带电粒子在电场中的偏转(含问题详解)
高一物理电荷在电场中的偏转试题答案及解析
高一物理电荷在电场中的偏转试题答案及解析1.如图所示,平行板电容器的一个极板与滑动变阻器的滑片C相连接.电子以速度v垂直于电场线方向射入并穿过平行板间的电场.在保证电子还能穿出平行板间电场的情况下,若使滑动变阻器的滑片C上移,则关于电容器极板上所带电荷量Q和电子穿越平行板所需的时间t的说法中,正确的是A.电荷量Q增大B.电荷量Q不变C.时间t增大D.时间t不变【答案】AD【解析】当滑动变阻器的滑动端C上移时,跟电容器并联的阻值增大,所以电容器的电压U增大,根据得:电量q增大,电子在平行板电容器中做类平抛运动,沿极板方向做匀速直线运动,所以运动时间与电压的变化无关,所以时间t不变,故A、D正确。
【考点】带电粒子在匀强电场中的运动;闭合电路的欧姆定律.2.如图,板间距为d、板长为4d的水平金属板A和B上下正对放置,并接在电源上.现有一质量为m、带电量+q的质点沿两板中心线以某一速度水平射入,当两板间电压U=U,且A接负时,该质点就沿两板中心线射出;A接正时,该质点就射到B板距左端为d的C处.取重力加速度为g,不计空气阻力.求(1)质点射入两板时的速度;(2)当A接负时,为使带电质点能够从两板间射出,两板所加恒定电压U的范围.【答案】(1)(2)【解析】:(1)当两板加上电压且A板为负时,有:…①A板为正时,设带电质点射入两极板时的速度为v,向下运动的加速度为a,经时间t射到C点,有:…②又水平方向有…③竖直方向有…④由①②③④得:…⑤(2)要使带电质点恰好能从两板射出,设它在竖直方向运动的加速度为a1、时间为t1,应有:…⑥…⑦由⑥⑦⑧得:…⑧若的方向向上,设两板所加恒定电压为,有:…⑨若的方向向下,设两板所加恒定电压为,有:…⑩⑧⑨⑩解得:,所以,所加恒定电压范围为:【考点】考查了带电粒子在电场中的偏转3.如图所示,一个质量为m、带电量为q的粒子从两带电平行板的正中间沿与匀强电场垂直的方向射入,不计粒子所受的重力。
物理带电粒子在电场中的偏转运动
物理带电粒子在电场中的偏转运动1.偏转问题:(1)条件分析:带电粒子垂直于电场线方向进入匀强电场。
(2)运动形式:类平抛运动。
(3)处理方法:应用运动的合成与分解。
(4)运动规律:2.带电粒子在电场中偏转的两类问题:最终侧移的距离和偏转后的动能或速度。
典例如图所示,水平放置的平行板电容器与某一电源相连,它的极板长L=0.4 m,两板间距离d=4×10-3 m,有一束由相同带电微粒组成的粒子流,以相同的速度v0从两板中央平行极板射入,开关S闭合前,两板不带电,由于重力作用微粒能落到下极板的正中央,已知微粒质量为m=4×10-5 kg,电荷量q=+1×10-8 C,g=10 m/s2。
求:(1)微粒入射速度v0为多少?(2)为使微粒能从平行板电容器的右边射出电场,电容器的上极板应与电源的正极还是负极相连?所加的电压U应取什么范围?【巩固练习】1.(多选)如图所示,带电荷量之比为qA∶qB=1∶3的带电粒子A、B以相等的速度v0从同一点出发,沿着跟电场强度垂直的方向射入平行板电容器中,分别打在C、D点,若OC=CD,忽略粒子重力的影响,则( )A.A和B在电场中运动的时间之比为1∶2B.A和B运动的加速度大小之比为4∶1C.A和B的质量之比为1∶12D.A和B的位移大小之比为1∶12.如图所示,两个平行带电金属板M、N相距为d,M板上距左端为d处有一个小孔A,有甲、乙两个相同的带电粒子,甲粒子从两板左端连线中点O处以初速度v1平行于两板射入,乙粒子从A孔以初速度v2垂直于M板射入,二者在电场中的运动时间相同,并且都打到N板的中点B处,则初速度v1与v2的关系正确的是( )3.(多选)如图所示的直角坐标系中,第一象限内分布着均匀辐向的电场,坐标原点与四分之一圆弧的荧光屏间电压为U;第三象限内分布着竖直向下的匀强电场,场强大小为E。
大量电荷量为-q(q>0)、质量为m的粒子,某时刻起从第三象限不同位置连续以相同的初速度v0沿x轴正方向射入匀强电场。
带电粒子在电场中的偏转(含答案解析)
带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0.b.不能飞出电容器:y =12at 2=qU 2md t 2,t =2mdyqU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd 离开电场时的偏移量:y =12at 2=Uql 22mdv 2离开电场时的偏转角:tan θ=v yv 0=Uqlmdv 20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12mv 20y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1lmdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10 C ,质量为m =1.0×10-20 kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N ·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2a =F m =qU dmL =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm 粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L12L +12 cm=yY,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cmk qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线内存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL mv 20 (3)3qEL 22mv 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2L v 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eq m所以v y =a L v 0=qELmv 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELmv 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2mv 20 又x =y +L tan α, 解得:x =3qEL 22mv 20解法二 x =v y ·Lv 0+y =3qEL 22mv 20.