x^2+y^2$的值为()A.1B.13C.17D.25变式4】已知$x(x-1)-(x^2-y)=-3$,求$x^2+y^2-2xy$的值专题四:完全平方公式的运用例4:已知:$x+y=4$,$xy=2$。
整式的乘法公式教案
整式的乘法公式教案一、教学目标:1. 知识与技能:(1)理解并掌握整式的乘法公式,包括平方差公式和完全平方公式;(2)能够运用整式的乘法公式进行简便计算。
2. 过程与方法:(1)通过实例演示和练习,引导学生发现整式乘法公式;(2)培养学生运用公式进行计算的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生积极主动探究问题的习惯。
二、教学重点与难点:1. 教学重点:(1)掌握整式的乘法公式;(2)能够运用整式的乘法公式进行计算。
2. 教学难点:(1)整式乘法公式的推导过程;(2)灵活运用整式乘法公式解决实际问题。
三、教学准备:1. 教师准备:(1)教学课件或黑板;(2)练习题。
2. 学生准备:(1)预习整式乘法公式;(2)准备笔记本,记录重点知识。
四、教学过程:1. 导入:(1)复习相关知识,如整式的加减法;(2)提问:能否将整式的加减法推广到乘法?2. 知识讲解:(1)通过实例演示,引导学生发现整式乘法公式;(2)讲解平方差公式和完全平方公式的推导过程;(3)强调公式中的各项系数和指数的变化规律。
3. 练习与讲解:(1)让学生分组讨论,互相解答疑问;(2)选取典型题目进行讲解,分析解题思路;(3)引导学生运用整式乘法公式进行计算。
4. 课堂小结:(1)回顾本节课所学内容,总结整式乘法公式的特点;(2)强调学生在练习中需要注意的问题。
五、课后作业:1. 请学生完成课后练习题,巩固整式乘法公式的运用;2. 鼓励学生自主探究,发现整式乘法公式的拓展应用。
六、教学拓展:1. 平方差公式的拓展:(1)引导学生发现平方差公式的推广形式;(2)举例说明平方差公式在实际问题中的应用。
2. 完全平方公式的拓展:(1)引导学生发现完全平方公式的推广形式;(2)举例说明完全平方公式在实际问题中的应用。
七、课堂练习:1. 请学生独立完成练习题,检验对整式乘法公式的掌握程度;2. 教师选取部分学生的作业进行点评,指出优点和不足。
七年级数学下册第2章整式的乘法2.2乘法公式2.2.3运用乘法公式进行计算习题课件新版湘教版
一、平方差公式 1.公式表示:(a+b)(a-b)=_a_2_-_b_2 . 2.说明:字母a,b不仅可以代表单个的数或字母,也可代表一个 单项式或一个_多__项__式__. 3.特征:左边两个多项式相乘,在这两个多项式中,一部分项 _完__全__相__同__,另一部分项互为相反数.右边等于_完__全__相__同__的__项__的 平方减去_互__为__相__反__数__的__项__的平方.
4.计算:(1)592=_____.(2)712=_____. 【解析】(1)592=(60-1)2=3 600-120+1=3 481. (2)712=(70+1)2=4 900+140+1=5 041. 答案:(1)3 481 (2)5 041
乘法公式的综合运用 【例2】(6分)计算:(m-2n+3t)(m+2n-3t). 【规范解答】原式=[m-(2n-3t)][m+(2n-3t)] ……………………………………………………………………1分 =m2-(2n-3t)2 ……………………………………………………4 分 =m2-(4n212nt+9t2) ……………………………………………5分 =m2-4n2+12nt-9t2. ……………………………………………6
【规律总结】 完全平方公式适用的前提是两项式的平方,故在利用完全平
方公式时,有时需把一项拆成两项的和或差,有时需把某几项 结合在一起,当作一项,只有把题目变形,具备完全平方公式 的特征时,才可使用.
【跟踪训练】 1.(2012·白银中考)如图,边长为(m+3)的正方形纸片,剪出一 个边长为m的正方形之后,剩余部分可剪拼成一个长方形(不重 叠无缝隙),若拼成的长方形一边长为3,则另一边长是( )
八年级数学上册整式的乘法与因式分解(平方差公式, 完全平方公式)
平方差公式 相同为a
适当交换 (a+b)(a-b)=(a)2-(b)2
合理加括号
相反为b,-b
注:这里的两数可以是两个
也可以是两个
等.
