合理添加平行线构造相似三角形
相似三角形之常用辅助线
相似三角形之常用辅助线在与相似有关得几何证明、计算得过程中,常常需要通过相似三角形,研究两条线段之间得比例关系,或者转移线段或角。
而有些时候,这样得相似三角形在问题中,并不就是十分明显、因此,我们需要通过添加辅助线,构造相似三角形,进而证明所需得结论。
专题一、添加平行线构造“A"“X”型定理:平行于三角形一边得直线与其它两边(或两边延长线)相交,所构成得三角形与原三角形相似。
定理得基本图形:例1、平行四边形ABCD中,E为AB中点,AF:FD=1:2,求AG:GC变式练习:已知在△ABC中,AD就是∠BAC得平分线.求证:、(本题有多种解法,多想想)例2、如图,直线交△ABC得BC,AB两边于D,E,与CA延长线交于F,若==2,求BE:EA得比值、变式练习:如图,直线交△ABC得BC,AB两边于D,E,与CA延长线交于F,若错误!= 错误!=2,求BE:E A得比值。
例3、BE=AD,求证:EF·BC=AC·DF变式1、如图,△ABC中,AB<AC,在AB、AC上分别截取BD=CE,DE,BC得延长线相交于点F,证明:AB·DF=AC·EF。
例4、已知:如图,在△ABC中,AD为中线,E在AB上,AE=AC,CE交AD于F,EF∶FC=3∶5,EB=8cm,求AB、AC得长、变式:如图,,求。
(试用多种方法解)说明:此题充分展示了添加辅助线,构造相似形得方法与技巧.在解题中方法要灵活,思路要开阔.总结:(1)遇燕尾,作平行,构造字一般行。
(2)引平行线应注意以下几点:1)选点:一般选已知(或求证)中线段得比得前项或后项,在同一直线得线段得端点作为引平行线得EF EF EFEF点。
2)引平行线时尽量使较多已知线段、求证线段成比例。
专题二、作垂线构造相似直角三角形 一、基本图形例1、,,那么吗?试说明AC BD AC BC CA CD ⊥=⋅22理由?(用多种解法)v变式练习:平行四边形ABC D中,CE ⊥A E,CF ⊥AF,求证:A B·AE+AD ·AF=AC 2例2、如图,RtA BC 中,CD 为斜边AB 上得高,E 为CD 得中点,AE 得延长线交B C于F,FG AB 于G,求证:FG =CFBF【练习】1.如图,一直线与△ABC 得边AB,AC 及BC 得延长线分别交于D,E,F 。
相似三角形知识点归纳(全)
相似三角形知识点归纳(全) 相似三角形知识点归纳(全)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(相似三角形知识点归纳(全))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为相似三角形知识点归纳(全)的全部内容。
《相似三角形》知识点归纳知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形。
(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念、比例的性质 (1)定义: 在四条线段中,如果的比等于的比,那么这四条线段叫做成比例线段,简称比例线段. 注:①比例线段是有顺序的,如果说是的第四比例项,那么应得比例式为:. ②核心内容: (2)黄金分割:把线段分成两条线段,且使是的比例中项,即,叫做把线段黄金分割,点≈0.618.即 简记为:注:①黄金三角形:顶角是360的等腰三角形②黄金矩形:宽与长的比等于黄金数的矩形(3)合、分比性质:. 注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间 发生同样和差变化比例仍成立.如:等等.(4)等比性质:如果那么.知识点3 比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,段成比例。
已知AD∥BE∥CF ,可得特别在三角形中:由DE∥BC 可得:知识点4 相似三角形的概念(1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边d c b a,,,b a 和d c 和d c b a ,,,a d c b ,,a d cb =()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项bc ad=AB )(,BC AC BC AC>AC BC AB和2A C AB BC =⋅AB C AB AB AC 215-=AB 512A C B C A B A C -==512-长短==全长a c a b c d b db d ±±=⇔=⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c dc b a b a ccd a a b d c b a (≠++++====n f d b n m fe d c b a ba n f db m ec a =++++++++ A B D E A B D E B C E F B C E F A B B C B C E F A C D F A B D E A C D F D E E F =====或或或或AC AEAB AD EA EC AD BD EC AE DB AD ===或或E BD注:①对应性:即把表示对应顶点的字母写在对应位置上②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.(2)三角形相似的判定方法1、平行法:(图上)平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
添平行线利用相似三角形证明
平行线分线段成比例(添辅助线)一、知识要点:1、平行线分线段成比例的基本图形;2、构造基本图形来解题。
二、例题简析及练习:例1、已知FD 与△ABC 的边AB 交于F ,与AC 交于E ,与BC 的延长线交于D ,且AF=CD ,求证:BC ABEF DE =练习1、已知如图BD=21CD ,求证:AC AFBE EF 2=例2、△ABC 中AF ∶FC=1∶2,G 是BF 的中点,AG 的延长线交BC 于E ,求BE:EC练习2、△ABC 中D 是BC 上的一点,AE ∶EC=3∶4,BD ∶DC=2∶3,求BF ∶FE例3、□ABCD 中,E 是AB 的中点,AF=21FD ,连接FE 交AC 于G ,求AG ∶AC练习3、已知,如图,△ABC 中,E 、F 分别为BC 的三等分点,D 为AC 的中点,BD 分别与AE 、AF 交于点M 、N ,求BM:MN:NDA B C D E FC A C GEF A B C DE F A B CD E F GN MFED CBA三、巩固练习:1、△ABC 中,AB=AC ,AD ⊥BC ,AP=PD 。
求证:1)PB=3PF ;2)如果AC=13,求AF 的长。
2、如图,D 、F 分别是△ABC 的边AB 、AC 上的点,且AD∶DB=CF∶FA=2∶3 连DF 交BC 的延长线于E.求EF∶FD.3、已知OM ∶MP=ON ∶NR ,求证:△PQR 为等腰三角形。
4、直线截△ABC 的边AB 、BC 、AC 或其延长线于D 、E 、F ,求证:1=⋅⋅FACFEC BE DB AD5、在△ABC 中AC=BC ,F 为底边AB 上的一点,nmAF BF =,(n m ,为正数)。
取CF 的中点D ,连接AD 并延长交BC 于E 。
1)求ECBE的值;2)如果BE=2EC ,那么CF 所在的直线与边AB 有怎样的位置关系?证明你的结论。
3)E 点能否为BC 的中点?如果能,求出相应nm的值,如果不能,说明理由。
人教版九年级数学下27.2相似三角形的判定(平行线法)教案
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠和测量,学生可以直观地感受相似三角形的性质。
在讲授过程中,我尽力用清晰的图示和实际的例题来解释同位角、内错角等概念,但显然,这部分内容对于一些学生来说仍然是一个难点。我意识到,可能需要通过更多的互动和实际操作来加强他们的理解。在未来的教学中,我打算引入更多的实物模型或互动软件,让学生能够更直观地感受这些几何关系。
实践活动环节,学生分组讨论和实验操作的效果比我预期的要好,大家积极参与,热烈讨论。我观察到他们在解决问题的过程中能够运用所学的知识,这让我感到很欣慰。不过,我也注意到有些小组在讨论时可能会偏离主题,这可能是因为他们对问题的理解不够深入。在接下来的教学中,我需要更明确地设定讨论的主题和目标,引导学生们更加聚焦。
在小组讨论环节,我发现学生们对于相似三角形在实际生活中的应用有很多自己的想法,这是一个很好的现象。通过分享和交流,他们能够从不同的角度理解相似三角形的应用。但同时,我也注意到有些学生在讨论中比较沉默,可能是因为他们不够自信或者没有被充分地激发思考。我需要在这方面多做一些工作,鼓励每个学生都参与到讨论中来,提高他们的参与度和自信心。
-强调:在讲解过程中,教师要着重强调这些判定条件的逻辑关系,以及如何从已知条件出发,逐步推导出相似关系。
2.教学难点
-难点内容:本节课的难点在于学生对于平行线法的理解和应用,尤其是在实际问题中的运用。
用平行线判定三角形相似
B.2个
C.1个
D.0个
3 如图,AB∥CD∥EF,则图中相似三角形有( D ) A.0对 B.1对 C.2对 D.3对
4 【2016·盐城】如图,点F在平行四边形ABCD的边 AB上,射线CF交DA的延长线于点E.在不添加辅助 线的情况下,与△AEF相似的三角形有( C ) A.0个 B.1个 C.2个 D.3个
∴△AEF∽△CDF.
AE AF .
CD CF ∵AE=EB,∴AE=
1AB=
1 CD.
2
2
∴CF=2AF=4.
总结
利用证三角形相似求线段的长的方法:当三角 形被平行线所截形成“A”型或“X”型的图形,并 且所求的线段或已知线段在平行的边上,通常考虑通 过证三角形相似,再利用相似三角形的对应边的比相 等构建包含已知与未知线段的比例式,即可求出线段 的长.
1 【2017·眉山】“今有井径五尺,不知其深,立五尺木
于井上,从木末望水岸,入径四寸,问井深几何?”
这是我国古代数学《九章算术》中的“井深几何”问
题,它的题意可以由图获得,
则井深为( B )
A.1.25尺
B.57.5尺
C.6.25尺
D.56.5尺
2 【2017·哈尔滨】如图,在△ABC中,D,E分别为AB,
BC于点F,BF就是平移DE所得的线段.
先证明两个三角形的角分别相等. 如图,在△ADE 与△ABC 中,∠A=∠A. ∵DE//BC, ∴∠ADE=∠B,∠AED=∠C. 再证明两个三角形的边成比例. 过点E作EF//AB,交BC于点F. ∵DE//BC,EF//AB, AD = AE ,BF = AE .
