平新乔《微观经济十八讲》第四讲 答案
平新乔十八讲答案修正
第八讲第 12 题;(由自己发现) 第九讲第1题;(由 keungto 指出)(由 aoliege 在2005 年10月25日指出) 第九讲第18题 第一问;(由自己发现) 第十五讲第 2题 ;(由 keungto 指出) 第十六讲第 1题 第一问;(由自己发现)
对写得不详细的 补充: 第二讲第6题 ;(由 mar 提醒) 第四讲第12题;(由 mar 、zk yq-zl 提醒) 第一讲第11题 ;(由 keungto 提醒)
到2005 年10月17日为止: 错误: 第一讲第1题 (由 jeanrao 指出)说明部分的 “效用曲线 ”改为“无差异曲线 ”;第2小题说明部分 的效用函数应为 U=2x+3y 第一讲第2题 (由 jeanrao 指出)说明部分的效用函数应为 U=Max(x1,x2 ) 第三讲第14题 ;(由 jeanrao 指出)
到2006 年1月3日为止: 错误: 第二讲 第10题(由 azuresky 指出)第一种方法错误; 第七讲 第9题(2)(由 ouer0730 指出)表述有问题; 第七讲 第9题(3)(由 ouer0730 指出)总成本曲线、平均、边际成本得数错误; 第七讲 第10题(2)(由 ouer0730 指出)关于 K 的表达式错误; 第七讲 第18题(由 ouer0730 指出)关于剩余的得数错误;
到2005 年11月27日为止: 错误: 第六讲13题(由 demand2004 指出);倒数第三行 "则必须满足 MPL<0" ;应该是 "则必须满 足 MPK<0" ; 第九讲第18题(1)(由 bobmao 、dongley 指出)均衡时,供给等于需求; 补充: 第六讲11题(由 sdycdyz 指出);确定等产量线的两个端点; 第十讲第8题(由 bonnierong 指出);忽略了另外三个纳什均衡; 第十六讲 第6题(2)( 由 3421 、mar 、sdycdyz 指出)为什么在帕累托最优时,不能使某个 人的福利进一步 改善;
平新乔《微观经济学十八讲》课后习题详解(策略性博弈与纳什均衡)
第10讲 策略性博弈与纳什均衡1.假设厂商A 与厂商B 的平均成本与边际成本都是常数,10A MC =,8B MC =,对厂商产出的需求函数是50020D Q p =-(1)如果厂商进行Bertrand 竞争,在纳什均衡下的市场价格是多少? (2)每个厂商的利润分别为多少? (3)这个均衡是帕累托有效吗?解:(1)如果厂商进行Bertrand 竞争,纳什均衡下的市场价格是10B p ε=-,10A p =,其中ε是一个极小的正数。
理由如下:假设均衡时厂商A 和B 对产品的定价分别为A p 和B p ,那么必有10A p ≥,8B p ≥,即厂商的价格一定要高于产品的平均成本。
其次,达到均衡时,A p 和B p 都不会严格大于10。
否则,价格高的厂商只需要把自己的价格降得比对手略低,它就可以获得整个市场,从而提高自己的利润。
所以均衡价格一定满足10A p ≤,10B p ≤。
但是由于A p 的下限也是10,所以均衡时10A p =。
给定10A p =,厂商B 的最优选择是令10B p ε=-,这里ε是一个介于0到2之间的正数,这时厂商B 可以获得整个市场的消费者。
综上可知,均衡时的价格为10A p =,10B p ε=-。
(2)由于厂商A 的价格严格高于厂商B 的价格,所以厂商A 的销售量为零,从而利润也是零。
下面来确定厂商B 的销售量,此时厂商B 是市场上的垄断者,它的利润最大化问题为:max pq cq ε>- ①其中10p ε=-,()5002010q ε=-⨯-,把这两个式子代入①式中,得到:()()0max 1085002010εεε>----⎡⎤⎣⎦解得0ε=,由于ε必须严格大于零,这就意味着ε可以取一个任意小的正数,所以厂商B 的利润为:()()500201010εε-⨯--⎡⎤⎣⎦。
(3)这个结果不是帕累托有效的。
因为厂商B 的产品的价格高于它的边际成本,所以如果厂商B 和消费者可以为额外1单位的产品协商一个介于8到10ε-之间的价格,那么厂商B 的利润和消费者的剩余就都可以得到提高,同时又不损害厂商A 的剩余(因为A 的利润还是零)。
平新乔《微观经济学十八讲》课后习题(第5~8讲)【圣才出品】
4 / 85
由于 E uw E uc E u ,所以农民会混合种植。
(3)假设小麦的种植份额为 ,那么混合种植的期望效用 EU 为:
000 1
1 2
ln 10000
15000
1
效用最大化的一阶条件为:
dEU d
1 2
28000 19000 28000 19000 1
解:(1)农民种小麦的预期效用 E uw 为:
E uw 0.5ln 28000 0.5ln10000 0.5ln 280 106
农民种谷子的预期效用 E uc 为:
E uc 0.5ln19000 0.5ln15000 0.5ln 285106
1 / 85
圣才电子书 十万种考研考证电子书、题库视频学习平台
1 2
10000 15000 10000 15000 1
0
解得: 4 。 9
此时的期望效用为:
EU
0.5 ln
4 9
28000
5 9
19000
0.5 ln
4 9
10000
5 9
15000
0.5ln 293.96
所以当农民用 4/9 的土地种小麦,5/9 的土地种谷子时,其期望效用达到最大,最大期
(1)假定农民一定要在两种如表 5-1 所示收入前景的谷物中进行选择的话,会种哪种
谷物?
