路基及排水设计说明
说明(路基宽24.5m公路—I级说明及CAD图)

第四篇路基、路面及排水一、路基1、设计依据本路段路基设计,根据沿线地质、水文、气象、地形、地貌等自然条件,依据《公路工程技术标准》(JTG B01-2003)、《公路路基设计规范》(JTG D30-2004)、《公路路基施工技术规范》(JTG F10-2006)、《公路排水设计规范》(JTJ018-97)及外业调查资料进行设计。
2、路基横断面本路段路基宽度按《公路工程技术标准》(JTG B01-2003)中规定的设计速度为80Km/h一级公路的几何尺寸进行设计,路基宽24.5m,其中路面行车道宽度为2×7.5m,两侧各设2.5m硬路肩,0.75m土路肩;中央分隔带2.0m,两侧各设0.5m路缘带。
详见路基标准横断面。
在边沟外缘,填方坡脚(或坡脚排水沟外缘)、挖方坡顶(或坡顶截水沟外边缘)外侧3.0m以内为公路用地范围。
3、路基高度本路段路基高度4、路基边坡①填方路段填方边坡高度小于8.0m时,边坡率为1:1.5,当边坡高度大于8.0m 小于20m时,其超过部分的下部边坡率应放缓一级,采用1:1.75。
②挖方路段挖方边坡设计以工程类比法为主,根据岩石风化、破碎程度及开挖边坡高度来确定边坡率。
土质密实的边坡,其边坡率采用1:1。
5、路基路面排水设计该路段结合地形、土质、水文气象等因素,确定的排水原则:排水系统畅通,不产生积水。
本路段经过地形为平原区,路基排水主要采用浆砌矩形边沟、浆砌梯形边沟等排水设施排除;路面降水主要通过路面横坡自行分散排除。
①浆砌矩形边沟:在挖方路段设置M7.5浆砌片石矩形边沟,断面尺寸为底宽0.8m,深0.6m;边沟内侧、顶面及底面均采用M10水泥砂浆抹面;每隔10~15m设伸缩缝一道,缝内填塞沥青麻絮;泄水孔间距为3m。
②浆砌梯形排水沟:在填方路段设置C20预制块排水沟,设10cm砂砾垫层,具体尺寸参见路基路面排水工程设计图(边沟、排水沟)。
6、路基防护挡墙的型式主要是重力式路肩墙和重力式路堤墙,具体参见挡墙设计图。
公路改建工程--路基、路面及排水设计说明

路基、路面及排水设计说明1设计规范及依据1)《公路工程技术标准》(JTGB01-2014)2)《公路路线设计规范》(JTGD20-2017)3)《公路路基设计规范》(JTGD30-2015)4)《公路排水设计规范》(JTG∕TD33-2012)5)《公路水泥混凝土路面设计规范》(JTGD40-2011)6)《公路路面基层施工技术细则》JTG/TF20-2015;2、路基设计2.1路基设计标准本项目路基宽度6.5米,路面宽度5.5米。
路基设计标高为路中线路面顶标高,路面横坡采用2%双向坡。
2.2平曲线超高、加宽方式平曲线超高为行车道及路肩绕路中线(未加宽前)旋转。
平曲线半径小于90米时均应设置超高,平曲线半径小于250米均应设置加宽(按TG2U1-2019小交通量农村公路工程技术标准中四级公路II类加宽),平曲线超高、加宽缓和段长度等于平曲线缓和曲线长度。
2.3 2.1路基超高方式:路基超高方式采用绕路基中心线旋转,圆曲线半径小于90米均应设置超高,超高渐变率为1/100。
计算超高缓和段时最短应符合渐变率1:15且不小于IOm的要求。
允许将超高、加2.2.2按规范平曲线半径小于或等于250米路面均应加宽,相应路基也进行加宽。
在平曲线内侧进行加宽,加宽缓和段长度采用相应缓和曲线全长按其成比例增加。
不设缓和曲线或超高缓和段时,加宽缓和段长度应按渐变率为1:15且长度不小于IOm的要求设置。
加宽为单侧(曲线内侧)加宽。
加宽过渡段不小于IOn1。
宽缓和段部分插入曲线内。
最大超高4圾路基压实度及填料强度要求表3填方路基与构造物衔接处,路基压实度不小于85乐路堤填料为一般砂粘土(普通土),应符合《公路路基设计规范》(JTGD30-2015)3.3.1条要求并符合上表压实度及强度要求。
