梯形面积公式
梯形高的面积公式
梯形高的面积公式
梯形的面积公式:(上底+下底)×高÷2。
平行的两边叫做梯形的底边:较长的一条底边叫下底,较短的一条底边叫上底;另外两边叫腰;夹在两底之间的垂线段叫梯形的高。
一腰垂直于底的梯形叫直角梯形。
两腰相等的梯形叫等腰梯形。
可以把梯形分成是两个三角形,下面三角形的面积就是:下底x高÷2,上面三角形的面积是:上底x高÷2,所以梯形面积就是两个三角形相加,也就是下底x高÷2+上底x 高÷2=(上底+上底)x高÷2。
变形1:h=2s÷(a+b);变形2:a=2s÷h-b;变形3:b=2s÷h-a。
另一计算梯形的面积公式:中位线×高,用字母表示:l·h。
对角线互相横向的梯形面积为:对角线×对角线÷2。
特殊梯形:
全等梯形:
定义:两腰相等的梯形叫做等腰梯形(isosceles trapezoid)
性质:
1、等腰梯形的两条腰相等。
2、全等梯形在同一底上的两个底角成正比。
3、等腰梯形的两条对角线相等。
4、全等梯形就是轴对称图形,对称轴就是上下底中点的连线所在直线(过两底中点的直线。
直角梯形:
定义:一腰旋转轴底的梯形叫做直角梯形(right trapezoid)。
性质:
1、直角梯形其中1个角就是直角。
2、有一定的稳定性,但弱于非直角梯形。
计算梯形面积的公式及应用
计算梯形面积的公式及应用梯形是我们学习数学时经常遇到的一个几何形状,它具有两个平行的底边和两个不平行的侧边。
计算梯形的面积是我们学习数学的基础知识之一,它在实际生活中有着广泛的应用。
本文将介绍计算梯形面积的公式及其应用。
一、梯形的面积公式梯形的面积公式是:面积 = (上底 + 下底)×高 ÷ 2。
其中,上底和下底分别表示梯形的两个平行底边的长度,高表示梯形的高度。
例如,如果一个梯形的上底长为8cm,下底长为12cm,高为5cm,那么它的面积可以计算为:(8 + 12)× 5 ÷ 2 = 20cm²。
二、梯形面积公式的应用1. 计算图形面积梯形面积公式可以应用于计算各种图形的面积。
例如,如果一个花坛的形状是梯形,我们可以通过测量上底、下底和高来计算花坛的面积,从而确定需要多少土壤和植物。
2. 计算建筑物面积在建筑设计中,梯形的形状常常出现在屋顶或者柱子的顶部。
通过计算梯形的面积,建筑师可以确定所需的建筑材料数量,如瓦片或者涂料。
3. 计算土地面积在土地测量和规划中,梯形的形状常常用于计算土地的面积。
通过测量土地的上底、下底和高,我们可以计算出土地的面积,从而帮助农民或者房地产开发商确定土地的价值和利用规划。
4. 计算物体体积当我们需要计算一个不规则物体的体积时,可以将其分解为多个梯形,然后计算每个梯形的面积并相加。
通过这种方法,我们可以计算出物体的体积,如水箱、容器等。
三、梯形面积公式的实际应用举例举例来说,小明的家里有一个花坛,它的形状是梯形。
小明想要给花坛铺上一层新的土壤,但他不知道需要多少土壤才够。
于是,他测量了花坛的上底长为6m,下底长为8m,高为2m。
根据梯形面积公式,小明可以计算出花坛的面积为:(6 + 8)× 2 ÷ 2 = 14m²。
因此,小明需要购买14平方米的土壤来铺在花坛上。
在另一个例子中,张先生是一名房地产开发商,他购买了一块土地用于建设公寓楼。
梯形面积公式
面积公式折叠编辑本段
梯形的面积公式:〔上底+下底〕×高÷2,用字母表示:S=〔a+b〕×h÷2
变形1:h=2s÷〔a+b〕;变形2:a=2s÷h-b;变形3:b=2s÷h-a。
另一计算梯形的面积公式:中位线×高,用字母表示:L·h。
对角线互相垂直的梯形面积为:对角线×对角线÷2。
字母公式:〔A+B)乘H除2
梯形公式折叠编辑本段
中位线×高,用字母表示:L·h
〔上底+下底〕×高÷2,用字母表示:S=〔a+b〕×h÷2
应用实例折叠编辑本段
如图,四边形ABCD中,AB=DC,AC=DB梯形,求证:四边形ABCD是等腰梯形。
证明:过点A作AE∥DC交BC边于点E.