(1+x)(1-x) (-3+a)(-3-a)
(1+a)(-1+a) (0.3x-1)(1+0.3x)
1
x
-3
a
a1
0.3x 1
a2-b2 12-x2 (-3)2-a2 a2-12 ( 0.3x)2-12
3.另一项是两数积的2倍,且与两数中间的符 号相同. 4.公式中的字母a,b可以表示数,单项式和 多项式.
想一想:下面各式的计算是否正确?如果不正确, 应当怎样改正?
(1)(x+y)2=x2 +y2 (2)(x -y)2 =x2 -y2
×
(x +y)2 =x2+2xy +y2
×
(x -y)2 =x2 -2xy +y2
= 3x2-5x-10.
例3 先化简,再求值:(2x-y)(y+2x)-(2y+x)(2y -x),其中x=1,y=2.
解:原式=4x2-y2-(4y2-x2) =4x2-y2-4y2+x2 =5x2-5y2.
当x=1,y=2时,
原式=5×12-5×22=-15.
例4 对于任意的正整数n,整式(3n+1)(3n-1)- (3-n)(3+n)的值一定是10的整数倍吗?
x2 - 12 m2-22
③(2m+ 1)( 2m-1)=4m2 - 12 ④(5y + z)(5y-z)= 25y2 - z2
(2m)2 - 12 (5y)2 - z2
想一想:这些计算结果有什么特点?
整式及乘法公式
第一讲 整式及乘法公式第一部分 知识梳理一、基本概念1.同底数幂乘法法则同底数幂相乘,底数不变,指数相加。
即n m n m a a a +=⋅(m 、n 都是正整数) 2.幂的乘方法则幂的乘方,底数不变,指数相乘。
即()mn nm a a =(m 、n 都是正整数)3.积的乘方积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘,即()nn nb a ab = (n为整数)二、平方差公式及完全平方公式(1)平方差公式:(a+b )(a-b )=a 2-b 2;(2)完全平方公式:(a+b )2=a 2+2ab+b 2;(a-b )2=a 2-2ab+b 2,其中a 、b 可以是正数,也可以是负数,既可以是单项式,也可以是多项式。
三、整式的乘法1.单项式相乘,把它们的________分别相乘,对于只在一个单项式里含有的字母,则________.2.单项式与多项式相乘,就是用单项式去乘________,再把所得的积________. 3.多项式与多项式相乘,先用________乘以________,再把所得的积________.第二部分 例题与解题思路方法归纳【例题1】 阅读下列材料:一般地,n 个相同的因数a 相乘个n a a a ⋯⋅记为a n .如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log 28(即log 28=3).一般地,若a n=b (a >0且a ≠1,b >0),则n 叫做以a 为底b 的对数,记为log a b (即log a b=n ).如34=81,则4叫做以3为底81的对数,记为log 381(即log 381=4).(1)计算以下各对数的值:log24=,log216=,log264=.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M+log a N=;(a>0且a≠1,M>0,N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.〖选题意图〗本题是开放性的题目,难度较大.借考查对数,实际考查学生对指数的理解、掌握的程度;要求学生不但能灵活、准确的应用其运算法则,还要会类比、归纳,推测出对数应有的性质.〖解题思路〗首先认真阅读题目,准确理解对数的定义,把握好对数与指数的关系.(1)根据对数的定义求解;(2)认真观察,不难找到规律:4×16=64,log24+log216=log264;(3)有特殊到一般,得出结论:log a M+log a N=log a(MN);(4)首先可设log a M=b1,log a N=b2,再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.〖参考答案〗解:(1)log24=2,log216=4,log264=6;(2)4×16=64,log24+log216=log264;(3)log a M+log a N=log a(MN);(4)证明:设log a M=b1,log a N=b2,则=M,=N,∴MN=,∴b1+b2=log a(MN)即log a M+log a N=log a(MN).【课堂训练题】1.已知2a•5b=2c•5d=10,求证:(a﹣1)(d﹣1)=(b﹣1)(c﹣1).〖参考答案〗证明:∵2a•5b=10=2×5,∴2a﹣1•5b﹣1=1,∴(2a﹣1•5b﹣1)d﹣1=1d﹣1,①同理可证:(2c﹣1•5d﹣1)b﹣1=1b﹣1,②由①②两式得2(a﹣1)(d﹣1)•5(b﹣1)(d﹣1)=2(c﹣1)(b﹣1)•5(d﹣1)(b﹣1),即2(a﹣1)(d﹣1)=2(c﹣1)(b﹣1),∴(a﹣1)(d﹣1)=(b﹣1)(c﹣1).2.若a m=a n(a>0且a≠1,m,n是正整数),则m=n.你能利用上面的结论解决下面的2个问题吗?试试看,相信你一定行!①如果2×8x×16x=222,求x的值;②如果(27﹣x)2=38,求x的值.〖参考答案〗解:(1)∵2×8x×16x=21+3x+4x=222,∴1+3x+4x=22,解得,x=3(2)∵(27﹣x)2=3﹣6x=38,∴﹣6x=8,解得x=﹣【例题2】设m=2100,n=375,为了比较m与n的大小。