5 如图,在平行四边形ABCD中,过点B的直线与对 角线AC、边AD分别交于点E和点F,过点E作 EG∥BC,交AB于点G,则图中的相似三角形有 ( B) A.4对 B.5对 C.6对 D.7对
作平行线构造相似三角形
作平行线构造相似三角形吴家山三中 谌慧琳一、常用的相似三角形模型1.线段所在三角形是唯一的例1、证明三角形内角平分线定理在三角形ABC 中,AD 是角BAC 的平分线,求证:例2、证明梅涅劳斯定理BD AB DC AC=思考:以上两题所考查的线段所在三角形都是唯一的,当所考查线段出现在很多三角形中时,又如何选取固定哪个三角形好呢?下面我再以一道题为例,给出几种不同的证明方法进行对比分析.2.线段所在三角形不是唯一的例3:法一:固定ABC法二:固定ADC法三:固定ADF三种方法对比:很明显,方法一与方法三很类似,一个是从等式的左边出发,一个是从等式的右边出发所固定的三角形都包含题中所提线段两条,而第二种方法所固定的三角形包含题中所提线段仅仅一条,没有方法一与方法三简单总结:在几何问题中要证明线段比相等或求线段比时,我们首先应想办法把所提线段比表示出来.而利用相似三角形处理此问题时,先看所提线段所在的三角形是否相似,若不相似则需要构造相似.构造相似时,先固定一个三角形,为了使问题简单,使固定的三角形包含题中所提线段越多越好然后根据平行线构相似或抓住已经相等的量根据相似三角形的判定方法去构造相似小试牛刀:在△ABC 内任取一点O ,延长AO 、BO 、CO 分别交对边于D 、E 、F ,则二、作平行线求线段比 例4:如图,D 是△ABC 的BC 边上的点,E 是AD 的中点, BD :DC=2:1,连结BE 并延长交AC 于F,求:BE :EF 的值.解法1:过点D 作CA 的平行线交BF 于点P ,解法2:过点D 作BF 的平行线交AC 于点Q ,解法3:过点E 作BC 的平行线交AC 于点S ,解法4:过点E 作AC 的平行线交BC 于点T ,1BD CE AFDC EA FB创=B练习:如图,D 是△ABC 的BC 边上的点,BD :DC=2:1,E 是AD 的中点,连结BE 并延长交AC 于F,求AF :CF 的值.作业:1. 如图, △ABC 的AB 边和AC 边上各取一点D 和E ,且使AD =AE ,DE 延长线与BC 延长线相交于F ,求证:2. 如图,△ABC 中,AB<AC ,在AB 、AC 上分别截取BD=CE ,DE ,BC 的延长线相交于点F ,证明:AB·DF=AC·EF 。
2024年广东省深圳市宝安区初三二模数学试题含答案解析
2024年广东省深圳市宝安区中考二模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在3-,0,23-四个数中,最小的是( )A .3-B .0C .23-D2.如图的正方体纸盒,只有三个面上印有图案,下面四个平面图形中,经过折叠能围成此正方体纸盒的是( )A .B .C .D . 【答案】B【分析】四个选项中的图都是正方体展开图的“141--”结构.由正方体可以看出,有图案的三个面两两相邻.【详解】解:四个选项中的图都是正方体展开图的“141--”结构.由正方体可以看出,有图案的三个面两两相邻;A 、C 、D 选项折成正方体后有图案的面有两个相对,不符合题意;B 选项折成正方体后,有图案的三个面两两相邻;的展开图是故选:B .【点睛】正方体展开图“1−4−1”结构,折成正方体后,两个“1”相对,“4”组成侧面,间隔面相邻.关键是明白有图案的三个面两两相邻.3.下列计算正确的是( )A .426a a a +=B .527a a a ⋅=C .5210()ab ab =D .1025a a a ÷=【答案】B【分析】根据合并同类项法则、幂的运算法则逐项计算即可判断.【详解】解:A. 42a a 、不是同类项,不能合并,不符合题意;B. 527a a a ⋅=,符合题意;C. 52210()ab a b =,不符合题意;D. 1028a a a ÷=,不符合题意;故选:B .【点睛】本题考查了合并同类项和幂的运算,掌握相关法则是解题关键.4.如图,12l l ∥,135∠=︒,250∠=︒,则∠3的度数为( )A .85︒B .95︒C .105︒D .115︒【答案】B 【分析】首先根据平行线的性质可得出231180∠+∠+∠=︒,据此可得出∠3的度数.【详解】解:∵12l l ∥,∴231180∠+∠+∠=︒,∵135∠=︒,250∠=︒,∴()()318021*********∠=︒-∠+∠=︒-︒+︒=︒.故选:B .【点睛】本题考查平行线的性质,解题的关键是准确识图,熟练掌握两直线平行,同旁内角互补.5.某次射击训练中,一小组的成绩如表所示,已知该小组的平均成绩为8.1环,那么成绩为8环的人数是( )环数789人数2?3A .4人B .5人C .6人D .7人A B C D7.如图,在O 中,弦AB ,CD 相交于点P ,则一定与A ∠相等的是( )A .B∠B .C ∠C .D ∠D .APD∠【答案】C 【分析】根据圆周角定理得出即可.【详解】解:根据圆周角定理得:∠A =∠D ,故选:C .【点睛】本题考查了圆周角定理,能熟记圆周角定理是解此题的关键,注意:在同圆或等圆中,同弧所对的圆周角相等.8.一艘轮船在静水中的最大航速为50km /h ,它以最大航速沿河顺流航行80km 所用时间和它以最大航速沿河逆流航行60km 所用时间相等,设河水的流速为xkm /h ,则可列方程( )A .8050x +=6050x -B .8050x -=6050x +C .8050x +=6050x -D .8050x -=6050x+【答案】C9.如图,将一张矩形纸片按图①,图②所示方法折叠,得到图③,再将图③按虚线剪裁得到图④,将图④展开,则展开图是()A.B.C.D.【答案】D【分析】对于此类问题,亲自动手操作,即可得出答案.【详解】严格按照图中的顺序向右翻折,向下翻折,按按虚线剪裁,展开得到结论,故选:D.【点睛】本题考查了剪纸问题,此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.10.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①b=2a;②c﹣a=n;③抛物线另一个交点(m,0)在﹣2到﹣1之间;④当x<0时,ax2+(b+2)x<0;⑤一元二次方程ax2+)x+c=0有两个不相等的实数根其中正确结论的个数是( )(b﹣12A.1个B.2个C.3个D.4个二、填空题11.分解因式3818x y xy -= .【答案】()()22323xy x x +-【分析】本题考查因式分解,涉及提公因式法因式分解及公式法因式分解,根据题中所给多项式的结构特征,先提公因式,再由平方差公式因式分解即可得到答案,灵活应用提公因式法及公式法因式分解是解决问题的关键.【详解】解:3818x y xy-()2249xy x =-()()22323xy x x =+-,故答案为:()()22323xy x x +-.12.今年春节电影《第二十条》、《热辣滚烫》、《飞驰人生2》、《熊出没•逆转时空》在网络上持续引发热议,根据猫眼专业版数据显示,截至2月17日21时,2024年春节档新片总票房突破80.23亿元,创造了新的春节档票房纪录,则其中数据80.23亿用科学记数法表示为 .13.有一纸箱装有除颜色外都相同的散装塑料球共100个,小明将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.4,由此可以估计纸箱内红球的个数约是 个.系.14.新冠疫情期间,同学们都在家里认真的进行了网课学习,小明利用平板电脑学习,如图是他观看网课时的侧面示意图,已知平板宽度即20cm AB =,平板的支撑角60ABC ∠=︒,小明坐在距离支架底部30cm 处观看(即30cm DB =),点E 是小明眼睛的位置,ED DC ⊥垂足为D .EF 是小明观看平板的视线,F 为AB 的中点,根据研究发现,当视线与屏幕所成锐角为80︒时(即80AFE ∠=︒),对眼睛最好,那么请你求出当小明以此视角观看平板时,他的眼睛与桌面的距离DE 的长为 cm .(结果精确到1cm )(参考数据:1.73,tan 400.84,sin 400.64,cos400.77︒≈︒≈︒≈≈)∵20cm AB =,F 为AB 的中点,∴11201022BF AB ==⨯=,∵FT DC ∥,60ABC ∠=︒,∴60HFB ABC ∠=∠=︒,∵180HFB HFE EFA ∠+∠+∠=15.如图,正方形ABCD的边长为12,⊙B的半径为6,点P是⊙B上一个动点,则12 PD PC+的最小值为.【答案】15三、解答题16.计算:6023112)cos 45()2---︒-︒+-.17.先化简,再求值:21221121x x x x x --⎛⎫+÷ ⎪+++⎝⎭,再从1,-1,2中选一个合适的数作为x 的值代入求值.18.为进一步提高学生学习数学的兴趣,3月14日(国际数学日)当天,某校开展了一次数学趣味知识竞赛(竞赛成绩为百分制),并随机抽取了部分学生的竞赛成绩,经过整理数据得到以下信息(单位:分):信息一:所抽取学生成绩分组整理成如图所示的扇形统计图,其中第Ⅰ组5060x ≤<,第Ⅱ组6070x ≤<,第Ⅲ组7080x ≤<,第Ⅳ组8090x ≤<,第Ⅴ组90100x ≤<;信息二:第Ⅲ组的成绩为747173747976777676737275,,,,,,,,,,,.根据信息解答下列问题:(1)本次抽取的学生人数为________人,第Ⅱ组所在扇形的圆心角度数为:________;(2)第Ⅲ组竞赛成绩的众数是________分,本次抽取的所有学生竞赛成绩的中位数是________分;(3)若该校共有1500名学生参赛,请估计该校参赛学生成绩不低于80分的学生人数.【答案】(1)50,72︒(2)76,77.5(3)720【分析】(1)根据第Ⅲ组人数及第Ⅲ组所占的百分数可得到抽样总人数,第Ⅱ组的所占百分数为20%即可解答;(2)根据第Ⅲ组的成绩及中位数和众数的定义即可解答;(3)根据样本成绩不低于80分的学生人数即可解答.【详解】(1)解:∵第Ⅲ组7080x ≤<为12人,第Ⅲ组所占的百分数为24%,∴本次抽取的学生人数为1224%50÷=(人),∵第Ⅰ组所占百分数为8%,第Ⅲ组所占百分数24%,第Ⅳ组所占百分数40%,第Ⅴ组所占百分数8%;∴第Ⅱ组的所占百分数为100%8%24%40%8%20%----=,∴第Ⅱ组所在扇形的圆心角度数为36020%72︒⨯=︒,故答案为:50,72︒;(2)解:∵第Ⅲ组的成绩为747173747976777676737275,,,,,,,,,,,,∴第Ⅲ组竞赛成绩的众数是76分,∵第Ⅰ组人数为508%4⨯=(人),第Ⅲ组人数为5024%12⨯=(人),第Ⅴ组的人数为19.2024年4月18日上午10时08分,华为70Pura 系列正式开售,华为70Pura Ultra 和70Pura Pro 已在华为商城销售,约一分钟即告售罄.“4G 改变生活,5G 改变社会”,不一样的5G 手机给人们带来了全新的体验,某营业厅现有A 、B 两种型号的5G 手机出售,售出1部A 型、1部B 型手机共获利600元,售出3部A 型、2部B 型手机共获利1400元.(1)求A 、B 两种型号的手机每部利润各是多少元;(2)某营业厅再次购进A 、B 两种型号手机共20部,其中B 型手机的数量不超过A 型手机数量的23,请设计一个购买方案,使营业厅销售完这20部手机能获得最大利润,并求出最大利润.【答案】(1)A 种型号手机每部利润是200元,B 种型号手机每部利润是400元.(2)营业厅购进A 种型号手机12部,B 种型号手机8部时获得最大利润,最大利润是5600元.【分析】本题考查的是二元一次方程组的解法,一次函数的应用,一元一次不等式的应用:(1)设A 种型号手机每部利润是x 元,B 种型号手机每部利润是y 元,由售出1部A 型、1部B 型手机共获利600元,售出3部A 型、2部B 型手机共获利1400元,再建立方程组即可;(2)设购进A 种型号的手机a 部,则购进B 种型号的手机()20a -部,获得的利润为w 元,2008000w a =-+,再利用一次函数的性质可得答案.【详解】(1)解:设A 种型号手机每部利润是x 元,B 种型号手机每部利润是y 元,20.如图,在ABCD Y 中,O 为线段AD 的中点,延长BO 交CD 的延长线于点E ,连接AE BD 、,=90BDC ∠︒.(1)求证:四边形ABDE 是矩形;(2)连接OC ,若2AB =,BD =,求OC 的长.∵四边形ABDE是矩形,∴2==,ODDE AB=,∴OD OE∵OF DE⊥,21.定义:如图1,在平面直角坐标系中,点P 是平面内任意一点(坐标轴上的点除外),过点P 分别作x 轴、y 轴的垂线,若由点P 、原点O 、两个垂足AB 、为顶点的矩形OAPB 的周长与面积的数值相等时,则称点P 是平面直角坐标系中的“美好点”.【尝试初探】(1)点()23C ,______ “美好点”(填“是”或“不是”);【深入探究】(2)①若“美好点”()6(0)E m m >,在双曲线k y x =(0k ≠,且k 为常数)上,则k =______;②在①的条件下,()2F n ,在双曲线k y x=上,求EOF S △的值;【拓展延伸】(3)我们可以从函数的角度研究“美好点”,已知点()P x y ,是第一象限内的“美好点”.①求y 关于x 的函数表达式;②对于图象上任意一点()x y ,,代数式()()22x y -⋅-是否为定值?如果是,请求出这个定值,如果不是,请说明理由.∴11155956222EOF FOG EOG S S S =-=⨯⨯-⨯⨯= ;(3)①∵点()P x y ,是第一象限内的“美好点”,22.如图,(1)如图①,等腰ACB △,90ACB∠=︒,D 为AB 的中点,90MDN ∠=︒,将MDN ∠绕点D 旋转,旋转过程中,MDN ∠的两边分别与线段AC 、线段BC 交于点E 、F (点F 与点B 、C 不重合),写出线段、、CF CE BC 之间的数量关系,并证明你的结论;(2)如图②,等腰ACB △,120ACB ∠=︒,D 为AB 的中点,60MDN ∠=︒,将MDN ∠绕点D 旋转,旋转过程中,MDN ∠的两边分别与线段AC 、线段BC 交于点E 、F (点F 与点B 、C 不重合),直接写出线段、、CF CE BC 之间的数量关系为 ;(3)如图③,在四边形ABCD 中,AC 平分BCD ∠,120BCD ∠=︒,60DAB ∠=︒,过点A 作AE AC ⊥,交CB 的延长线于点E ,若6CB =,2DC =,则BE 的长为 .【答案】(1)CF CE BC +=,理由见解析∵等腰ACB △中,ACB ∠∴CD AB ⊥,即CDB ∠∵在Rt CDB △中,点G ∵AE AC ⊥,。
人教版九年级数学下册专题讲解:专训2 巧作平行线构造相似三角形
专训2 巧作平行线构造相似三角形 名师点金:解题时,往往会遇到要证的问题与相似三角形联系不上或者说图中根本不存在相似三角形的情况,添加辅助线构造相似三角形是这类几何证明题的一种重要方法.常作的辅助线有以下几种:(1)由比例式作平行线;(2)有中点时,作中位线;(3)根据比例式,构造相似三角形.巧连线段的中点构造相似三角形1.如图,在△ABC 中,E ,F 是边BC 上的两个三等分点,D 是AC 的中点,BD 分别交AE ,AF 于点P ,Q ,求BP PQ QD.(第1题)过顶点作平行线构造相似三角形2.如图,在△ABC 中,AC =BC ,F 为底边AB 上一点,BFAF =32,取CF 的中点D ,连接AD 并延长交BC 于点E ,求BE EC 的值.(第2题)过一边上的点作平行线构造相似三角形3.如图,在△ABC 中,AB >AC ,在边AB 上取一点D ,在AC 上取一点E ,使AD =AE ,直线DE 和BC 的延长线交于点P.求证:BP CP =BD EC.(第3题)过一点作平行线构造相似三角形4.如图,在△ABC 中,点M 为AC 边的中点,点E 为AB 上一点,且AE =14AB ,连接EM 并延长交BC 的延长线于点D.求证:BC =2CD.(第4题)答案1.解:如图,连接DF ,∵E,F 是边BC 上的两个三等分点,∴BE=EF =FC.∵D 是AC 的中点,∴AD=CD.∴DF 是△ACE 的中位线.∴DF∥AE,且DF =12AE.∴DF∥PE. ∴△BEP∽△BFD.∴BE BF =PE DF =BP BD. ∵BF=2BE ,∴DF=2PE ,BD =2BP.∴BP=PD.∵DF∥AE,∴△APQ∽△FDQ.∴PQ QD =AP DF. 设PE =a ,则DF =2a ,AP =3a.∴PQ QD =AP DF =32. ∴BP PQ QD =53 2.(第1题) (第2题)2.解:如图,过点C 作C G∥AB 交AE 的延长线于点G.∴△GCD∽△AFD.∴CG FA =CD FD. 又∵D 为CF 的中点,∴CD =FD.∴AF=CG.∵BF AF =32,∴AB AF =5 2.∵AB∥CG,∴△ABE∽△GCE.∴BE EC =AB CG =AB AF =52. 3.证明:如图,过点C 作CF∥AB 交DP 于点F ,∴△PCF∽△PBD.∴BP CP =BD CF. ∵AD∥CF,∴∠ADE=∠EFC.(第3题)∵AD=AE ,∴∠ADE=∠AED.∵∠AED =∠CEP,∴∠EFC=∠CE P.∴EC=CF.∴BP CP =BD EC.4.证明:(方法一)如图①,过点C 作CF∥AB,交DE 于点F ,(第4题①) ∴△CDF∽△BDE.∴CF BE =CD BD . ∵点M 为AC 边的中点, ∴AM=CM. 易证△AME≌△CMF.∴AE=C F.∵AE=14AB ,∴BE=3AE. ∴AE BE =13.∵CF BE =CD BD , ∴AE BE =CD BD =13,即BD =3CD.∴BC =2CD.(第4题②)(方法二)如图②,过点C 作CF∥DE,交AB 于点F ,∴AE AF =AM AC. 又∵点M 为AC 边的中点,∴AC=2AM.∴2AE=AF.∴AE=EF.又∵AE AB =14,∴BF EF=2. 又∵CF∥DE,∴BF FE =BC CD=2. ∴BC=2CD.(第4题③)(方法三)如图③,过点E 作EF∥BC,交AC 于点F ,∴△AEF∽△ABC.∴EF BC =AE AB =AF AC.由AE =14AB ,知EF BC =AF AC =AE AB =14, ∴EF=14BC ,AF =14AC. 由E F∥CD,得△EFM∽△DCM,∴EF CD =MF MC .又∵AM=MC ,∴MF=12MC. ∴EF=12CD.∴BC=2CD.(第4题④)(方法四)如图④,过点A 作AF∥BD,交DE 的延长线于点F ,∴△AEF∽△BED.∴AE BE =AF BD. ∵AE=14AB , ∴AE=13BE.∴AF=13BD. 由AF∥CD,AM =MC ,易证得△AFM≌△CDM.