∵AB=CD,AC=DB,BC=CB,
图∴△ABC≌△DCB,∴∠ABC=∠DCB
又∵AE∥DC,
∴∠AEB=∠DCB
∴∠ABC=∠AEB ,∴AB=AE,
∴四边形AECD是平行四边形.
∴AD∥BC.
又AB=DC,且AD≠BC,
∴四边形ABCD为等腰梯形.
点评:
判定一个任意四边形为等腰梯形,如果不能直接运用等腰梯形的判定定理,一般的方法是通过作辅助线,将此四边形分解为熟悉的多边形,此例就是通过作平行线,将四边形分解成为一个平行四边形和一个等腰三角形.。
梯形的面积和周长公式
梯形的面积和周长公式
梯形的面积公式是(上底+下底)×高÷2。
梯形的周长公式为上底+下底+2腰。
梯形是只有一组对边平行的四边形。
以下是整理的相关内容,供参考。
梯形的面积公式
设梯形的上底长为a,下底长为b,高为h,面积为S,则梯形的面积公式为
S=(a+b)xh/2。
通俗表示为:(上底+下底)×高÷2。
特例:
①若已知梯形中位线长度为L,根据上述梯形性质2,则梯形面积公式为S=L·h。
②若梯形的两条对角线相互垂直,长度分别为x、y,则梯形面积公式为S=1/2xy。
梯形的周长公式
设梯形的上底长为a,下底长为b,两腰长分别为c、d,周长为L,则梯形的周长公式为L=a+b+c+d,通俗表示为:上底+下底+腰+腰。
由于等腰梯形的两腰长相等,即c=d,故等腰梯形的周长公式可简化为:L=a+b+c+d=a+b+2c=a+b+2d,通俗表示为:上底+下底+2腰。
梯形的判定方法
1、一组对边平行,另一组对边不平行的四边形是梯形。
2、一组对边平行且不相等的四边形是梯形。
梯形面积计算公式两种
梯形面积计算公式两种
梯形是指只有一组对边平行的四边形。
梯形的面积公式:(上底+下底)×高÷2,用字母表示:S=(a+b)×h÷2。
另一计算梯形的面积公式:中位线×高,用字母表示:L·h。
梯形面积公式:
梯形的面积公式:(上底+下底)×高÷2,用字母表示:S=(a+b)×h÷2。
变形1:h=2s÷(a+b);变形2:a=2s÷h-b;变形3:b=2s÷h-a。
另一计算梯形的面积公式:中位线×高,用字母表示:L·h。
梯形的判定:
梯形是指只有一组对边平行的四边形。
平行的两边叫做梯形的底边,较长的一条底边叫下底,较短的一条底边叫上底。
另外两边叫腰;夹在两底之间的垂线段叫梯形的高。
一腰垂直于底的梯形叫直角梯形。
两腰相等的梯形叫等腰梯形。
等腰梯形是一种特殊的梯形,其判定方法与等腰三角形判定方法类似。
判定:
1、一组对边平行,另一组对边不平行的四边形是梯形。
2、一组对边平行且不相等的四边形是梯形。
梯形的面积怎么计算
梯形的面积怎么计算
1、梯形的面积公式:(上底+下底)×高÷2。
梯形的面积等于上下两底之和与高的乘积的一半。
如果梯形的上下两底分别用a和b表示,高用h表示,梯形的面积s=(a+b)×h÷2 。
2、梯形的面积公式:中位线×高。
根据梯形中位线的长度等于上下两底和的一半,梯形的面积也等于中位线与高的乘积。
如果梯形的中位线用m表示,高用h表示,梯形的面积s=mh 。
3、对角线互相垂直的梯形面积为:对角线×对角线÷2。
应用题举例:
如下图,梯形ABCD的AB平行于CD,对角线AC,BD交于O,已知△BOC 的面积为35平方厘米,AO:OC=5:7.那么梯形ABCD的面积是________平方厘米。
解答:因为AO:OC=5:7,且△AOB与△BOC等高,所以他们的面积比等于底边比。
(等积变换模型)
即△AOB:△BOC= AO:OC=5:7,可得△AOB的面积为25.