第十四章整式的乘法与因式分解大单元(教案)
2.教学难点
(1)多项式乘法的运算顺序和法则记忆。
-难点分析:学生容易混淆不同类型的乘法法则,忘记分配律。
-解决方法:通过直观图示和反复练习,加深记忆。
(2)完难点分析:学生难以区分两个公式,以及何时使用哪个公式。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式的乘法与因式分解的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-练习:应用完全平方公式进行乘法和因式分解。
(3)平方差公式:a^2-b^2=(a+b)(a-b)。
-举例:解释公式中a和b的含义,展示公式的应用。
-练习:设计平方差公式的应用题目,加强理解。
(4)因式分解方法:提公因式法、公式法、十字相乘法。
-举例:详细讲解每种方法的步骤,如提取公因式时如何找到最大公因式。
第十四章整式的乘法与因式分解大单元(教案)
一、教学内容
第十四章整式的乘法与因式分解大单元(教案)
1.多项式乘以多项式
-乘法法则
-举例说明
-练习
2.单项式乘以多项式
-乘法法则
-举例说明
-练习
3.多项式乘以单项式
-乘法法则
-举例说明
-练习
4.完全平方公式
-公式推导
-应用实例
-练习
5.平方差公式
-公式推导
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
初一-第03讲-整式的乘法与平方差公式(培优)-教案
学科教师辅导讲义学员编号:年级:七年级课时数:3学员姓名:辅导科目:数学学科教师:授课主题第03讲---整式的乘法与平方差公式授课类型T同步课堂P实战演练S归纳总结教学目标①掌握整式的乘法法则,能够准确计算整式乘法的计算题;②理解平方差公式,了解平方差公式的几何背景,会灵活运用平方差公式进行计算。
授课日期及时段T(Textbook-Based)——同步课堂一、知识框架二、知识概念(一)整式的乘法1、单项式与单项式相乘法则:把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数保持不变,作为积的因式。
2、单项式与多项式相乘法则:根据分配律用单项式乘以多项式的每一项,再把所得的积相加。
公式如下:()(,,,m a b c ma mb mc m a b c++=++都是单项式)3、多项式与多项式相乘法则:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
公式如下:()()(,,,m n a b ma mb na nb m n a b++=+++都是单项式)(二)平方差公式体系搭建1、平方差公式:22()()a b a b a b-+=-,即两个数的和与这两个数的差的积,等于这两个数的平方差。
公式的推导:2222()()a b a b a ab ab b a b+-=-+-=-。
平方差公式的逆用即22()()a b a b a b-=-+平方差公式的特点:(1)左边是两个二项式的积,,在这两个二项式中,有一项(a)完全相同,另一项(b和-b)互为相反数。
(2)右边是乘式中两项的平方差(相同项的平方减去符号相反项的平方)(3)公式中的a和b可以是具体数,也可以是单项式和多项式。
2、平方差公式的几何意义如图两幅图中,阴影部分的面积相等,第一个图的阴影部分的面积是:a2﹣b2,第二个图形阴影部分的面积是:(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b)平方差公式的几何意义还有很多,有兴趣的同学可以钻研一下。
乘法公式
a b
2
a 2ab b
2 2 2
2
(2)平方差公式:
a b a b a b
(3)立方和公式:
a b a a b a
2
ab b ab b
2
2
a b
3 3
3
(4)立方差公式:
2 2
3 2 2
3
例1:将下列式子写成完全平方式
1.
16 8m m
2
2.Βιβλιοθήκη 1 2 1 1 2 m mn n 25 5 4
例2:将下列完全平方式补充完整:
1. 16m
2
2
8 2m 2 2. n n
1 4
例3:
2
1 若x mx k是一个完全平方式, 2 则k和m的关系是:
练习: (1)若3x xy 2 y 0( x 0, y 0),
2 2
x y x y 求 的值; y x xy
2 2
练习: (2)学海导航P 11 8
6.分式方程的解法: ①去分母(方程两边同时乘以最简公分母, 将分式方程化为整式方程); ②按解整式方程的步骤求出未知数的值; ③验根(求出未知数的值后必须验根, 因为在把分式方程化为整式方程的过程 中,扩大了未知数的取值范围,可能产生增 根).