表 5-1 小麦和谷子在不同天气状况下的收入
单位:元
(2)假定农民在他的土地上可以每种作物都播种一半的话,他还会选择这样做吗?请 解释你的结论。
平新乔《微观经济学十八讲》课后习题详解(一般均衡与福利经济学的两个基本定理)
第16讲 一般均衡与福利经济学的两个基本定理1.考虑一种两个消费者、两种物品的交易经济,消费者的效用函数与禀赋如下()()211212,u x x x x = ()118,4e = ()()()21212,ln 2ln u x x x x =+ ()23,6e =(1)描绘出帕累托有效集的特征(写出该集的特征函数式); (2)发现瓦尔拉斯均衡。
解:(1)由消费者1的效用函数()()211212,u x x x x =,可得121122MU x x =,122122MU x x =,故消费者1的边际替代率为1211112212121212122MU x x x MRS MU x x x ===。
同理可得消费者2的边际替代率为22212212x MRS x =。
在帕累托有效集上的任一点,每个消费者消费两种物品的边际替代率都相同,即:121212MRS MRS = 从而有:122212112x x x x = ① 又因为212210x x =-,211121x x =-,把这两个式子代入①式中,就得到了帕累托有效集的特征函数:1122111110422x x x x -=- ② (2)由于瓦尔拉斯均衡点必然位于契约曲线上,所以在均衡点②式一定成立。
此外在均衡点处,预算线和无差异曲线相切(如图16-1所示),这就意味着边际替代率等于预算线的斜率,即:1112121211211418x p x MRS p x x -===- ③联立②、③两式,解得:1158/4x =,1258/11x =。
进而有21112126/4x x =-=,21221052/11x x =-=。
图16-1 均衡时边际替代率等于预算线的斜率2.证明:一个有n 种商品的经济,如果(1n -)个商品市场上已经实现了均衡,则第n 个市场必定出清。
证明:假设第k 种商品的价格为k p ,{}1,2,,k n ∈。
系统内存在I (I 为正整数)个消费者,第i 个消费者拥有第k 种物品的初始禀赋为ik e ,而第i 个消费者对第k 种商品的消费量为k i x ,根据瓦尔拉斯定律可知系统中的超额的市场价值为零,即:()10ni ik k k k i Ii Ip x e =∈∈-=∑∑∑当前1n -个商品市场已经实现均衡,即前1n -个商品市场的超额需求为零,这时有:()()()11n i i i ik k k n k k k i Ii Ii Ii Ii i nkki Ii Ii i k ki Ii Ip x e p x e p x e x e -=∈∈∈∈∈∈∈∈-+-=∑∑∑∑∑-=∑∑=∑∑由此就可以得出第n 个市场的超额需求也为零,即第n 个商品市场也实现了均衡。
平新乔课后习题详解(第4讲--VNM效用函数与风险升水)
平新乔《微观经济学十八讲》第4讲 VNM 效用函数与风险升水1.(单项选择)一个消费者的效用函数为()bw u w ae c -=-+,则他的绝对风险规避系数为:(A )a (B )a b + (C )b (D )c 【答案】C【解析】由消费者的效用函数()bw u w ae c -=-+,可得()bw u'w abe -=,()2bw u w ab e -''=-,则可得该消费者的风险规避系数为:()()()2bwa bwab e R w u w w b abe ---=-"'=-=。
2.证明:若一个人的绝对风险规避系数为常数c ,则其效用函数形式必为()cw u w e -=-,这里w 代表财产水平。
证明:这是一个求积分的问题,即由绝对风险规避系数来倒求效用函数。
根据绝对风险规避系数的定义,就有:()()()a u w R w c u w "=-='对等式(1)最后一个等号两边积分得:()()d d u w w c w u w "=-⎰⎰' 即:()ln u w cw C '=-+。