∴AF=CD.∴CD=13BD.∴BC=2CD. 点拨:由已知线段的比,求证另外两线段的比,通常添加平行线,构造相似三角形来求解.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=32cm,则∠BAC的度数为()A.15°B.75°或15°C.105°或15°D.75°或105°【答案】C【解析】解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=32,∠CAD=45°,则∠BAC=105°;如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=32,∠CAD=45°,则∠BAC=15°.故选C.点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.2.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D.91110813 x yy x x y=⎧⎨+-+=⎩()()【答案】D【解析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x 两,每枚白银重y 两,由题意得:91110813x y y x x y =⎧⎨+-+=⎩()(), 故选:D .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系. 3.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA=5,OC=1.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为( )A .(﹣91255,)B .(﹣12955,)C .(﹣161255,)D .(﹣121655,) 【答案】A 【解析】直接利用相似三角形的判定与性质得出△ONC 1三边关系,再利用勾股定理得出答案.【详解】过点C 1作C 1N ⊥x 轴于点N ,过点A 1作A 1M ⊥x 轴于点M ,由题意可得:∠C 1NO=∠A 1MO=90°,∠1=∠2=∠1,则△A 1OM ∽△OC 1N ,∵OA=5,OC=1,∴OA 1=5,A 1M=1,∴OM=4,∴设NO=1x ,则NC 1=4x ,OC 1=1,则(1x )2+(4x )2=9,解得:x=±35(负数舍去),则NO=95,NC 1=125, 故点C 的对应点C 1的坐标为:(-95,125). 故选A .【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A 1OM ∽△OC 1N 是解题关键.4.如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A .(3,2)B .(3,1)C .(2,2)D .(4,2)【答案】A 【解析】∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13, ∴AD BG =13, ∵BG=6,∴AD=BC=2, ∵AD ∥BG ,∴△OAD ∽△OBG , ∴OA OB =13, ∴2OA OA +=13, 解得:OA=1,∴OB=3,∴C 点坐标为:(3,2),故选A .5.下列各式计算正确的是( )A 633=B .1236=C .3535+=D 1025=【答案】B【解析】A 63、B 123=36=6,∴本选项正确;C 选项中,∵35=353+5D选项中,∵10102=52÷≠,∴本选项错误;故选B.6.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=()A.3﹣5B.12(5+1)C.5﹣1 D.12(5﹣1)【答案】C【解析】根据黄金分割点的定义,知BC为较长线段;则BC=512-AB,代入数据即可得出BC的值.【详解】解:由于C为线段AB=2的黄金分割点,且AC<BC,BC为较长线段;则BC=2×512-=5-1.故答案为:5-1.【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的352倍,较长的线段=原线段的512-倍.7.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC相似的是A.B.C.D.【答案】B【解析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解. 【详解】已知给出的三角形的各边AB、CB、AC2、210、只有选项B的各边为125B.【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.8.在△ABC中,AB=AC=13,BC=24,则tanB等于()A.513B.512C.1213D.125【答案】B【解析】如图,等腰△ABC 中,AB=AC=13,BC=24,过A 作AD ⊥BC 于D ,则BD=12,在Rt △ABD 中,AB=13,BD=12,则, 225AB BD -=,故tanB=512AD BD =. 故选B . 【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.9.学完分式运算后,老师出了一道题“计算:23224x x x x +-++-”. 小明的做法:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的【答案】C 【解析】试题解析:23224x x x x +-++- =()()32222x x x x x +--++- =3122x x x +-++ =3-12x x ++ =22x x ++ =1.所以正确的应是小芳.故选C .10.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,12C .1,13D .1,23【答案】D【解析】根据三角形三边关系可知,不能构成三角形,依此即可作出判定; B 、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定; C 、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定; D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定. 【详解】∵1+2=3,不能构成三角形,故选项错误; B 、∵12+12=(2)2,是等腰直角三角形,故选项错误; C 、底边上的高是2231-2()=12,可知是顶角120°,底角30°的等腰三角形,故选项错误; D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确. 故选D .二、填空题(本题包括8个小题)11.在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm ,则根据题意可得方程 .【答案】()240024008.120%x x -=+. 【解析】试题解析:∵原计划用的时间为:2400x, 实际用的时间为:()2400120%x +, ∴可列方程为:()240024008.120%x x -=+ 故答案为()240024008.120%x x-=+ 12.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan ∠APD 的值为______.【答案】1【解析】首先连接BE ,由题意易得BF=CF ,△ACP ∽△BDP ,然后由相似三角形的对应边成比例,易得DP :CP=1:3,即可得PF :CF=PF :BF=1:1,在Rt △PBF 中,即可求得tan ∠BPF 的值,继而求得答案.【详解】如图:,连接BE,∵四边形BCED是正方形,∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:1,∴DP=PF=CF=BF,在Rt△PBF中,tan∠BPF==1,∵∠APD=∠BPF,∴tan∠APD=1.故答案为:1【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.13.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为____.【答案】2 5【解析】解:根据题意可得:列表如下红1 红2 黄1 黄2 黄3红1 红1,红2 红1,黄1 红1,黄2 红1,黄3 红2 红2,红1 红2,黄1 红2,黄2 红2,黄3 黄1 黄1,红1 黄1,红2 黄1,黄2 黄1,黄3黄2 黄2,红1 黄2,红2 黄2,黄1黄2,黄3 黄3黄3,红1黄3,红2黄3,黄1黄3,黄2共有20种所有等可能的结果,其中两个颜色相同的有8种情况, 故摸出两个颜色相同的小球的概率为82205=. 【点睛】本题考查列表法和树状图法,掌握步骤正确列表是解题关键.14.如图,某小型水库栏水坝的横断面是四边形ABCD ,DC ∥AB ,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC 宽为2m ,坝高为6m ,则坝底AB 的长为_____m .【答案】(7+63)【解析】过点C 作CE ⊥AB ,DF ⊥AB ,垂足分别为:E ,F ,得到两个直角三角形和一个矩形,在Rt △AEF 中利用DF 的长,求得线段AF 的长;在Rt △BCE 中利用CE 的长求得线段BE 的长,然后与AF 、EF 相加即可求得AB 的长.【详解】解:如图所示:过点C 作CE ⊥AB ,DF ⊥AB ,垂足分别为:E ,F ,∵坝顶部宽为2m ,坝高为6m , ∴DC=EF=2m ,EC=DF=6m , ∵α=30°, ∴BE=63tan30EC=︒(m ),∵背水坡的坡比为1.2:1, ∴1.2 1.21DF AF AF ==, 解得:AF=5(m ),则3(3m , 故答案为(3m . 【点睛】本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.15.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____. 【答案】20【解析】利用频率估计概率,设原来红球个数为x 个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x 的方程,解方程即可得. 【详解】设原来红球个数为x 个, 则有1010x +=1030, 解得,x=20,经检验x=20是原方程的根. 故答案为20. 【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.16.如图,矩形ABCD ,AB=2,BC=1,将矩形ABCD 绕点A 顺时针旋转90°得矩形AEFG ,连接CG 、EG ,则∠CGE=________.【答案】45° 【解析】试题解析:如图,连接CE , ∵AB=2,BC=1, ∴DE=EF=1,CD=GF=2, 在△CDE 和△GFE 中,CD GF CDE GFE DE EF =⎧⎪∠=∠⎨⎪=⎩∴△CDE ≌△GFE(SAS),∴CE=GE ,∠CED=∠GEF , 90AEG GEF ∠+∠=, 90CEG AEG CED ∴∠=∠+∠=,45.CGE ∴∠=故答案为45.17.一元二次方程x 2+mx+3=0的一个根为- 1,则另一个根为 . 【答案】-1.【解析】因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解. 【详解】∵一元二次方程x 2+mx+1=0的一个根为-1,设另一根为x 1, 由根与系数关系:-1•x 1=1, 解得x 1=-1. 故答案为-1.18.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.【答案】(-2,-2)【解析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标. 【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2). 【点睛】考查了坐标确定位置,关键是正确确定原点位置. 三、解答题(本题包括8个小题) 19.先化简,再求值:22211·1441x x x x x x -++--+-,其中x 是从-1、0、1、2中选取一个合适的数. 【答案】12-.【解析】先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=12x -,由于x 不能取±1,2,所以把x=0代入计算即可. 【详解】22211·1441x x x x x x -++--+-, =()()2211•11(2)1x x x x x x -+++--- =12(1)(2)(1)(2)x x x x x -+----=()()112x x x ---=12x -, 当x=0时,原式=11022=--. 20.如图,某校教学楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22º时,教学楼在建筑物的墙上留下高2m 的影子CE ;而当光线与地面的夹角是45º时,教学楼顶A 在地面上的影子F 与墙角C 有13m 的距离(B 、F 、C 在一条直线上).求教学楼AB 的高度;学校要在A 、E 之间挂一些彩旗,请你求出A 、E 之间的距离(结果保留整数). 【答案】(1)2m (2)27m【解析】(1)首先构造直角三角形△AEM ,利用0AMtan22ME=,求出即可. (2)利用Rt △AME 中,0MEcos22AE=,求出AE 即可. 【详解】解:(1)过点E 作EM ⊥AB ,垂足为M .设AB 为x .在Rt △ABF 中,∠AFB=45°, ∴BF=AB=x , ∴BC=BF +FC=x +1.在Rt △AEM 中,∠AEM=22°,AM=AB -BM=AB -CE=x -2, 又∵0AM tan22ME =,∴x 22x 135-≈+,解得:x≈2. ∴教学楼的高2m .(2)由(1)可得ME=BC=x+1≈2+1=3. 在Rt △AME 中,0MEcos22AE=, ∴AE=MEcos22°≈15252716⨯≈. ∴A 、E 之间的距离约为27m . 21.如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.【答案】(1),;(2)点的坐标为;(3)点的坐标为和【解析】(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F 的对称点,代入直线BE ,即可;(3)构造新的二次函数,利用其性质求极值. 【详解】解:(1)轴,,抛物线对称轴为直线点的坐标为解得或(舍去), (2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.直线经过点利用待定系数法可得直线的表达式为.因为点在上,即点的坐标为(3)存在点满足题意.设点坐标为,则作垂足为①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为综上所述:满足题意得点的坐标为和考点:二次函数的综合运用.22.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。
相似三角形中几种常见的辅助线作法(有辅助线)
相似三角形中几种常见的辅助线作法在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。
主要的辅助线有以下几种:一、添加平行线构造“A”“X”型例1:如图,D是△ABC的BC边上的点,BD:DC=2:1,E是AD的中点,求:BE:EF的值.解法一:过点D作CA的平行线交BF于点P,则∴PE=EF BP=2PF=4EF 所以BE=5EF ∴BE:EF=5:1.解法二:过点D作BF的平行线交AC于点Q,∴BE:EF=5:1.解法三:过点E作BC的平行线交AC于点S,解法四:过点E作AC的平行线交BC于点T,∵BD=2DC ∴∴BE:EF=5:1.变式:如图,D是△ABC的BC边上的点,BD:DC=2:1,E是AD的中点,连结BE并延长交AC于F,求AF:CF的值.解法一:过点D作CA的平行线交BF于点P,解法二:过点D作BF的平行线交AC于点Q,解法三:过点E作BC的平行线交AC于点S,解法四:过点E作AC的平行线交BC于点T,,1==AEDEFEPE,2==DCBDPFBP,则2==EADAEFDQ,3==DCBCDQBF,EFEFEFEFDQEFBFBE563=-=-=-=,则DCCTDT21==;TCBTEFBE=,DCBT25=例2:如图,在△ABC 的AB 边和AC 边上各取一点D 和E ,且使AD =AE ,DE 延长线与BC 延长线相交于F ,求证:(证明:过点C 作CG//FD 交AB 于G )例3:如图,△ABC 中,AB<AC ,在AB 、AC 上分别截取BD=CE ,DE ,BC 的延长线相交于点F ,证明:AB ·DF=AC ·EF.分析:证明等积式问题常常化为比例式,再通过相似三角形对应边成比例来证明。
不相似,因而要通过两组三角形相似,运用中间比代换得到,为构造相似三角形,需添加平行线。
合理添加平行线构造相似三角形.完美版PPT
H(1)试找出图中的相似三角形? 结论:1、⊿ACF∽ ⊿ABC∽ ⊿CBF
⊿BCF∽ ⊿BAC. ∴tan∠CAD=∠ABC=
⊿ADE∽ 合理添加平行线构造相似三角形
BD=CD
⊿ABC
∽
⊿DBH
(2)若AE:AC=1:2,则DE:BC=_______;
(2)若AE:AC=1:2,则DE:BC=1:___2____;
BF=4
结论:1、⊿ACF∽ ⊿ABC∽ ⊿CBF
2、CD²=AD×BD BC²=BD×AB AC²=AD×AB
用一用
(1)请在x轴上找一点D,使得⊿BDA与⊿BAC相似 (不包含全等),并求出点D的坐标;
(2)在(1)的条件下,如果P、Q分别是BA、BD上 的动点,连结PQ,设BP=DQ=m,
问:是否存在这样的m,使得⊿BPQ与⊿BDA相似? 如存在,请求出m的值;若不存在,请说明理由。
(1)∵⊿BDA∽⊿BAC
yA
∴∠CAD=∠ABC ∴tan∠CAD=∠ABC= ∵BC=4
3 4
B(-3,0) O
D
∴AC=BC·tan ∠ABC=3 ∴CD=AC·tan ∠CAD=3×
3=
4
9 4
C(1,0) x ∴OD=OC+CD=1+ 9 = 1 3
合理添加平行线构造相似三角 形
问题
给你一个△ABC和平行于BC边的一条直 线MN;
你能用直线MN去截AB与AC边,使截得 的 三角形与原三角形相似吗?