2.4.2路基边坡坡率(1)路堤:本设计段填方高度较小,边坡坡率均采用1:1.5,路基填料均利用路基开挖上石方以20:80的填料比例进行路基填筑。
三级公路路基设计说明

设计说明(路基部分)一、设计规范1、《公路工程技术标准》(JTG B01-2014);2、《城市道路工程设计规范》(CJJ 37-2012);3、《公路路基设计规范》(JTG D30—2015);4、《公路排水设计规范》(JTG TD33-2012);5、《公路路基施工技术规范》(JTG F10—2006);6、《公路工程抗震设计规范》(JTG B02—2013);7、《城市道路和建筑物无障碍设计规范》(GB 50763-2012);8、《公路工程质量检验评定标准》(JTG F801—2012);9、《公路土工合成材料应用技术规范》(JTG D32-2012);以及其他有关的国家及地方强制性规程、标准。
二、路基、路面排水及防护工程设计一)、路基横断面设计新建山区三级公路现状路基宽度7。
5米:由0.5米(土路肩)+2X3.25米(行车道)+0。
5米(土路肩)组成.路线设计线位于路中桩,路基设计标高位置位于路中桩.二)、路基设计1、路基设计原则路基必须做到密实、均匀、稳定,路基回弹模量值应不小于40MPa,不能满足上述要求时应采取措施提高土基强度。
路基填筑材料因地制宜,合理采用当地材料或工业废料。
路基设计应经济、耐用,满足设计年限的使用需求。
路基设计要注意保护自然环境、景观,同时注意工程景观效果。
2、路基设计标高及路拱横坡路基设计标高为道路路线中心路面顶标高。
新建山区三级公路路面横坡为双向2%。
3、路基填料及压实度要求填方路基应分层铺筑,均匀压实,并应严格控制分层厚度,并注意不同填料的填筑顺序。
路基压实度采用重型击实标准,路基填料强度及压实度应满足下表要求。
本项目立交区土石方中,挖除的I类土不得作为路基填料使用,可作为绿化及边坡培土。
其余非膨胀性挖方土(或经过改良后的膨胀土)作为路基填方用土,尽量做到土石方就地利用.填方高度大于2m的填方路基和土质或全、强风化泥岩段的挖方路基,于路面下1。
5m范围内(路床+上路堤),进行砂砾石填筑(换填)处理.4、路基边坡(1)路堤当边坡高度小于20m,且基底无不良地质现象时,一般土质路堤边坡坡率如下:路肩以下0~8m边坡坡率采用1:1。
路基路面及排水设计说明

路基路面及排水设计说明一、路基设计1.初步设计:初步设计主要包括对道路纵、横断面、几何图形的确定,路基宽度和边坡的确定等。
2.轴线设计:轴线设计是将道路纵、横断面的几何要求与过程地物条件相结合,确定道路轴线位置的一种设计。
需要充分考虑到地理、经济、环境等因素,确保设计满足实际需求。
3.路基宽度设计:路基宽度设计是根据使用要求、地形条件和交通量等因素,确定路基横断面宽度的一种设计。
一般来说,高速公路和重要干线道路的路基宽度较大,而次干线和支线道路的路基宽度较小。
二、路面设计1.路面材料选择:根据交通量、设计速度、地理环境等条件,选择合适的路面材料,包括水泥混凝土、沥青混凝土等。
选择合适的路面材料能够提高路面的耐久性和平整度。
2.路面结构设计:路面结构设计是指确定路面层等级和层厚度的一种设计。
根据交通量、承载能力以及设计速度等要求,合理确定路面结构的组成及层厚度,确保路面的稳定性和耐久性。
3.路面平整度设计:路面平整度会直接影响到行车的舒适性和安全性。
根据设计速度和交通量等要求,确定合适的平整度标准,保证路面的平整度符合设计要求。
三、排水设计1.雷达模拟评估:通过雷达模拟评估,确定道路纵、横断面的泄水要求,包括水流速度、水深等因素。
根据评估结果,确定排水系统的类型和尺寸。
2.排水系统设计:根据排水要求和地形条件,设计合适的排水系统,包括排水沟、排水管道等设施。