进一步整理得:()cw C cw u w e Ce -+-'== ①其中0C C e =>,对①式两边积分得:()1cwC u w e C c-=-+ 其中1C 为任意实数。
根据效用函数的单调递增特性可知0c >(因为如果0c <,就说明财富越少,消费者的效用就越高,这不符合正常的情况)。
又因为效用函数的单调变换不改变它所代表的偏好,所以()1cwC u w e C c-=-+表示的偏好也可以用()cw u w e -=-表示。
3.若一个人的效用函数为2u w aw =-,证明:其绝对风险规避系数是财富的严格增函数。
证明:由效用函数()2u w w aw =-,可得()12u'w w α=-,()2u w α''=-,则该消费者的绝对风险规避系数为:()()()212a u w R w u w wαα"=-='-其中12w α≠。
平新乔微观经济学十八讲pdf
平新乔微观经济学十八讲pdf
1简介
《平新乔微观经济学十八讲》是一本旨在介绍微观经济学原理的书籍。
这本书由浙江大学经济学院平新乔教授所著,紧密结合学生实际,旨在加深对微观经济学的理解,是一本极具教育意义的经济学入门读物。
2主要内容
本书共分十八篇,覆盖了微观经济学领域的主要理论和应用。
其中包括需求和供给、市场结构、垄断、博弈论、信息、外部性等主题。
此外,每一章节末尾都有相关习题,并附有答案和详细解答。
3书评
作为一本微观经济学的入门读物,《平新乔微观经济学十八讲》内容系统、深入易懂,作者平新乔在讲解各种原理时,用大量的实例来解释抽象的理论模型,这样不仅可以更好的为读者提供认知的帮助,而且可以提高经济学学科的教育效果和实践应用。
此外,作者还在书末收录了一些社会经济学的实际案例,给读者提供了更多的经济学应用场景,可供学术研究和实际生活参考。
总的来说,《平新乔微观经济学十八讲》是一本深入浅出的实用经济学教材,对经济学学习者来说是一本宝贵的入门读物。
4结语
综上所述,《平新乔微观经济学十八讲》是一本非常适合微观经济学学习者阅读的入门读物。
本书内容深入易懂,讲解用例充分,不仅能够提高学生对微观经济学基本原理的理解,也能够对实践应用有所帮助。
因此,对于想要提高微观经济学理论的学习者来说,这本书是一个不错的选择。
十八讲平新乔答案
十八讲平新乔答案中级微观经济学(2班)作业四(4月27日上课前交)一、已知一个企业的成本函数为2()1000005016000y TC y y =++,该企业面临的反需求函数为()250400y p y =-,请问:(1)当产量处于什么区间时,该企业的利润为正?)()(y TC y y p TC TR -?=-=π16000411000002001600050100000400250222y y y y y y --=----= 如果让企业的利润为正,必须016000411000002002≥--y y ,解之得:当84775503≤≤y 时企业的利润为正。
(2)当产量处于什么区间时,平均成本上升?当产量处于什么区间时,平均成本下降?企业的平均成本为5016000100000)(++=y y y AC 。
1600011000002+-=??y y AC 。
所以当0≥??yAC ,即40000≥y 时平均成本上升。
当40000<="">由第一小题知企业的总利润是:16000411000002002y y --=π,所以000841200y y -=??π 从而,当0y=??π,即39024=y 时企业的总利润最大。
(4)当产量处于什么水平时,该企业的产出(产量)利润率最高?16000411000002002y y --=π,利润率定义为:1600041100000200)(y y y y --==πρ。
对其利用一阶条件:1600041100000)(2-=??y y y ρ=0,知当95.6246=y 时利润率最高。
(5)当产量处于什么区间时,该企业利润上升?当产量处于什么区间时,企业利润下降?根据第3小题的结论,只当39024≤y 时利润上升,当39024>y 时利润下降。