解法三 由xy =L +L2L 2得:x =3y =3qEL 22mv 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11 kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12mv 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得:E =3×103 N/C ≈1.732×103 N/C(3)由动能定理得:qU ab =12m (v 21+v 2y )-0联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A .同时到达屏上同一点B .先后到达屏上同一点C .同时到达屏上不同点D .先后到达屏上不同点 答案 B解析 一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD 面与EFGH 面为金属板,其他面为绝缘材料.ABCD 面带正电,EFGH 面带负电.从小孔P 沿水平方向以相同速率射入三个质量相同的带正电液滴a 、b 、c ,最后分别落在1、2、3三点.则下列说法正确的是( )A .三个液滴在真空盒中都做平抛运动B .三个液滴的运动时间不一定相同C .三个液滴落到底板时的速率相同D .液滴c 所带电荷量最多 答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间内,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R =2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有y =v 0t x 2+y 2=R 2解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12mv 20代入数据解得E k=2.5×10-5 J.8、如图所示,在正方形ABCD区域内有平行于AB边的匀强电场,E、F、G、H是各边中点,其连线构成正方形,其中P点是EH的中点.一个带正电的粒子(不计重力)从F点沿FH方向射入电场后恰好从D点射出.以下说法正确的是( )A.粒子的运动轨迹一定经过P点B.粒子的运动轨迹一定经过PE之间某点C.若将粒子的初速度变为原来的一半,粒子会由ED之间某点射出正方形ABCD区域D.若将粒子的初速度变为原来的一半,粒子恰好由E点射出正方形ABCD区域答案BD解析粒子从F点沿FH方向射入电场后恰好从D点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH的中点,而延长线又经过P点,所以粒子轨迹一定经过PE之间某点,选项A错误,B正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C错误,D正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析 小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为mg ′=qE 2+mg 2=23mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=mv 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知: -2mg ′R =12mv 2D -12mv 20 解得v 0= 103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥103gR 3.。
高考物理带电粒子在电场中的偏转运动解题方法
联立①②③④⑤式解得 Ek=12mv20+2dφqh⑥,l=v0 mqdφh。⑦ (2)若粒子穿过 G 一次就从电场的右侧飞出,则金属板的长度最短。由对称性
多维训练
3.(2019·全国Ⅱ卷,24)如图,两金属板P、Q水平放置,间距为d。两金属板正中间 有一水平放置的金属网G,P、Q、G的尺寸相同。G接地,P、Q的电势均为φ(φ>0)。 质量为m、电荷量为q(q>0)的粒子自G的左端上方距离G为h的位置,以速度v0平行于纸 面水平射入电场,重力忽略不计。
(1)电场强度的大小; (2)B 运动到 P 点时的动能。
答案
3mg (1) q
(2)2m(v20+g2t2)
小球做什么运动? 一般怎么处理? 还有其它方法吗?
转到解析
课堂互动
解析 (1)设电场强度的大小为 E,小球 B 运动的加速度为 a。根据牛顿第二定律、
运动学公式和题给条件,有 mg+qE=ma①
A.动能增加21mv2
一般用什么方法? B.机械能增加 2mv2
C.重力势能增加23mv2 D.电势能增加 2mv2 解析 动能变化量 ΔEk=12m(2v)2-21mv2=23mv2,A 错误;重力和电场力做功,机
械能增加量等于电势能减少量,带电小球在水平方向向左做匀加速直线运动,由运动 学公式得(2v)2-0=2qmEx,则电势能减少量等于电场力做的功 ΔEp 减=W 电=qEx=2mv2, B 正确,D 错误;在竖直方向做匀减速运动,到 N 点时竖直方向的速度为零,由-v2 =-2gh,得重力势能增加量 ΔEp 重=mgh=12mv2,C 错误。答案 B
(完整版)带电粒子在电场中的偏转(含答案)
带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎨⎧a.能飞出电容器:t =l v 0.b.不能飞出电容器:y =12at 2=qU 2mdt 2,t = 2mdy qU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd离开电场时的偏移量:y =12at 2=Uql 22md v 20离开电场时的偏转角:tan θ=v y v 0=Uql md v20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12m v 20y =12at 2=12·qU 1md ·(l v 0)2tan θ=qU 1lmd v 20得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 20,其中U y =Ud y ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10C ,质量为m =1.0×10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2 a =F m =qU dm L =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L 12L +12 cm =yY ,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cm k qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线内存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL m v 20 (3)3qEL 22m v 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2Lv 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eqm所以v y =a L v 0=qELm v 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELm v 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2m v 20 又x =y +L tan α, 解得:x =3qEL 22m v 20解法二 x =v y ·L v 0+y =3qEL 22m v 20.