高考物理带电粒子在磁场中偏转资料

合集下载

2024年高考物理热点磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(解析版)

2024年高考物理热点磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(解析版)

磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型1.高考命题中,带电粒子在有界磁场中的运动问题,常常涉及到临界问题或多解问题,粒子运动轨迹和磁场边界相切经常是临界条件。

带电粒子的入射速度大小不变,方向变化,轨迹圆相交与一点形成旋转圆。

带电粒子的入射速度方向不变,大小变化,轨迹圆相切与一点形成放缩圆。

2.圆形边界的磁场,如果带电粒子做圆周运动的半径如果等于磁场圆的半径,经常创设磁聚焦和磁发散模型。

一、分析临界极值问题常用的四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速率v 一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长,(3)当速率v 变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,再根据几何关系求出半径及圆心角等(4)在圆形匀强磁场中,当运动轨远圆半径大于区域圆半径时,入射点和出射点为磁场直径的两个端点时轨迹对应的偏转角最大(所有的弦长中直径最长)。

二、“放缩圆”模型的应用适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v 越大,运动半径也越大。

可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP ′上界定方法以入射点P 为定点,圆心位于PP ′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法三、“旋转圆”模型的应用适用条件速度大小一定,方向不同粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为v 0,则圆周运动半径为R =mv 0qB。

如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P 为圆心、半径R =mv 0qB的圆上界定方法将一半径为R =mv 0qB的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法四、“平移圆”模型的应用适用条件速度大小一定,方向一定,但入射点在同一直线上粒子源发射速度大小、方向一定,入射点不同,但在同一直线的带电粒子进入匀强磁场时,它们做匀速圆周运动的半径相同,若入射速度大小为v 0,则半径R =mv 0qB,如图所示轨迹圆圆心共线带电粒子在磁场中做匀速圆周运动的圆心在同一直线上,该直线与入射点的连线平行界定方法将半径为R =mv 0qB的圆进行平移,从而探索粒子的临界条件,这种方法叫“平移圆”法五、“磁聚焦”模型1.带电粒子的会聚如图甲所示,大量的同种带正电的粒子,速度大小相同,平行入射到圆形磁场区域,如果轨迹圆半径与磁场圆半径相等(R =r ),则所有的带电粒子将从磁场圆的最低点B 点射出.(会聚)证明:四边形OAO ′B 为菱形,必是平行四边形,对边平行,OB 必平行于AO ′(即竖直方向),可知从A 点发出的带电粒子必然经过B 点.2.带电粒子的发散如图乙所示,有界圆形磁场的磁感应强度为B ,圆心为O ,从P 点有大量质量为m 、电荷量为q 的正粒子,以大小相等的速度v 沿不同方向射入有界磁场,不计粒子的重力,如果正粒子轨迹圆半径与有界圆形磁场半径相等,则所有粒子射出磁场的方向平行.(发散)证明:所有粒子运动轨迹的圆心与有界圆圆心O 、入射点、出射点的连线为菱形,也是平行四边形,O 1A (O 2B 、O 3C )均平行于PO ,即出射速度方向相同(即水平方向).(建议用时:60分钟)一、单选题1地磁场能抵御宇宙射线的侵入,赤道剖面外地磁场可简化为包围地球一定厚度的匀强磁场,方向垂直该部面,如图所示,O为地球球心、R为地球半径,假设地磁场只分布在半径为R和2R的两边界之间的圆环区域内(边界上有磁场),磷的应强度大小均为B,方向垂直纸面向外。

(完整版)高考物理带电粒子在磁场中的运动解析归纳

(完整版)高考物理带电粒子在磁场中的运动解析归纳

难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ;当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2=②轨道半径公式:qBmvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。

(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。

1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。

确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。

圆心的确定,通常有以下两种方法。

① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。

专题16带电粒子在电磁场中运动-2024高考物理真题分类汇编(全国版 含解析)

专题16带电粒子在电磁场中运动-2024高考物理真题分类汇编(全国版 含解析)

2024高考物理真题分项解析专题16带电粒子在电磁场中运动1.(2024高考新课程卷·26).(20分)一质量为m 、电荷量为()0q q >的带电粒子始终在同一水平面内运动,其速度可用图示的直角坐标系内,一个点(),x y P v v 表示,x v 、y v 分别为粒子速度在水平面内两个坐标轴上的分量。

粒子出发时P 位于图中()00,a v 点,粒子在水平方向的匀强电场作用下运动,P 点沿线段ab 移动到()00,b v v 点;随后粒子离开电场,进入方向竖直、磁感应强度大小为B 的匀强磁场,P 点沿以O 为圆心的圆弧移动至()00,c v v -点;然后粒子离开磁场返回电场,P 点沿线段ca 回到a 点。

已知任何相等的时间内P 点沿图中闭合曲线通过的曲线长度都相等。

不计重力。

求(1)粒子在磁场中做圆周运动的半径和周期;(2)电场强度的大小;(3)P 点沿图中闭合曲线移动1周回到a 点时,粒子位移的大小。

试题分析题图给出的是粒子速度在水平面内两个坐标轴上的分量关系图像,不要理解成轨迹图像。

在a 点,粒子速度沿y 方向,做类平抛运动,运动到b 点,粒子做匀速圆周运动到c 点,逆方向类平抛运动,轨迹如图。

解题思路本题考查的考点:带电粒子在匀强电场中的类平抛运动和在匀强磁场中的匀速圆周运动。

(1)根据题述,粒子出发时P 位于图中()00,a v 点,粒子在水平方向的匀强电场作用下运动,P 点沿线段ab 移动到()00,b v v 点;可知带电粒子在磁场中做匀速圆周运动时的速度2200v v +2v 0,由qvB=m2v r解得r=02mv qB周期T=2πr/v=2mqBπ(2)根据题述,已知任何相等的时间内P 点沿图中闭合曲线通过的曲线长度都相等,由于曲线表示的为速度相应的曲线,所以P 点沿图中闭合曲线的加速度相等,故可得02qB v m=qEm 解得2Bv (3)根据题意分析,可知,P 点从b 到c,转过270°。

带电粒子在磁场中的偏转

带电粒子在磁场中的偏转
荣成四中高二物理组
一、带电粒子在匀强磁场中的运动规律
1、带电粒子以一定的初速度进入匀强磁场, 带电粒子将做怎样的运动?
(1)当v//B , F=0 ,带电粒子以速度v做匀速直线运 动 (2)当v⊥B,带电粒子以入射速度v做匀速圆周运动
洛伦兹力提供向 心力:
周期:
qvB mv 2 / r T 2r 2m
① 粒子进出单一直边界磁场, 入射角等于出射角。 ② 粒子进出圆边界磁场沿半径方向入,沿半径方向出。
作业题答案:
• 1D 2BD 3B 4C 5B 6A 7ABC 8ABCD 9D 10 ACD 11C
• 12 3.2X10-7m/s (π/96)X10-6S
• 0.2 0.1 3 m
• 13 V>Bqd/m t= m/2Bq
• 14 v>dBq/m( 1 cos ) • 15 U=B2L2e/2msin2
第11题、
t
2
T
T 2r 2m
v qB
R tan300 r
a VR o
r
600
c V
600
v qB
半径:
r
mv qB
2、粒子在磁场中运动的解题思路:
找圆心
利用v⊥R 利用弦的中垂线
画轨迹 利用轨迹和V相切
求半径 求时间
几何法求半径
向心力公式求半径
t
2
T
T 2r 2m
v qB
⑴粒子在磁场中运动的角度关系
偏向角 弦切角 圆心角
角度关系:2vຫໍສະໝຸດ A BvO
⑵粒子进入有界磁场的特点