(6)当产量处于什么水平时,()AVC y 最低?5016000)(+==y y AC y AVC ,所以当0=y 的时候()AVC y 最低。
平新乔十八讲课后习题答案
1-6-1
第一讲 偏好、效用与消费者的基本问题
让我们首先来看一个例子,而在例子结束时,也就是我们回答此问题结束之际;
假设生产 a 单位的产出要固定用用上 a1 单位的 x1 与 a2 单位的 x2 ,那么此技术的生产函
越靠上的曲线所代表的效用水平就越高。
(3)
Y
y =−2 x3
Y
y = 2x
X
对于李楠而言汽水 x 与冰棍 y 是完全替代 的;三杯汽水 x 与两根冰棍 y 所带来的效用水
平是一样的,她的效用曲线拥有负的斜率;对
于一定量的汽水 x 而言,越多的冰棍 y 越好,
所以越靠上的曲线所代表的效用水平就越高;
她效用函数可用 u(x, y) = 3x + 2 y 表示。
ψ (x,λ) = x1 + λ(m − p1x1 − p2x2 )
∂ψ ∂x1
= 1 − λp1
=0
∂ψ ∂x2
= −λp2
=0
∂ψ ∂λ
=m−
p1x1 −
p2 x2
=0
由上式可得马歇尔需求函数: x1
=
m p1
; x2
=0
10
max = u(x)
x
s.t. m = p1x1 + p2x2
构造拉氏方程: ψ (x, λ) = Ax1α x12−α + λ(m − p1x1 − p2x2 )
∂ψ ∂x1
= 20(x1 +
x2 ) − λp1
=0
∂ψ ∂x2
=
20( x1
平新乔《微观经济学十八讲》课后习题详解(要素需求函数、成本函数、利润函数与供给函数)【圣才出品】
得到供给函数:
y
w1 ,
w2 ,
p
1 2
ln p2 ln 4w1w2
1 / 23
圣才电子书 十万种考研考证电子书、题库视频学习平台
2.已知成本函数为 C Q Q2 5Q 4 ,求竞争性厂商供给函数 S p 不利润函数 p 。
解:厂商关亍产量 Q 的利润函数为:
w1, w2 ,
p
p 2
ln p2 ln 4w1x1
p
(2)斱法一:根据霍太林引理:
y
w1 ,
w2
,
p
w1, w2
p
,
p
可知厂商的供给函数为:
y w1, w2 ,
p
w1, w2 ,
p4w1w2
斱法二:把 x1 和 x2 的表达式代入厂商的生产函数 f x1, x2 0.5ln x1 0.5ln x2 中,也可以
2 / 23
圣才电子书 十万种考研考证电子书、题库视频学习平台
答:在这一辩论中,我会支持绘图员一斱。理由如下: 假如可以按照维纳的意思作出一组短期平均成本线 SATCi ,其中 i 1,2,…,n ,使得 它们和 U 型的长期平均成本线 AC 分别相切亍点 xi ,而且切点是 SATCi 的最低点。如果 xi 丌 是 AC 线的最低点,那么过该点作 SATCi 的切线 li ,它应该是一条水平的直线。同时过 xi 点 作 AC 线的切线 Li ,由亍 xi 丌是 AC 线的最低点,所以 Li 必定丌是水平的。可是 SATCi 和 AC 相切亍点 xi 却意味着 li 和 Li 是同一直线,所以它们有相同的斜率,这样的结果相互矛盾。因 此,如果 xi 丌是 AC 线的最低点,那么它必然丌是 SATCi 的最低点。但是,如果 xi 是 AC 线 的最低点,那么它也是 SATCi 的最低点。
平新乔《微观经济学十八讲》课后习题和强化习题详解(1-3讲)【圣才出品】
lim
→0
1
x1 ln x1 1 x1
+ +
2 2
x2 x2
ln
x2
= exp
1 ln x1 +
2 ln x2
=
x1 1
x2 2
1 + 2 = 1
1
( ) (3)当 → − 时,对效用函数 u( x1, x2 ) = 1x1 + 2 x2 两边变换求极限有:
( ) ( ) lim u
3 / 62
4.设
u
(
x1,
x2
)
=
1 2
ln
x1
+
1 2
ln
x2
,这里
x1,x2
R+
。
(1)证明: x1 与 x2 的边际效用都递减。
(2)请给出一个效用函数形式,但该形式不具备边际效用递减的性质。
答:(1)将 u
关于
x1
和
x2