解法三 由x y =L +L 2L 2得:x =3y =3qEL 22m v 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12m v 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得: E =3×103 N/C ≈1.732×103 N/C (3)由动能定理得:qU ab =12m (v 21+v 2y )-0 联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A .同时到达屏上同一点B .先后到达屏上同一点C .同时到达屏上不同点D .先后到达屏上不同点 答案 B解析一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD面与EFGH面为金属板,其他面为绝缘材料.ABCD面带正电,EFGH面带负电.从小孔P沿水平方向以相同速率射入三个质量相同的带正电液滴a、b、c,最后分别落在1、2、3三点.则下列说法正确的是()A.三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间不一定相同C.三个液滴落到底板时的速率相同D.液滴c所带电荷量最多答案 D解析三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B错误;在相同的运动时间内,液滴c水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D正确;因为重力做功相同,而电场力对液滴c做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中xOy所在平面与光滑水平面重合,电场方向与x轴正向平行,电场的半径为R= 2 m,圆心O与坐标系的原点重合,场强E=2 N/C.一带电荷量为q=-1×10-5 C、质量m=1×10-5 kg的粒子,由坐标原点O处以速度v0=1 m/s沿y轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间;(2)粒子出射点的位置坐标;(3)粒子射出时具有的动能.答案(1)1 s(2)(-1 m,1 m)(3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有 y =v 0t x 2+y 2=R 2 解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12m v 20代入数据解得E k =2.5×10-5 J.8、如图所示,在正方形ABCD 区域内有平行于AB 边的匀强电场,E 、F 、G 、H 是各边中点,其连线构成正方形,其中P 点是EH 的中点.一个带正电的粒子(不计重力)从F 点沿FH 方向射入电场后恰好从D 点射出.以下说法正确的是( )A .粒子的运动轨迹一定经过P 点B .粒子的运动轨迹一定经过PE 之间某点C .若将粒子的初速度变为原来的一半,粒子会由ED 之间某点射出正方形ABCD 区域 D .若将粒子的初速度变为原来的一半,粒子恰好由E 点射出正方形ABCD 区域 答案 BD解析 粒子从F 点沿FH 方向射入电场后恰好从D 点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH 的中点,而延长线又经过P 点,所以粒子轨迹一定经过PE 之间某点,选项A 错误,B 正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C 错误,D 正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB 部分为倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切.整个装置处于场强为E 、方向水平向右的匀强电场中.现有一个质量为m 的小球,带正电荷量为q =3mg3E,要使小球能安全通过圆轨道,在O 点的初速度应满足什么条件?图9审题与关联解析 小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为 mg ′=(qE )2+(mg )2=2 3mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=m v 2DR ,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知: -2mg ′R =12m v 2D -12m v 20 解得v 0= 103gR3,因此要使小球安全通过圆轨道,初速度应满足v ≥ 103gR3. 答案 v ≥103gR310、在空间中水平面MN的下方存在竖直向下的匀强电场,质量为m的带电小球由MN上方的A点以一定的初速度水平抛出,从B点进入电场,到达C点时速度方向恰好水平,A、B、C三点在同一直线上,且AB=2BC,如图所示.由此可见()A.电场力为3mgB.小球带正电C.小球从A到B与从B到C的运动时间相等D.小球从A到B与从B到C的速度变化量的大小相等答案AD解析设AC与竖直方向的夹角为θ,带电小球从A到C,电场力做负功,小球带负电,由动能定理,mg·AC·cos θ-qE·BC·cos θ=0,解得电场力为qE=3mg,选项A正确,B 错误.小球水平方向做匀速直线运动,从A到B的运动时间是从B到C的运动时间的2倍,选项C错误;小球在竖直方向先加速后减速,小球从A到B与从B到C竖直方向的速度变化量的大小相等,水平方向速度不变,小球从A到B与从B到C的速度变化量的大小相等,选项D正确.。
2016带电粒子在电场中的偏转解析
A v0 B -
1 1 2 2 qU AB mv mv 0 2 2 q为负 2qU 3 2 AB v v0 2 10 m / s m
三、 加速和偏转 _ + + + + -q m
U1
vy
+
+
+
y
φ
v0
U2
v0
- - - - - L
qU 2 L U 2 L 2qU1 y v0 2 2md v0 4dU1 m qU 2 L LU 2 tan 2 mdv0 dU1
y U 2l
与粒子的电量q、 质量m无关
2
4U1d
与粒子的电量q、 质量m无关
U 2l y 4U1d
2