带电粒子在磁场中的偏转

带电粒子在磁场中的偏转

带电粒子在磁场中的偏转
带电粒子在磁场中的偏转是指在外加磁场作用下,带电粒子运动轨迹发生偏移的现象。

它是一种重要的物理现象,也是核物理学、凝聚态物理学、星系结构形成以及太阳物理学等诸多领域中最基本的现象之一。

在现实世界中,带电粒子的运动通常会受到外加磁场的影响,这种由外加磁场引起的偏转现象,即为“带电粒子在磁场中的偏转”。

带电粒子在磁场中的偏转,是带电粒子受到磁场作用时产生的一种物理现象,其原理可以由电磁力学来描述。

当外加磁场与带电粒子的运动方向不平行,带电粒子就会受到一个名为磁力线的力,这个力的大小与带电粒子的速度、外加磁场强度以及粒子与外加磁场方向之间的夹角有关。

这个磁力线的方向,永远是指向能让粒子的运动能量增加的方向,而磁力线的大小,则与粒子的速度成正比。

由于磁力线的作用,带电粒子的运动轨迹会受到偏转,这种偏转的大小与粒子的电荷量、其速度以及外加磁场的强度有关,并且随着粒子的磁场位置变化而变化。

由于外加磁场的方向是不断变化的,因此带电粒子在磁场中的运动轨迹也会发生偏移,从而使得粒子的运动轨迹呈现出一种环形的状态。

综上所述,带电粒子在磁场中的偏转是一种重要的物理现象,其本质是由外加磁场引起的磁力线对带电粒子的运动造成的影响,而这种影响会使得粒子的运动轨迹发生偏移,从而使得粒子的运动轨迹呈现出一种环形的状态。

它是核物理学、凝聚态物理学、星系结构形成以及太阳物理学中最基本的现象之一,对理解物质的性质、结构以及运动机制有着重要意义。

高考物理带电粒子在无边界匀强磁场中运动习题知识归纳总结及答案解析

高考物理带电粒子在无边界匀强磁场中运动习题知识归纳总结及答案解析

高考物理带电粒子在无边界匀强磁场中运动习题知识归纳总结及答案解析一、带电粒子在无边界匀强磁场中运动压轴题1.如图所示,圆心为O、半径为R的圆形磁场区域中存在垂直纸面向外的匀强磁场,以圆心O为坐标原点建立坐标系,在y=-3R 处有一垂直y轴的固定绝缘挡板,一质量为m、带电量为+q的粒子,与x轴成 60°角从M点(-R,0)以初速度v0斜向上射入磁场区域,经磁场偏转后由N点离开磁场(N点未画出)恰好垂直打在挡板上,粒子与挡板碰撞后原速率弹回,再次进入磁场,最后离开磁场.不计粒子的重力,求:(1)磁感应强度B的大小;(2)N点的坐标;(3)粒子从M点进入磁场到最终离开磁场区域运动的总时间.【答案】(1)0mvqR (2)31(,)2R R- (3)(5)Rvπ+【解析】(1)设粒子在磁场中运动半径为r,根据题设条件画出粒子的运动轨迹:由几何关系可以得到:r R=由洛伦兹力等于向心力:2vqv B mr=,得到:0mvBqR=.(2)由图几何关系可以得到:3sin602x R R==,1cos602y R R=-=-N点坐标为:31,2R⎫-⎪⎪⎝⎭.(3)粒子在磁场中运动的周期2mTqBπ=,由几何知识得到粒子在磁场在中运动的圆心角共为180,粒子在磁场中运动时间:12Tt=,粒子在磁场外的运动,由匀速直线运动可以得到:从出磁场到再次进磁场的时间为:202s t v =,其中132s R R ==,粒子从M 点进入磁场到最终离开磁场区域运动的总时间12t t t =+ 解得:()05R t v π+=.2.如图所示,在正方形区域abcd 内充满方向垂直纸面向里的、磁感应强度为B 的匀强磁场.在t =0时刻,一位于ad 边中点o 的粒子源在abcd 平面内发射出大量的同种带电粒子,所有粒子的初速度大小相同,方向与od 边的夹角分布在0~180°范围内.已知沿od 方向发射的粒子在t t =0时刻刚好从磁场边界cd 上的p 点离开磁场,粒子在磁场中做圆周运动的半径恰好等于正方形边长L ,粒子重力不计,求:(1)粒子的比荷q /m ;(2)假设粒子源发射的粒子在0~180°范围内均匀分布,此时刻仍在磁场中的粒子数与粒子源发射的总粒子数之比;(3)从粒子发射到全部粒子离开磁场所用的时间.(若角度不特殊时可以用反三角表示,如:已知sinθ=0.3,则θ=arcsin0.3)【答案】(1)06Bt π(2)56(3)0125arcsin t π⎛ ⎝⎭【解析】 【分析】由题中“在正方形区域abcd 内充满方向垂直纸面向里的”可知,本题考查带电粒子在有界磁场中的运动规律,根据洛伦兹力提供向心力和几何关系可分析本题. 【详解】(1)初速度沿od 方向发射的粒子在磁场中运动的轨迹如图,其圆心为n,由几何关系得6onpπ∠=012Tt=粒子做圆周运动的向心力由洛伦兹力提供,根据牛顿第二定律得22()Bqv m RTπ=2RvTπ=解得6qm Btπ=(2)依题意,同一时刻仍在磁场中的粒子到o点距离相等,在t0时刻仍在粒子磁场中的粒子应位于o为圆心,op为半径的弧pw上.由图知56powπ∠=此时刻磁场中粒子数与总粒子数之比为56(3)在磁场中运动时间最长的粒子轨迹应该与b相交,设粒子运动轨迹的圆心角为θ,则5sin2θ=在磁场中运动的最长时间512arcsin42t T tθππ==所以从粒子发射到全部粒子离开共用时0125arcsin t t π⎛⎫= ⎪ ⎪⎝⎭3.如图所示的xoy 平面内,以1O (0,R )为圆心,R 为半径的圆形区域内有垂直于xoy 平面向里的匀强磁场(用B 1表示,大小未知);x 轴下方有一直线MN ,MN 与x 轴相距为y ∆),x 轴与直线MN 间区域有平行于y 轴的匀强电场,电场强度大小为E ;在MN 的下方有矩形区域的匀强磁场,磁感应强度大小为B 2,磁场方向垂直于xOy 平面向外。

高考物理 重点难点例析 专题7 带电粒子在磁场中的运动

高考物理 重点难点例析 专题7 带电粒子在磁场中的运动

专题七重点难点1.洛伦兹力:(1)产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行.(2)洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力为零;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,等于q υB ;(3)洛伦兹力的方向:洛伦兹力方向用左手定则判断 (4)洛伦兹力不做功.2.带电粒子在洛伦兹力作用下的运动(1)若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子不受洛伦兹力作用,即F =0,则粒子在磁场中以速度υ做匀速直线运动.(2)若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子所受洛伦兹力F =Bq υ,方向总与速度υ垂直.由洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.求解此类问题的关键是分析并画出空间几何图形——轨迹图. 规律方法【例1】一个长螺线管中通有电流,把一个带电粒子沿中轴线射入(若不计重力影响),粒子将在管中 ( D )A .做圆周运动B .沿轴线来回运动C .做匀加速直线运动D .做匀速直线运动训练题如图所示,一个带负电的滑环套在水平且足够长的粗糙的绝缘杆上,整个装置处于方向如图所示的匀强磁场B 中.现给滑环施以一个水平向右的瞬时冲量,使其由静止开始运动,则滑环在杆上的运动情况可能是 ( ABC )A .始终作匀速运动B .开始作减速运动,最后静止于杆上C .先作加速运动,最后作匀速运动D .先作减速运动,最后作匀速运动【例2】如图所示,一束电子(电量为e )以速度υ垂直射入磁感应强度为B ,宽度为d 的匀强磁场中,穿透磁场时速度方向与电子原来入射方向的夹角是30°,则电子的质量是2dBe υ,穿透磁场的时间是 πd3υ.【解析】电子在磁场中运动,只受洛仑兹力作用,故其轨迹是圆弧的一部分,又因为B ⊥υ,故圆心在电子穿入和穿出磁场时受到洛仑兹力指向交点上,由几何知识知,AB 间圆心角θ=30°,OB 为半径.∴r =dsin30°= 2d,又由r =mυBe得m =2dBeυ又∵AB圆心角是穿透时间t = T12,故t =πd3υ.训练题如图(甲)所示,在x≥0区域内有如图(乙)所示的大小不变、方向随时间周期性变化的磁场,设磁场方向垂直于纸面向外时为正方向.现有一质量为m、带电量为+q的离子,在t=0时刻从坐标原点O以速度υ沿与x轴正方向成75°角射入,离子运动一段时间而到达P点,P点坐标为(a,a),此时离子的速度方向与OP延长线的夹角为30°,离子在此过程中只受磁场力作用.(1)若B0 =B1为已知量,试求离子在磁场中运动时的轨道半径R及周期的表达式.(2)若B0为未知量,那么所加最大磁场的变化周期T、磁感应强度B0的大小各应满足什么条件,才能使离子完成上述运动?(写出T、B0各应满足条件的表达式)答案:(1)T=2πm/qB1,R=mv/qB1(2)B0=mv/(2)1/2aq,T≥1(2)1/2πa/3v【例3】如图所示,在y>0的区域内存在匀强磁场,磁场垂直于图中的Oxy平面,方向指向纸外,原点O处有一离子源,沿各个方向射出速率相等的同价负离子,对于进入磁场区域的离子,它们在磁场中做圆弧运动的圆心所在的轨迹,可用图2-7-8给出的四个半圆中的一个来表示,其中正确的是( C )训练题一质点在一平面内运动,其轨迹如图所示,它从A点出发,以恒定速率v0经时间t 到B点,图中x轴上方的轨迹都是半径为R的半圆,下方的都是半径为r的半圆(1)求此质点由A到B沿x轴运动的平均速度;(2)如果此质点带正电,且以上运动是在一恒定(不随时间而变)的磁场中发生的,试尽可能详细地论述此磁场的分布情况,不考虑重力的影响。