分别求二阶偏导数得
2u x12
=
−
1 2x12
y)
=
min
x,
y 2
,如图
1-3
所示。
图 1-3 喝一杯汽水就要吃两根冰棍 (4)如图 1-4 所示,其中 x 为中性品。
图 1-4 对于有无汽水喝毫不在意
2.作图:如果一个人的效用函数为 u ( x1, x2 ) = maxx1, x2
2 / 62
(1)请画出三条无差异曲线。 (2)如果 p1 = 1 , p2 = 2 , y = 10 。请在图 1-5 上找出该消费者的最优消费组合。 答:(1)由效用函数画出的三条无差异曲线如图 1-5 所示。
平新乔-微观十八讲答案
第七讲18%9.一个富有进取心的企业家购买了两个工厂以生产装饰品.每个工厂生产相同的产品且每个工厂的生产函数都是q=(K i L i) 1/2(i=1,2),但是K1=25,K2=100,K 与L的租金价格由w=r=1元给出。
(1)如果该企业家试图最小化短期生产总成本,产出应如何分配。
(5%)min{STC}= min{125+L1 +L2}S.T 5 L11/2+10L21/2≥QL(L1 ,L2)=125+ L1 +L2+λ[ Q-(5 L11/2+10L21/2 )]F.O.C(一阶条件) :1=5/2*λ* L1-1/21=10/2*λ* L2-1/2将两式相除得L2=4 L1再代入5 L11/2+10L21/2=Q得q1=5* L11/2=1/5Q ,q2=10* L21/2=4/5Q(2)给定最优分配,计算短期总成本、平均成本、边际成本曲线。
产量为100、125、200时的边际成本是多少?(5%)STC(Q)=125+5* L1=125+Q2/125SAC(Q)=125/Q+Q/125SMC(Q)=2/125*Q SMC(Q=100)=1.6, SMC(Q=125)=2, SMC(Q=200)=3.2(3)长期应如何分配?计算长期总成本、平均成本、边际成本。
(5%)min{LTC}= min{ K1+ K2+L1 +L2}S.T (K1 L1) 1/2 +(K2 L2) 1/2≥QL(L1 ,L2,K1,K2)= K1+ K2+ L1 +L2+λ[ Q-(K1 L1) 1/2 -(K2 L2) 1/2 )]F.O.C 1=1/2*λ*(K1/ L1 ) 1/21=1/2*λ*(K2/ L2 ) 1/21=1/2*λ*(L1/ K1 ) 1/21=1/2*λ*(L2/ K2 ) 1/2从而有K1/ L1 =K2/ L2,K1=L1,K2= L2所以L1+L2=Q,分配比例任意LC(Q)=2(L1+L2)=2Q LAC=2 LMC=2(4)如果两个厂商呈现规模报酬递减,则第三问会有什么变化?(3%)如果两个厂商呈现规模报酬递减则长期总成本、平均成本、边际成本均是产量的增函数。
平新乔微观经济学十八讲》答案
5.1. 当 ρ = 1 ,该效用函数为线性.
证明:当 ρ = 1 时,效用函数为
u(x1, x2 ) = α1x1 + α 2 x2 此时,函数 u 是线性的.
4
第一讲 偏好、效用……
5.2.
当ρ
→
0 时,该效用函数趋近于 u(x1 ,
x2 )
=
x α1 1
x α2 2
β1
证明:令
=
α1 α1 + α2
2 x12
因此 x1 的边际效用是递减的.同理, x2 的边际效用也是递减的.i
4.2. 请给出一个效用函数形式,使该形式不具备边际效用递减的性质.
答:可能的一个效用函数是 u(x1, x2 ) = x1 + x2 .
5. 常见的常替代弹性效用函数形式为
请证明:
( )1
u(x1 , x2 ) = α1 x1ρ + α 2 x2 ρ ρ
述的偏好中,商品 1 与商品 2 是完全替代的.
4. 若某个消费者的效用函数为
u ( x1 ,
x2 )
=
1 2
ln
x1
+
1 2
ln
x2
其中, x1, x2 ∈ R+
4.1. 证明: x1 与 x2 的边际效用都递减.
证明: u(x1, x2 ) 对 x1 取二阶偏导:
∂2u = − 1 < 0
∂x12
不具有完备性.同理可以说明无差异关系也不具有完备性.