强化练习 4、试证明:带电粒子垂直进入偏转电场,离开电 场时就好象是从初速度所在直线的中点沿直线离 开电场的。
x
θ
qUl y 2 2m v0 d
2
qUl tan 2 m v0 d
2
qUl 2 y 2m v0 d x qUl tan 2 m v0 d
三、示波管的原理
产生高速飞 行的电子束
锯齿形扫 描电压
使电子沿x 方向偏移
待显示的 电压信号
使电子沿Y 方向偏移
3.原理
已知:U1、l、YY׳偏转电极的电压U2、板间距d 、 板端到荧光屏的距离L。 求:电子射出偏转电场时的偏向角正切值tanφ及打 到屏上电子的偏移量y。׳ y' U 2l U l y ' 2 tan tan l l L 2dU 1 2 dU L 1 2 2
2)、如果在电极XX’之间不加电压,而在 YY’之间加不变电压,使Y’的电势比Y高, 电子将打在荧光屏的什么位置?
带电粒子在电场中的偏转--2024新高考物理一轮复习题型归纳(解析版)
第八章 静电场带电粒子在电场中的偏转【考点预测】1. 带电粒子在电场中的类平抛2. 带电粒子在电场中的类斜抛3. 带电粒子在电场中的圆周运动4. 带电粒子在电场中的一般曲线运动【方法技巧与总结】带电粒子在匀强电场中的偏转带电粒子在匀强电场中偏转的两个分运动(1)沿初速度方向做匀速直线运动,t =l v 0(如图).(2)沿静电力方向做匀加速直线运动①加速度:a =F m =qE m =qUmd②离开电场时的偏移量:y =12at 2=qUl 22m d v 20③离开电场时的偏转角:tan θ=v y v 0=qUlm d v 201.两个重要结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:在加速电场中有qU 0=12mv 20在偏转电场偏移量y =12at 2=12·qU 1md ·l v 0 2偏转角θ,tan θ=v y v 0=qU 1lm d v 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0dy 、θ均与m 、q 无关.(2)粒子经电场偏转后射出,速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为偏转极板长度的一半.2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =U dy ,指初、末位置间的电势差.【题型归纳目录】题型一:带电粒子在电场中的类平抛题型二:带电粒子在周期性电场中的运动题型三:带电粒子在电场中的偏转的实际应用题型四:带电粒子在电场中的非平抛曲线运动【题型一】电荷守恒定律【典型例题】1如图所示,在立方体的塑料盒内,其中AE 边竖直,质量为m 的带正电小球(可看作质点),第一次小球从A 点以水平初速度v 0沿AB 方向抛出,小球在重力作用下运动恰好落在F 点。
M 点为BC 的中点,小球与塑料盒内壁的碰撞为弹性碰撞,落在底面不反弹。
《带电粒子在电场中的偏转》知识讲解
③
④ a qU
md
⑤
qE yEk1 2m 21 2m 0 2
L2 0t2 ① y2 t2 ②
y总(L21 L2)tan
【例1】一束电子流在经U =5000V的加速电压 加速后,在距两极板等距处垂直进入平行 板间的匀强电场,如图所示.若两板间距d =1.0 cm,板长l =5.0 cm,那么,要使电子 能 从平行板间飞出,两个极板上最多能加
2
若经电压U0加速后射入偏转电场,则
与带电粒子的质量m、电荷量q及 射入偏转电场的初速无关
小结: 加速电压U1
-
d
L0
qU1
1 2
m02
①
L0
2
t加速
②
沿初速 方向:
沿电场 方向:
0
2qU1 m
y 偏转电压U2 v0
l1
L2
L 0t
E U2 d
①
t L
②
0
a qE m
y 1 at 2 2
at
大而增大。
3、离开电场速度大小:
(1)用速度合成方法:
E U d
①
Hale Waihona Puke a qE m②02 2
at ③
(2)用动能定理求解:
02
2qEy m
qE 1 2 ym 21 2m 0 21 2m 2
y
m
2
2 qE
4、偏转角θ的计算
E U d
①
a qE ② m
at ③
v
v0
y L tan
(3)粒子在整个运动过程中动能的变化量。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
带电粒子在电场中运动题目及标准答案(分类归纳经典)
带电粒子在电场中的运动一、带电粒子在电场中做偏转运动1.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求:⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离. 解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动.⑴设电子经电压U1加速后的速度为v 1,根据动能定理有: 21121mv eU =电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: dmeU meE a 2==电子通过匀强电场的时间11v l t =电子离开匀强电场时竖直方向的速度v y 为: 112mdv l eU at v y ==电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则d U l U mdv l eU v v tg y 112211212===α ∴dU l U arctg1122=α ⑵电子通过匀强电场时偏离中心线的位移dU l U v l dm eU at y 1212212122142121=•== 电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 dU l l U tg l y 1212222==α ∴电子打到荧光屏上时,偏离中心线的距离为 )2(22111221l l d U l U y y y +=+= 图 52. 如图所示,在空间中取直角坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,场强大小为E 。
带电粒子在匀强电场中的偏转(解析版)
带电粒子在匀强电场中的偏转1.运动规律沿初速度方向为匀速直线运动,运动时间 vl t 0=沿电场力方向为初速度为零的匀加速直线运动,加速度:a = F/m = qU/dm 离开电场时的偏移量 222mdv qULy =离开电场时的偏转角:L ymdV qUL 2tan 2==θ2.分析带电粒子在匀强电场中的偏转问题的关键(1)条件分析:不计重力,且带电粒子的初速度v 0与电场方向垂直,则带电粒子将在电场中只受电场力作用做类平抛运动.(2)运动分析:一般用分解的思想来处理,即将带电粒子的运动分解为沿电场力方向上的匀加速直线运动和垂直电场力方向上的匀速直线运动.3.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的. (2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点为粒子水平位移的中点. 【典例1】如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧相距为L 处有一与电场E 2平行的屏。