基本图形1
A型
E M
(及两边的延长线)
平行于三角形一边的直线和其他两 边相交,所构成的三角形与原三角 形相似。
A D
N
B M
第7讲 相似三角形综合(解析版)
第7讲 相似三角形综合【学习目标】相似三角形是初中数学中的重点,也是难点.相当多的知识点可以与相似三角形综合起来考察.本讲将从以下几个方面学习相似三角形的应用,旨在灵活运用相似三角形的判定和性质解决问题.【基础知识】1、平行线与相似三角形利用平行线构造的相似主要有两个基本的模型,即:“A ”字型和“X ”字型.2、角平分线与相似三角形角平分线类的相似模型如下:分为“内角平分线”和“外角平分线”两种类型,虚线部分为辅助线的作法. 3、a 2 = b·c 与相似三角形 常见及扩展模型如下:由图1可证:2AB BD BC =;由图2可证:2AB BD BC =,2AD BD DC =,2AC CD CB =.4、内接矩形与相似三角形 相关模型:常用结论:.5、一线三等角与相似三角形相关模型如下图所示:【考点剖析】考点一:平行线与相似三角形例1.过ABC ∆的顶点C 任作一直线,与边AB 及中线AD 分别交于点F 、E .求证:2AE AFED FB= .【难度】★★【解析】过点D 作//DG AB 交CF 于点G .//DG AB ,;AD 是中线, 2BC CD =, ;2AE AFED BF=. 【总结】题考查三角形一边的平行线知识,要学会构造平行基本模型. 例2. 如图,已知ABC ∆中,AD 、BE 相交于G ,:3:1BD DC =,:1:2AG GD =.求:BG GE 的值.【难度】★★ 【答案】11.【解析】点G 作//GM BC 交AC 于点M .//GM BC ,;:1:2AG GD =, ,:3:1BD DC =,,,,:BG GE 的值为11.【总结】本题考查了三角形一边的平行线知识,要学会构造平行基本模型.例3.如图,在ABC ∆中,点D 在线段BC 上,75BAD ∠=︒,30CAD ∠=︒,AD = 2,BD = 2DC,求AC的长.【难度】★★【答案】3.【解析】过点D作//DM AB交AC于点M.DM AB,;//又,30∠=CADAMD∠=,AM D ADM75∠=∠,==.2AD AMDM AB,.//又2=,.BD DCAC=.3【总结】本题考查了三角形一边的平行线及等腰三角形的相关知识.考点二:角平分线与相似三角形例1.如图,AD是ABC∆的内角平分线.求证:.【难度】★★【解析】过点C作//CM AB交AD的延长线于点M.CM AB//,BAD M∠=∠AD是角平分线∠=∠;BAD DAC∠=∠M DAC=AC CM.【总结】本题考查了三角形一边的平行线、角平分线及等腰三角形的相关知识.例2.如图,在ABC∠的平分线AD∠=∠过点C作CE // AB,交CAB∆中,90CAB∠=︒,CFG B于E.(1)不添加字母,找出图中所有的相似三角形,并证明;(2)求证:.【难度】★★【解析】 (1)①ADB EDC ∆∆∽、②CAB GCF ∆∆∽.证明①: //CE AB ADB EDC ∆∆∽证明②://CE AB 180CAB ACE ∴∠+∠=,90CAB ∠=,90ACE ∴∠=;CAB ACE ∴∠=∠ CAB GCF ∆∆∽ (2)由CAB GCF ∆∆∽得ADB EDC ∆∆∽ AB ADEC DE=//CE AB ,CAE EAB ∠=∠, ;CAE E ∴∠=∠, CA CE ∴=AB ADAC DE=. 【总结】本题考查相似三角形的判定和性质等知识. 考点三:a 2 = b·c 与相似三角形例1.如图,Rt ABC ∆中,,AD BC ⊥于点D .求证:2AD BD DC =.【难度】★【解析】AD BC ⊥, . 90BAD B ∠+∠=. 90BAC ∠= ,90C B ∠+∠=, BAD C ∠=∠.ABD CAD ∆∆∽ ,.2AD BD CD =•.【总结】本题考查相似三角形的性质及判定等知识.例2.如图,已知等腰三角形ABC 中,AB = AC ,高AD ,BE 相交于点H .求证:24DH DA BC =.【难度】★★【解析】AD 、BE 是高, . 90HBD C ∠+∠=, 90CAH C ∠+∠=., HBD CAD ∆∆∽.即DH AD BD CD =, 12BD DC BC ==.BAD C ∠=∠.214DH AD BC =, 24DH AD BC =. 【总结】本题考查“双高”模型相似的知识.例3.如图,在直角梯形ABCD 中,AB // CD ,AB ⊥BC ,对角线AC ⊥BD ,垂足为E , AD = BD ,过E 的直线EF // AB 交AD 于点F . (1)AF = BE ; (2)AF 2 = AE ·EC .【难度】★★【解析】(1)//EF AB ,AF 不平行EB ,四边形FABE 是梯形.又AD BD =, DAB DBA ∠=∠. 四边形FABE 是等腰梯形, AF BE =; (2),, .EBA ECB ∠=∠. EBA ECB ∆∆∽. .2EB EA EC =•,2AF EA EC =•.【总结】本题考查等腰梯形及相似三角形的判定及性质. 考点四:内接矩形与相似三角形例1.如图,ABC ∆中,3AC =,4BC =,90C ∠=︒,四边形DEFG 为正方形,其中D 、E 在边AC 、BC 上,F 、G 在AB 上,求正方形DEFG 的边长.【难度】★★ 【答案】.【解析】设正方形DEFG 的边长为a ,过点C 作CH AB ⊥交AB 于点H ,易知:////DG CH DE AB , ,在Rt ABC ∆中,34AC CB ==,, 5AB ∴=,125CH =.11255a a ∴+=, 6037a ∴=, 正方形DEFG 的边长为. 【总结】本题考查三角形内接正方形的模型,熟练掌握此题涉及的知识点. 考点五:一线三等角与相似三角形例1.已知,在等腰ABC ∆中,AB = AC = 10,以BC 的中点D 为顶点作EDF B ∠=∠, 分别交AB 、AC 于点E 、F ,AE = 6,AF = 4,求底边BC 的长.【难度】★★ 【答案】46. 【解析】, 而, .又EDF B ∠=∠,.AB AC =,B C ∠=∠. . ., 24DC BD ∴=.又12CD DB BC ==, 46BC ∴=.【总结】本题是对“一线三等角”模型的考查. 考点六:旋转与相似三角形例1.如图,直角梯形ABCD 中,,AD // BC ,BC = CD ,E 为梯形内一点,且,将BEC ∆绕点C旋转90°使BC 与DC 重合,得到DCF ∆,联结EF 交CD 于M .已知BC = 5,CF = 3,则DM : MC 的值为( )A .53B .35C .43D .34【难度】★★ 【答案】C . 【解析】旋转后,.5CB CD ∴==, 3CE CF ==,BE DF =, .在Rt CBE ∆中,222BE CE BC +=, 4BE ∴=.4DF ∴=.90ECF ∠=,. 又//CE DF ∴.【总结】本题考查旋转的相关知识,平行的判定、三角形一边的平行线的知识. 考点七:函数与相似三角形例1.如图,已知ABC ∆与ADE ∆都是等边三角形,点D 在BC 边上(点D 不与B 、C重合),DE 与AC 相交于点F . (1)求证:ABD ∆∽DCF ∆;(2)若BC = 1,设BD = x ,CF = y ,求y 关于x 的函数解析式及定义域;(3)当x 为何值时,79AEF ABD S S ∆∆=?【难度】★★【解析】(1)ABC ∆、ADE ∆是等边三角形60,60B C E EDA ∴∠=∠=∠=∠=,CDF DAB ∴∠=∠ ;(2)由(1)得ABD DCF ∆∆∽, 11x x y∴=-()201y x x x ∴=-+<<;(2)易证ABD AEF ∆∆∽,ADE ∆是等边三角形 AD AE ∴=1AB = 79AF ∴= 72199y CF ∴==-=, 229x x ∴-+=解得1221,33x x == 当2133x x ==或时,79AEF ABD S S ∆∆=.【总结】本题考查旋转的相关知识,“一线三等角”模型,相似的性质等的相关知识.【过关检测】一、单选题1.(2019·上海)如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O )20米的点A 处,沿OA所在的直线行走14米到点B时,人影的长度( )A.增大1.5米B.减小1.5米C.增大3.5米D.减小3.5米【答案】D试题分析:设小明在A处时影长为x,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=5;,∴y=1.5,∴x﹣y=3.5,故变短了3.5米.故选D.2.(2019·上海)如图,梯形ABCD中,AB∥CD,∠A=90°,E在AD上,且CE平分∠BCD,BE•平分∠ABC,则下列关系式中成立的有( )①;②;③;④CE2=CD×BC;⑤BE2=AE×BCA.2个B.3个C.4个D.5个【答案】B【分析】根据角平分线的性质,推出角相等,再得出边相等,判断出①②正确,再利用三角形不相似,排除其它选项,最后得解.【详解】解:如图,∵BE平分∠ABC,CE平分∠BCD∴∠ABE=∠CBE,∠ABE=∠CBE.∵CD∥BA,∴∠ABC+∠BCD=180°.∴∠BEC=∠D=∠A=90°.则有△CED∽△BEA∽△CBE,∴①正确,③正确;无法证明CD=DE,故②不正确;故④CE 2=CD×BC正确;故BE2=AE×BC不正确.因此只有①②④正确.故选B.【点睛】本题利用了平行线的性质,角的平分线的性质,等边对等角,相似三角形的判定和性质求解.二、填空题3.(2019·上海民办桃李园实验学校)在ABC中,6BC=,G是ABC的重心,过G作边BC的平行线交AC于点H,则GH的长为_________.【答案】2【详解】连接AG,并延长AG交BC于D;根据重心的性质知:D是BC中点,且AG:AD=2:3;可根据平行线分线段成比例定理得出的线段比例关系式及CD的长求出GH的值.解:如图,连接AG,并延长AG交BC于D;∵G是△ABC的重心,∴AG:GD=2:3,且D是BC的中点;∵GH∥BC,∴;∵CD=12BC=3,∴GH=2.“点睛”此题考查了平行线分线段成比例定理以及重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.4.(2019·上海)如图,M是▭ABCD的AB的中点,CM交BD于E,则图中阴影部分的面积与▱ABCD 的面积之比为_____.【答案】1:3试题解析:设平行四边形的面积为1,∵四边形ABCD是平行四边形,∴12DAB ABCDS S=,又∵M是ABCD的AB的中点,则1124DAM DAB ABCDS S S==,∴EMB △上的高线与DAB 上的高线比为 ∴1113212EMBDABS S =⨯=, ∴143DECMEBSS,== S 阴影面积则阴影部分的面积与▱ABCD 的面积比为13. 故填空答案:13. 5.(2019·上海市民办新北郊初级中学九年级期中)如图,在ABC 中,点D 、E 分别在AB 、AC 上,且DE BC ∥,若4ADE S =△,3BDES =,那么:DE BC =______.【答案】4:7【分析】根据,得到 ,通过△ADE ∽△ABC ,根据相似三角形的性质得到DE :BC=AD :AB=4:7. 【详解】解:∵S △ADE =4,S △BDE =3 ∴ ∴∵DE ∥BC , ∴△ADE ∽△ABC , ∴DE :BC=AD :AB=4:7. 故答案为4:7.【点睛】本题考查了相似三角形的判定和性质,知道不等底同高的三角形的面积比等于底的比是解题的关键.6.(2021·上海九年级专题练习)在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.如图,请在边长为1个单位的2×3的方格纸中,找出一个格点三角形DEF .如果△DEF 与△ABC 相似(相似比不为1),那么△DEF 的面积为______.【答案】1;【分析】根据小正方形的边长,分别求出ABC 和DEF 三边的长,然后判断它们是否对应成比例,再用三角形面积公式求解即可.【详解】如图,∵1AB BC ==,,AC =∴∵DE =2EF =,DF =∴∴∴~ABC DEF ∴12112DEF S =⨯⨯= 故答案为:1【点睛】本题考查了在网格中画与已知三角形相似的三角形、三角形全等的判定以及三角形面积公式,熟练掌握三角形全等的判定是解题的关键.7.(2019·上海九年级期中)如图,在△ABC 中,AC =2,BC =4,D 为BC 边上的一点,且∠CAD =∠B . 若△ADC 的面积为a ,则△ABD 的面积为____________【答案】3a【分析】通过证明△ACD ∽△BCA ,由相似三角形的性质求出△BCA 的面积为4a ,计算即可.【详解】解:∵∠CAD=∠B ,∠ACD=∠BCA ,∴△ACD ∽△BCA ,∴ , ∴14BCA a S =△, 解得,△BCA 的面积为4a ,∴△ABD 的面积为:4a-a=3a ,故答案为:3a .