1.x 7 x 15 (2 x 3)( x 5) 2
2
(2 2.18 x 19 x 5 x 1)(9 x 5)
2
3.6 x 13 x 6 (3x 2)(2 x 3)
2
4.6 11a 35a
2
整式的乘法
整式的乘法包括(单项式)与(单项式)相乘;(单项式)与(多项式)相乘;(多项式)与(多项式)相乘单项式与单项式相乘的运算法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
整式乘法法则:1、同底数的幂相乘:法则:同底数的幂相乘,底数不变,指数相加。
数学符号表示:a m.a n=a m+n(其中m、n为正整数)2、幂的乘方:法则:幂的乘方,底数不变,指数相乘。
数学符号表示:(a m)n=a mn(其中m、n为正整数)3、积的乘方:法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。
(即等于积中各因式乘方的积。
)数学符号表示:(ab)n=a n b n(其中n为正整数)4、单项式与单项式相乘:把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
5、单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
6、多项式与多项式相乘:先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
7、乘法公式:平方差公式:(a+b)·(a-b)=a2-b2,完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。
整式乘法运算:单项式乘以单项式法则:单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.注:单项式乘以单项式,实际上是运用了乘法结合律和同底数的幂的运算法则完成的。
①.积的系数等于各因式系数的积,先确定符号,再计算绝对值.这时容易出现的错误是,将系数相乘与指数相加混淆,如2a3·3a2=6a5,而不要认为是6a6或5a5.②.相同字母的幂相乘,运用同底数幂的乘法运算性质.③.只在一个单项式里含有的字母,要连同它的指数作为积的一个因式.④.单项式乘法法则对于三个以上的单项式相乘同样适用.⑤.单项式乘以单项式,结果仍是一个单项式.单项式乘以多项式的运算法则:单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得的积相加.法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.方法总结:在探究多项式乘以多项式时,是把某一个多项式看成一个整体,利用分配律进行计算,这里再一次说明了整体性思想在数学中的应用。
初二所有数学公式归纳总结
初二所有数学公式归纳总结大家都知道,学习数学,什么都不多,公式最多。
一起来看看初二的公式都有哪些吧。
下面是店铺分享给大家的初二所有数学公式归纳,希望大家喜欢!初二所有数学公式归纳(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子: a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:① 列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
第四讲 平方差公式
第四讲 平方差公式【新知讲解】1.基本公式:平方差公式:(a+b)(a-b)=a 2—b 2平方差公式的结构特征:左边两个二项式的乘积,这两个二项式的两项中,有一项完全相同(绝对值相同,符号相同),而另一项互为相反数(绝对值相同,符号相反) 右边是这两个单项式中这两项的平方差。
这里a,b 可表示一个数、一个单项式或一个多项式。
2.平方差公式的推广: (1)()()2233a b a ab b a b -++=-(2)()()322344a b a a b ab bab -+++=-(3)()()123221n n n n n n n a b aa b a b ab b a b ------+++++=-3.思想方法:① a 、b 可以是数,可以是某个式子;② 要有整体观念,即把某一个式子看成a 或b ,再用公式; ③ 注意倒着用公式; ④ 2a ≥0;⑤ 用公式的变形形式。
【探索新知】问题导入:()()22b a b a b a -=-+成立吗?1.运算推导:2.图形理解:3.平方差公式:()()=-+b a b aA 组 基础知识【例题精讲】例1.利用平方差公式计算:(1)()()x x 6565-+ (2)()()y x y x 22+- (3)()()n m n m --+-例2.计算下列各题:(1)()()20012001-+ (2)()()3232x y x y -+(3)22112222x x ⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭(4)()()x y z x y z +-++(5)59.860.2⨯ (6)2200620052007-⨯例3.用平方差公式进行计算:(1)204×197 (2)108×112例4.化简求值: ()()1212-++-b a b a 其中598,987a b ==。