3.施工方法选择:根据具体情况,选择适合的施工方法,如开挖沟槽、铺设管道等。
综上所述,路基、路面及排水设计的质量和设计是否合理直接关系到道路的使用寿命和安全性。
通过充分考虑地理、经济、环境等因素,并合理选择材料和设计层厚度,确保道路结构的稳定性和耐久性;通过雷达模拟评估和合适的排水系统设计,保证道路排水良好,避免积水和水流横穿的情况的发生。
只有进行科学合理的路基、路面及排水设计,才能保证道路的正常使用和安全行车。
同时,对于路基、路面及排水设计的改进和优化,也需要不断的实践和总结,结合实际情况进行调整和改进,以满足不断发展的交通需求和提高道路的安全、舒适性。
排水沟设计说明

设计说明一、工程概况本工程位于XXX,为排水沟及道路工程.路线自北向南.本工程排水沟长度为。
二、设计依据及规范1、设计依据(1)、业主提供的电子地图;(2)、相关技术规范及其他相关资料;2、设计规范(1)、《公路工程技术标准》(JTG B01-2003);(2)、《公路路线设计规范》(JTG D20-2006);(3)、《公路排水设计规范》(JTGT D33-2012);(4)、《混凝土结构设计规范》(GB 50010-2002);(5)、《公路圬工桥涵设计规范》JTG D61—2005;(6)、《公路涵洞设计细则》JTG/T D65-04-2007;(7)、《公路桥涵设计通用规范》JTGD60-2004;三、设计主要技术标准1、本工程道路为施工便道四、路线设计张神殿村级道路工程路线长约为616。
71m。
1、平面线形设计道路沿现状挡墙右侧布置,局部按平面线形拉顺后需填埋部分沟渠,道路右侧新建挡墙与原挡墙成排水沟.2、平面交叉口设计全线主要有1个平交路口,为丁字类型路口。
3、横断面设计根据建设单位要求,本工程路基宽度为3。
5m。
五、路基设计1、路基设计路基设置1。
5%的单向坡自然排水.(1)、路基设计洪水频率:25年。
(2)、路基干湿类型的划分: 按Ⅳ2区中湿标准(3)、自然地理条件本区位于中亚热带季风气候,温暖湿润,雨量充沛,四季分明,光照充足,四季中冬夏长,春秋短,春季3-5月,雨量同步增长,平均气温16。
9℃,降水量438mm;夏季6—9月为光湿高峰期,为旱洪多发季,平均气温26.9℃,降水量820mm;秋季10—11月,雨少光足,平均气温17℃,降水量131mm;冬季12-次年2月,光湿低值期,个别年份受寒潮侵袭,最低气温-4.5℃,最高气温37。
5℃,年无霜期271天。
终霜期一般年份为2月中旬,全年降雪日数约10天,初霜期为12月初。
本地区气候按照最近30年平均高温、低温及雨量划分在1—4-2区。
设计说明3级公路

用1: 0.5。
路基路面及排水设计说明一、设计依据及规模1、《公路工程基本建设项目设计文件编制办法》交公路发(2007)358号;2、《公路工程技术标准》(JTG B01-2014);3、《公路路基设计规范》(JTG D30-2004);For pers onal use only in study and research; not for commercial use4、《公路沥青路面设计规范》(JTG D50-2006);5、《公路沥青路面施工技术规范》(JTG F40-2004);&《公路路面基层施工技术规范》(JTJ034-200C);7、《公路工程质量检验评定标准》(JTG F80/1-2004); 本段改移道路长度为125・5m。
二、路基横断面布置及加宽、超高方式说明(一)路基横断面布置本段路基采用双车道标准,标准路幅宽度8.5米,其路幅构成为:0.5米(土路肩)+)+7.50米(行车道)+0.5米(土路肩)=8.5米。
(二)路拱横坡一般路段,行车道路拱横坡采用2%,原则上横坡可采用既有路面横坡,以便以平顺衔接。
(三)路基横断面加宽、超高方式本段路线采用三类加宽值在曲线内侧加宽。
本段线路采用左、右不同超高渐变率的过渡方式。