【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.三、解答题8.(2019·上海市民办嘉一联合中学九年级月考)如图,61620AB BD,CD BD,AB ,CD ,BD ⊥⊥===,动点P 从B 向D 运动,当PAB ∆与PCD ∆相似时,试求BP 的长度.【答案】或8或12【分析】设BP =x ,由BD -BP 表示出PD ,分两种情况考虑:当△P AB ∽△PCD 时;当△P AB ∽△CPD 时,分别由相似得比例,将各自的值代入列出关于x 的方程,求出方程的解得到x 的值,即为PB 的长.【详解】解:设BP =x ,BD =20,则PD =BD -BP =20-x ,分两种情况考虑:假设△P AB ∽△PCD ,有,又AB =6,CD =16,∴,即6(20-x )=16x , 解得:6011x =; 假设△P AB ∽△CPD ,有,∴,即x (20-x )=96,整理得:(x -12)(x -8)=0,解得:x 1=12,x 2=8,综上,当P 离B 的距离为或8或12时,△P AB 与△PCD 是相似三角形.【点睛】此题考查了相似三角形的判定,利用了分类讨论的思想,相似三角形的判定方法为:两对对应角相等的两三角形相似;三边对应成比例的两三角形相似;两边对应成比例且夹角相等的两三角形相似. 9.(2017·上海九年级月考)已知:如图,直线y=kx+2与x 轴的正半轴相交于点A (t,0)、与y 轴相交于点B ,点C 在第三象限内,且AC ⊥AB ,AC=2AB .(1)当t=1时,求直线BC 的表达式;(2)点C 落在直线:y=-3x-10上,求直线CA 的表达式.【答案】(1)423y x =+ (2)y=x-2 【解析】(1)先证ΔAOB ∽ΔACH 求出C 点的坐标,设BC 为y=k 1x +b 将B 、C 代入即可求出直线BC 的表达式;(2)由(1)可知ΔAOB ∽ΔACH ,求出A 、C 的坐标代入AC 为,即可求出直线CA 的表达式. 解:(1)过H 作CH ⊥x 轴,垂足为H ,由题意得,当t=1时,A(1,0),OA=1,B (0,2),OB=2AC ⊥AB ,∠BAC=90°,∠BAO+∠CAH=90°∠BAO+∠OBA=90°∠ABO=∠CAH在ΔAOB 与ΔACH 中,∠ABO=∠CAH∠AOB=∠CHA 与ΔAOB ∽ΔACHCH=2,AH=4,C(-3,-2)设BC 为y=k 1x +b,代入B (0,2),C(-3,-2)得,解得,(2)由(1)可知ΔΔAOB ∽ΔACHCH=2t,AH=4,C(t-4,-2t)又C 在直线:y=-3x-10上,t=2C (-2,-4),A (2,0)设AC 为,代入A (2,0),C(-2,-4),解得,10.(2020·上海九年级一模)如图,在ABC ∆中,点,,,D E F G 分别在,,AB AC BC 上,3AB AD =,2CE AE =,,DG 与EF 交于点H .(1)求证:;(2)连接,DF EG ,求证:.【分析】(1)根据已知条件先证明DG ∥AC ,EF ∥AB ,可得∠HGF=∠C ,∠HFG=∠B ,即可证明△HFG ∽△ABC ,从而可得结论;(2)连接DF,EG,DE,证明四边形DFGE和ADHE是平行四边形,即可证得结论.【详解】∵AB=3AD,BF=FG=CG,∴BD=2AD,BG=2CG,∴,∴DG∥AC,同理可得,EF∥AB,∴∠HFG=∠ABC,∠HGF=∠ACB,∴△HFG∽△ABC,∴,即;DF EG,DE,如图所示,(2)连接,∵EF∥AB,∴,∵GF=FB∴=1,∴GH=HD,同理可证,FH=EH,∴四边形DFGE是平行四边形,∴DF∥EG,∴∠FDG=∠EGD,∴∠FHG=∠EGH+∠HEG,∵∠DHE=∠FHG,∠+∠,∴∠DHE=∠EGH+∠HEG=FDG GEF由EF∥AB,DG∥AC,得四边形ADHE是平行四边形,∴∠A=∠DHE,∴【点睛】此题主要考查了平行线分线段成比例的判定与性质,以及平行四边形的判定与性质,熟练掌握相减的判定与性质是解决此题的关键.a b c=.11.(2021·上海九年级专题练习)已知:::2:3:5(1)求代数式的值;(2)如果324a b c -+=,求,,a b c 的值.【答案】(1)1;(2)6,9,15a b c ===【分析】(1)设a=2k ,b=3k ,c=5k ,代入代数式,即可求出答案;(2)把a 、b 、c 的值代入,求出即可.【详解】∵::2:3:5a b c =∴设a=2k ,b=3k ,c=5k ,(1);(2)∵324a b c -+=∴6k-3k+5k=24,∴k=3,∴a=2×3=6,b=3×3=9,c=5×3=15.【点睛】本题考查了比例的性质的应用,主要考查学生的计算能力.12.ABC ∆中,正方形EFGH 的两个顶点E 、F 在BC 上,另两个顶点G 、H 分别在 AC 、AB 上,BC = 15,BC 边上的高AD = 10,求正方形EFGH 的面积.【难度】★★【答案】36.【解析】设正方形EFGH 的边长为a ,易知:.,.,, 6a ∴=,正方形EFGH 的面积为36.【总结】本题考查三角形内接正方形的模型,熟练掌握此题涉及的知识点.13.如图,直角梯形ABCD 中,AB // CD ,,点E 在边BC 上,且, AD = 10,求AED ∆的面积.【难度】★★【答案】24.【解析】90ABC ∠=,//AB CD ,.又, .. . ,. 90AED ∠=.在Rt AED ∆中, 10AD =,. 24AED S ∆∴=.【总结】本题考查一线三等角模型的相似问题,还有外角知识、平行的判定等.14.把两块全等的直角三角板ABC 和DEF 叠放在一起,使三角板DEF 的锐角顶点D与三角板ABC 的斜边中点O 重合,其中,45C F ∠=∠=︒,AB =DE = 4,把三角板ABC 固定不动,让三角板DEF 绕点O 旋转,设射线DE 与射线AB 相交于点P ,射线DF 与线段BC 相交于点Q .(1)如图1,当射线DF 经过点B ,即点Q 与点B 重合时,易证APD ∆∽,则此时AP CQ =______;(2)将三角板DEF 由图1所示的位置绕点O 沿逆时间方向旋转,设旋转角为α.其 中090α︒<<︒,问AP CQ 的值是否改变?请说明理由.【难度】★★【答案】(1)8;(2)不改变.【解析】(2)易证APD CDQ ∆∆∽, 得:AP AD CD CQ = AP CQ CD AD ∴•=•.又4AC = CD AD ∴== 8AP CQ ∴•=.【总结】本题考查旋转的相关知识,等腰三角形,“一线三等角”得相似等的相关知识.15.如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (a ,0)(a < 0),联结BP ,过点P 作PC ⊥PB 交过点A 的直线l 于点C (2,b ).(1)求b 与a 之间的函数关系式;(2)当a 取得最大的整数时,求BC 与x 轴的交点Q 的坐标.【难度】★★【答案】(1)212b a a =-+;(2). 【解析】(1)即22a b a -=-- 212b a a =-+; (2)0a <a ∴取得最大的整数时1a =- 32b ∴=-//OB AC OB OQ AC QA∴=,即2322OQ OQ =- 87OQ ∴= . 【总结】本题考查相似的判定及性质等知识.。
2023年中考数学一轮复习之必考点题型全归纳与分层精练-相似三角形(解析版)
专题22相似三角形【专题目录】技巧1:巧用“基本图形”探索相似条件技巧2:巧作平行线构造相似三角形技巧3:证比例式或等积式的技巧【题型】一、相似图形的概念和性质【题型】二、平行线分线段成比例定理【题型】三、相似三角形的判定【题型】四、相似三角形的性质【题型】五、利用相似三角形解决实际问题【题型】六、位似图形的概念与性质【题型】七、平面直角坐标系与位似图形【考纲要求】1、了解比例线段的有关概念及其性质,并会用比例的性质解决简单的问题.2、了解相似多边形,相似三角形的概念,掌握其性质和判定并会运用.3、了解位似变换和位似图形的概念,掌握并运用其性质.【考点总结】一、相似图形及比例线段解直相似图形在数学上,我们把形状相同的图形称为相似图形.相似多边形若两个边数相同的多边形,它们的对应角相等、对应边成比例,则这两个多边形叫做相似多边形。
特征:对应角相等,对应边成比例。
比例线段的定义在四条线段a,b,c,d中,如果其中两条线段的比等于另外两条线段的比,即a cb d(或a∶b=c∶d),那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.【考点总结】二、相似三角形【技巧归纳】技巧1:巧用“基本图形”探索相似条件相似三角形的四类结构图:1.平行线型.2.相交线型.角三角形的应用比例线段的性质(1)基本性质:a b =c d ad =bc ;(2)合比性质:a b =c d a +b b =c +d d ;(3)等比性质:若a b =c d =…=m n (b +d +…+n ≠0),那么a +c +…+m b +d +…+n =a b.黄金分割点C 把线段AB 分成两条线段AC 和BC ,如果AC AB =BC AC ,则线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.3.子母型.4.旋转型.【类型】一、平行线型1.如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D.(1)求证:AE·BC =BD·AC ;(2)如果S △ADE =3,S △BDE =2,DE =6,求BC 的长.【类型】二、相交线型2.如图,点D ,E 分别为△ABC 的边AC ,AB 上的点,BD ,CE 交于点O ,且EO BO =DO CO,试问△ADE 与△ABC 相似吗?请说明理由.【类型】三、子母型3.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F.求证:AB AC =DF AF .【类型】四、旋转型4.如图,已知∠DAB =∠EAC ,∠ADE =∠ABC.求证:(1)△ADE ∽△ABC ;(2)AD AE =BD CE .参考答案1.(1)证明:∵ED ∥BC ,∴∠ADE =∠ABC.又∵∠A =∠A ,∴△ADE ∽△ABC.∴AE AC =DE BC.∵BE 平分∠ABC ,∴∠DBE =∠EBC.∵ED ∥BC ,∴∠DE B =∠EBC.∴∠DBE =∠DEB.∴DE =BD.∴AE AC =BD BC.即AE·BC =BD·AC.(2)解:设h △ADE 表示△ADE 中DE 边上的高,h △BDE 表示△BDE 中DE 边上的高,h △ABC 表示△ABC 中BC 边上的高.∵S △ADE =3,S △BDE =2,∴S △ADE S △BDE =12·DE·h △ADE 12·DE·h △BDE =h △ADE h △BDE =32.∴h △ADE h △ABC =35.∵△ADE ∽△ABC ,∴DE BC =h △ADE h △ABC =35.∵DE =6,∴BC =10.2.解:相似.理由如下:因为EO BO =DO CO,∠BO E =∠COD ,∠DOE =∠COB ,所以△BOE ∽△COD ,△DOE ∽△COB.所以∠EBO =∠DCO ,∠DEO =∠CBO.因为∠ADE =∠DCO +∠DEO ,∠ABC =∠EBO +∠CBO ,所以∠ADE =∠ABC.又因为∠A =∠A ,所以△ADE ∽△ABC.3.证明:∵∠BAC =90°,AD ⊥BC 于点D ,∴∠BAC =∠A DB =90°.又∵∠CBA =∠ABD(公共角),∴△ABC ∽△DBA.∴AB AC =DB DA,∠BAD =∠C.∵AD ⊥BC 于点D ,E 为AC 的中点,∴DE =EC.∴∠BDF =∠CDE =∠C.∴∠BDF =∠BAD.又∵∠F =∠F ,∴△DBF ∽△ADF.∴DB AD =DF AF .∴AB AC =DF AF.(第3题)点拨:当所证等积式或比例式运用“三点定型法”不能定型或能定型而不相似,条件又不具备成比例线段时,可考虑用中间比“搭桥”,称为“等比替换法”,有时还可用“等积替换法”,例如:如图,在△ABC 中,AD ⊥BC 于点D ,D E ⊥AB 于点E ,DF ⊥AC 于点F ,求证:AE·AB =AF·AC.可由两组“射影图”得AE·AB=AD 2,AF·AC =AD 2,∴AE·AB =AF·AC.4.证明:(1)∵∠DAB =∠EAC ,∴∠DAE =∠BAC.又∵∠ADE =∠ABC ,∴△ADE ∽△ABC.(2)∵△ADE ∽△ABC ,∴AD AE =AB AC.∵∠DAB =∠EAC ,∴△ADB ∽△AEC.∴AD AE =BD CE.技巧2:巧作平行线构造相似三角形【类型】一、巧连线段的中点构造相似三角形1.如图,在△ABC 中,E ,F 是边BC 上的两个三等分点,D 是AC 的中点,BD 分别交AE ,AF 于点P ,Q ,求BP PQ QD.