例5.计算下列各题:(顺用公式) (1)()()()()()224488a b a b a bab a b -++++(2)3(22+1)(24+1)(28+1)(162+1)+1 (3)2999例6. 计算下列各题:(逆用公式)①1.2345²+0.7655²+2.469×0.7655 (希望杯)②已知 19221 可以被60至70之间的两个整数整除,这两个整数是多少?B 组 能力提升1.计算: (1)(-65x-0.7y)( 65x-0.7y) (2)(a+2)(a 4+16)(a 2+4)(a-2)(3)(3x m +2y n +4)(3x m +2y n-4) (4)(a+b-c)(a-b+c)-(a-b-c)(a+b+c)(5)(a+b-c-d)(a-b+c+d)2.用平方差公式进行计算:(1)804×796 (2)10007×99933.计算(顺用公式):6(7+1)(72+1)(74+1)(78+1)+1变式训练1:(2211-)(2311-)(2411-)…(2911-)(21011-) :4.计算(逆用公式):(x 3+x 2+x+1)(x 3-x 2+x-1)-(x 3+x 2+x+2)(x 3-x 2+x-2)C 组 拓展训练1.1949²-1950²+1951²-1952²+……+1999²-2000²2.求证:1999×2000×2001×2002+1是一个整数的平方。
平方差公式
平方差公式的学习指导平方差公式为22))((b a b a b a -=-+,应用广泛,应熟练掌握.下面导学其学习方法,希望能对同学们有所帮助. 一、平方差公式:22))((b a b a b a -=-+二、公式的结构特征:平方差公式是通过乘法法则直接计算得来的,即2222))((b a b ab ab a b a b a -=-+-=-+,弄清其来源,自然易记.当然,它的左边为两数和与这两数差的积的形式,一部分完全相同,如公式中的a ,另一部分绝对值相同而符号相反,如公式中的b 和b -;它的右边恰好是完全相同的项的平方,减去绝对值相同而符号相反的项的平方所得的差.这也是该公式被叫做平方差公式的原因.三、 明确公式中b a 、的含义公式中的字母b a 、,既可以表示数,也可以表示代数式.明确b a 、各代表什么数或式子,只要是符合公式结构特征的,都可以运用这一公式计算.例如:4422222294)32)(32()()(y x y x y x b a b a b a -=-+-=-+四、平方差公式的几何意义:如图1,阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即22b a -;若把小长方形Ⅲ旋转到小长方形Ⅳ的位置,则此时的阴影部分的面积又可以看成))((b a b a S S S S IV I III I -+=+=+.从而验证了平方差公式22))((b a b a b a -=-+.五、平方差公式的 重点重点1 平方差公式的运用在运用平方差公式时,要注意:(1)是否符合平方差公式的“模型”,即看一看是不是两数和与两数差相乘.如果是,才可以用公式:(2)要分清是哪两个数的和与差相乘,即公式中b a 、在该题中分别代表什么;(3)为了识别出b a 、,应注意公式变形.参看重点2;(4)应特别注意公式的逆用 ))((22b a b a b a -+=-重点2 公式的变化形式公式22))((b a b a b a -=-+有八种变化形式:(1)位置变化:22))((b a a b a b -=+-+(2)符号变化:22))((a b b a b a-=---(3)系数变化:22)3()21()35.0(321b a b a b a -=-⎪⎭⎫ ⎝⎛+ (4)指数变化:22222222)()())((b a b a b a -=-+(5)增项变化;22)())((c b a c b a c b a --=+---;22)())((c b a c b a c b a --=+--+(6)增因式变化:)()())()()((2222b a b a b a b a b a b a -⋅-=+----+(7)连用公式变化:884422))()()((b a b a b a b a b a -=+++-(8)逆用公式变化:)222(2)()(22d c b a d c b a d c b a -+-=+-+--+-以上8种变化离不开基本的公式,同学们不必死记各种变化形态,关键还是对公式结构的理解;六、平方差公式的易错点在平方差公式22))((b a b a b a -=-+中,字母b a 、可以表示具体的数,也可以表示代数式.应用时,要紧扣“相同项”与“互为相反数”这两点.例如22))(3(b a b a b a -≠-+,因为左边两个因式中的第一项a 3和a 不是相同项,不符合平方差公式条件.22)2)((b a b a b a -≠-+,因为左边两个因式中的第二项b 和b 2-不是互为相反项,也不符合平方差公式.总之利用平方差公式要注意:(1)必须符合平方差公式的结构特征;(2)有些式子虽然不能直接应用公式,但经过适当变形或变换符号后则可以运用公式进行化简、计算;(3)计算结果一定要注意字母的系数,指数的变化;(4)在运算过程中,有时可以反复应用公式.平方差公式活学与活用平方差公式是整式乘法中的一个重要公式,掌握好平方差公式并能灵活的使用,可提高计算速度和计算能力.