路面超高旋转轴为道路中心线。
超高起点一般位于路线ZH或HZ点,超高终点位于缓和曲线内或者圆曲线起、终点。
左、右行车道同时开始绕中心线独立旋转。
超高过渡方式采用线性渐变。
超高过渡段的纵向渐变率不大于1/125,并不得小于1/330。
三、路基设计说明(一)、一般路基设计1、边坡坡度路堑边坡:本段边坡不高,土质路堑边坡根据高度坡率采用1: 0.75,石质路堑边坡坡率采路堑边坡的坡脚、坡顶采用圆弧过渡,以贴近自然地貌。
(2)护坡道和碎落台碎落台:边沟外侧一般设置0.5m碎落台。
2、坡面防护由于该段边坡不高,边坡稳定,不考虑坡面防护,坡面绿化让其自然恢复。
(二)路床处理帮宽部分路面的路基基底必须碾压密实,若为黏性土,应换填0.2m碎石土。
路基设计说明

设计说明一、设计范围:DK824+301.49~+430.54,长129.05m。
(前接湘东萍水特大桥,后接省界萍水特大桥) 二、设计类型:不良地质路基及深路堑三、工程地质及水文地质条件:(一)地形地貌:丘陵,相对高差20~40m,丘坡自然坡度10~15°,植被发育,最大挖深约21m 。
(二)地层岩性及工程地质条件:表层为Qel+dl粉质黏土,黄褐色,厚度约0~3m ,硬塑。
上部基岩为:T3a 砂岩、炭质页岩、硅质岩,夹煤层灰岩,全~弱风化。
浅部全、强风化混杂,不能见清晰界面,部分地段开挖即见强风化基岩碎块。
厚度约25~50m 。
该层部分地段底部发育灰岩,具溶蚀作用,岩溶发育。
岩层产状120°∠35 °。
下部为P1m 灰岩。
弱风化,青灰~ 灰白色,岩质坚硬,岩溶发育,溶洞内无填充或泥质填充。
(三)特殊地质、不良地质及地质构造:1. 煤层采空区。
线路右侧120m 左右T3a 地层中存在露天开采煤坑和煤洞,背离线路向北开采,线路位置未见开采迹象,勘探孔亦未见较厚煤层,经评估开采区基本对线路无影响,施工前及施工过程中应加强地层核查,发现异常及时反应。
2.岩溶本工点发育两套地层,上覆T3a 以砂、砾岩为主夹炭质岩、灰岩等成分,砾岩及灰岩中均有岩溶发育,勘探孔遇到溶洞,因地层以夹层形式存在,总体为弱风化。
3.地质构造本工点T3a 与P1m 为断层接触关系,上覆T3a 地层岩性混杂,软硬不一,同时岩性破碎,风化极度不均。
本段地震动峰值加速度0.05g 。
(四)水文地质条件:地下水主要为岩溶水及基岩裂隙水,较发育。
地下水无侵蚀性。
四、设计依据:(一)地基处理:DK824+301.49 ~+315.49 、+416.54 ~+430.54 地基采用钻孔灌注桩加固处理。
(二)不良地质:本段存在岩溶,地下可能存在采空区,+315.49+416.54 段采用注浆加固。
(三)支挡工程设计参数:1. 桩板墙相关岩土设计参数:γ=20kN/m 3 、φ=35°,地基系数:m=8MPa/m2 。
路基排水工程设计说明

路基排水工程设计说明1、边沟、截水沟与排水沟1)一般规定(1)边沟断面形式及尺寸应根据降雨强度,汇水面积,地形地质条件以及对路侧安全与环境景观的影响程度等确定。
(2)截水沟应根据地形条件及汇水面积等进行设置,挖方路基的堑顶截水沟应设置在坡口5m以外,并宜结合地形进行布设。
填方路基上侧的路堤截水沟距填方坡脚的距离,应不小于2m。
在多雨地区,视实际情况可设一道或多道截水沟。
(3)将边沟、截水沟、取(弃)土场和路基附近低洼处集的水引向路基以外时,应设置排水沟。
(4)截排水沟沟底纵坡不得小于0.3%当沟底纵坡大于3%时应对水沟进行加固。
截排水沟基底地基承载力不能满足设计要求时,应进行地基处理。
2)材料要求(1)片石:一般用爆破或契劈法开采石块,厚度不小于15cm,其强度不得小于MU30。
用作镶面的片石,应选择表面较平整,尺寸较大者,并应稍加修整。