现将一电子(电荷量为e ,质量为m )无初速度地放入电场E 1中的A 点,A 与虚线MN 的间距为L2,最后电子打在右侧的屏上,AO 连线与屏垂直,垂足为O ,求:(1)电子从释放到打到屏上所用的时间;(2)电子刚射出电场E 2时的速度方向与AO 连线夹角θ的正切值tan θ; (3)电子打到屏上的点P ′到点O 的距离x 。
【答案】 (1)3mLeE(2)2 (3)3L 【解析】 (1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,时间为t 1,由牛顿第解得:tan θ=2。
(3)如图,设电子在电场E 2中的偏转距离为x 1 x 1=12a 2t 32tan θ=x 2L解得:x =x 1+x 2=3L 。
【典例2】 如图甲所示,长为L 、间距为d 的两金属板A 、B 水平放置,ab 为两板的中心线,一个带电粒子以速度v 0从a 点水平射入,沿直线从b 点射出,若将两金属板接到如图乙所示的交变电压上,欲使该粒子仍能从b 点以速度v 0射出,求:(1)交变电压的周期T 应满足什么条件?(2)粒子从a 点射入金属板的时刻应满足什么条件? 【答案】 (1)T =L nv 0,其中n 取大于等于L2dv 0qU 02m的整数 (2)t =2n -14T (n =1,2,3,…)【解析】 (1)为使粒子仍从b 点以速度v 0穿出电场,在垂直于初速度方向上,粒子的运动应为:加速,减速,反向加速,反向减速,经历四个过程后,回到中心线上时,在垂直于金属板的方向上速度正好等于零,这段时间等于一个周期,故有L =nTv 0,解得T =Lnv 0粒子在14T 内离开中心线的距离为y =12a ⎝⎛⎭⎫14T 2所以粒子的周期应满足的条件为 T =L nv 0,其中n 取大于等于L 2dv 0qU 02m的整数. (2)粒子进入电场的时间应为14T ,34T ,54T ,…故粒子进入电场的时间为t =2n -14T (n =1,2,3,…). 【跟踪短训】1.如图所示,真空中水平放置的两个相同极板Y 和Y ′长为L ,相距为d ,足够大的竖直屏与两板右侧相距b .在两板间加上可调偏转电压U YY ′,一束质量为m 、带电荷量为+q 的粒子(不计重力)从两板左侧中点A 以初速度v 0沿水平方向射入电场且能穿出.(1)证明粒子飞出电场后的速度方向的反向延长线交于两板间的中心O 点; (2)求两板间所加偏转电压U YY ′的范围; (3)求粒子可能到达屏上区域的长度.【答案】 (1)见【解析】 (2)-d 2mv 20qL 2≤U YY ′≤d 2mv 20qL 2 (3)d L +2b L【解析】 (1)设粒子在电场中的加速度大小为a ,离开偏转电场时偏转距离为y ,沿电场方向的速度为v y ,偏转角为θ,其反向延长线通过O 点,O 点与板右端的水平距离为x ,如图所示,则有y =12at 2L =v 0tv y =at ,tan θ=v y v 0=y x ,联立解得x =L2故粒子在屏上可能到达的区域的长度为 H =2y 0=d L +2bL.2. 如图甲所示,热电子由阴极飞出时的初速度忽略不计,电子发射装置的加速电压为U 0,电容器板长和板间距离均为L =10 cm ,下极板接地,电容器右端到荧光屏的距离也是L =10 cm ,在电容器两极板间接一交变电压,上极板的电势随时间变化的图象如图乙所示.(每个电子穿过平行板的时间都极短,可以认为电压是不变的)求:(1)在t =0.06 s 时刻,电子打在荧光屏上的何处. (2)荧光屏上有电子打到的区间有多长?【答案】 (1)打在屏上的点位于O 点上方,距O 点13.5 cm (2)30 cm【解析】 (1)电子经电场加速满足qU 0=12mv 2经电场偏转后侧移量y =12at 2=12·qU 偏mL ⎝⎛⎭⎫L v 2所以y =U 偏L4U 0,由图知t =0.06 s 时刻U 偏=1.8U 0,所以y =4.5 cm设打在屏上的点距O 点的距离为Y ,满足Yy =L +L 2L2所以Y =13.5 cm.(2)由题知电子侧移量y 的最大值为L2,所以当偏转电压超过2U 0,电子就打不到荧光屏上了,所以荧光屏上电子能打到的区间长为3L =30 cm.课后作业1. 喷墨打印机的简化模型如图所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v 垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中( ).A .向负极板偏转B .电势能逐渐增大C .运动轨迹是抛物线D .运动轨迹与带电量无关【答案】 C2. 如图,带电粒子由静止开始,经电压为U 1的加速电场加速后,沿垂直电场方向进入电压为U 2的平行板电容器,经偏转落在下板的中间位置。
高中物理带电粒子的偏转重点知识讲解汇总
复习第六章电场——带电粒子在电场中的运动电容器二. 重点、难点:〔一〕带电粒子在电场中的运动1. 带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一条直线上,做匀加〔减〕速直线运动。
2. 带电粒子〔假设重力不计〕由静止经电场加速如下图,可用动能定理:表达式为3. 带电粒子在匀强电场中的偏转〔重力不计〕,如下图。
〔1〕侧移:结合加速时的表达式可得:,可知在加速电压、偏转极板的长度和极板间距不变的情况下,侧向位移y 与偏转电压成正比。
〔2〕偏角:注意到,说明穿出时刻的末速度的反向延长线与初速度延长线交点恰好在水平位移的中点。
这一点和平抛运动的结论相同。
两样,在加速电压、偏转极板的长度和极板间距不变的情况下,偏角的正切与偏转电压成正比。
〔3〕穿越电场过程的动能增量:〔注意,一般来说不等于〕〔二〕电容器1. 电容器:两个彼此绝缘又相隔很近的导体都可以看成一个电容器。
2. 电容器的电容:电容是表示电容器容纳电荷本领的物理量,定义式〔比值定义法〕,电容是由电容器本身的性质〔导体大小、形状、相对位置及电介质〕决定的。
3. 平行板电容器的电容的决定式是:,其中,k为静电力常量,S为正对面积,是电介质的介电常数。
4. 两种不同变化:电容器和电源连接如图,改变板间距离、改变正对面积或改变板间电解质材料,都会改变其电容,从而可能引起电容器两板间电场的变化。
这里一定要分清两种常见的变化:〔1〕电键K保持闭合,则电容器两端的电压U恒定〔等于电源电动势〕,这种情况下带电荷量,而,。
〔2〕充电后断开K,保持电容器带电荷量Q恒定,这种情况下。
5. 常用电容器有:固定电容器和可变电容器,电解电容器有正负极,不能接反。
【典型例题】电场中常见问题:〔一〕平行板电容器的动态分析平行板电容器动态分析这类问题关键在于弄清哪些是变量,哪些是不变量,在变量中哪些是自变量,哪些是因变量。