一、活学公式平方差公式:(a +b)(a -b)=a 2-b 2.文字语言: 两个数和与这两个数的差的积,等于这两个数的平方差.理解公式: (1)公式中a 、b 可以表示具体的正数,负数、字母,也可以是单项式或多项式或一般的代数式.(2)只有符合平方差公式形式或可以转化为平方差公式形式的多项式相乘,才能使用公式.二、活用公式1.交换位置后用公式例1 计算(xy-5)(-xy-5).分析: 本题两个因式中,含-5项的符号相同,含xy项的系数符号相反,所以可以使用公式(a+b)(a-b)=a2-b2进行计算,其中-5相当于公式a,xy相当于公式中的b,为了使用公式,可交换位置,将式子变为公式的形式.2.先变系数后用公式例2 计算(2x+4y)(x-2y).分析:观察式子的特点,(2x+4y)可变成2(x+2y),通过变形后,就可以利用平方差公式进行计算了.3.先结合后用公式例3 计算(x+2y)(x2+4y2)(x-2y).分析:本题有三个因式,如果从左到右依次计算,计算起来有些麻烦,仔细观察可以发现,第一因式与第三因式正好符合平方差公式的特征.可以先将第一因式与第三项结合,利用平方差公式计算得(x2-4y2),再与(x2+4y2)相乘,又可使用平方差公式..4.连续逆向使用公式例4 计算(a8+b8)(a4+b4)(a2+b2)(a+b)(a-b).分析:观察所给式子因式比较多,根据式子的特点,可以利用乘法的结合律,从右向左连续使用平方差公式.5.组变形后使用公式例5 计算(x-y+1)(x+y-1).分析:本题中的两个因式都是三项,直接去括号计算比较麻烦,观察第一个因式的第一项与第二个因式的第一项都是x,第一个因式的后两项与第二因式的后两项对应项的符号相反,若把后两项结合组合成一项,可以利用平方差公式计算.6.拆项变形后使用例6 计算(m-n+1)(m+n-5).分析:观察式子的特点,可以将两个多项式拆成两个数的和与这两个数的差的形式.然后利用平分差公式计算.总结:以上介绍了平方差公式的特征以及应用的一些技巧,在计算的过程中,我们要认真观察式子的特点,探究性地使用公式.。
1.4~1.6整式乘法、平方差公式、完全平方公式(教案)
(2)平方差公式:掌握(a+b)(a-b)=a^2-b^2的平方差公式,并能够应用于因式分解和简化计算。
举例:对于表达式x^2-9,能迅速识别为平方差公式的应用,分解为(x+3)(x-3)。
(3)完全平方公式:掌握(a+b)^2=a^2+2ab+b^2和(a-b)^2=a^2-2ab+b^2的完全平方公式,能够运用到实际问题中。
五、教学反思
在今天的教学中,我发现学生们对整式乘法、平方差公式和完全平方公式的理解程度参差不齐。有些学生能够迅速掌握运算规律,而部分学生在符号处理和公式运用上还存在困难。这让我意识到,在今后的教学中,我需要更加关注这些难点,采取更有针对性的教学方法。
在导入新课环节,通过提问学生们日常生活中的实际问题,成功引起了他们的兴趣。但在新课讲授过程中,我发现有些学生对理论介绍部分的理解不够深入。在今后的教学中,我应尽量用生动的例子和实际应用来解释抽象的概念,帮助他们更好地理解。
举例:对于表达式(x+3)^2,能正确展开为பைடு நூலகம்^2+6x+9。
2.教学难点
(1)整式乘法中的符号处理:在整式乘法过程中,学生容易在符号处理上出错,如漏乘符号、符号错误等。
举例:对于(2x-3y)乘以(4x+5y),学生可能会得出8x^2+10xy-12xy-15y^2的错误结果,而正确答案是8x^2+2xy-15y^2。
此外,从学生的反馈来看,他们在解决实际问题时,对于如何运用所学知识还存在一定困扰。针对这一问题,我计划在课后布置一些与生活紧密相关的练习题,让学生们练习运用整式乘法、平方差公式和完全平方公式,以提高他们解决实际问题的能力。
乘法公式
乘法公式一、课标要求(学习本章节需要达到的目的)1、掌握整式乘法的平方差公式、完全平方公式和(x+a )(x+b)=x 2+(a +b)x+a b 公式,2、通过公式运用,培养学生运用公式的计算能力.教学重点:掌握公式(a +b)(a -b)=a 2-b 2,(a ±b)2=a 2±2a b+b 2.教学难点:公式中字母的广泛含义.二、知识疏理1、温故知新(与本讲有联系的原来知识点)知识点1 平方差公式平方差公式是指(a +b)(a -b)=a 2-b 2.知识点2 完全平方公式(a ±b)2=a 2±2a b+b 2知识点3 公式(x+a )(x+b)=x 2+(a +b)x+a b2、教材解读(基础知识分析)运用平方差公式计算.1、()()33-+x x = ;()()=+-33x x 。
2、=--+-)3)(3(x x ;()()=---33x x 。
3、(a+ )(a- )=a 2-0.25例题:若20072008a =,20082009b =,试不用..将分数化小数的方法比较a 、b 的大小. 分析:两个数比较大小常用方法①平方法②差比法③商比法④相反数法。
而两个分数比较大小通常用①通分法②把分子化为相同的数,分母大的反而小。
这里可采用常见的通分法,会发现分子可用平方差公式化简。
●拓展提高1、计算:=---)23)(23(22y x y x 。
2、去括号:()()22+--+b a b a = 。