2025届高考物理一轮复习资料 第十章 磁场 增分微点9 带电粒子在立体空间的运动

2025届高考物理一轮复习资料 第十章 磁场 增分微点9 带电粒子在立体空间的运动

带电粒子在立体空间的运动一、带电粒子的螺旋线运动和旋进运动空间中匀强磁场的分布是三维的,带电粒子在磁场中的运动情况可以是三维的。

现在主要讨论两种情况:(1)空间中只存在匀强磁场,当带电粒子的速度方向与磁场的方向不平行也不垂直时,带电粒子在磁场中就做螺旋线运动。

这种运动可分解为平行于磁场方向的匀速直线运动和垂直于磁场平面的匀速圆周运动。

(2)空间中的匀强磁场和匀强电场(或重力场)平行时,带电粒子在一定的条件下就可以做旋进运动,这种运动可分解为平行于磁场方向的匀变速直线运动和垂直于磁场平面的匀速圆周运动。

例1 某实验装置的基本原理如图1所示,平行正对放置半径均为R 、间距为d 的圆形金属板,M 、N 的圆心分别为O 1、O 2,位于O 1处的粒子源能向两板间各个方向发射质量为m 、电荷量为q 的带正电的粒子,不计粒子重力及相互间作用,忽略边缘效应。

图1(1)仅在两板间加电压U ,两板间产生方向沿O 1O 2方向的匀强电场。

求粒子源发射出的粒子速度大小v 0满足什么条件时能全部击中N 板?(2)仅在两板间加方向沿O 1O 2方向的有界匀强磁场,磁感应强度大小为B ,求粒子源发射出的方向与O 1O 2连线成θ(0<θ<90°)角的粒子速度大小v 满足什么条件时能全部击中N 板?(3)若两板间同时存在方向都沿O 1O 2方向的匀强电场和匀强磁场,磁感应强度大小为B ,粒子源发射出速度大小均为v ,方向垂直于O 1O 2连线的粒子,全部落在半径为2m v qB 的圆周上(2m vqB <R ),求电场强度的大小。

答案 (1)v 0≤RdqU 2m (2)v ≤qBR 2m sin θ (3)2qB 2d()2n +12π2m()n =0,1,2,3,…解析 (1)速度方向与电场强度方向垂直的粒子击中N 板,则全部粒子击中N 板。

当速度方向与电场强度方向垂直的粒子击中N 板边缘时,有 R =v 0t ,d =12at 2 其中a =qE m =qUmd 解得v 0=RdqU 2m所以,速度大小应满足v 0≤RdqU 2m 。

高考物理总复习高频考点专项练习带电粒子在磁场中的偏转

高考物理总复习高频考点专项练习带电粒子在磁场中的偏转

带电粒子在磁场中的偏转1、在如图所示的虚线MN上方存在着磁感应强度为B的匀强磁场,磁场方向垂直纸面向外,纸面上有一直角三角形OPQ,∠θ=90°,∠QOP=30°,两带电粒子a、b分别从O、P两点垂直于MN同时射入磁场,恰好在Q点相遇,则由此可知( )A.带电粒子a的速度一定比b大B.带电粒子a的比荷一定比b大C.带电粒子a的运动周期一定比b大D.带电粒子a的轨道半径一定比b大【答案】B2、(多选)如图所示,第一象限内存在垂直纸面向里的匀强磁场,电荷量相等的a、b两粒子,分别从A、O两点沿x轴正方向同时射入磁场,两粒子同时到达C点,此时a粒子速度恰好沿y轴负方向,粒子间作用力、重力忽略不计,则a、b粒子()A.分别带正、负电B.运动周期之比为2∶3C.半径之比为∶2D.质量之比为2∶【答案】BC3、(多选)在一个边界为等边三角形的区域内,存在一个方向垂直于纸面向里的匀强磁场,在磁场边界上的P点处有一个粒子源,发出比荷相同的三个粒子a、b、c(不计重力)沿同一方向进入磁场,三个粒子通过磁场的轨迹如图所示,用ta、tb、tc分别表示a、b、c通过磁场的时间,用ra、rb、rc分别表示a、b、c在磁场中的运动半径,则下列判断正确的是( )A.ta=tb>tc B.tc>tb>taC.rc>rb>ra D.rb>ra>rc【答案】AC4、一圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示.图中直径MN的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M射入筒内,射入时的运动方向与MN成30°角.当筒转过90°时,该粒子恰好从小孔N飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为( )A. B.C.w/B D.【答案】A5、(多选)如图所示,在半径为R的圆形区域内,有匀强磁场,磁感应强度为B,方向垂直于圆平面(未画出).一群比荷为q/m的负离子体以相同速率v0(较大),由P点在圆平面内向不同方向射入磁场中,发生偏转后,又飞出磁场,则下列说法正确的是(不计重力)( )A.离子飞出磁场时的动能一定相等B.离子在磁场中运动半径一定相等C.由Q点飞出的离子在磁场中运动的时间最长D.沿PQ方向射入的离子飞出时偏转角最大【答案】BC6、(多选)在直角坐标系xOy平面内有一磁场边界圆,半径为R,圆心在坐标原点O,圆内充满垂直该平面的匀强磁场,紧靠圆的右侧固定放置与y轴平行的弹性挡板,如图所示.一个不计重力的带电粒子以速度v0从A点沿负y 方向进入圆内,刚好能垂直打在挡板B点上,若该粒子在A点速度v0向右偏离y轴60°角进入圆内,粒子与档板相碰时间极短且无动能损失,则该粒子( ).在B点上方与挡板第二次相碰B.经过时间第二次射出边界圆C.第二次与挡板相碰时速度方向与挡板成60°角D.经过时间第二次与挡板相碰【答案】BC7、(多选)如图所示,以O为圆心、MN为直径的圆的左半部分内有垂直纸面向里的匀强磁场,三个不计重力、质量相同、带电量相同的带正电粒子a、b和c以相同的速率分别沿aO、bO和cO方向垂直于磁场射入磁场区域,已知bO垂直MN,aO、cO和bO的夹角都为30°,a、b、c三个粒子从射入磁场到射出磁场所用时间分别为ta、tb、tc,则下列给出的时间关系可能正确的是( )A.ta<tb<tc B.ta>tb>tcC.ta=tb<tc D.ta=tb=tc【答案】AD8、如图所示为一圆形区域的匀强磁场,在O点处有一放射源,沿半径方向射出速率为v的不同带电粒子,其中带电粒子1从A点飞出磁场,带电粒子2从B点飞出磁场,不考虑带电粒子的重力,则( )A.带电粒子1的比荷与带电粒子2的比荷之比为3∶1B.带电粒子1的比荷与带电粒子2的比荷之比为∶1C.带电粒子1与带电粒子2在磁场中运动时间之比为2∶1D.带电粒子1与带电粒子2在磁场中运动时间之比为1∶2【答案】A9、(多选)如图所示,有一垂直于纸面向外的有界匀强磁场,磁场的磁感应强度为B,其边界为一边长为L的正三角形(边界上有磁场),A、B、C为三角形的三个顶点.今有一质量为m、电荷量为+q的粒子(不计重力),以速度v=从AB边上的某点P以既垂直于AB边又垂直于磁场的方向射入磁场,然后从BC边上某点Q射出.则( )A.PB≤L B.PB≤LC.QB≤L D.QB≤1/2L【答案】AD10、如图所示,在边长为2a的正三角形区域内存在方向垂直于纸面向里的匀强磁场,一个质量为m、电荷量为-q 的带电粒子(重力不计)从AB边的中点O以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB边的夹角为60°,若要使粒子能从AC边穿出磁场,则匀强磁场磁感应强度B的大小需满足( )A.B> B.B<C.B> D.B<【答案】B11、如图所示,正三角形ABC边长2L,三角形内存在垂直纸面的匀强磁场,磁感应强度为B.从AB边中点P垂直AB向磁场内发射一带电粒子,粒子速率为,该粒子刚好从BC边中点Q射出磁场.。