讨论电容器动态变化问题时一般分两种基本情况:1. 充电后仍与电源连接,则两极板间电压U保持不变。
带电粒子在电场中的运动问题2(偏转)知识讲解
带电粒子在电场中的偏转一、如图所示,某带电粒子以速度0v 沿垂直于电场线方向飞入匀强电场时,受到恒定的与初速度方向垂直的电场力作用而做匀变速曲线运动。
1、处理方法:类平抛运动,运动的合成与分解求解相关问题;水平方向:匀速直线运动; 竖直方向:匀加速直线运动。
2、所涉及的方程及结论 ①加速度:mdqU m qE m F a ===②运动时间: A 、能飞出极板间时,0v l t = B 、打在极板上时,由qUmd a d t at d 22,212===得 ③竖直上的偏转量:A 、离开电场时,dmv U ql at y 2022221==,如果综合加速电场0U 时,由20021mv qU =得dU Ul y 024=,即经过加速电场后进入偏转电场时,竖直方向上的偏转量与粒子的比荷无关。
换句话说,就是不同的粒子经过相同的加速电场和进入相同的偏转电场,离开电场时竖直方向上的偏转量都是一样的。
B 、打在极板上时,2d y =,水平方向的位移为qUmd v a d v t v x 2000=== ④偏转角:dmv qUl v at v v y2000tan ===θ,结合20021mv qU =得d U Ul 02tan =θ即经过加速电场后进入偏转电场时,偏转角与粒子的比荷无关。
换句话说,即不同的粒子经过相同的加速电场和进入相同的偏转电场,离开电场时速度的方向都是一样的。
⑤如果粒子能离开偏转电场,离开电场时速度方向的反向延长线交水平位移的中点2l 处。
⑥速度:220y v v v +=或者根据动能定理:y dU U mv mv qU y y =-=,2121202例1、如图所示,离子发生器发射出一束质量为m ,电荷量为q 的离子,从静止经加速电压U 1加速后,获得速度0v ,并沿垂直于电场线方向射入两平行板中央,受偏转电压U 2作用后,以速度v 离开电场,已知平行板长为l ,两板间距离为d ,求:①0v 的大小;②离子在偏转电场中运动时间t ;③离子在偏转电场中受到的电场力的大小F ;④离子在偏转电场中的加速度;⑤离子在离开偏转电场时的横向速度y v ;⑥离子在离开偏转电场时的速度v 的大小;⑦离子在离开偏转电场时竖直方向上的偏移量y ;⑧离子离开偏转电场时的偏转角θ的正切值tanθ举一反三1、如图所示,质子(11H)、氘核(H21)和α粒子(42He),以相同的初动能垂直射入偏转电场(粒子不计重力),三个粒子均能射出电场;求①这三个粒子射出电场时所花时间比;②这三个粒子射出电场时竖直方向上的偏转量的比;③这三个粒子射出电场时速度的偏转角的比;2、如图所示,氕、氘、氚的原子核自初速度为零经同一电场加速后,又经同一匀强电场偏转,最后打在荧光屏上,那么()A.经过加速电场过程,电场力对氚核做的功最多B.经过偏转电场过程,电场力对三种核做的功一样多C.三种原子核打在屏上时的速度一样大D.三种原子核都打在屏上的同一位置上3、在上题的基础上,求:①进入偏转电场到离开时所需时间比;二、示波器工作原理例2、如图所示是示波管的原理图.它由电子枪、偏转电极(XX′和YY′)、荧光屏组成,管内抽成真空.给电子枪通电后,如果在偏转电极XX′和YY′上都没有加电压,电子束将打在荧光屏的中心O点,在那里产生一个亮斑.下列说法正确的是()A.要想让亮斑沿OY向上移动,需在偏转电极YY′上加电压,且Y′比Y电势高B.要想让亮斑移到荧光屏的右上方,需在偏转电极XX′、YY′上加电压,且X比X′电势高、Y比Y′电势高C.要想在荧光屏上出现一条水平亮线,需在偏转电极XX′上加特定的周期性变化的电压(扫描电压)D.要想在荧光屏上出现一条正弦曲线,需在偏转电极XX′上加适当频率的扫描电压、在偏转电极YY′上加按正弦规律变化的电压举一反三1、如图所示,是一个示波器工作原理图,电子经过加速后以速度v0垂直进入偏转电场,离开电场时偏转量是h,两平行板间距离为d,电势差为U,板长为l,每单位电压引起的偏移量(h/U)叫示波器的灵敏度.若要提高其灵敏度,可采用下列办法中的()A.增大两极板间的电压B.尽可能使板长l做得短些C.尽可能使板间距离d减小些D.使电子入射速度v0大些2、如图所示的示波管,当两偏转电极XX′、YY′电压为零时,电子枪发射的电子经加速电场加速后会打在荧光屏上的正中间(图示坐标的O点,其中x轴与XX′电场的场强方向重合,x轴正方向垂直于纸面向里,y轴与YY′电场的场强方向重合).若要电子打在图示坐标的第Ⅲ象限,则()A.X、Y极接电源的正极,X′、Y′接电源的负极B.X、Y′极接电源的正极,X′、Y接电源的负极C.X′、Y极接电源的正极,X、Y′接电源的负极D.X′、Y′极接电源的正极,X、Y接电源的负极。
带电粒子在电场中的偏转(题_详细)
l 2
强化练习
5、如图所示,有一电子(电量为e、质量为 m)经电压U0加速后,沿平行金属板A、B中 心线进入两板,A、B板间距为d、长度为L, A、B板间电压为U,屏CD足够大,距离A、 B板右边缘2L,AB板的中心线过屏CD的中 心且与屏CD垂直。试求电子束打在屏上的 位置到屏中心间的距离。
1、三个电子在同一地点沿同一直线垂直飞 入偏转电场,如图所示。则由此可判断 ( ) BCD A、 b和c同时飞离电场 B、在b飞离电场的瞬间,a刚好打在下极 板上 C、进入电场时,c速度最大,a速度最小 D、c的动能增量最小, a和b的动能增量一样大
√ √ √
强化练习 2、如图,电子在电势差为U1的加速电场中由静止 开始加速,然后射入电势差为U2的两块平行极板间 的电场中,入射方向跟极板平行。整个装置处在真 空中,重力可忽略。在满足电子能射出平行板区的 条件下,下述四种情况中,一定能使电子的偏转角 θ变大的是 ( B ) A、U1变大、U2变大 B、U1变小、U2变大 C、U1变大、U2变小 D、U1变小、U2变小
1.9 带电粒子在电场中的运动
辛集市第一中学
仪器名称:示波器 型 号:COS5100
北京正负电子对撞机加速器的 起点
系统运行时,数以10亿计的电子就 将从这条加速管中以接近光速冲进 储存环中发生碰撞
1.9 带电粒子在电场 中的运动
电场中的带电粒子一般可分为两类:
1、带电的基本粒子:如电子,质子,α粒子,正负 离子等。这些粒子所受重力和电场力相比小得多,除 非有说明或明确的暗示以外,一般都不考虑重力。 (但并不能忽略质量)。
二. 带电粒子在电场中的偏转
+ + + + + + + + +
模型21类平抛运动(带电粒子在电场中的偏转)(教师版含解析)-高考物理模型专题突破
21类平抛运动(带电粒子在电场中的偏转)1.(2020·湖南知源学校高二月考)AB 板间存在竖直方向的匀强电场,现沿垂直电场线方向射入三种比荷(电荷量与质量的比)相同的带电微粒(不计重力)a 、b 和c 的运动轨迹如图所示,其中b 和c 是从同一点射入的.不计空气阻力,则可知粒子运动的全过程说法错误的是( )A .运动加速度∶a a =a b =a cB .飞行时间∶t b =t c >t aC .水平速度∶v a >v b >v cD .电势能的减少量∶ΔE c =ΔE b >ΔE a 【答案】D 【详解】A .根据牛顿第二定律得:微粒的加速度为qEa m=,比荷相同,E 相同,所以加速度相同,即a a =a b =a c .故A 正确。