【类型】二、过顶点作平行线构造相似三角形2.如图,在△ABC 中,AC =BC ,F 为底边AB 上一点,BFAF =32,取CF 的中点D ,连接AD 并延长交BC 于点E ,求BE EC 的值.【类型】三、过一边上的点作平行线构造相似三角形3.如图,在△ABC 中,AB >AC ,在边AB 上取一点D ,在AC 上取一点E ,使AD =AE ,直线DE 和BC的延长线交于点P.求证:BP CP =BD EC .【类型】四、过一点作平行线构造相似三角形4.如图,在△ABC 中,点M 为AC 边的中点,点E 为AB 上一点,且AE =14AB ,连接EM 并延长交BC 的延长线于点D.求证:BC =2CD.参考答案1.解:如图,连接DF ,∵E ,F 是边BC 上的两个三等分点,∴BE =EF =FC.∵D 是AC 的中点,∴AD =CD.∴DF 是△ACE 的中位线.∴DF ∥AE ,且DF =12AE.∴DF ∥PE.∴∠BEP =∠BFD.又∵∠EBP 为公共角,∴△BEP ∽△BFD.∴BE BF =BP BD.∵BF =2BE ,∴BD =2BP.∴BP =PD.∴DF =2PE.∵DF ∥AE ,∴∠APQ =∠FDQ ,∠PAQ =∠DFQ.∴△APQ ∽△FDQ.∴PQ QD =AP DF.设PE =a ,则DF =2a ,AP =3a.∴PQQD =AP DF =3 2.∴BP PQ QD =53 2.2.解:如图,过点C 作CG ∥AB 交AE 的延长线于点G.∵CG ∥AB ,∴∠DAF =∠G.又∵D 为C F 的中点,∴CD =DF.在△ADF 和△GDC DAF =∠G ,ADF =∠CDG ,=CD ,∴△ADF ≌△GDC(AAS ).∴AF =CG.∵BF AF =32,∴AB AF =5 2.∵AB ∥CG ,∴∠CGE =∠BAE ,∠BCE =∠ABE.∴△ABE ∽△GCE.∴BE EC =AB CG =AB AF =52.3.证明:如图,过点C 作CF ∥AB 交DP 于点F ,∴∠PFC =∠PDB ,∠PCF =∠PBD.∴△PCF ∽△PBD.∴BP CP =BD CF.∵AD ∥CF ,∴∠ADE =∠EFC.∵AD =AE ,∴∠ADE =∠AED.∵∠AED =∠CEP ,∴∠EFC =∠CEP.∴EC =CF.∴BP CP =BD EC.4.证明:(方法一)如图①,过点C 作CF ∥A B ,交DE 于点F ,(第4题①)∴∠FCD =∠B.又∵∠D 为公共角,∴△CDF ∽△BDE.∴CF BE =CD BD.∵点M 为AC 边的中点,∴AM =CM.∵CF ∥AB ,∴∠A =∠MCF.又∵∠AME =∠CM F ,∴△AME ≌△CMF.∴AE =CF.∵AE =14AB ,BE =AB -AE ,∴BE =3AE.∴AE BE =13.∵CF BE =CD BD,∴AE BE =CD BD =13,即BD =又∵BD =BC +CD ,∴BC =2CD.(第4题②)(方法二)如图②,过点C 作CF ∥DE ,交AB 于点F ,∴AE AF =AM AC.又∵点M 为AC 边的中点,∴AC =2AM.∴2AE =AF.∴AE =EF.又∵AE AB =14,∴BF EF=2.又∵CF ∥DE ,∴BF FE =BC CD =2.∴BC =2CD.(第4题③)(方法三)如图③,过点E 作EF ∥BC ,交AC 于点F ,∴∠AEF =∠B.又∵∠A 为公共角,∴△AEF ∽△ABC.∴EF BC =AE AB =AF AC.由AE =14AB ,知EF BC =AE AB =AF AC =14,∴EF =14BC ,AF =14AC.由EF ∥CD ,易证得△EFM ∽△DCM ,∴EF CD =MF MC.又∵AM =MC ,∴MF =12MC ,∴EF =12CD.∴BC =2CD.(第4题④)(方法四)如图④,过点A 作AF ∥BD ,交DE 的延长线于点F ,∴∠F =∠D ,∠FAE =∠B.∴△AEF ∽△BED.∴AE BE =AF BD.∵AE =14AB ,∴AE =13BE.∴AF =13BD.由AF ∥CD ,易证得△AFM ∽△CDM.又∵AM =MC ,∴AF =CD.∴CD =13BD.∴BC =2CD.点拨:由已知线段的比,求证另外两线段的比,通常添加平行线,构造相似三角形来求解.技巧3:证比例式或等积式的技巧【类型】一、构造平行线法1.如图,在△ABC 中,D 为AB 的中点,DF 交AC 于点E ,交BC 的延长线于点F ,求证:AE·CF =BF·EC.2.如图,已知△ABC 的边AB 上有一点D ,边BC 的延长线上有一点E ,且AD =CE ,DE 交AC 于点F ,求证:AB·DF =BC·EF.【类型】二、三点定型法3.如图,在▱ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F.求证:DC AE =CF AD .4.如图,在△ABC 中,∠BAC =90°,M 为BC 的中点,DM ⊥BC 交CA 的延长线于D ,交AB 于E.求证:AM 2=MD·ME.【类型】三、构造相似三角形法5.如图,在等边三角形ABC中,点P是BC边上任意一点,AP的垂直平分线分别交AB,AC于点M,N.求证:BP·CP=BM·CN.【类型】四、等比过渡法6.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG·DF=DB·EF.7.如图,CE是Rt△ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D.求证:CE2=DE·PE.【类型】五、两次相似法8.如图,在Rt△ABC中,AD是斜边BC上的高,∠ABC的平分线BE交AC于E,交AD于F.求证:BF BE =AB BC .9.如图,在▱ABCD 中,AM ⊥BC ,AN ⊥CD ,垂足分别为M ,N.求证:(1)△AMB ∽△AND ;(2)AM AB =MN AC .【类型】六、等积代换法10.如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F.求证:AE AF =AC AB .【类型】七、等线段代换法11.如图,在等腰三角形ABC 中,AB =AC ,AD ⊥BC 于点D ,点P 是AD 上一点,CF ∥AB ,延长BP 交AC 于点E ,交CF 于点F ,求证:BP 2=PE·PF.12.如图,已知AD 平分∠BAC ,AD 的垂直平分线EP 交BC 的延长线于点P.求证:PD 2=PB·PC.参考答案1.证明:如图,过点C 作CM ∥AB 交DF 于点M.∵CM ∥AB ,∴∠FCM =∠B ,∠FMC =∠FDB.∴△CMF ∽△BDF.∴BF CF =BD CM.又∵CM ∥AD ,∴∠A =∠ECM ,∠ADE =∠CME.∴△ADE ∽△CME.∴AE EC =AD CM.∵D 为AB 的中点,∴BD =AD.∴BD CM =AD CM .∴BF CF =AE EC.即AE·CF =BF·EC.2.证明:过点D 作DG ∥BC ,交AC 于点G ,易知△DGF ∽△ECF ,△ADG ∽△ABC.∴EF DF =CE DG ,AB BC =AD DG.∵AD =CE ,∴CE DG =AD DG .∴AB BC =EF DF.即AB·DF =BC·EF.点拨:过某一点作平行线,构造出“A ”型或“X ”型的基本图形,通过相似三角形转化线段的比,从而解决问题.3.证明:∵四边形ABCD 是平行四边形,∴A E ∥D C ,∠A =∠C.∴∠CDF =∠E.∴△FCD ∽△DAE.∴DC AE =CF AD.4.证明:∵DM ⊥BC ,∠BAC =90°,∴∠B +∠BEM =90°,∠D +∠DEA =90°.∵∠BEM =∠DEA ,∴∠B =∠D.又∵M 为BC 的中点,∠BAC =90°,∴BM =AM.∴∠B =∠BAM.∴∠BAM =∠D.即∠EAM =∠D.又∵∠AME =∠DMA.∴△AME ∽△DMA.∴AM MD =ME AM.即AM 2=MD·ME.5.证明:如图,连接PM ,PN.∵MN 是AP 的垂直平分线,∴MA =MP ,NA =NP.∴∠1=∠2,∠3=∠4.又∵△ABC 是等边三角形,∴∠B =∠C =∠1+∠3=60°.∴∠2+∠4=60°.∴∠5+∠6=120°.又∵∠6+∠7=180°-∠C =120°,∴∠5=∠7.∴△BPM ∽△CNP.∴BP CN =BM CP.即BP·CP =BM·CN.6.证明:(1)∵AB =AC ,∴∠ABC =∠ACB.∵DE ∥BC ,∴∠ABC +∠EDB =180°,∠ACB +∠FED =180°.∴∠FED =∠EDB.又∵∠EDF =∠DBE ,∴△DEF ∽△BDE.(2)由△DEF ∽△BDE 得DE BD =EF DE.即DE 2=DB·EF.又由△DEF ∽△BDE ,得∠GED =∠EFD.∵∠GDE =∠EDF ,∴△GDE ∽△EDF.∴DG DE =DE DF.即DE 2=DG·DF.∴DG·DF =DB·EF.7.证明:∵BG ⊥AP ,PE ⊥AB ,∴∠AEP =∠DEB =∠AGB =90°.∴∠P +∠PAB =90°,∠PAB +∠AB G =90°.∴∠P =∠ABG.∴△AEP ∽△DEB.∴AE DE =PE BE.即AE·BE =PE·DE.又∵∠CEA =∠BEC =90°,∴∠CAB +∠ACE =90°.又∵∠ACB =90°,∴∠CAB +∠CBE =90°.∴∠ACE =∠CBE.∴△AEC CEB.∴AE CE =CE BE.即CE 2=AE·BE.∴CE 2=DE·PE.8.证明:由题意得∠BDF =∠BAE =90°.∵BE 平分∠ABC ,∴∠DBF =∠ABE.∴△BDF ∽△BAE.∴BD AB =BF BE.∵∠BAC =∠BDA =90°,∠ABC =∠DBA.∴△ABC ∽△DBA.∴AB BC =BD AB.∴BF BE =AB BC.9.证明:(1)∵四边形ABCD 为平行四边形,∴∠B =∠D.∵AM ⊥BC ,AN ⊥CD ,∴∠AMB =∠AND =90°.∴△AMB ∽△AND.(2)由△AMB ∽△AND 得AM AN =AB AD,∠BAM =∠DAN.又AD =BC ,∴AM AN =AB BC.∵AM ⊥BC ,AD ∥BC ,∴∠MAD =∠AMB =90°.∴∠B +∠BAM =∠MAN +∠NAD =90°.∴∠B =∠MAN.∴△AMN ∽△BAC.∴AM AB =MN AC.10.证明:∵AD ⊥BC ,DE ⊥AB ,∴∠ADB =∠AED =90°.又∵∠BAD =∠DAE ,∴△ABD ∽△ADE.∴AD AB =AE AD.即AD 2=AE·AB.同理可得AD 2=AF·AC.∴AE·AB =AF·AC.∴AE AF =AC .11.证明:连接PC ,如图所示.∵AB =AC ,AD ⊥BC ,∴AD 垂直平分BC ,∠ABC =∠ACB.∴BP =CP.∴∠1=∠2∴∠ABC -∠1=∠ACB -∠2,即∠3=∠4.∵CF ∥AB ,∴∠3=∠F.∴∠4=∠F.又∵∠CPF =∠CPE ,∴△CPF ∽△EPC.∴CP PE =PF CP,即CP 2=PF·PE.∵BP =CP ,∴BP 2=PE·PF.12.证明:如图,连接PA ,∵EP 是AD 的垂直平分线,∴PA =PD.∴∠PD A =∠PAD.∴∠B +∠BAD =∠DAC +∠CAP.又∵AD 平分∠BAC ,∴∠BAD =∠DAC.∴∠B =∠CAP.又∵∠APC =∠BPA ,∴△PAC ∽△PBA.∴PA PB =PC PA.即PA 2=PB·PC.∵PA =PD ,∴PD 2=PB·PC.【题型讲解】【题型】一、相似图形的概念和性质例1、如图,在△ABC 中,DE ∥AB ,且CD BD =32,则CE CA 的值为()A .35B .23C .45D .32【答案】A【提示】根据平行线分线段成比例定理得到比例式即可解答.【详解】解:∵DE //AB ,∴32CE CD AE BD ==∴CE CA 的值为35.故答案为A .【题型】二、平行线分线段成比例定理例2、如图,在ABC ∆中,//DE BC ,9AD =,3DB =,2CE =,则AC 的长为()A .6B .7C .8D .9【答案】C 【提示】根据平行线分线段成比例定理,由DE ∥BC 得AD AE DB EC =,然后利用比例性质求EC 和AE 的值即可【详解】∵//DE BC ,∴AD AE DB EC =,即932AE =,∴6AE =,∴628AC AE EC =+=+=.故选C .【题型】三、相似三角形的判定例3、如图,已知DAB CAE ∠=∠,那么添加下列一个条件后,仍然无法判定A ABC DE ∽△△的是()A .AB AC AD AE =B .AB BC AD DE =C .B D ∠=∠D .C AED∠=∠【答案】B【提示】利用相似三角形的判定依次判断可求解.