(2)块石:应形状大致方正,上下面大致平整,厚度20~30m,宽度约为厚度的1~15倍,长度约为厚度的1.5~3倍(如有锋棱锐角,应敲除),其他要求必须符合片石相关要求。
(3)水沟沟身应采用低强度等级且符合设计要求的合格水泥,水泥混凝土强度不得低于C15;盖板混凝土采用C30砼。
(4)砂浆:强度等级应符合图纸规定和规范要求。
砂浆中砂宜用中砂或粗砂,砂的最大粒径,当用于砌筑片石时,不宜大于5mm:当用砌筑块石、粗料石时,不宜大于2.5mm,勾缝砂浆强度对于主体工程不低于M10,附属工程不低于M7.5且均不低于砌筑砂浆的强度等级。
(5)钢筋:带肋钢筋应符合《钢筋混凝土用热轧钢筋》(GB1499)的规定,光圆钢筋应符合《钢筋混凝土用热轧钢筋》(GB13013)的规定,钢筋应顺直,不得有裂纹、断伤、刻痕、表面油污和锈蚀。
3)艺流程(1)边沟施工工艺流程:施工放样→沟槽开挖→地基处理→沟体修整→验槽→砌筑沟底→砌筑沟帮→沟帮、沟底抹面或勾缝→砂浆养护→制作、运输盖板→清除边沟淤积及沉降缝封缝→安装盖板→找平外露边沟顶面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
路基及排水设计说明1对初步设计批复及施工图定测外业验收意见的执行情况初步设计批复及施工图定测外业验收意见执行情况详见总体设计说明书。
2施工合同段划分情况根据业主意见及工程量情况,从便于施工和管理出发,全线共划分为8个土建施工标段,其中我公司负责的第2设计合同段暂定划分为6个土建施工标段。
桥涵预制构件由各标段自行集中预制。
土建施工标仅指路基和桥涵等土建部分,不包括路面、交通工程及环境保护、景观设计等内容。
其中路基施工至路床顶面(软基处理路段按设计要求执行),路床顶面以上工程由路面标完成;桥梁工程除桥面沥青铺装由路面标完成外,其余工程均在本次施工标段施工中完成。
标段划分见下表:表2-1 罗阳高速第2设计合同段土建施工标段一览表3路基设计原则、横断面布置及加宽、超高方案根据本项目特点,结合国内外特别是广东省高速公路建设的成功经验,本项目一般路基设计原则如下:1 路基设计中遵循“保证质量、贴切自然、平整美观、安全舒适”的思想,减少人工构造痕迹,使公路融入大自然。
2 保证路基稳定、交通安全,杜绝隐患,减少路基病害;路基设计贯彻“以人为本”的设计理念,把安全放在首位,采取各种有效方法和措施,保证公路设施自身安全和车辆运行安全。
3 设计中贯彻“低填、浅挖、缓边坡、节约用地”的设计原则,尽可能减少高填深挖路段。
4 加强环保、水保设计:尽量采用绿色环保型防护;在保证排水通畅的前提下优先选用碟形边沟等生态边沟;加强取土坑、弃土堆的环保设计;将地表耕植土、水塘清除的淤泥等当作一种不可再生的资源进行保护和利用。
3.1 路基横断面布置按照交通部部颁《公路工程技术标准》(JTGB01—2003)中高速公路路基横断面几何尺寸的规定以及批复意见,本项目设计速度采用100km/h和120km/h(与汕湛高速公路共线段及以南路段,即松柏至终点段)。
路基宽度分别采用26.0m和28.0m(与汕湛高速公路共线段,即松柏至崆峒段,K43+600~K77+580)。
26m宽路基横断面布置,其中行车道宽2×2×3.75m,中间带宽3.5m(中央分隔带宽2.0m,左侧路缘带宽2×0.75m),硬路肩2×3.0m (含右侧路缘带2×0.5m),土路肩宽2×0.75m。
28m宽路基横断面布置,其中行车道宽2×2×3.75m,中间带宽3.5m(中央分隔带宽2.0m,左侧路缘带宽2×0.75m),硬路肩2×4.0m (含右侧路缘带2×0.5m),土路肩宽2×0.75m。
互通匝道路基标准宽度详见互通设计。
路拱坡度:不设超高路段,行车道、路缘带及硬路肩采用2%,土路肩采用4%,超高路段详见路基横断面设计图及路基设计表。
3.2 路基加宽除互通式立交、服务区、变速车道、主线收费站按规范要求加宽外,其它主线路段均无加宽。