物理—磁场偏转高考真题

物理—磁场偏转高考真题

物理-磁场偏转高考真题1.(07全国1)两屏幕荧光屏互相垂直放置,在两屏内分别去垂直于两屏交线的直线为x和y轴,交点O为原点,如图所示。

在y>0,0<x<a的区域有垂直于纸面向内的匀强磁场,在y>0,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B。

在O点出有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x周经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮。

入射粒子的速度可取从零到某一最大值之间的各种数值。

已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为2︰5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中做圆周运动的周期。

试求两个荧光屏上亮线的范围(不计重力的影响)。

2.(07全国2)如图所示,在坐标系Oxy的第一象限中存在沿y轴正方向的匀速磁场,场强大小为E。

在其它象限中存在匀强磁场,磁场方向垂直于纸面向里。

A是y轴上的一点,它到坐标原点O的距离为h;C是x轴上的一点,到O的距离为L。

一质量为m,电荷量为q的带负电的粒子以某一初速度沿x轴方向从A点进入电场区域,继而通过C点进入磁场区域。

并再次通过A点,此时速度方向与y轴正方向成锐角。

不计重力作用。

试求:(1)粒子经过C点速度的大小和方向;(2)磁感应强度的大小B。

3.(08全国1)如图所示,在坐标系xOy中,过原点的直线OC与x轴正向的夹角φ=120°,在OC右侧有一匀强电场;在第二、三象限内有一匀强磁场,其上边界与电场边界重叠、右边界为y轴、左边界为图中平行于y轴的虚线,磁场的磁感应强度大小为B,方向垂直纸面向里。