8.2. ≈ 满足反身性
说明:如果无差异关系不具有完备性,那么根据无差异关系的定义,则必存在一个消
费束严格偏好于它自身,也就是说,这个消费束同时既偏好于它本身又不偏好于它本
平新乔《微观经济学十八讲》课后习题详解(第4讲 VNM效用函数与风险升水)
平新乔《微观经济学十八讲》第4讲 VNM 效用函数与风险升水跨考网独家整理最全经济学考研真题,经济学考研课后习题解析资料库,您可以在这里查阅历年经济学考研真题,经济学考研课后习题,经济学考研参考书等内容,更有跨考考研历年辅导的经济学学哥学姐的经济学考研经验,从前辈中获得的经验对初学者来说是宝贵的财富,这或许能帮你少走弯路,躲开一些陷阱。
以下内容为跨考网独家整理,如您还需更多考研资料,可选择经济学一对一在线咨询进行咨询。
1.(单项选择)一个消费者的效用函数为()bw u w ae c -=-+,则他的绝对风险规避系数为:(A )a (B )a b + (C )b (D )c 【答案】C【解析】由消费者的效用函数()bw u w ae c -=-+,可得()bw u'w abe -=,()2bw u w ab e -''=-,则可得该消费者的风险规避系数为:()()()2bwa bwab e R w u w u w b abe ---=-"'=-=。
2.证明:若一个人的绝对风险规避系数为常数c ,则其效用函数形式必为()cw u w e -=-,这里w 代表财产水平。
证明:这是一个求积分的问题,即由绝对风险规避系数来倒求效用函数。
根据绝对风险规避系数的定义,就有:()()()a u w R w c u w "=-='对等式(1)最后一个等号两边积分得:()()d d u w w c w u w "=-⎰⎰' 即:()ln u w cw C '=-+。
进一步整理得:() cw C cw u w e Ce-+-'== ① 其中 0C Ce =>,对①式两边积分得: () 1cw Cu w e C c-=-+其中1C 为任意实数。
根据效用函数的单调递增特性可知0c >(因为如果0c <,就说明财富越少,消费者的效用就越高,这不符合正常的情况)。
平新乔《微观经济学十八讲》章节题库含名校考研真题(第1~4讲)【圣才出品】
该偏好满足单调性吗?满足凸性吗?为什么?你能从生活中举出一个例子对应这种偏 好关系吗?
解:(1)该偏好满足严格凸性,理由如下: 无差异曲线 x1 x2 c 的图像如图 1-3 所示,可知其偏好满足严格凸性。
图 1-3 无差异曲线
将无差异曲线 u x1, x2
若灾区人民获得的是棉被,则其最优化问题为:
maxU
x1 , x2
x1, x2
s.t. m p g x2 p x1
①
x1 g
若灾区人民获得的是现金,则其最优化问题为:
maxU
x1 , x2
x1, x2
②
s.t. m c x2 p x1
由于最优化问题①和②的目标函数式相同,但是①的预算集(即 x1 和 x2 的取值范围)
x1
x2 c 转化为 x2 c
2
x1 ,则有:
dx2 dx1
1
1 cx1 2
0
,
d2 x2 d x12
1 2
cx1
3 2
0
2 / 67
圣才电子书 十万种考研考证电子书、题库视频学习平台
则满足这种性质的函数会严格凸向原点,故其偏好必定满足严格凸性。 (2)该偏好满足单调性,满足凸性,但不满足严格凸性。理由如下: 根据函数可大致画出其图像,如图 1-4 所示:
3.下列函数可以作为马歇尔需求函数吗?为什么?
xi
p1 2
pi w
p2 2
p3 2
,i
1, 2, 3
答:这个函数可以作为马歇尔需求函数,理由如下:
马歇尔需求函数需要满足下列性质:
(1)在 p, w 上具有零次齐次性:
微观经济学十八讲-第四讲
进一步提问:这个答案合理吗? 因为答案的第一项为常数,当 w 大于这个常数时,则 x 为负数;此负数绝对值的大 小我们可理解为:表示此人不愿参赌的程度。由答案,我们可看出即使当 π =
1 时,此 2
人也有可能不参赌,请想一想现实中所发生的情况。 (这道题困扰了我三天,三天之内什么书都没看进, 如果直接解方程,到了
2 2 u′′( w) ′ = − ; Ra ( w) = 2 > 0 u′( w) w w
(2) Ra ( w) = −
(3) Ra ( w) = −
(4) Ra ( w) = − 6
u (w)
假定两场火灾是否发生是相互独
•
u (w)
立的, 而且无论哪一场火灾发生, 消费 者只能购买一份保险, 此消费者的主要 的标准为效用。 但这主要说明的是,这时消费者 先有投保的要求, 而保险公司开始并没 有提出索价。 所以, 消费者只能根据自 己的期望效用来确定自己所能放弃的 最大金额, 而不是根据损失金额和火灾 出现的概率的乘积的金额来做标准。
对求 π 一阶导,得:
ln(W + 2 x(π )) +