3.3 超高方案根据设计速度,平曲线半径R≤4000m(100km/h)、R≤5500m(120km/h)时,设置超高。
路基超高以中央分隔带边缘为旋转轴,两侧行车道及硬路肩分别绕中央分隔带边缘旋转,使之各自成为独立的单向超高断面。
中央分隔带维持原水平状态。
内侧超高大于4%的土路肩,横坡同行车道横坡。
3.4 公路用地范围路堤两侧边沟外边缘以外1.0m,路堑坡顶外边缘以外2.0m(有截水沟时为截水沟外缘1.0m)。
桥梁段为桥梁正投影外缘1.0m。
4路基设计、施工工艺、参数、材料要求4.1 填方路基一般填方路基边坡坡率根据路基填料种类、边坡高度和基底工程地质条件确定,经水文地质及工程地质勘察,结合沿线基底地质情况,路堤边坡坡率见表4-1:表4-1填方路堤边坡坡率表坡脚与排水沟内边缘设宽2.0m的护坡道,护坡道设置3%的横坡。
4.2 挖方路基挖方路基的设计从路线设计开始,以“不破坏就是最大的保护”为原则,以路基稳定为前提,严格控制路堑的最大挖深。
路堑边坡的设计,结合取土方案进行综合设计。
在路堤缺土路段,适当放缓边坡,恢复山坡植被。
对孤立山包原则上削平取土石,减少边坡防护工程。
并将部分永久占地变为临时用地,将宝贵的土地资源归还于农,充分体现“可持续发展”的设计原则。
土质边坡设计根据边坡高度、土的湿度及密实度、地下水及地面水的情况、土的成因类型及生成年代、既有人工边坡及自然边坡稳定状况等因素确定。
岩质挖方边坡设计综合考虑岩性、岩层产状、构造裂隙产状与路线关系、岩体风化程度、力学性质和开挖高度、以及地下水﹑地表水、既有人工边坡和自然边坡稳定状况,并兼顾地形地貌、土石方平衡等因素确定。
本着安全稳定、经济合理的原则,边坡设计与边坡防护工程紧密结合。
挖方边坡坡率设计根据岩土性质、岩石的风化破碎程度、地层产状、地质构造、边坡高度、地下水、地面水的实际情况和土石方调配平衡等因素合理确定。
一般情况下,挖方边坡(挖方高度<20m)坡率可按以下原则:1 一般土质(类土质)边坡:坡率1:1~1:1. 5;2 对于路堑挖方边坡高度大于20m的高边坡,进行特殊设计,通过稳定性分析,确定边坡坡率。
3 对高度大于20m的边坡,在施工阶段应进行稳定性监测。
浅挖方路段采用碟形边沟兼碎落台,宽度为2.6m。
当挖方边坡高度H≤12m时,只设一级边坡,当挖方边坡高度H>12m时,每10m为一级,各级间设2.0m宽的平台及平台拦水堰,最后一级边坡高度小于12m时,不增设平台。
4.3 高填、陡坡路基高边坡路堤与陡坡路堤设计应贯彻综合设计和动态设计的原则。
在充分掌握场地水文地质条件、填料来源及其性质的基础上,综合进行路堤断面、排水设施、边坡防护、地基及堤身处治等的设计。
对边坡高度超过20m的路堤或地面斜坡坡率陡于1:2.5的路堤,以及不良地质、特殊地段的路堤,进行了个别勘察设计,本合同段共2段陡坡路堤。
路堤稳定性分析包括路堤堤身的稳定性、路堤和地基的整体稳定性、路堤沿斜坡地基或软弱层带滑动的稳定性。
设计中所取用系数为最不利项的系数。
高填、陡坡路基应重点注意以下几项:1 清除表层软弱层、陡坡段开挖台阶。
表层存在软弱层容易引起路堤沿软弱层产生滑面,影响路基稳定,对于表层的耕植土、软湿等土层进行清除。
开挖台阶可以加强地基与路基的结合,增强路基沿斜坡的稳定性。
2 加强地基及路基压实处理。
高填方引起的沉降量超过一定数值之后,容易引起行车安全性及舒适度的下降,通过地表及路堤的补充压实可以有效的增加土体的密实度,减少沉降量,对路堤和地基的整体稳定性有利。
对于坡脚等位置地基存在较厚的软弱层或承载力不足的区域采用换填进行处理,以增强路堤的稳定性。
3 坡脚增设抗滑挡土墙(护脚)。
对稳定性不足的陡坡路堤,坡脚设置护脚。
4 路床内部增设土工格栅。
增设土工格栅减缓残余沉降对路面造成的损害。
4.4 深挖路基本合同段共有5处高边坡,其处理方式详见高填深挖路基设计图及深路堑设计说明。