【详解】解:∵∠DAB=∠CAE ,∴∠DAE=∠BAC ,A 、若AB AC AD AE =,且∠DAE=∠BAC ,可判定△ABC ∽△ADE ,故选项A 不符合题意;B 、若AB BC AD DE =,且∠DAE=∠BAC ,无法判定△ABC ∽△ADE ,故选项B 符合题意;C 、若∠B=∠D ,且∠DAE=∠BAC ,可判定△ABC ∽△ADE ,故选项C 不符合题意;D 、若∠C=∠AED ,且∠DAE=∠BAC ,可判定△ABC ∽△ADE ,故选项D 不符合题意;故选:B .【题型】四、相似三角形的性质例4、如图,在ABC ∆中,D 、E 分别是AB 和AC 的中点,15BCED S =四边形,则ABC S ∆=()A .30B .25C .22.5D .20【答案】D【提示】首先判断出△ADE ∽△ABC ,然后根据相似三角形的面积比等于相似比的平方即可求出△ABC 的面积.【详解】解:根据题意,点D 和点E 分别是AB 和AC 的中点,则DE ∥BC 且DE=12BC ,故可以判断出△ADE ∽△ABC,根据相似三角形的面积比等于相似比的平方,可知ADE S ∆:ABC S ∆=1:4,则BCED S 四边形:ABC S ∆=3:4,题中已知15BCED S =四边形,故可得ADE S ∆=5,ABC S ∆=20故本题选择D【题型】五、利用相似三角形解决实际问题例5、为测量某河的宽度,小军在河对岸选定一个目标点A ,再在他所在的这一侧选点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,然后找出AD 与BC 的交点E ,如图所示.若测得BE =90m ,EC =45m ,CD =60m ,则这条河的宽AB 等于()A .120mB .67.5mC .40mD .30m【答案】A 【解析】∵∠ABE=∠DCE,∠AEB=∠CED,∴△ABE ∽△DCE,∴AB BE CD CE=.∵BE =90m ,EC =45m ,CD =60m ,∴()906012045AB m ⨯==故选A.【物高问题】【题型】六、位似图形的概念与性质例6、如图,△ABC 与△DEF 位似,点O 为位似中心.已知OA ∶OD =1∶2,则△ABC 与△DEF 的面积比为()A .1∶2B .1∶3C .1∶4D .1∶5【答案】C【提示】根据位似图形的性质即可得出答案.【详解】由位似变换的性质可知,//,//AB DE AC DF∴12OA OB OD OE ==12AC OA DF OD ∴==∴△ABC 与△DEF 的相似比为:1∶2∴△ABC 与△DEF 的面积比为:1∶4故选C .【题型】七、平面直角坐标系与位似图形例7、如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm .则投影三角板的对应边长为()A .20cmB .10cmC .8cmD .3.2cm【答案】A【提示】根据对应边的比等于相似比列式进行计算即可得解.【详解】解:设投影三角尺的对应边长为xcm ,∵三角尺与投影三角尺相似,∴8:x =2:5,解得x =20.故选:A .相似三角形(达标训练)一、单选题1.如图,已知∥DE BC ,12AD BD =,则ADE V 与ABC 的周长之比为()A .1:2B .1:4C .1:9D .1:3【答案】D 【分析】根据平行线的性质及相似三角形的判定定理可得:ABC ADE ∽,相似三角形的对应边成比例,且周长比等于相似比,据此即可解答.【详解】解:∵∥DE BC ,∴ADE B ∠=∠,∵A A ∠=∠,∴ABC ADE ∽,∵AD :DB =1:2,∴AD :AB =1:3,∴13ADE ABC C C ∆∆=::,即ADE 与ABC 的周长比为1:3.故选:D .【点睛】题目主要考查相似三角形的判定与性质,平行线的性质,熟练掌握相似三角形的判定定理及其性质是解题关键.2.如图,在ABC 中,高BD 、CE 相交于点.F 图中与AEC △一定相似的三角形有()A .1个B .2个C .3个D .4个【答案】C 【分析】利用相似三角形的判定方法可得AEC △∽ADB ,AEC △∽FEB ,AEC △∽FDC △,可求解.【详解】解:A A ∠=∠ ,90AEC ADB ∠=∠=︒,AEC ∴ ∽ADB ,ACE ABD ∴∠=∠,又90AEC BEC ∠=∠=︒ ,AEC ∴ ∽FEB ,ACE ACE ∠=∠ ,90AEC ADB ∠=∠=︒,AEC ∴ ∽FDC △,故选C【点睛】本题考查了相似三角形的判定,掌握相似三角形的判定方法是解题的关键.3.在△ABC 中,D 、E 分别是AB 、AC 的中点,则△ADE 与△ABC 的面积之比为()A .16B .14C .13D .12【答案】B【分析】容易证明两个三角形相似,求出相似比,相似三角形的周长之比等于相似比,面积比等于相似比的平方.【详解】解:由题意得DE 为△ABC 的中位线,那么DE ∥BC ,DE :BC =1:2.∴△ADE ∽△ABC ,∴△ADE 与△ABC 的周长之比为1:2,∴△ADE 与△ABC 的面积之比为:4,即14.故选:B .【点睛】此题考查的是相似三角形的性质,三角形中位线定理,掌握相似三角形的周长之比等于相似比,面积比等于相似比的平方是解决此题关键.4.如图,D 是ABC 的边BC 上的一点,那么下列四个条件中,不能够判定△ABC 与△DBA 相似的是()A .C BAD∠=∠B .BAC BDA ∠=∠C .AC AD BC AB =D .2AB BD BC=⋅【答案】C【分析】由相似三角形的判定定理即可得到答案.【详解】解:C BAD ∠=∠,B B ∠=∠,ABC ∽DBA ,故选项A 不符合题意;BAC BDA ∠=∠,B B ∠=∠,ABC ∽DBA ,故选项B 不符合题意;AC AD BC AB=,但无法确定ACB ∠与BAD ∠是否相等,所以无法判定两三角形相似,故选项C 符合题意;2AB BD BC =⨯即AB BC BD AB=,B B ∠=∠,ABC ∽DBA ,故选项D 不符合题意.故选:C .【点睛】本题考查相似三角形的判定定理,熟练掌握相关定理是解题的关键.5.已知ABC ∽A B C ''' ,AD 和A D ''是它们的对应角平分线,若8AD =,12A D ''=,则ABC 与A B C ''' 的面积比是()A .2:3B .4:9C .3:2D .9;4【答案】B【分析】根据相似三角形的性质:对应角平分线的比等于相似比,面积的比等于相似比的平方求解即可.【详解】ABC ∽A B C ''' ,AD 和A D ''是它们的对应角平分线,8AD =,12A D ''=,∴两三角形的相似比为::8:122:3AD A D '==',则ABC 与'''A B C 的面积比是:4:9.故选:B【点睛】本题考查的是相似三角形的性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.二、填空题6.如图所示,某校数学兴趣小组利用标杆BE 测量建筑物的高度,已知标杆BE 高为1.5m ,测得AB =3m ,AC =10m ,则建筑物CD 的高是_____m .【答案】5【分析】根据题意和图形,利用三角形相似的性质,可以计算出CD 的长,从而可以解答本题.【详解】∵EB ⊥AC ,DC ⊥AC ,∴EB ∥DC ,∴AEB ADC ∠=∠,ABE ACD ∠=∠,又∵A A ∠=∠,∴△ABE ∽△ACD ,∴AB AC =BE CD,∵BE =1.5m ,AB =3m ,AC =10m ,∴3 1.510CD=,解得,5CD =,即建筑物CD 的高是5m ,故答案为:5.【点睛】本题考查了相似三角形的应用、相似比等知识,正确得出相似三角形是解题的关键.7.如图所示,要使ABC ADE ~,需要添加一个条件__________(填写一个正确的即可)【答案】ADE B∠=∠【分析】根据已有条件,加上一对角相等就可以证明ABC 与ADE V 相似,依据是:两角对应相等的两个三角形相似.【详解】解:添加ADE B ∠=∠,A A∠=∠ ABC ADE∴ ~故答案为:ADE B ∠=∠.【点睛】本题主要考查了三角形相似的判定方法,牢记三角形相似的判定方法是做出本题的关键.三、解答题8.如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点,且AD :AB =AE :AC =2:3.(1)求证:△ADE∽△ABC;(2)若DE=4,求BC的长.【答案】(1)见解析(2)BC=6.【分析】(1)直接根据相似三角形的判定方法判定即可;(2)利用相似三角形的性质即可求解.(1)证明:∵∠A=∠A,AD:AB=AE:EC=2:3,即23 AD AEAB EC==,∴△ADE∽△ABC;(2)解:∵△ADE∽△ABC,∴AD DEAB BC=,243BC=,∴BC=6.【点睛】本题考查了三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.相似三角形(提升测评)一、单选题1.如图,在菱形ABCD中,点E在AD边上,EF∥CD,交对角线BD于点F,则下列结论中错误的是()A .DE DF AE BF =B .EF DF AD DB =C .EF DF CD BF =D .EF DF CD DB=【答案】C【分析】根据已知及平行线分线段成比例定理进行分析,可得CD ∥BF ,依据平行线成比例的性质和相似三角形的性质即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∵EF ∥CD ,∴EF ∥AB ,∴DE DF AE BF =,△DEF ∽△DAB ,∴EF DF AB DB=,∵AB =AD =CD ,∴EF DF AD DB =,EF DF CD DB=,∴选项A 、B 、D 正确;选项C 错误;故选:C .【点睛】此题考查平行四边形的性质、相似三角形的判定与性质以及平行线分线段成比例定理;熟练掌握平行四边形的性质,证明三角形相似是解决问题的关键.2.如图1为一张正三角形纸片ABC ,其中D 点在AB 上,E 点在BC 上.今以DE 为折线将B 点往右折后,BD 、BE 分别与AC 相交于F 点、G 点,如图2所示.若10AD =,16AF =,14DF =,8BF =,则CG 的长度为多少?()A .7B .8C .9D .10【答案】C 【分析】根据三角形ABC 是正三角形,可得∠A =∠B =60°,△AFD ∽△BFG ,即可求出FG =7,而AD =10,DF =14,BF =8,可得AB =32=AC ,故CG =AC -AF -FG =9.【详解】解: 三角形ABC 是正三角形,60A B ∴∠=∠=︒,AFD BFG ∠=∠ ,AFD BFG ∴∆∆∽,∴DF AF FG BF =,即14168FG =,7FG ∴=,10AD = ,14DF =,8BF =,32AB ∴=,32AC ∴=,321679CG AC AF FG ∴=--=--=;故选:C .【点睛】本题考查等边三角形中的翻折问题,解题的关键是掌握翻折的性质,证明AFD BFG ∆∆∽,从而求出FG 的长度.3.如图,在平面直角坐标系中有A ,B 两点,其中点A 的坐标是(-2,1),点B 的横坐标是2,连接AO ,BO .已知90AOB ∠=︒,则点B 的纵坐标是()A .B .4CD .2【答案】B 【分析】先过点A 作AC x ⊥轴于点C ,过点B 作BD x ⊥轴于点D ,构造相似三角形,再利用相似三角形的性质列出比例式,计算求解即可.【详解】解:过点A 作AC x ⊥轴于点C ,过点B 作BD x ⊥轴于点D ,则90ACO ODB ∠=∠=︒,90B BOD ∠+∠=︒,90AOB ∠=︒Q ,90AOC BOD ∴∠+∠=︒,B AOC ∴∠=∠,ACO ∴ ∽ODB △,AC CO OD DB∴=,又A 的坐标是()2,1-,点B 的横坐标是2,∴AC =1,CO =2,OD =2,122DB∴=,即4DB =,∴:B 的纵坐标是4.故选:B .【点睛】本题主要考查了相似三角形的判定与性质,通过作垂线构造相似三角形是解决问题的关键.4.如图,D 是ABC △的边上的一点,过点D 作BC 的平行线交AC 于点E ,连接BE ,过点D 作BE 的平行线交AC 于点F ,则下列结论错误的是()A .AD AF BD EF =B .AF DF AE EB =C .=AD AE AB AC D .CAF FE DE B =【答案】D【分析】根据DF BE ∥,DE BC ∥找到对应线段成比例或相似三角形对应线段的比相等,判断即可.【详解】解:DF BE ∥,AD AF BD EF∴=,故A 选项比例式正确,不符合题意;DF BE ∥,ADF ABE ∴△∽△,DF AF EB AE∴=,故B 选项比例式正确,不符合题意;DE BC ∥,AD AE AB AC∴=,故C 选项比例式正确,不符合题意;DE BC ∥,DE AF BC FEAF AC =≠∴故D 选项比例式不正确,符合题意.故选D .