ln
W 2π dx = W + 2 x(π ) W + 2 x dπ
W + 2 x(π ) dπ 1 dx = ln 2π W + 2 x(π ) W
两边积分:
∫ W + 2 x(π ) ln
1
W + 2 x(π ) dπ dx = ∫ 2π W
wπ − w − x w− x ,我无论如何都不能解出, x′ = ln 2 2 w −x w+ x
其中,如果没有想到等价代换的话,也许还得自杀一回,好险,好险……) 8 由效用函数的性质可知,效用函数为消费束的非减函数,效用函数的比较可等价于期望收 益的比较;设三种打赌的期望收入的变化量为:
平新乔课后习题详解(第4讲--VNM效用函数与风险升水)
平新乔《微观经济学十八讲》第4讲 VNM 效用函数与风险升水1.(单项选择)一个消费者的效用函数为()bw u w ae c -=-+,则他的绝对风险规避系数为:(A )a (B )a b + (C )b (D )c 【答案】C【解析】由消费者的效用函数()bw u w ae c -=-+,可得()bw u'w abe -=,()2bw u w ab e -''=-,则可得该消费者的风险规避系数为:()()()2bwa bwab e R w u w w b abe ---=-"'=-=。
2.证明:若一个人的绝对风险规避系数为常数c ,则其效用函数形式必为()cw u w e -=-,这里w 代表财产水平。
证明:这是一个求积分的问题,即由绝对风险规避系数来倒求效用函数。
根据绝对风险规避系数的定义,就有:()()()a u w R w c u w "=-='对等式(1)最后一个等号两边积分得:()()d d u w w c w u w "=-⎰⎰' 即:()ln u w cw C '=-+。
进一步整理得:()cw C cw u w e Ce -+-'== ①其中0C C e =>,对①式两边积分得:()1cwC u w e C c-=-+ 其中1C 为任意实数。
根据效用函数的单调递增特性可知0c >(因为如果0c <,就说明财富越少,消费者的效用就越高,这不符合正常的情况)。
又因为效用函数的单调变换不改变它所代表的偏好,所以()1cwC u w e C c-=-+表示的偏好也可以用()cw u w e -=-表示。
3.若一个人的效用函数为2u w aw =-,证明:其绝对风险规避系数是财富的严格增函数。
证明:由效用函数()2u w w aw =-,可得()12u'w w α=-,()2u w α''=-,则该消费者的绝对风险规避系数为:()()()212a u w R w u w wαα"=-='-其中12w α≠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由 ,得到 ,因此该效用函数不显示出递减的风险规避行为.
6一个具有VNM效用函数的人拥有160000单位的初始财产,但他面临火灾风险:一种发生概率为5%的火灾会使其损失70000;另一种发生概率为5%的火灾会使其损失120000.他的效用函数形式是 .若他购买保险,保险公司要求他自己承担前7620单位的损失(若火灾发生).什么是这个投保人愿支付的最高保险金?(需要补充的条件为:两种火灾的发生是相斥事件)
证明:直接运用绝对风险规避系数的定义:
当 时,
, ;
即,绝对风险规避系数在 上是财富的严格增函数.
注意: , .
[注] 在 出现从负无穷到正无穷的跳跃,与 时,效用是财富的减函数,而 时是财富的增函数有关.不过,也许正是为了避免很不符合实际又麻烦的情况,一般研究不确定情况下的选择时,效用函数被认定为财富的增函数;而下面的所有类似题目中,我均假设效用函数为财富的增函数.
10.1计算该户居民的效用期望值.
解: .
10.2如何根据效用函数判断该户居民是愿意避免风险,还是爱好风险?
解:利用绝对风险规避系数来计算,具体地,由 ,( )
可以得到该户居民是愿意避免风险的.
10.3如果居民支付一定数额的保险费则可以在摩托车被盗时从保险公司得到与摩托车价值相等的赔偿.试计算该户居民最多愿意支付多少元的保险费.
说明:设此人的效用函数为 .令 , , ,其中 .
计算出赌局 所对应的期望效用, . , , , .
根据已知条件可以得到 , .
由于 ,所以我们不能断定他的选择不是一致的.
[注]此前我对这道题的解答依赖于对风险的偏好是否一致,不好.现在的解法中,判断依据仅仅是关于不确定性下选择的几个公理,具有更广的一般性.
解:思路同第六题.该户居民最多愿意支付的保险费就是使他的期望效用在支付前后不变的保险费.设保险费为 ,有
元
即该户居民最多愿意支付的保险费是6099元.
10.4在该保险费中“公平”的保险费(即该户居民的期望损失)是多少元?保险公司扣除“公平”的保险费后的纯收入是多少元?