B .三个带电微粒竖直方向都做初速度为零的匀加速直线运动,由212y at =得:t =由图有:y b =y c >y a ,则得:t b =t c >t a .故B 正确。
C .三个带电微粒水平方向都做匀速直线运动,由x =v 0t ,由图知:x a >x b >x c ,又t b =t c >t a .则得:v a >v b >v c .故C 正确。
D .电场力做功为 W =qEy ,由于电荷量关系不能确定,所以不能确定电场力做功的大小,也就不能确定电势能减少量的大小。
故D 错误。
本题选择错误的,故选D 。
2.(2020·江西九江·高二期中)如图所示,一带电小球从A 处竖直向上进入一水平方向的匀强电场中,进入电场时小球的动能为E k A =4 J ,运动到最高点B 时小球的动能为E k B =5 J ,小球运动到与A 点在同一水平面上的C 点(图中未画出)时小球的动能为E k C ,则E k A :E k C 为( )A .l :lB .2:7C .1:4D .l :6【答案】D 【详解】设小球在A 点的初速度为v 0,已知2k 01=4J 2A E mv =到达最高点B 点时速度为v 1,方向水平,且2k 11=5J 2B E mv =到达C 点时的速度为v C ,并以水平向右为x 轴正方向,竖直向上为y 轴正方向建立平面直角坐标系。
带电粒子在电场中偏转
·O
U2
D.使U2变为原来的1/2倍
U1
解:电子先经加速电场加速后进入偏转电场做类平抛运动.
qU 1
1 2
mv
2 0
①
y 1 at2 2
联立①②两式可得电子的偏移量
y
q U2 x 2 2mUd2 xv022
② ③
电学搭 台,力 学唱戏。
要使电子的轨迹不变,则应使电子进入偏4U转1d电场后,任一水
平位移x所对应的侧移距离y不变. U2 U1 由此选项A正确.
运动的位移和初速度为零的匀加速运动的分运动的位移大小相等均为两板间的距离d.
过加速后以速度v0垂直进入偏转电场,离开偏转电场时 偏移量为h,两平行板间距为d,电压为U,板长为L,每
单位电压引起的偏移量(h/U)叫做示波管的灵敏度,
为了提高灵敏度,可采用的办法是( C )
A.增加两极板间的电势差U
B.尽可能缩短板长L C.尽可能减小板间距d
v0
D.使电子的入射速度v0大些
h
h 1 (eU )( L )2 2 m d v0
2U0 d ④ U
⑵对电子运动的整个过程根据动能定理可求出电子穿出电场
时的动能
EK
eU
0
e
U 2
e(U 0
U 2
)
⑤
提升物理思想:整个过程运用动能定理解题
例5.空间某区域有场强大小为E的匀强电场,电场的边
界MN和PQ是间距为d的两个平行平面,如果匀强电场的
方向第一次是垂直于MN指向PQ界面,第二次是和MN界面
④
联立②④两式可得
y1 4 y2
⑤
模型化归:带电粒子在匀强 电场中做“类平抛运动”
带电粒子在静电场中的偏转角问题
带电粒子在静电场中的偏转角问题1.已知电荷情况及初速度如图所示,设带电粒子质量为m.带电荷量为q,以速度v垂直于电场线方向射入匀强偏转电场,偏转电压为U1.若粒子飞出电场时偏转角为θ,则tanθ=vyvx,式中vy=at=qU1dm·lv,vx=v0,代入得tanθ=qU1lmv2d①.结论:动能一定时tanθ与q成正比,电荷量相同时tanθ与动能成反比.2.已知加速电压U若不同的带电粒子是从静止经过同一加速电压U加速后进入偏转电场的,则由动能定理有:qU0=12mv2②.由①②式得:tanθ=U1l2Ud③.结论:粒子的偏转角与粒子的q、m无关,仅取决于加速电场和偏转电场.即不同的带电粒子从静止经过同一电场加速后进入同一偏转电场,它们在电场中的偏转角度总是相同的.考点2 粒子的偏转量问题1.y=12at2=12·qU1dm·⎝⎛⎭⎪⎫lv2④做粒子速度的反向延长线,设交于O点,O点与电场边缘的距离为x,则x=ytanθ=qU1l22dmv2qU1lmv2d=l2⑤.结论:粒子从偏转电场中射出时,就像是从极板间的l/2处沿直线射出.2.若不同的带电粒子是从静止经同一加速电压U加速后进入偏转电场的,则由②④式得:y=U1l24Ud⑥.结论:粒子的偏转角和偏转距离与粒子的q、m无关,仅取决于加速电场和偏转电场.即不同的带电粒子从静止经过同一电场加速后进入同一偏转电场,它们在电场中的偏转角度和偏转距离总是相同的.典型例题1·如图所示,真空中水平放置的两个相同极板Y和Y′长为l,相距d,足够大的竖直屏与两板右侧相距b.在两板间加上可调偏转电压UYY′,一束质量为m、带电荷量为+q的粒子不计重力从两板左侧中点A以初速度v沿水平方向射入电场且能穿出.1证明粒子飞出电场后的速度方向的反向延长线交于两板间的中心;2求两板间所加偏转电压UYY′的范围;3求粒子可能到达屏上区域的长度.1.15年浙江一模两平行导体板间距为d,两导体板加电压U,不计重力的电子以平行于极板的速度v射入两极板之间,沿极板方向运动距离为L时侧移为y.如果要使电子的侧移y′=y4,仅改变一个量,下列哪些措施可行A.改变两平行导体板间距为原来的一半B.改变两导体板所加电压为原来的一半C.改变电子沿极板方向运动距离为原来的一半D.改变电子射入两极板时的速度为原来的2倍2.如图所示,两平行金属板间有一匀强电场,板长为L,板间距离为d,在板右端L处有一竖直放置的光屏M,一带电荷量为q,质量为m的质点从两板中央射入板间,最后垂直打在M屏上,则下列结论正确的是第2题图A.板间电场强度大小为mg/qB.板间电场强度大小为2mg/qC.质点在板间的运动时间和它从板的右端运动到光屏的时间相等D.质点在板间的运动时间大于它从板的右端运动到光屏的时间3.14年南昌模拟如图所示,地面上某区域存在着竖直向下的匀强电场,一个质量为m的带负电的小球以水平方向的初速度v由O点射入该区域,刚好通过竖直平面中的P点,已知连线OP 与初速度方向的夹角为45°,则此带电小球通过P 点时的动能为A .mv 20 mv 2C .2mv 20 mv 20第3题图4.13年榆林模拟如图所示,矩形区域ABCD 内存在竖直向下的匀强电场,两个带正电的粒子a 和b 以相同的水平速度射入电场,粒子a 由顶点A 射入,从BC 的中点P 射出,粒子b 由AB 的中点O 射入,从顶点C 射出.若不计重力,则a 和b 的比荷即粒子的电荷量与质量之比是A .1∶2B .2∶1C .1∶8D .8∶1第4题图举一反三 如图甲所示,两平行正对的金属板A 、B 间加有如图乙所示的交变电压,一重力可忽略不计的带正电粒子被固定在两极的正中间P 处.若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动,并最终打在A 板上.则t 0可能属于的时间段是A .0<t 0<T 4 <t 0<3T 4<t 0<T D .T <t 0<9T8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎨⎧a.