表4-2 深挖路基一览表4.4.1深路堑防护设计原则1 设计中贯彻“不破坏就是最大的保护”的设计理念,合理放坡、加固适度,尽量做到土石方填挖平衡,减少征地和弃方;2 加强地质勘探和现场踏勘调查,深入分析工程地质条件,增强工程研判,提高技术措施的针对性。
3 深路堑设计应充分结合已有地质勘察资料,根据边坡的岩性、地质构造、地下水的作用和风化程度,采取相应措施,确保深路堑的安全可靠,加固工程设计遵循“一次根治,不留后患”的原则,采用自稳定为主,加固为辅,排水、防护并重的综合处理措施,确保施工中的临时稳定和通车后的长期稳定。
4 固“脚”强“腰”,加强截、排水工程设计,是提升路堑整体稳定性的有效手段;5 采取综合整治措施,在地形条件许可的情况下,结合路基的取土,尽量刷坡减载,减少支挡工程,加强地表、地下水的排水措施,以提高坡体的自稳定性。
6 突出边坡绿化。
边坡加固防护工程实用与美观相结合,工程防护与生态防护相结合,力求防护与周边自然环境的协调,加强“生态、环保”设计,提高工程社会效益。
7 深路堑设计应吸收国内外深路堑治理的成功经验;加固防护措施应做到技术可行、经济合理;尽量采用便于施工的措施;8 深路堑设计应从现实情况出发,充分考虑施工条件、工艺水平、机械设备和材料供应等因素;9 深路堑动态设计时应充分结合边坡变形监测数据,及时根据边坡的变形情况调整工程措施。
4.4.2深路堑稳定分析、评价与加固设计本路段路堑边坡数量多,设计中根据各边坡的工程地质条件并结合地形地貌情况,对深路堑进行稳定性分析计算,并对其稳定性做出评价。
1 深路堑稳定性分析方法采用工程地质类比法、地质力学法、极限平衡法三种主要手段对本路段的深路堑稳定性进行分析和评价。
1)工程地质类比法工程地质类比法包含地质参数类比和工程类比。
通过对比自然稳定山坡与不稳定坡体的工程地质条件差异、相邻既有人工边坡的稳定性状,以及既有工程经验,类比并找出相应的地质参数;结合工程经验,通过对设计路堑边坡的坡形、工程地质条件以及工程措施的相似性来进行宏观的稳定性分析与判断。
在初步设计及施工图阶段,对沿线遇到的人工边坡坡率进行了调查,其中以S369开挖的边坡较为典型,S369与本项目并行路段较长,地质情况接近。
且开挖后坡面基本无防护,边坡岩性明确,边坡高度多样,为本项目设计提供了好的类比模型。
沿线很多开挖的人工边坡对邻近坡体的设计也具有指导意义。
本项目高边坡坡形设计充分的参考了邻近高速公路的设计。
2)地质力学法地质力学法是应用地质力学原理,从调查构造形迹入手,找出形成当地岩土的构造应力场及其序次,推测应力场作用下的主要结构面和配套要素及其被后期改造的过程。
特别是它们与临空面形成与作用过程间的相互关系,据此推测各大岩体及其斜坡变形的演变过程和趋势,从而判断其稳定性。
3)极限平衡法极限平衡法是在上述两种路堑边坡稳定性分析与评价方法的基础上,确定基本的变形类型、范围和破坏模式,运用极限平衡原理,进行量化分析,计算边坡的稳定系数。
主要分析计算土质或类土质边坡、二元结构边坡、破碎岩石边坡和不利结构面贯通发育的岩石边坡等几种主要路堑边坡结构类型。
其中,(类)土质边坡可分为(似)均质结构土质边坡、层状结构土质边坡、顺倾结构土质边坡和软弱夹层土质边坡等几个亚类模型,从而确保稳定性分析计算结果的客观性和合理性。
2 深路堑的变形类型和破坏模式从工程防治的难易和工程费用高低,按其变形规模和范围分为边坡深层变形、边坡浅层变形和坡面变形。
1)边坡浅层变形在边坡范围内工程地质条件较差,或含水量高,或有倾向临空的不利结构面,变形破坏可以是一级或数级边坡的变形,但破坏深度一般不超过6~7m,如坍塌、浅层滑坡、局部楔形体滑动等。
针对此类边坡变形病害,采用改变坡形、坡率或采取锚杆框格、仰斜排水孔等一般加固及排水措施,即可防止病害的发生及变形规模的进一步扩大。