同理,△ADC与△BCD等底等高,所以△ADC面积=△BCD面积,那么△AOD 面积也为35
再由等积变换可得:△AOD与△DOC的面积比等于AO与OC之比,等于5:7.
所以三角形DOC面积为49.
则梯形ABCD面积为25+35+35+49=144平方厘米。
梯形体面积公式
梯形体面积公式梯形是具有两个平行底面的多边形,它的面积可以通过以下公式计算:梯形面积 = (上底 + 下底) ×高 ÷ 2其中,上底和下底是梯形的两个平行底面的长度,高是垂直于平行底面的距离。
梯形的面积公式可以通过以下几个方面进行解释:1. 梯形的定义:梯形是一个具有两个平行边的四边形,它的两个平行边被称为上底和下底。
梯形的其余两条边被称为斜边或者腰。
2. 面积的计算方法:根据梯形的定义,可以将梯形分解成一个矩形和两个直角三角形。
矩形的宽度等于上底和下底之和,高度等于梯形的高。
而两个直角三角形的底边分别等于上底和下底,高度等于梯形的高。
因此,梯形的面积等于(上底 + 下底) ×高 ÷ 2。
3. 梯形面积公式的推导:梯形的面积可以通过将其分解成矩形和两个直角三角形进行求解。
首先,将梯形划分成上下两个直角三角形,它们的面积分别为上底×高 ÷ 2 和下底×高 ÷ 2。
因此,两个直角三角形的总面积为(上底 + 下底) ×高 ÷ 2。
再加上矩形的面积,总面积为(上底 + 下底) ×高 ÷ 2 + (上底 + 下底) ×高 ÷ 2 = (上底 + 下底) ×高。
4. 梯形面积公式的应用:梯形的面积公式可以用于计算梯形的面积,在几何学和实际生活中有广泛的应用。
例如,在建筑设计中,可以使用梯形面积公式计算房屋屋顶的面积。
在工程测量中,同样可以使用梯形面积公式计算工地中不规则地块的面积。
总结起来,梯形的面积公式为(上底 + 下底) ×高 ÷ 2,该公式通过将梯形分解成矩形和两个直角三角形进行计算。
这个公式在几何学和实际生活中有广泛的应用。
最终的结果是梯形的面积等于(上底 + 下底) 乘以高除以 2。
梯形面积的算法公式
梯形面积的算法公式梯形是一个常见的几何图形,它的特点是有两条平行边,其余两条边不平行。
计算梯形的面积是数学中常见的问题,而梯形的面积算法公式可以帮助我们轻松解决这个问题。
梯形的面积算法公式如下:面积 = (上底 + 下底)× 高÷ 2在这个公式中,上底和下底分别表示梯形两条平行边的长度,高表示梯形两平行边之间的距离。
通过这个公式,我们可以快速计算出梯形的面积。
下面我们通过几个具体的例子来说明如何使用梯形的面积算法公式。
例子1:假设梯形的上底长度为5cm,下底长度为8cm,高为6cm。
我们可以通过公式计算梯形的面积:面积= (5 + 8) × 6 ÷ 2 = 13 × 6 ÷ 2 = 39cm²因此,这个梯形的面积为39平方厘米。
例子2:假设梯形的上底长度为12.5cm,下底长度为18.7cm,高为10cm。
我们可以通过公式计算梯形的面积:面积= (12.5 + 18.7) × 10 ÷ 2 = 31.2 × 10 ÷ 2 = 156cm²因此,这个梯形的面积为156平方厘米。
通过以上两个例子,我们可以看到,使用梯形的面积算法公式可以快速准确地计算出梯形的面积。
这个公式的原理是将梯形分解为一个矩形和两个三角形,然后分别计算出它们的面积,最后将它们的面积相加得到梯形的面积。
需要注意的是,使用这个公式计算梯形的面积时,要确保上底、下底和高的单位相同,否则计算结果将会出现错误。
另外,计算结果的单位将会是上底、下底和高的单位的平方。
除了使用梯形的面积算法公式,我们还可以通过其他方法来计算梯形的面积。
例如,我们可以将梯形分解为两个直角三角形,然后分别计算它们的面积,最后将它们的面积相加得到梯形的面积。
这种方法虽然稍微复杂一些,但同样可以准确计算出梯形的面积。