一带正电荷q、质量为m的粒子以某一速度自磁场左边界上的A点射入磁场区域,并从O点射出,粒子射出磁场的速度方向与x轴的夹角θ=30°,大小为v。

粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的两倍。

高考物理带电粒子在磁场中的运动知识点汇总

高考物理带电粒子在磁场中的运动知识点汇总

高考物理带电粒子在磁场中的运动知识点汇总一、带电粒子在磁场中的运动压轴题1.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m电荷量为q的粒子(不计重力)以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O点),已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D进入MN上方的一个三角形匀强磁场,从A点射出磁场,则三角形磁场区域最小面积为多少?MN上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A点出发后,第一次回到A点所经过的总时间为多少?【答案】(1EqRm(2)212R;11n+;(3)2πmREq【解析】【分析】【详解】(1)由题可知,粒子进入静电分析器做圆周运动,则有:2mvEqR=解得:EqR vm =(2)粒子从D到A匀速圆周运动,轨迹如图所示:由图示三角形区域面积最小值为:22R S = 在磁场中洛伦兹力提供向心力,则有:2mv Bqv R= 得:mv R Bq=设MN 下方的磁感应强度为B 1,上方的磁感应强度为B 2,如图所示:若只碰撞一次,则有:112R mv R B q== 22mvR R B q==故2112B B = 若碰撞n 次,则有:111R mv R n B q==+ 22mvR R B q==故2111B B n =+ (3)粒子在电场中运动时间:1242R mRt v Eqππ== 在MN 下方的磁场中运动时间:211122n m mRt R R v EqR Eqπππ+=⨯⨯== 在MN 上方的磁场中运动时间:232142R mRt v Eq ππ=⨯=总时间:1232mRt t t t Eqπ=++=2.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=Lv =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 2md qE R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2EqmdE B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =mv qB 、v =1v sin α、12qEd v m=12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆===Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =R =mv qB 、v 1=vsinα、12qEdv m=代入解得 0221221L qE n E v n md n B=⋅++v 0= 4.00.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3、4)第二种情况:L =n(2v 0t +2Rsinα)+v 0t +2Rsinα把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m=02(1)21221L qE n E v n md n B+=⋅++v 0= 3.20.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3).3.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL =(2)04nmv B qL =n=1、2、3......(3)02L t v π=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==4.如图甲所示,在直角坐标系0≤x ≤L 区域内有沿y 轴正方向的匀强电场,右侧有一个以点(3L ,0)为圆心、半径为L 的圆形区域,圆形区域与x 轴的交点分别为M 、N .现有一质量为m 、带电量为e 的电子,从y 轴上的A 点以速度v 0沿x 轴正方向射入电场,飞出电场后从M 点进入圆形区域,此时速度方向与x 轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E 的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴.求所加磁场磁感应强度B 的大小和电子刚穿出圆形区域时的位置坐标; (3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N 点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B 0的大小、磁场变化周期T 各应满足的关系表达式.【答案】(1) (2) (3) (n=1,2,3…)(n=1,2,3…) 【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y =v 0tanθ=v 0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T0+T′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.5.在如图所示的xoy坐标系中,一对间距为d的平行薄金属板竖直固定于绝缘底座上,底座置于光滑水平桌面的中间,极板右边与y轴重合,桌面与x轴重合,o点与桌面右边相距为74d,一根长度也为d的光滑绝缘细杆水平穿过右极板上的小孔后固定在左极板上,杆离桌面高为1.5d,装置的总质量为3m.两板外存在垂直纸面向外、磁感应强度为B的匀强磁场和匀强电场(图中未画出),假设极板内、外的电磁场互不影响且不考虑边缘效应.有一个质量为m、电量为+q的小环(可视为质点)套在杆的左端,给极板充电,使板内有沿x正方向的稳恒电场时,释放小环,让其由静止向右滑动,离开小孔后便做匀速圆周运动,重力加速度取g.求:(1)环离开小孔时的坐标值;(2)板外的场强E2的大小和方向;(3)讨论板内场强E1的取值范围,确定环打在桌面上的范围.【答案】(1)环离开小孔时的坐标值是-14 d;(2)板外的场强E2的大小为mgq,方向沿y轴正方向;(3)场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d~.【解析】【详解】(1)设在环离开小孔之前,环和底座各自移动的位移为x1、x2.由于板内小环与极板间的作用力是它们的内力,系统动量守恒,取向右为正方向,根据动量守恒定律,有:mx1-3mx2=0 ①而x1+x2=d ②①②解得:x1=34d③x2=1 4 d环离开小孔时的坐标值为:x m=34d-d=-14d(2)环离开小孔后便做匀速圆周运动,须qE2=mg解得:2mgEq=,方向沿y轴正方向(3)环打在桌面上的范围可画得如图所示,临界点为P、Q,则若环绕小圆运动,则R=0.75d ④根据洛仑兹力提供向心力,有:2v qvB mR=⑤环在极板内做匀加速运动,设离开小孔时的速度为v,根据动能定理,有:qE1x1=12mv2⑥联立③④⑤⑥解得:2 138qB d Em=若环绕大圆运动,则R2=(R-1.5d)2+(2d)2 解得:R=0.48d ⑦联立③⑤⑥⑦解得:2 16qB d Em≈故场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d-~.6.如图,第一象限内存在沿y轴负方向的匀强电场,电场强度大小为E,第二、三、四象限存在方向垂直xOy平面向外的匀强磁场,其中第二象限的磁感应强度大小为B,第三、四象限磁感应强度大小相等,一带正电的粒子,从P(-d,0)点沿与x轴正方向成α=60°角平行xOy平面入射,经第二象限后恰好由y轴上的Q点(图中未画出)垂直y轴进入第一象限,之后经第四、三象限重新回到P点,回到P点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 23603d d dr sin sin α===︒ 根据200mv qv B r =得0233qBdv m=粒子在第一象限中做类平抛运动,则有21602qE r cos t m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得03222y v y tan x v α===由几何知识可得 y=r-rcosα= 1323r d = 则得23x d =所以粒子在第三、四象限圆周运动的半径为1253239d d R d sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度004323v qBdv v cos mα===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动7.如图所示,真空中有一个半径r=0.5m 的圆柱形匀强磁场区域,磁场的磁感应强度大小B=2×10-3T ,方向垂直于纸面向外,x 轴与圆形磁场相切于坐标系原点O ,在x=0.5m 和x=1.5m 之间的区域内有一个方向沿y 轴正方向的匀强电场区域,电场强E=1.5×103N/C ,在x=1.5m 处竖有一个与x 轴垂直的足够长的荧光屏,一粒子源在O 点沿纸平面向各个方向发射速率相同、比荷9110qm=⨯C/kg 的带正电的粒子,若沿y 轴正方向射入磁场的粒子恰能从磁场最右侧的A 点沿x 轴正方向垂直进入电场,不计粒子的重力及粒子间的相互作用和其他阻力.求:(1)粒子源发射的粒子进入磁场时的速度大小;(2)沿y 轴正方向射入磁场的粒子从射出到打到荧光屏上的时间(计算结果保留两位有效数字);(3)从O 点处射出的粒子打在荧光屏上的纵坐标区域范围.【答案】(1)61.010/v m s =⨯;(2)61.810t s -=⨯;(3)0.75 1.75m y m ≤≤ 【解析】 【分析】(1)粒子在磁场中做匀速圆周运动,由几何关系确定半径,根据2v qvB m R=求解速度;(2)粒子在磁场中运动T/4,根据周期求解在磁场中的运动时间;在电场中做类平抛运动,根据平抛运动的规律求解在电场值的时间;(3)根据牛顿第二定律结合运动公式求解在电场中的侧移量,从而求解从O 点处射出的粒子打在荧光屏上的纵坐标区域范围. 【详解】(1)由题意可知,粒子在磁场中的轨道半径为R=r=0.5m ,由2v qvB mR= 进入电场时qBR v m = 带入数据解得v=1.0×106m/s(2)粒子在磁场中运动的时间61121044R t s v ππ-=⨯=⨯ 粒子从A 点进入电场做类平抛运动,水平方向的速度为v ,所以在电场中运动的时间62 1.010xt s v-==⨯ 总时间6612110 1.8104t t t s s π--⎛⎫=+=+⨯=⨯⎪⎝⎭(3)沿x 轴正方向射入电场的粒子,在电场中的加速度大小121.510/qEa m s m==⨯ 在电场中侧移:2121261111.5100.7522110y at m m ⎛⎫==⨯⨯⨯= ⎪⨯⎝⎭打在屏上的纵坐标为0.75;经磁场偏转后从坐标为(0,1)的点平行于x 轴方向射入电场的粒子打在屏上的纵坐标为1.75;其他粒子也是沿x 轴正方向平行的方向进入电场,进入电场后的轨迹都平行,故带电粒子打在荧光屏上 的纵坐标区域为0.75≤y ≤1.75.8.如图,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线在圆上的a 点射入柱形区域,在圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为.现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a 点射入柱形区域,也在b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.【答案】2145qRB E m=【解析】 【分析】 【详解】解答本题注意带电粒子先在匀强磁场运动,后在匀强电场运动.带电粒子在磁场中做圆周运动.粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛仑兹力公式得2v qvB m r=①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 和d 点.由几何关系知,线段ac bc 、和过a 、b 两点的轨迹圆弧的两条半径(未画出)围成一正方形.因此ac bc r ==② 设,cd x =有几何关系得45ac R x =+③ 2235bc R R x =+- 联立②③④式得75r R =再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE="m a" ⑥ 粒子在电场方向和直线方向所走的距离均为r ,有运动学公式得212r at =⑦ r=vt ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得2145qRB E m=⑨【点睛】带电粒子在磁场中运动的题目解题步骤为:定圆心、画轨迹、求半径,同时还利用圆弧的几何关系来帮助解题.值得注意是圆形磁场的半径与运动轨道的圆弧半径要区别开来.9.磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源s 发出质量为m 、电量为q 的粒子沿垂直磁场方向进入磁感应强度为B 的匀强磁场,被限束光栏Q 限制在2ϕ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P 上.(重力影响不计)(1)若能量在E ~E +ΔE (ΔE >0,且ΔE <<E )范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围Δx 1.(2)实际上,限束光栏有一定的宽度,α粒子将在2ϕ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围Δx 2 【答案】见解析 【解析】 【详解】(1)设α粒子以速度v 进入磁场,打在胶片上的位置距s 的距离为x 圆周运动2q B mRυυ=α粒子的动能212E m υ=2x R =由以上三式可得22mEx qB= 所以()12222m E E mEx qBqB+∆∆=-化简可得122mEx E qBE∆≈∆; (2)动能为E 的α粒子沿φ±角入射,轨道半径相同,设为R ,粒子做圆周运动2q B mRυυ=α粒子的动能212E m υ=由几何关系得()22224222cos 1cos sin 2mE mE φx R R φφqB qB ∆=-=-=10.如图所示,虚线OL 与y 轴的夹角为θ=60°,在此角范围内有垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .一质量为m 、电荷量为q (q >0)的粒子从左侧平行于x 轴射入磁场,入射点为M .粒子在磁场中运动的轨道半径为R .粒子离开磁场后的运动轨迹与x 轴交于P 点(图中未画出),且OP =R .不计重力.求M 点到O 点的距离和粒子在磁场中运动的时间.【答案】当α=30°时,粒子在磁场中运动的时间为π126T mt qB== 当α=90°时,粒子在磁场中运动的时间为π42T m t qB== 【解析】根据题意,粒子进入磁场后做匀速圆周运动,设运动轨迹交虚线OL 于A 点,圆心在y 轴上的C 点,AC 与y 轴的夹角为α;粒子从A 点射出后,运动轨迹交x 轴的P 点,设AP 与x 轴的夹角为β,如图所示.有(判断出圆心在y 轴上得1分)2v qvB m R=(1分)周期为2πmT qB=(1分) 过A 点作x 、y 轴的垂线,垂足分别为B 、D .由几何知识得sin αAD R =,cot 60OD AD =︒,,OP AD BP =+α=β (2分) 联立得到sin αα13+=(2分) 解得α=30°,或α=90° (各2分) 设M 点到O 点的距离为h ,有sin αAD R =h R OC =-,3cos αOC CD OD R AD =-=联立得到h=R 3cos(α+30°) (1分) 解得h=3R (α=30°) (2分) h=3R (α=90°) (2分) 当α=30°时,粒子在磁场中运动的时间为π126T m t qB ==(2分) 当α=90°时,粒子在磁场中运动的时间为π42T m t qB==(2分) 【考点定位】考查带电粒子在匀强磁场中的运动及其相关知识.。

高考物理带电粒子在磁场中的运动题20套(带答案)

高考物理带电粒子在磁场中的运动题20套(带答案)