能飞出电容器:t =l v 0.b.不能飞出电容器:y =12at 2=qU 2mdt 2,t = 2mdy qU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd离开电场时的偏移量:y =12at 2=Uql 22md v 20离开电场时的偏转角:tan θ=v y v 0=Uql md v20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12m v 20y =12at 2=12·qU 1md ·(l v 0)2tan θ=qU 1lmd v 20得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 20,其中U y =Ud y ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10C ,质量为m =1.0×10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2 a =F m =qU dm L =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L 12L +12 cm =yY ,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cm k qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL m v 20 (3)3qEL 22m v 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2Lv 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eqm所以v y =a L v 0=qELm v 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELm v 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2m v 20 又x =y +L tan α, 解得:x =3qEL 22m v 20解法二 x =v y ·L v 0+y =3qEL 22m v 20.解法三 由x y =L +L 2L 2得:x =3y =3qEL 22m v 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12m v 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得: E =3×103 N/C ≈1.732×103 N/C (3)由动能定理得:qU ab =12m (v 21+v 2y )-0 联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A.同时到达屏上同一点B.先后到达屏上同一点C.同时到达屏上不同点D.先后到达屏上不同点答案 B解析一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD面与EFGH面为金属板,其他面为绝缘材料.ABCD面带正电,EFGH面带负电.从小孔P沿水平方向以相同速率射入三个质量相同的带正电液滴a、b、c,最后分别落在1、2、3三点.则下列说确的是()A.三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间不一定相同C.三个液滴落到底板时的速率相同D.液滴c所带电荷量最多答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R = 2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有 y =v 0tx 2+y 2=R 2 解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12m v 20代入数据解得E k =2.5×10-5 J.8、如图所示,在正方形ABCD 区域有平行于AB 边的匀强电场,E 、F 、G 、H 是各边中点,其连线构成正方形,其中P 点是EH 的中点.一个带正电的粒子(不计重力)从F 点沿FH 方向射入电场后恰好从D 点射出.以下说确的是( )A .粒子的运动轨迹一定经过P 点B .粒子的运动轨迹一定经过PE 之间某点C .若将粒子的初速度变为原来的一半,粒子会由ED 之间某点射出正方形ABCD 区域 D .若将粒子的初速度变为原来的一半,粒子恰好由E 点射出正方形ABCD 区域 答案 BD解析 粒子从F 点沿FH 方向射入电场后恰好从D 点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH 的中点,而延长线又经过P 点,所以粒子轨迹一定经过PE 之间某点,选项A 错误,B 正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C 错误,D 正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg′,大小为mg ′=(qE )2+(mg )2=2 3mg 3,tan θ=qE mg =33,得θ=30°,等 效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=m v 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知:-2mg ′R =12m v 2D -12m v 20 解得v 0=103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥ 103gR 3. 答案 v ≥ 103gR 3 10、在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定的初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图所示.由此可见( )A .电场力为3mgB .小球带正电C .小球从A 到B 与从B 到C 的运动时间相等D .小球从A 到B 与从B 到C 的速度变化量的大小相等答案 AD解析 设AC 与竖直方向的夹角为θ,带电小球从A 到C ,电场力做负功,小球带负电,由动能定理,mg ·AC ·cos θ-qE ·BC ·cos θ=0,解得电场力为qE =3mg ,选项A 正确,B错误.小球水平方向做匀速直线运动,从A到B的运动时间是从B到C的运动时间的2倍,选项C错误;小球在竖直方向先加速后减速,小球从A到B与从B到C竖直方向的速度变化量的大小相等,水平方向速度不变,小球从A到B与从B到C的速度变化量的大小相等,选项D正确.。