3、运用平方差公式计算:①2002⨯1998②2010200820092⨯-4、先化简,后求值:()()()9332++-a a a ,其中1=a5、先化简,再求值:(2)(2)(2)a a a a -+--,其中1a =-.●体验中考1、(2009年四川省内江市) 在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .2222)(b ab a b a ++=+B .2222)(b ab a b a +-=-C .))((22b a b a b a -+=-D .222))(2(b ab a b a b a -+=-+ 运用完全平方公式计算1、计算:① 2)32(--y x ②)1)(1(-+++y x y xa ab b a bb 图甲2、先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.3、22()()(2)3a b a b a b a ++-+-,其中22a b =-=.4、=-2)32(y x5、如果942++kx x 是一个完全平方式,求k 的值三、典型例题解析例2、 计算.(1)(b -2)(b 2+4)(b+2);(2)(2a -b)(2a +b)-(3a -2b)(3a +2b).例3 、计算(2+1)(22+1)(24+1)…(232+1).例4、已知(a +b)2=7,(a -b)2=4,求a 2+b 2,a b 的值.例5、 观察下列各式:(x -1)(x+1)=x 2-1(x -1)(x 2+x+1)=x 3-1(x -1)(x 3+x 2+x+1)=x 4-1根据前面各式的规律可得:(x -1)(x n +x n -1+x n -2+…+x+1)= (其中n 为正整数)例6 计算.(1)(2x+y -z+10)(2x -y+z+10); (2)(a +b)2(a -b)2-(a 2+b 2)(a -b).四、实战演练(课堂练习)1、学生做一做 观察下列各式:1·2·3·4+1=522·3·4·5+1=1123·4·5·6+1=192……(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1)计算2000·2001·2002·2003+1.(用一个最简式子表示)2、(x+2y)(x -y)-(x+y)2.3.已知a +a 1=4,求a 2+21a 和a 4+41a 的值.4.已知(t+58)2=654481,求(t+48)(t+68)的值.中考链接:1. (2019湖北荆州,3,3分)将代数式化成的形式为 142-+x x q p x ++2)(A .B .C .D .2. (2020山东枣庄,13,4分)若,且,则 .3. (2020湖南益阳,16,8分)观察下列算式:① 1 × 3 - 22 = 3 - 4 = -1② 2 × 4 - 32 = 8 - 9 = -1③ 3 × 5 - 42 = 15 - 16 = -1④ ……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.3)2(2+-x 4)2(2-+x 5)2(2-+x 4)2(2++x 622=-n m 2m n -==+n m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.下列运算中正确的是 ( )
A.=÷5
5b a 5)(b
a
B. 24
46a a a =⨯ C. 4
44)(b a b a +=+ D. (x 3)3=x 6
2.4
)2(xy -的计算结果是( )
A.-2x 4y 4
B. 8x 4y 4
C.16x 4y 4
D. 16xy 4
3.下列算式能用平方差公式计算的是( )
A.(2a +b )(2b -a )
B.)12
1
)(121(--
+x x C.(3x -y )(-3x +y ) D.(-m -n )(-m +n )
4. 数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(-x 2+3xy -21y 2)-(-21x 2+4xy -2
3
y 2)= -
2
1x 2
_____+y 2空格的地方被钢笔水弄污了,那么空格中的一项是( ) A .-7xy B.7xy C.-xy D.xy
5.下列各式中,正确的是 ( ) A .05
5
=÷a a B .()()b a a b b a -=-÷--3
4
C .()()
23
24
3
x x x -=-÷
D .()
442
2
2y x y x -=-
6. 三个连续奇数,若中间的一个为n ,则它们的积为( )
A .6n 3-6n
B .4n 3-n
C .n 3-4n
D .n 3-n 8. 3(22+1)(24+1(28+1)……(232+1)+1的个位数是( )
A.4
B.5
C.6
D.8
9.有若干张如图所示的正方形和长方形卡片,表中所列四种方案能拼成边长为(a+b )的正方形的是 ( )
10.如图:矩形花园ABCD 中,AB =条平行四边形道路RSTK 。
若LM = ) A.2
b a
c ab bc ++- B.ac bc ab a -++2
C.2
c ac bc ab +-- D.ab a bc b -+-2
2
b b a ⑴ ⑵ ⑶
A
D
L Q M P
二填空题
1.(-3xy)·(-x 2z)·6xy 2
z=_________.