高考物理带电粒子在磁场中的运动题20套(带答案)一、带电粒子在磁场中的运动专项训练1.如图所示,在两块水平金属极板间加有电 压U 构成偏转电场,一束比荷为510/qC kg m=的带正电的粒子流(重力不计),以速度v o =104m/s 沿 水平方向从金属极板正中间射入两板.粒子经电 场偏转后进入一具有理想边界的半圆形变化磁场 区域,O 为圆心,区域直径AB 长度为L =1m , AB 与水平方向成45°角.区域内有按如图所示规 律作周期性变化的磁场,已知B 0=0. 5T ,磁场方向 以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O 点与水平方向成45°斜向下射入磁场.求:(1)两金属极板间的电压U 是多大?(2)若T o =0.5s ,求t =0s 时刻射人磁场的带电粒子在磁场中运动的时间t 和离开磁场的位置.(3)要使所有带电粒子通过O 点后的运动过程中 不再从AB 两点间越过,求出磁场的变化周期B o ,T o 应满足的条件.【答案】(1)100V (2)t=5210s π-⨯,射出点在AB 间离O 点0.042m (3)5010s 3T π-<⨯【解析】试题分析:(1)粒子在电场中做类平抛运动,从O 点射出使速度代入数据得U=100V (2)粒子在磁场中经过半周从OB 中穿出,粒子在磁场中运动时间射出点在AB 间离O 点(3)粒子运动周期,粒子在t=0、….时刻射入时,粒子最可能从AB 间射出如图,由几何关系可得临界时 要不从AB 边界射出,应满足得考点:本题考查带电粒子在磁场中的运动2.如图所示,虚线MN 沿竖直方向,其左侧区域内有匀强电场(图中未画出)和方向垂直纸面向里,磁感应强度为B 的匀强磁场,虚线MN 的右侧区域有方向水平向右的匀强电场.水平线段AP 与MN 相交于O 点.在A 点有一质量为m ,电量为+q 的带电质点,以大小为v 0的速度在左侧区域垂直磁场方向射入,恰好在左侧区域内做匀速圆周运动,已知A 与O 点间的距离为03mv qB ,虚线MN 右侧电场强度为3mgq,重力加速度为g .求:(1)MN 左侧区域内电场强度的大小和方向;(2)带电质点在A 点的入射方向与AO 间的夹角为多大时,质点在磁场中刚好运动到O 点,并画出带电质点在磁场中运动的轨迹;(3)带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度的大小v p .【答案】(1)mgq,方向竖直向上;(2);(3013v .【解析】 【详解】(1)质点在左侧区域受重力、电场力和洛伦兹力作用,根据质点做匀速圆周运动可得:重力和电场力等大反向,洛伦兹力做向心力;所以,电场力qE =mg ,方向竖直向上; 所以MN 左侧区域内电场强度mgE q左=,方向竖直向上; (2)质点在左侧区域做匀速圆周运动,洛伦兹力做向心力,故有:200mv Bv q R=,所以轨道半径0mv R qB=; 质点经过A 、O 两点,故质点在左侧区域做匀速圆周运动的圆心在AO 的垂直平分线上,且质点从A 运动到O 的过程O 点为最右侧;所以,粒子从A 到O 的运动轨迹为劣弧; 又有033AO mv d R qB==;根据几何关系可得:带电质点在A 点的入射方向与AO 间的夹角1260AOd arcsin Rθ==︒; 根据左手定则可得:质点做逆时针圆周运动,故带电质点在磁场中运动的轨迹如图所示:;(3)根据质点在左侧做匀速圆周运动,由几何关系可得:质点在O 点的竖直分速度003602y v v sin v =︒=,水平分速度001602x v v cos v =︒=; 质点从O 运动到P 的过程受重力和电场力作用,故水平、竖直方向都做匀变速运动; 质点运动到P 点,故竖直位移为零,所以运动时间023y v v t g==所以质点在P 点的竖直分速度03yP y v v ==, 水平分速度000317322xP x v qE v v t v g v m =+==; 所以带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度22013P yP xP v v v v =+=;3.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。

2022届高考物理二轮专题讲义:带电粒子在磁场中运动

2022届高考物理二轮专题讲义:带电粒子在磁场中运动

带电粒子在磁场中运动1方法梳理(1)力与运动观(牛顿第二定律) qvB=m v 2r(2)运动时间T=2πmqB t=θ2πT2考点解读 (1)两类边界 ①直线边界角度关系:θ=β=2α(圆形角等于速度偏转角等于弦切角2倍)弦长关系:优弧(弦长越短,圆心角越大),劣弧(弦长越长,圆心角越大)例1:如图,圆心在O 点的半圆形区域ACD (CO⊥AD )内存在着方向垂直于区域平面向外、磁感应强度为B 的匀强磁场,一带电粒子(不计重力)从圆弧上与AD 相距为d 的P 点,以速度v 沿平行直径AD 的方向射入磁场,速度方向偏转60°角后从圆弧上C 点离开。

则可知(B)A .粒子带正电B .直径AD 的长度为4dC .粒子在磁场中运动时间为πd 3vD .粒子的比荷为vBd ②圆形边界a 沿半径射入,沿半径射出。

∠AOˊB + ∠AOB=1800例2:如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。

现将带电粒子的速度变为13v ,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间②圆形边界a轨迹半径r等于磁场圆半径R,粒子平行射入磁场,汇聚一点,反之亦然。

例3:如图所示,在半径为R的圆形区域内充满磁感应强度为B的匀强磁场,MN是一竖直放置的感光板。

从圆形磁场最高点Р垂直磁场正对着圆心O射入带正电的粒子,且粒子所带电荷量为q、质量为m,不考虑粒子重力,关于粒子的运动,以下说法正确的是(BD) A.粒子有可能始终在磁场中运动而不再射出磁场B.出磁场的粒子,其出射方向的反向延长线也一定过圆心OC.粒子在磁场中通过的弧长越长,运动时间也越长D.出射后垂直打在MN上的粒子,入射速度一定为v=qB Rm2放缩圆例4:如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B 的匀强磁场,在ad边中点O,方向垂直磁场向里射入一速度方向跟ad边夹角θ=30°、大小为v0的带正电粒子,已知粒子质量为m,电量为q,ad边长为L,ab边足够长,粒子重力不计,求:粒子能从ab边上射出磁场的v0大小范围.qBL 3m ≤v0≤qBLm2旋转圆例5:如图,磁感应强度为B的匀强磁场垂直于纸面向里,PQ为该磁场的右边界线,磁场中有一点O到PQ的距离为r。

高考-带电粒子在电场中的运动偏转、磁场中运动详解

高考-带电粒子在电场中的运动偏转、磁场中运动详解

带电粒子在电场中的运动、复合场中的偏转一、考纲要求带电粒子在匀强电场中的运动(只限于带电粒子进入电场时速度平行或垂直于场强的情况) 二、知识梳理:带电粒子在电场中的加速,若不计粒子的重力,则电场力对带电粒子做的功等于带电粒子动能的增量。

(1)在匀强电场中2022121mv mv Uq qEd W t -===, 若v 0=0,则221t mv Uq qEd W === (2)在非匀强电场中 2022121mv mv Uq W t -== 三、典型例题:例1.如图所示,某不计重力的带电粒子质量为m ,电荷量为q ,以速度v 0从A 板进入平行板电场中,恰能到达B 板,两板间距离为d ,求: (1)场强E 的大小?(2)若带电粒子运动到两板中央时,两板间的电压变为原来的2倍,则带电粒子还能向前运动,再返回A 板时的速率多大?例2.如图,极板电容器水平放置,两板间距为1.6cm .(1)当两板间电势差为300V 时,一带负电的小球在距下板0.8 cm 处静止.如果两板间电势差减小到60 V 时,带电小球运动到极板上需多长时间?(2)当两板间电势差为60V 时,一质子也从距下板0.8cm 处由静止释放,则质子运动到极板上需多长时间?(质子的质量为m p =1.67×10-27kg )例3.如图所示,MN 为水平放置的金属板,板中央有一个小孔O ,板下存在竖直向上的匀强电场,电场强度为E 。