梯形的面积算法公式是一种简单高效的计算梯形面积的方法。
梯形面积公式计算公式
梯形面积公式计算公式梯形是一种四边形,它的两边是平行的,而另外两边不平行。
梯形的面积可以通过以下公式计算:面积=(上底+下底)*高/2其中,上底和下底分别是梯形的两个平行边的长度,高是两个平行边的距离。
为了更好地理解梯形面积的计算公式,我们可以从几何角度来推导。
假设梯形的两底分别为a和b,高为h。
我们先画一条连接两个底的线段,将梯形分成了一个矩形和两个直角三角形。
通过观察我们可以发现,这两个直角三角形加上矩形的面积恰好等于整个梯形的面积。
而直角三角形的面积可以通过底乘以高的一半求得,矩形的面积可以通过底乘以高求得。
因此有以下等式:梯形面积=直角三角形1的面积+矩形的面积+直角三角形2的面积直角三角形1的面积=h*a/2矩形的面积=h*(b-a)直角三角形2的面积=h*b/2将上述三个面积代入原等式中,可得:梯形面积=(h*a/2)+(h*(b-a))+(h*b/2)整理得:梯形面积=h*(a+b)/2所以,梯形的面积公式就是:面积=(上底+下底)*高/2这个公式可以很方便地用于计算梯形的面积。
例如,如果梯形的上底长为6,下底长为10,高为8,那么可以使用公式来计算面积:面积=(6+10)*8/2=16*8/2=64所以,这个梯形的面积为64平方单位。
除了使用这个公式计算梯形的面积,还可以通过其他方法进行计算。
例如,可以将梯形分割成两个直角三角形和一个矩形,然后分别计算它们的面积,最后将三个部分的面积加起来。
这种方法和上述推导的过程是一致的。
总结起来,梯形的面积计算公式为(上底+下底)*高/2,可以通过将梯形分割成直角三角形和矩形来推导得出。
这个公式可以通过代入具体数值来计算梯形的面积。
梯形的计算面积公式
梯形的计算面积公式梯形,又称为梯形图形,它可以被定义为一个两个直角的四边形,它的两个对角线的长度不一样,有一个较长的对角线,叫做上底,另一条较短的对角线叫做下底,这样四条边组成梯形,其中两条平行边分别叫做左面和右面。
梯形的面积由它的两个对角线长度及两条平行边之间的距离直接决定,因此,计算梯形面积的公式是:面积=(上底+下底)*÷2。
上述公式是基本的梯形所计算出的面积,但是,在实际的运用中,因为梯形的不同变形以及某些其它的加减项,常有另外的公式来计算梯形的面积。
比如,在一般的梯形中,假设有两个角α,β,其中α≠90度,β≠90度,这个梯形的面积计算公式为:面积=上底*高*sinα+下底*高*sinβ÷2。
此外,也有等腰梯形的面积计算公式,等腰梯形就是上底等于下底的梯形,那么,其面积公式为:面积=底边*高÷2。
除了上面提到的几种梯形外,还有其它形状的梯形,例如有以下公式:1、如果是梯形的两个直角边都相等,则公式为:面积=直角边*斜边*sinα÷2。
2、如果是梯形的两个直角边不等,则公式为:面积=(大直角边+小直角边)*斜边*sinα÷2。
3、如果梯形的两个对角线不等,则公式为:面积=(大底+小底)*高÷2。
4、如果梯形的两个对角线等,则公式为:面积=(大底+小底)*高*sinα÷2。
以上就是梯形的计算面积公式,而这些公式又是由什么原理形成的呢?答案就是三角恒等式,三角恒等式是几何中比较重要的定理,它由古希腊数学家勒弗里奇所提出,基本定义为两边加一角等于另外两边,经过这个定理,我们可以把和梯形相关的三角形计算面积的公式都找出来,比如梯形面积公式中最重要的就是sinα,sinβ,sinα和sinβ就是来自三角恒等式,用它可以求出梯形的面积。
因此,梯形面积的计算使用的公式就是在此基础上发展起来的,它们是以三角恒等式来提供的基础,以便计算梯形的面积。
梯形的面积怎么求
梯形的面积怎么求
1、梯形周长公式C=上底+下底+两个腰长
2、等腰梯形的周长公式:上底+下底+2腰