2. 2(a+b)2·5(a+b)3·3(a+b)5
=____________.
3.(2x 2-3xy+4y 2
)·(-xy)=_________.
4.3a(a 2-2a+1)-2a 2
(a-3)=________.
5.已知有理数a 、b 、c 满足│a-1│+│a+b │+│a+b+c-2│=0,则代数式(-•3ab).(-a 2c).6ab 2
的值为________.
6.(a+2)(a-2)(a 2
+4)=________.
7.已知(3x+1)(x-1)-(x+3)(5x-6)=x 2
-10x+m,则m=_____.
8.已知ax 2+bx+1与2x 2-3x+1的积不含x 3
的项,也不含x 的项,那么a=•_______-,b=_____. 9.1
23221123221()()n n n n n n n a a
a b a b ab b b a a b a b ab b ----------+++++-+++++
10.某同学做一道数学题:两个多项式A ,B.其中B 为4x 2-3x+7,试求A+B ,他误将“A+B ”看成“A-B ”,求出的结果为8x 2-x+1,则A+B= 。
11. 单项式
7
3xy
的系数是______,次数是_____次。
12.若10m =5,10n =3,则102m-3n 的值是 . 13.5k-3=1,则k -2= .
14.计算2
22
248
252100-的结果是 . 三、解答题 15. 计算:⑴20052004)514()145(•- ⑵(31a 2b )3·(-9a b 3)·(-2
1a 5b 3)
16. 先化简,再求值:
⑴(x+2)2-(x+1)(x-1),其中x=1.5;
(2)解方程4(x-2)(x+5)-(2x-3)(2x+1)=5.
(3)化简求值:x(x 2-4)-(x+3)(x 2
-3x+2)-2x(x-2),其中x=1.5.
19.已知3
n m x x x x ⋅⋅=,且m 是n 的2倍,求m 、n
21.已知x+3y=0,求3
2
326x x y x y +--的值.
2.在多项式5
33ax bx cx ++-中,当x=3时,多项式的值为5,求当x=-3时,多项式的值.(6分)
22.求证:多项式(a-2)(a 2+2a+4)-[3a(a+1)2-2a(a-1)2
-(3a+1)(3a-1)]+•a(1+a)的值与a 的取值无关.
23. 计算:108
81)2(31211222-⨯⎪⎭
⎫
⎝⎛⨯⎪⎭⎫ ⎝⎛--÷⨯-m m .
24.计算(1)-2a 2(2
1ab +b 2)+5a(a 2b -ab 2) (2))12)(29(2
++x x
(3)))()((22b a b a b a ++- (4)02
(3)(0.2)π--+-+033
21()(1)()333
-+-+÷-
25. 小康村正在进行绿地改造,原有一正方形绿地,现将它每边都增加3米,面积则增加了63平方米,问原绿地的边长为多少?原绿地的面积又为多少?
26. 图1是一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图2的形状拼成一个正方形。
)
(1)比较这两幅图,你能说出它们的相同点与不同点吗? (2)你认为图2中的阴影部分的正方形的边长等于多少?
(3)请用两种不同的方法求图2中阴影部分的面积。
(4)观察图2你能写出下列三个代数式之间的等量关系吗?
n n m
图2 n m m n 图1。