AB 是一根长为L 、质量为m 的均匀带正电的绝缘细杆。

现将杆下端置于O 处,然后将杆由静止释放,杆运动过程中始终保持竖直。

当杆下落31L 时速度达到最大。

求: (1)细杆带电量;(2)杆下落的最大速度;(3)若杆没有全部进入电场时速度减小为零,求此时杆下落的位移例4.质量为m ,带电荷量为+q 的微粒在O 点以初速度v 0与水平方向成θ角射出,如图所示,微粒在运动过程中所受阻力大小恒为f .(1)如在某方向加上一定大小的匀强电场后,能保证微粒仍沿v 0方向做直线运动,试求所加匀强电场的最小值;(2)若加上大小一定、方向水平向左的匀强电场,仍保证微粒沿v 0方向做直线运动,并且经过一段时间后微粒又回到O 点,求微粒回到O 点时的速率.四、作业1.在匀强电场中,同一条电场线上有A 、B 两点,有两个带电粒子先后由静止从A 点出发并通过B 点,若两粒子的质量之比为2:1,电荷量之比为4:1,忽略它们所受的重力,则它们由A 点运动到B 点所用时间之比为 ( ) A .1:2B .2:1C .1:2.D .2:12.如图所示,一质量为m 、带电荷量为+q 的液滴自由下落,并从小孔进入相距为d 的两平行板电容器.液滴下落的最大深度为2d,极板电压为U ,则液滴开始下落的高度h 为( ) A .B .C .D .3.两个质量相同的小球用不可伸长的细线连结,置于场强为E 的匀强电场中.小球l 和2均带正电,电荷量分别为q 1和q 2 (q 1>q 2).将细线拉直并使之与电场方向平行,如图所示.若将两小球同时从静止状态释放,则释放后细线中的张力T 为(不计重力及两小球间的库仑力) ( )4.如图所示,水平放置的三块带孔的平行金属板与一个直流电源相连,一个带正电的液滴从a 板上方M 点处由静止释放,不计空气阻力,设液滴电荷量不变.从释放至到达b 板小孔处为过程I ,在b 、c 之间运动为过程Ⅱ,则 ( )A .液滴不一定能从c 板小孔中穿出B .过程I 中一定是重力势能减小,电势能减小,动能增大C .过程I 和过程Ⅱ液滴机械能变化量的绝对值相等D .过程Ⅱ中一定是重力势能减小,电势能增大,动能减小5.如图所示,Q 为固定的正点电荷,A 、B 两点在Q 的正上方和Q 相距分别为h 和0.25h ,将另一点电荷从A 点由静止释放,运动到B 点时速度正好又变为零.若此电荷在A 点处的加速度大小为43g ,试求: (1)此电荷在B 点处的加速度,(2)A 、B 两点间的电势差.(用Q 和h 表示)6.如图所示,有彼此平行的A 、B 、C 三块金属板与电源相连接,B 、A 间相距为d l ,电压为U 1;B 、C 间相距为d 2,电压为U 2,且U 1<U 2。

2023年高考物理与强基计划核心知识点复习与真题精选 带电粒子在磁场中运动

2023年高考物理与强基计划核心知识点复习与真题精选 带电粒子在磁场中运动

带电粒子在磁场中运动一、真题精选(高考必备)1.(2020·全国·高考真题)CT 扫描是计算机X 射线断层扫描技术的简称,CT 扫描机可用于对多种病情的探测。

图(a )是某种CT 机主要部分的剖面图,其中X 射线产生部分的示意图如图(b )所示。

图(b )中M 、N 之间有一电子束的加速电场,虚线框内有匀强偏转磁场;经调节后电子束从静止开始沿带箭头的实线所示的方向前进,打到靶上,产生X 射线(如图中带箭头的虚线所示);将电子束打到靶上的点记为P 点。

则( )A .M 处的电势高于N 处的电势B .增大M 、N 之间的加速电压可使P 点左移C .偏转磁场的方向垂直于纸面向外D .增大偏转磁场磁感应强度的大小可使P 点左移2.(2016·全国·高考真题)直线OM 和直线ON 之间的夹角为30°,如图所示,直线OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外。

一带电粒子的质量为m ,电荷量为q (q >0)。

粒子沿纸面以大小为v 的速度从OM 上的某点向左上方射入磁场,速度与OM 成30°角。

已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。

不计重力。

粒子离开磁场的出射点到两直线交点O 的距离为( )A .2mV qB BC .2mv qBD .4mv qB3.(2016·全国·高考真题)一圆筒处于磁感应强度大小为B 的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示。

图中直径MN 的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动。

在该截面内,一带电粒子从小孔M 射入筒内,射入时的运动方向与MN 成30°角。

当筒转过90°时,该粒子恰好从小孔N 飞出圆筒,不计重力。

若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为( )A .3B ωB .2B ωC .B ωD .2Bω 4.(2022·广东·高考真题)如图所示,一个立方体空间被对角平面MNPQ 划分成两个区域,两区域分布有磁感应强度大小相等、方向相反且与z 轴平行的匀强磁场。

专题12 带电粒子在磁场中的运动-2023年高考物理大题限时集训(解析版)

专题12 带电粒子在磁场中的运动-2023年高考物理大题限时集训(解析版)

专题12带电粒子在磁场中的运动【例题】如图所示,直线MN 上方有垂直纸面向外的匀强磁场,磁感应强度2T B =。

两带有等量异种电荷的粒子,同时从O 点以相同速度6110m/s v =⨯射入磁场,速度方向与MN 成30°角。

已知粒子的质量均为236.410kg m -=⨯,电荷量-163.210C q =⨯,不计粒子的重力及两粒子间相互作用力,求:(1)它们从磁场中射出时相距多远?(2)射出的时间差是多少?【答案】(1)0.2m ;(2)7410s 3π-⨯【解析】(1)易知正、负电子偏转方向相反,做匀速圆周运动的半径相同,均设为r ,根据牛顿第二定律有2v qvB m r=解得0.1m mv r qB==作出运动轨迹如图所示,根据几何关系可得它们从磁场中射出时相距220.2m mv d r qB===(2)正、负电子运动的周期均为72210s r T vππ-==⨯根据几何关系可知正、负电子转过的圆心角分别为60°和300°,所以射出的时间差是7410s 3603t T θπ-︒∆∆==⨯1.带电粒子在有界匀强磁场中的运动(1)粒子从同一直线边界射入磁场和射出磁场时,入射角等于出射角.粒子经过磁场时速度方向的偏转角等于其轨迹的圆心角.(如图,θ1=θ2=θ3)(2)圆形边界(进、出磁场具有对称性)①沿径向射入必沿径向射出,如图所示.②不沿径向射入时.射入时粒子速度方向与半径的夹角为θ,射出磁场时速度方向与半径的夹角也为θ,如图所示.2.临界问题(1)解决带电粒子在磁场中运动的临界问题,关键在于运用动态思维,寻找临界点,确定临界状态,根据粒子的速度方向找出半径方向,同时由磁场边界和题设条件画好轨迹,定好圆心,建立几何关系.(2)粒子射出或不射出磁场的临界状态是粒子运动轨迹与磁场边界相切.3.多解问题题目描述的条件不具体,存在多解的可能性,常见的多解原因有:(1)磁场方向不确定形成多解;(2)带电粒子电性不确定形成多解;(3)速度不确定形成多解;(4)运动的周期性形成多解.【变式训练】如图所示,矩形区域内有垂直于纸面向外的匀强磁场,磁感应强度的大小为25.010T B -=⨯,矩形区域长为235,宽为0.2m 。

物理磁偏转知识点总结

物理磁偏转知识点总结

物理磁偏转知识点总结一、磁偏转的基本原理1. 磁场磁场是指产生磁力的区域,它是一种无形的力量,只能通过对带电粒子的作用而被感知。

磁场的特点包括:方向性、磁感应强度、磁场线等。

磁场是由运动带电粒子产生的,也可以通过电流产生。

当带电粒子运动时,它会受到磁场的作用而产生磁力,改变其运动方向。

2. 磁力磁力是磁场对带电粒子的作用力,其大小和方向与带电粒子的电荷量、速度、磁感应强度等有关。

在一个给定的磁场中,带电粒子会受到磁力的作用而发生偏转。

3. 磁偏转当带电粒子进入磁场中时,它会受到磁场的作用力而产生偏转,这种现象称为磁偏转。

磁偏转现象是由于磁场对带电粒子施加的洛伦兹力产生的。

二、磁偏转的理论1. 洛伦兹力洛伦兹力是当带电粒子在磁场中运动时所受到的力。

根据洛伦兹力的公式,可以得知洛伦兹力与带电粒子的电荷量、速度、磁感应强度等有关。

F = qvBsinθ其中,F表示洛伦兹力,q表示带电粒子的电荷量,v表示带电粒子的速度,B表示磁感应强度,θ表示磁场和速度方向的夹角。

2. 质谱仪质谱仪是利用带电粒子在磁场中发生偏转的原理来分析其质量和电荷量的一种仪器。

质谱仪是一种精密的科学仪器,广泛应用于物理、化学等领域的科学研究中。

3. 磁偏转的条件带电粒子在磁场中发生磁偏转需要满足一定的条件。

首先,带电粒子要具有一定的速度,其运动轨迹必须与磁场相交。

其次,带电粒子必须具有电荷量,才能受到磁场的作用力。

最后,磁场的磁感应强度和带电粒子的速度方向夹角也会影响磁偏转的结果。

三、磁偏转的应用1. 质谱分析质谱分析是一种通过带电粒子在磁场中发生磁偏转来分析其质量和电荷量的方法。

质谱仪可以用于分析元素、分子、化合物等物质的成分和结构。

此外,质谱分析也被广泛应用于医学、环境、食品安全等领域的科学研究和实践中。

2. 粒子加速器粒子加速器是一种利用磁场对带电粒子产生磁偏转效应来加速带电粒子的装置。

粒子加速器被广泛应用于核物理、高能物理等领域的科学研究中。

带电粒子在磁场中的偏转-高二物理课件(2019人教版选择性必修第二册)