3、梯形面积公式:S=1/2(上底+下底)*高
4、梯形的面积公式:中位线×高
5、对角线互相垂直的梯形面积为:对角线×对角线÷2
性质
1.等腰梯形的两条腰相等。
2.等腰梯形在同一底上的两个底角相等。
3.等腰梯形的两条对角线相等。
4.等腰梯形是轴对称图形,对称轴是上下底中点的连线所在直线(过两底中点的直线)。
判定
①两腰相等的梯形是等腰梯形;
②同一底上的两个角相等的梯形是等腰梯形;
③对角线相等的梯形是等腰梯形。
设直角梯形上边长为a,下边长为b,高为h,则:
1、其重心距离下底边b的高度为:
2、其重心距离直角边的距离为:
在直角梯形ABCD中,AD//BC,∠B=90°,则∠A=90°,∠C+∠D=180°。
重要性质:直角梯形斜腰的中点到直角腰的二端点距离相等。
扩展资料:
若一个三角形的三边a,b,c ()满足:
1、,则这个三角形是锐角三角形;
2、,则这个三角形是直角三角形;
3、,则这个三角形是钝角三角形。
公式:
1、(面积=底×高÷2。
其中,a是三角形的底,h是底所对应的高)注释:三边均可为底,应理解为:三边与之对应的高的积的一半是三角形的面积。
这是面积法求线段长度的基础。
2、(其中,三个角为∠A,∠B,∠C,对边分别为a,b,c。
参见三角函数)
3、 (l为高所在边中位线)
4、(海伦公式),其中。
计算梯形面积的公式
计算梯形面积的公式梯形是一种特殊的四边形,它有两个平行的底边和两条不平行的侧边。
计算梯形的面积可以使用以下公式:面积 = (上底 + 下底) × 高÷ 2其中,上底和下底分别指梯形的两个平行底边的长度,高指梯形两个底边之间的垂直距离。
梯形面积公式的推导过程如下:假设梯形的上底为a,下底为b,高为h。
我们可以将梯形划分为两个三角形和一个矩形。
我们计算矩形的面积,即底边的平均长度乘以高,得到矩形的面积为ab×h。
然后,我们计算两个三角形的面积。
每个三角形的面积都可以表示为底边乘以高再除以2,即ah/2和bh/2。
将矩形和两个三角形的面积相加,得到梯形的总面积为(ab×h) + (ah/2) + (bh/2)。
化简上述表达式,得到梯形的总面积为(ab+ah+bh)/2,进一步化简为(a+b)×h/2。
根据以上推导,我们可以得出梯形面积的公式为(上底 + 下底) × 高÷ 2。
下面我们通过一个例子来演示如何使用梯形面积的公式进行计算。
假设某个梯形的上底长度为5 cm,下底长度为10 cm,高为8 cm。
我们可以根据公式进行计算:面积= (5 + 10) × 8 ÷ 2= 15 × 8 ÷ 2= 120 ÷ 2= 60 平方厘米因此,该梯形的面积为60平方厘米。
通过以上例子,我们可以看到使用梯形面积的公式可以快速准确地计算梯形的面积。
只需要知道梯形的上底、下底和高,就可以使用这个公式进行计算。
需要注意的是,公式中的长度单位要保持一致。
在计算过程中,如果是以厘米为单位,那么计算结果也应该以平方厘米为单位。
除了使用公式计算梯形面积,还可以通过将梯形分解为两个三角形和一个矩形来计算。
这种方法也能得出相同的结果,但相对来说计算过程稍微复杂一些。
总结起来,计算梯形面积的公式是(上底 + 下底) × 高÷ 2。
梯形面积计算公式三种
梯形面积计算公式三种作为中学数学的基本概念之一,梯形面积的计算在学习中扮演着重要的角色。
在实际生活中,无论是测量建筑面积还是计算地块大小,梯形面积计算公式都是必不可少的工具。
本文主要介绍梯形面积计算公式的三种方式,包括基本公式、高倍增法和海龙公式,旨在帮助读者更好地理解和掌握梯形面积计算技巧。
一、基本梯形面积计算公式梯形面积计算的基本公式为:面积=(上底+下底)×高÷2。
其中,上底和下底是梯形的两个相邻的并行边长度,高是梯形两个平行面之间的距离。