平新乔《微观经济学十八讲》答案
EatingNoodles
第
1(单项选择)一个消费者的效用函数为 ,则他的绝对风险规避系数为:
(A) (B) (C) (D)
解:B.计算过程为
.
2证明:若一个人的绝对风险规避系数为常数 ,则其效用函数形式必为 ,这里 代表财产水平.
说明:这个结论是有问题的,若要成立需要加上条件 .
ቤተ መጻሕፍቲ ባይዱ10000元
1000元
0元
1
0.10
0.90
0.00
2
0.20
0.60
0.20
3
0.02
0.06
0.92
4
0.01
0.09
0.90
7考虑下列赌局
上表内,矩阵中的数字代表每一种结果的发生概率(比如,在赌局1中,发生10000元的概率为0.1).如果有人告诉你,他在赌局“1”与“2”之间严格偏好于“1”,在赌局“3”与“4”之间严格偏好于“3”.请问他的选择一致吗?请做出说明.
,其中 为收入水平.
5证明:在下列效用函数中,哪些显示出递减的风险规避行为:
5.1 , , .
由 ,得到 ,因此该效用函数显示出递减的风险规避行为.
[注]这里规定 ,下同.
5.2 .
由 ,知 ,因此该效用函数不显示出递减的风险规避行为.
5.3 , .
由 ,得到 ,因此该效用函数显示出递减的风险规避行为.
证明:由已知得
,
因此 ,其中 , 为任意实数.
如果 ,根据效用函数可单调变换的性质,该偏好可以用效用函数形式 表示.如果 ,那么该偏好可以用效用函数形式 表示.
3若一个人的效用函数为 ,证明:其绝对风险规避系数是财富的严格增函数.
说明:这个结论是有问题的.一个正确的结论是,补充条件 ,绝对风险规避系数在 时,是财富的严格增函数.
解:如果保险人不购买保险,他不发生火灾损失的概率为他的期望效用水平为
.
同时,他愿支付的最高保险金 ,就是使他在支付前后效用水平相等的保险金,
即有 .
解得: , (舍去)
即,投保人愿意付的最高保险金为22008元.
[注]一般的假定是,如果决策者在选择间无差异的时候,就表示他在做一个随机决策,也就是说,任何决策他都是愿意接受的.反过来,假定决策者在选择间无差异时,却出现了他不愿意选择某一个决策的情况,那就是说明他在决策间不是无差异的.这种“无差异”方法在解题中使用很多.
解:如果李某是风险规避的,有 ,其中 .由 ,那么存在一个 ,使得 .即有 ,即得到 .
9一个消费者具有VNM效用函数,他面临四种结局:A、B、C、D.其偏好序为 .试验显示,他认为
(这里的等号表示“无差异”)
请对A、B、C、D四种结局构筑出一组VNM效用值.
解:令 , ,(由连续性公理)有
,
.
10近年来保险业在我国得到迅速发展,本题应用经济学原理分析为什么人们愿意购买保险.假定有一户居民拥有财富10万元,包括一辆价值2万元的摩托车.该户居民所住地区时常发生盗窃,因此有25%的可能性该户居民的摩托车被盗.假定该户居民的效用函数为 ,其中 表示财富价值.
另外,我在题目中没有限制财富量为非负.
4设一种彩票赢得900元的概率为0.2,而获得100元的概率为0.8.计算该彩票的期望收入.若一个人对该彩票的出价超过彩票的期望收入,请写出这个人的效用函数形式.(形式不唯一)
解:彩票的期望收入为260元.这个人是风险偏好的;要描述他的效用,最方便的形式之一就是有常绝对风险规避系数的效用函数形式,比如
那么在A身上下赌注,那么期望效用 ,在B身上下赌注,期望效用为 ,不下注,效用 .
由李某的偏好关系,我们可以得到 ,即 .
[注]一个比较疯狂的想法是想看看 时是否与相同的偏好关系相容.事实上,只要财富的边际效用为正(这也是我一直假设的),这就是不可能的.
8.2如果李某是风险规避的,你能知道 的值吗?
8两匹马赛跑.李某对该赛马打赌.马A与B之间,或A赢,或B赢,无平局.李某按下列偏好序对打赌进行排序:
他在A上下赌注2元,如果A赢了,则会获得 元;若A输了,则分文无收.
不赌.
他在B上下赌注2元,如果B赢了,则会获得 元;若B输了,则分文无收.
8.1你能得出结论说,李某相信A获胜的概率P大于 吗?
解:记李某的效用函数为 ,不赌时的财富水平为 .令 , , .