带电粒子在磁场中的偏转-高二物理课件(2019人教版选择性必修第二册)

【变式3】如图1-2-5所示,A和B的距离为米电子在A点 的速度,已知电子质量为,电量为
图1-2-5 (1)为使电子沿半圆周由A运动到B,求所加匀强磁场的磁 感应强度B的大小和方向. (2)电子从A运动到B需要多长的时间?
答案 (1)5.7104T,方向垂直纸面向里. (2)3.13108 s
解析 (1)根据洛伦兹力公式,结合牛顿第二定律,则有: f qvB m v2
不同的同种带电粒子从S点沿SP方向同时射入磁场.其
中穿过a点的粒子的速率v1与MN垂直;穿过b点的粒子
的速率v2与MN成60°角,设两粒子从S点到a、b两点所
需时间分别为t1和t2,则t1∶t2为(粒子的重力不计)
A.1∶3
B.4∶3
C.1∶1
D.3∶2
【答案】D
解析 粒子的运动轨迹如图所示, 可求出从a点射出的粒子对应的圆 心角为90°,从b点射出的粒子 对应的圆心角为60°,两粒子相同, 则两粒子做圆周运动的周期T相同, 由t=T,式中α为圆心角,可得 t1∶t2=3∶2,故D正确.
解析 若带电粒子的速度方向与磁场方向平行(同向或反 向),此时所受洛伦兹力为零,带电粒子做匀速直线运动, A错误; 静止的带电粒子不受洛伦兹力,仍将静止,B错误; 带电粒子在匀强磁场中做匀速圆周运动,所受洛伦兹力总 跟速度方向垂直,即和运动方向垂直,C正确; 如果带电粒子以与磁场方向成某一角度进入匀强磁场,所 受洛伦兹力与运动方向垂直,带电粒子不是做匀速圆周运 动,D错误.
可知,速
度之比为 1∶2,A 错误,B 正确。
故选 B。
【典例3】 如图1-2-4所示,一个质量为m电荷量为q的带 电粒子,从x轴上的点以速度v,沿与x正方向成的方向射入第一象 限内的匀强磁场中,并恰好垂直于y轴射出第一象限,不计重力。 求:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理带电粒子在磁场中偏转
带电粒子在磁场中偏转的求解策略带电粒子在磁场中偏转问题是历年高考的重点问题,同时也是热点问题。

总结考试中的诸多失误,集中在对这类问题的解法缺乏规律性的认识。

为此本文就求解这类题型的某些规律归纳如下。

一、基本思想
因为洛伦兹力F始终与速度v垂直,即F只改变速度方向而不改变速度的大小,所以运动电荷垂直磁感线进入匀强磁场且仅受洛伦兹力时,一定做匀速圆周运动,由洛伦磁力提供向心力,即F qvB mv R
==2/。

带电粒子在磁场中运动问题大致可分两种情况:1. 做完整的圆周运动(在无界磁场或有界磁场中);2. 做一段圆弧运动(一般在有界磁场中)。

无论何种情况,其关键均在圆心、半径的确定上。

二、思路和方法
1. 找圆心
方法1:若已知粒子轨迹上的两点的速度方向,则可根据洛伦兹力F⊥v,分别确定两点处洛伦兹力F的方向,其交点即为圆心。

方法2:若已知粒子轨迹上的两点和其中一点的速度方向,则可作出此两点的连线(即过这两点的圆弧的弦)的中垂线,再画出已知点v的垂线,中垂线与垂线的交点即为圆心。

方法3:若已知粒子轨迹上的两点和能求得的半径R ,则可作出此两点连线的中垂线,从连线的端点到中垂线上的距离为R 的点即为圆心。

方法4:若已知粒子入射方向和出射方向,及轨迹半径R ,但不知粒子的运动轨迹,则可作出此两速度方向夹角的平分线,在角平分线上与两速度方向直线的距离为R 的点即为圆心。

方法5:若已知粒子圆周运动轨迹上的两条弦,则两条弦的中垂线的交点即为圆心。

2. 求半径
圆心确定下来后,半径也随之确定。

一般可运用平面几何知识来求半径的长度。

3. 画轨迹
在圆心和半径确定后可根据左手定则和题意画出粒子在磁场中的轨迹图。

4. 应用对称规律
从一边界射入的粒子,若从同一边界射出时,则速度与边界的夹角相等;在圆形磁场区域内,若粒子沿径向射入,则必沿径向射出。

三、实例分析
例1. 如图1所示,两电子沿MN 方向射入两平行直线间的匀强磁场,并分别以v v 12、的速度射出磁场。

则v v 12:是多少?两电子通过匀强磁场所需时间之比t t 12:是多少?
图1
解析:利用上述方法1;可确定出两电子轨迹的圆心O 1和圆心O 2,如图2所示。

由图中几何关系,二轨迹圆半径的关系为
图2
()/cos r r r 21260-=°
又r mv
qB =,故
v v r r 121212///==
两电子分别在磁场中的运动时间
t T T 1903601
4==°
° t T T 2603601
6==°°
因此t t 1232//=
例2. 如图3所示,在半径为r的圆形区域内,有一个匀强磁场。

一带电粒从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。

当子以速度v
∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。

图3
解析:应用上述方法1,分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图4所示。

图4
由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为
°
/tan303
R r r
==
又带电粒子的轨道半径可表示为
R mv qB =0 故带电粒子运动周期
T m qB v r ==2230
ππ 带电粒子在磁场区域中运动的时间
t T T r v ===6036016330
°°π
例3. 如图5所示,一带电量为q =20109.×-C ,质量为m kg =-18
1016.×的粒子,在直线上一点O 沿30°角方向进入磁感强度为B 的匀强磁场中,经历t
=15
106.×-s 后到达直线上另一点P 。

求:
图5
(1)粒子作圆周运动的周期T ;
(2)磁感强度B 的大小;
(3)若OP 的距离为0.1m ,则粒子的运动速度v 多大?
解析:粒子进入磁场后,受洛伦兹力的作用,重力很小可忽略。

粒子作匀速圆周运动的轨迹如图4所示。

(1)由几何关系可知OP弦对的圆心角θ=60°,粒子由O到P大圆弧所对圆心角为300°,则有
t/T=300°/360°=5/6
解得 T=6t/5=6×1.5×106-/5=18106
.×-s
(2)由粒子作圆周运动所需向心力为洛伦兹力,轨道半径R=OP=0.1m,有
qvB mv R
=2/
得B
mv
qR
m
qT
===
-
--223141810
20101810
16
96
π×××
×××
..
..
=0.314T
(3)粒子的速度
v
BqR
m
==
-
-
0314201001
1810
9
16
...
.
×××
×
=349105
./
×m s
例4. 如图6所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平
面并指向纸面外,磁感强度为B。

一带正电的粒子以速度v
从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ。

若粒子射出磁场的位置与O点的距离为l,求该粒子的电量和质量之比q/m。

图6
解析:带正电粒子射入磁场后,由于受到洛伦兹力的作用,粒子将沿图7所示的轨迹运动,从A 点射出磁场,O 、A 间的距离为l ,射出时的速度仍为v 0,根据对称规律,射出方向与x 轴的夹角仍为θ。

由洛伦兹力公式和牛顿第二定律有
图7
qv B mv R 002=/
式中R 为圆轨道半径。

圆轨道的圆心位于OA 的中垂线上,由几何关系有 l R /sin 2=θ
联立以上两式解得
q m v lB
=20sin θ。

相关文档
最新文档