这个公式简单明了,容易理解,适用于所有类型的梯形面积计算。
例如,假设一个梯形上底长为10厘米,下底长为20厘米,高为5厘米,那么它的面积为(10+20)×5÷2=75平方厘米。
二、高倍增法计算公式高倍增法是一种利用梯形高倍增加面积的方法,计算公式为:面积=(上底+下底)×高倍增÷2。
具体实现方法如下:1.将上底、下底的和除以2得到平均宽度。
2.将梯形高平均分成多份,每份所占高的长度等于平均宽度。
3.将每份高的长度和平均宽度相乘,得到梯形该部分的面积。
4.将所有部分的面积累加即可得到梯形的面积。
例如,假设一个梯形上底长为10厘米,下底长为20厘米,高为5厘米,要将高倍增为10倍计算,那么它的面积为(10+20)×5×10÷2=750平方厘米。
三、海龙公式计算公式海龙公式是另一种较为复杂的梯形面积计算公式,其公式为:面积 = 根号((p-a)×(p-b)×(p-c)×(p-d) - a×b×c×d×cos²((B+D)÷2))。
其中,a、b、c、d分别为梯形的四个边,B表示上底与对角线夹角,D表示下底与对角线夹角,p表示半周长(即a+b+c+d÷2),cos²((B+D)÷2)表示夹角B和夹角D 的平均数的余弦值平方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、积极参与思考时间不得超过5分钟。
你能用分割的方法求出梯形的面积吗?
《梯形面积拍手歌》
作者:龚力
梯形面积不难记,
先写上底再下底。
两者之和乘
(h),
除以个2别忘记,
小小公式本领大,
解决问题全靠你。
解决问题
王师傅的车窗玻璃形状如下图,如果每平方米玻璃的价格为 1000元,王师傅要换一块新玻璃需要多少钱?(你是怎么想的?)
能力目标:灵活应用公式解决实际问题。 情感目标:培养学生的探索意识与推理 能力,获得个性化发展。
还记得三角形的面积怎么探索出来的吗?
三角形的面积=平行四边形面积÷2
你能用两个完全一样的梯形探 究梯形的面积吗?
探究要求
1、小组合作探究,用两个完全一样的梯形拼摆出 已经会求面积的图形,通过对拼出图形的观察,然 后分析拼出图形与梯形有什么联系,最后小组交流 填写学案第2题,动手动脑,合作探究、思维多样。
拓展延伸
计算下面图形的面积, 你发现了什么?
梯形的面积一样,但形状不一定一样。
谢
谢
制作:龚力
营山县双溪小学
龚力
课前热身
先写出下面各种图形面积计算公式,再计算出下面各种图形 的面积。(面积用S表示,底用a表示,高用h表示。)
S=ah
高4cm
底6cm
=6×4 =24(平方厘米) S=ah÷2 =6×4÷2
高 4cm 底6cm
=12(平方厘米)
新课探究
超级面积的计算公 式,并且会用字母表示。
判断 (1)、梯形的面积等于梯形的上底加下底 的和乘高。 ( × ) (2)、梯形的面积是平行四边形面积的一 半。 ( × ) (3)、两个面积相等的梯形一定能拼成一 个平行四边形。( × ) (4)、梯形的上底增加5cm,下底减少 5cm,高不变,面积也不会变。( √ ) (5)、一个长方形可以分成两个直角三角 形,也可以分成两个梯形。( √ )
S=(a+b)h÷2 1.4m 0.7m =(1.4+1.6) ×0.7÷2 =3 ×0.7÷2 =2.1÷2 1.6m =1.05(平方米) 1.05 ×1000=1050(元) 答:王师傅要换一块新玻璃需要1050元。
努 力 吧 !
填空:(1)、如果S表示梯形的面积,用 a表示梯形的上底,b表示梯形的下底,h 表示梯形的高,那么梯形的面积公式用字 母表示为( S=(a+b)h÷2 )。 (2)、求一个梯形的面积是多少必须知 道梯形的(上底 )( 下底)和( 高)。 一个梯形的上底是4dm,下底是10dm, 高是5dm,它的面积是(35平方分米 )。