【点睛】本题主要考查了平行线分线段成比例,相似三角形的判定和性质,解题的关键是找准对应线段.二、填空题5.如图,小明想测量一棵树的高度,他发现树的影子落在了地上和墙上,此时测得地面上的影长BD 为4m ,墙上的影子CD 长为1m ,同一时刻一根长为1m 的垂直于地面上的标杆的影长为0.5m ,则树的高度为______m .【答案】9【分析】设地面影长对应的树高为m x ,根据同时同地物高与影长成正比列出比例式求出x ,然后加上墙上的影长CD 即为树的高度.【详解】解:设地面影长对应的树高为m x ,由题意得,140.5x =,解得8x =,墙上的影子CD 长为1m ,∴树的高度为()819m +=.故答案为:9.【点睛】本题考查利用投影求物高.熟练掌握同时同地物高与影长成正比是解题的关键.6.如图,梯形ABCD 中,AD BC ∥,2BC AD =,点F 在BC 的延长线上,AF 与BD 相交于点E ,与CD 边相交于点G .如果2AD CF =,那么DEG ∆与CFG ∆的面积之比等于______.【答案】16:7##167【分析】根据ADG FCG ∆∆∽和ADE FBE ∆∆∽,根据相似三角形对应边成比例和相似三角形的面积比等于相似比的平方,即可求解.【详解】解:AD BC ,ADG FCG ∴∆∆∽,2AD AG CF GF∴==,∴ADG ∆与CFG ∆的面积之比4:1,AD BC ,ADE FBE ∴∆∆∽,25AD AE BF EF ∴==,令GF a =,则2AG a =,设,2AE x EG a x ==-,:(2)2:5x a a x ∴+-=,67x a ∴=,68,77AE a EG a ∴==,:3:4AE EG =,∴DEG ∆与ADE ∆的面积之比是4:3,∴DEG ∆与CFG ∆的面积之比是16:7.故答案为:16:7.【点睛】此题考查了相似三角形的判定与性质,熟练掌握并运用:相似三角形对应边成比例、相似三角形三、解答题7.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,连接AF 交CG 于点K ,H 是AF 的中点,连接CH .(1)求tan ∠GFK 的值;(2)求CH 的长.【答案】(1)12(2)CH =【分析】(1)由正方形的性质得出AD =CD =BC =1,CG =FG =CE =3,,AD BC GF BE ∥∥,∠G =90°,证出ADK FGK V :V ,得出比例式求出3342GK DG ==,即可得出结果;(2)由正方形的性质求出AB =BC =1,CE =EF =3,∠E =90°,延长AD 交EF 于M ,连接AC 、CF ,求出AM =4,FM =2,∠AMF =90°,根据正方形性质求出∠ACF =90°,根据直角三角形斜边上的中线性质求出12CH AF =,根据勾股定理求出AF ,即可得出结果.(1)解:∵四边形ABCD 和四边形CEFG 是正方形,∴AD =CD =BC =1,CG =FG =CE =3,,AD BC GF BE ∥∥,∠G =90°,∴DG =CG -CD =2,AD GF ∥,∴ADK FGK V :V ,∴DK :GK =AD :GF =1:3,∴3342GK DG ==,∴312tan 32GK GFK FG ∠===;(2)解:∵正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,∴AB =BC =1,CE =EF =3,∠E =90°,延长AD 交EF 于M ,连接AC 、CF ,如图所示:则AM =BC +CE =1+3=4,FM =EF-AB =3-1=2,∠AMF =90°,∵四边形ABCD 和四边形GCEF 是正方形,∴∠ACD =∠GCF =45°,∴∠ACF =90°,∵H 为AF 的中点,∴12CH AF =,在Rt △AMF 中,由勾股定理得:22224225AF AM FM =+=+=,∴152CH AF ==.【点睛】本题考查了相似三角形的判定与性质、三角函数、勾股定理,正方形的性质,直角三角形斜边上的中线性质;本题有一定难度,特别是(2)中,需要通过作出辅助线运用直角三角形斜边上的中线性质才能得出结果.8.如图所示,BEF 的顶点E 在矩形ABCD 对角线AC 的延长线上,13BC AB AE ==,,与FB 交于点G ,连接AF ,满足ABF ∽CEB ,其中A 对应C B ,对应E F ,对应B(1)求证:30FAD ∠=︒.(2)若13CE =,求tan FEA ∠的值.【答案】(1)见解析937【分析】(1)由相似可得FAB BCE ∠∠=,再由矩形的性质得AD BC ∥90DAB ABC ∠∠==︒,,从而可求得180FAD DAB DAC ∠∠∠++=︒,则有FAD BAC ∠∠=,即可求得FAD ∠的度数;(2)结合(1)可求得73AE =,再由相似的性质求得33AF =tan FEA ∠的值.(1)ABF ∽CEB ,FAB BCE ∠∠∴=,四边形ABCD 是矩形,∴90AD BC DAB ABC ∠=∠=︒∥,,DAC ACB ∴∠=∠,180BCE ACB ∠∠+=︒ ,180FAB DAC ∠∠∴+=︒,即180FAD DAB DAC ∠∠∠++=︒,90180FAD DAC ∠∠∴+︒+=︒,90FAD DAC ∠∠∴+=︒,90DAB ∠=︒ ,90BAC DAC ∠∠∴+=︒,FAD BAC ∠∠∴=,在Rt ABC中,tan 3BC BAC AB ∠== ,30BAC ∴∠=︒,30FAD ∠∴=︒;(2)由(1)得9030ABC BAC ∠∠=︒=︒,,2212AC BC ∴==⨯=,17233AE AC CE ∴=+=+=,ABF ∽CEB ,AF AB BC CE∴=,即113AF =,∴=AF 由(1)得:90FAD DAC ∠∠+=︒,则90FAE ∠=︒,在Rt FAE中,tan 3AF FEA AE ∠==【点睛】本题主要考查相似三角形的性质,矩形的性质,解直角三角形,解答的关键是结合图形及相应的性质求得FAD BAC ∠∠=.。
平行线相似三角形性质和判定
A
D
DA
B
E
BE
C
F
C
F
2019/7/14
推 平行于三角形一边的直线截其他两边(或两 论 边的延长线)所得的线段对应成比例.
2019/7/14
平行线等分线段定理
P
G. F. E.
A
D
C
B
如果一组平行线在一条直线上截得的线段相等,那么在其他
直线上截得的线段也相等。
推论1
小结 拓展
图形的相似
1.形状相同的图形 ①表象:大小不等,形状相同. ②实质:各对应角相等、各对应边成比例.
三个角对应相等,三条边对应成比例的两个三角形, 叫做相似 三角形.
△ABC与△DEF相似,就记作:△ABC∽△DEF. 注意:要把表示对应角顶点的字母写在对应的位置上!
性质:相似三角形的各对应角相等,各对应边对应成比例.
性质定理
判定定理
平行于三角形一边的直线截其他两
边所在的直线,截得的对应线 段成比例.
平行于三角形的一边的直线, 截其它两边所在的直线,截得 的三角形的三边与原三角形的 三边对应成比例.
如果一条直线截三角形的两边的延 长线(这两边的延长线在第三边 的 同侧),所得的对应线段成比例,那 么这条直线平行于三角形的第三边.
相似三角形
1. 相似图形三角形的判定方法:
通过定义 (三边对应成比例,三角相等) 平行于三角形一边的直线(预备定理) 三边对应成比例(SSS) 两边对应成比例且夹角相等(SAS) 两角对应相等(AA) 两直角三角形的斜边和一条直角边对应成比例
(HL)
相似三角形的性质:
对应角相等。 对应边成比例。 对应高的比等于相似比。 对应中线的比等于相似比。 对应角平分线的比等于相似比。
6.4探索三角形相似的条件(1)平行线
ac AD
一般到特殊
a
l1
A
B
E l2
B
c D l1
E
l2
C
F l3
FC
l3
注意:平行线分线段成比例得到的比例式中,
四条线段与两直线的交点位置无关!
二、操作与思考
按下面右图画法,又能得到什么结论?
a A
B
一般到特殊
c D l1
E l2
a A
c D l1
B (E) l2
X型
C
F l3
FC
l3
二、操作与思考:书P53
求证: AD是 AB 和 AF 的比例中项.
F
证明:
D
DE//BC
B
AB AC “中间比”
AD AE
A
E C
EF//CD AD AC
AF AE
AB AD AD AF
∴AD2=ABAF 即:AD是AB和AF的比例中项
已知:梯形ABCD,AD// EF//BC,EF交BD于G
七、反思提升
一、基本事实: 两条直线被一组平行线所截,所得的对应
线段成比例. (关键要能熟练地找出对应线段)
二、基本事实的几种基本图形
A
D
DA
B
E
BE
A
D
E
C
FC
FB
C
三、该基本事实在三角形中的应用
D l1
B
E l2
C
F l3
你会把上面的文字语言,对 照图形,翻译成符号语言?
例1 如图,在△ABC中,DE∥BC,AC=4 , AB=3,EC=1.求AD和BD.
解∵AC=4,EC=1,∴AE=3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
试求AF:FB的值.
B
D
C
你还有其他方案吗?
相似三角形
E
A
F
M
添平行线构造相似三角形的基本图形。
E
A F
E
A F M
E
A F
M
B
D
CB
D M CB
D
CB
D
C
E
A F
MB
D
C
E
M
A F
B
D
C
用一用 添平行线构造相似三角形的基本图形。
练习1.已知:如图1,过△ABC的顶点C作一条直线与 中线AD和边AB分别交于点E和点F ,且AE:ED = 4:1。
问题
给你一个△ABC和平行于BC边的一条直 线MN;
你能用直线MN去截AB与AC边,使截得 的 三角形与原三角形相似吗?
基本图形Biblioteka A型E M(及两边的延长线)
平行于三角形一边的直线和其他两 边相交,所构成的三角形与原三角 形相似。
A D
N
B M
C N
D
E
S型
如果用直线MN去截AB与AC边所在直线
合理添加平行线 构造相似三角形
求:AF:FB的值
证法三:过B点作BG∥CF交AD的延长线于点G(如图1-3),
BG∥CF,则∠GBD=∠ECD 在△BDG和△CDE中 ∵∠BDG=∠CDE, BD=CD ∠GBD=∠ECD ∴△BDG≌△CDE ∴DG=DE
A
F
E
B
D
C
G 图1-3
小结:
这节课你学到了什么?
合理添加平行线 构造相似三角形
若点D为BC中点,ED交AB于点F,
E
且EF:FD=2:3,
A
F
M
试求AF:FB的值.
解:过点F作FM//BC,交AC于点M
B
D
C
1.利用FM平行截三角形两边
可得到哪种相似的基本图形?
E
2a A
F 2b
M
F 2b M
3a
2.可写出图中的相似三角形吗? 3.怎么将两个图形顺利过渡呢?
B
10b
C D 5b
C
相似三角形
E A
F
添平行线构造相似三角形的基本图形。
若D为BC中点,ED交AB于点F, 且EF:FD=2:3,
试求AF:FB的值.
解:过点F作FM//AC,交BC于点M
B
D MC
E
A
F
2a
F
3a
B
8b
M 2bC
D 3b M2b C
相似三角形
E F
添平行线构造相似三角形的基本图形。
若D为BC中点,ED交AB于点F, 且EF:FD=2:3,
用一用 添平行线构造相似三角形的基本图形。
练习1.已知:如图1,过△ABC的顶点C作一条直线与 中线AD和边AB分别交于点E和点F ,且AE:ED = 4:1。
求:AF:FB的值 A
证法二:过点D作DG∥AB交CF于G点,
F EG
B
D
C
图1-2
用一用 添平行线构造相似三角形的基本图形。
练习1.已知:如图1,过△ABC的顶点C作一条直线与 中线AD和边AB分别交于点E和点F ,且AE:ED = 4:1。
练一练
E M
b
a
DN
2a
2b
b
H
已知:MN∥BC,过点D作DH∥EC交BC延长线于点 H(1)试找出图中的相似三角形?
⊿ADE∽ ⊿ABC ∽ ⊿DBH
(2)若AE:AC=1:2,则DE:BC=_1_:__2___;
(3)若AE:AC=1:2,则 AC:DH=_______;
2:3
相似三角形 添平行线构造相似三角形的基本图形。
求:AF:FB的值。
证法一:过点D作DG∥CF交AB于G点,
∵DG∥CF
A
∴△BDG∽△BCF
∵AD是△ABC的中线
∴BD:BC=BG:BF=1:2 ∴BG=FG ∵DG∥EF
F
G
E
∴△AEF∽△ADG
B
D
C
∴AE:AD=AF:AG
图1
∵ AE:ED = 4:1
∴AF:FG=4:1
∴AF:FB=4:2=2:1
例:若点D为BC中点,ED交AB于点F,且 EF:FD试=2求:3A, F:FB的值.
1. △AFE和△BFD相似吗?
E
A
2.题目中有其他相似三角形吗? F
3.能构造涉及AF和BF(或AB) B
D
C
的相似三角形吗?
4.利用平行线构造相似三角形的基 本图形,能动手试试吗?
相似三角形 添平行线构造相似三角形的基本图形。
E
D
M
N
A型
S型
感谢下 载
感谢下 载