高一数学练习题及答案

合集下载

高一数学练习题答案

高一数学练习题答案

高一数学练习题答案一、选择题1. 已知函数f(x)=2x^2-3x+1,求f(2)的值。

A. 5B. 7C. 9D. 112. 若a>0,b>0,且a+b=1,则ab的最大值是:A. 1/4B. 1/2C. 1D. 1/33. 已知等差数列的前三项分别为2,5,8,求第10项的值。

A. 29B. 32C. 35D. 384. 若sinα+cosα=√2,则tanα的值为:A. 1B. -1C. √2D. -√25. 函数y=x^3-3x^2+2的导数为:A. 3x^2-6xB. 3x^2-9xC. 3x-6D. 3x-9二、填空题1. 若一个圆的直径为10,则其面积为______。

2. 已知等比数列的前三项为3,9,27,求第4项的值。

3. 若函数f(x)=x^3-6x^2+11x-6,则f(2)的值为______。

4. 已知三角形ABC中,角A=60°,边a=3,边b=4,求角B的余弦值。

5. 已知直线y=2x+1与曲线y=x^2-4x+4相交,求交点坐标。

三、解答题1. 解不等式:x^2-4x+3≤0。

2. 已知函数f(x)=x^3-6x^2+11x-6,求其极值点。

3. 求圆心在原点,半径为5的圆的方程。

4. 已知数列{an}的前n项和为S_n=n^2+1,求数列{an}的通项公式。

5. 已知函数y=x^3-3x^2+2在点(1,0)处的切线方程。

四、证明题1. 证明:若a,b,c是三角形的三边长,且a^2+b^2=c^2,则三角形是直角三角形。

2. 证明:函数f(x)=x^3-6x^2+11x-6在区间(1,2)内单调递增。

3. 证明:等差数列的前n项和S_n=n^2+n,求证其公差d=2。

五、应用题1. 某工厂生产一批产品,每件产品的成本为c元,售价为p元。

若生产x件产品,则总成本为C(x)=cx,总收入为R(x)=px。

求当p=3c时,利润函数P(x)的最大值。

高一数学必修一全册练习题(解析版)

高一数学必修一全册练习题(解析版)

第一章集合与函数的概念1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是()A.{x|x是小于18的正奇数}B.{x|x=4k+1,k∈Z,且k<5}C.{x|x=4t-3,t∈N,且t≤5}D.{x|x=4s-3,s∈N*,且s≤5}解析:选D.A中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B中k取负数,多了若干元素;C中t=0时多了-3这个元素,只有D是正确的.2.集合P={x|x=2k,k∈Z},M={x|x=2k+1,k∈Z},S={x|x=4k+1,k∈Z},a∈P,b∈M,设c=a+b,则有()A.c∈P B.c∈MC.c∈S D.以上都不对解析:选B.∈a∈P,b∈M,c=a+b,设a=2k1,k1∈Z,b=2k2+1,k2∈Z,∈c=2k1+2k2+1=2(k1+k2)+1,又k1+k2∈Z,∈c∈M.3.定义集合运算:A*B={z|z=xy,x∈A,y∈B},设A={1,2},B={0,2},则集合A*B 的所有元素之和为()A.0 B.2C.3 D.6解析:选D.∈z=xy,x∈A,y∈B,∈z的取值有:1×0=0,1×2=2,2×0=0,2×2=4,故A*B={0,2,4},∈集合A*B的所有元素之和为:0+2+4=6.4.已知集合A={1,2,3},B={1,2},C={(x,y)|x∈A,y∈B},则用列举法表示集合C=____________.解析:∈C={(x,y)|x∈A,y∈B},∈满足条件的点为:(1,1),(1,2),(2,1),(2,2),(3,1),(3,2).答案:{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}1.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合 答案:D2.设集合M ={x ∈R |x ≤33},a =26,则( ) A .a ∈M B .a ∈M C .{a }∈M D .{a |a =26}∈M 解析:选B.(26)2-(33)2=24-27<0, 故26<3 3.所以a ∈M .3.方程组⎩⎪⎨⎪⎧x +y =1x -y =9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D.由⎩⎪⎨⎪⎧ x +y =1x -y =9,得⎩⎪⎨⎪⎧x =5y =-4,该方程组有一组解(5,-4),解集为{(5,-4)}.4.下列命题正确的有( ) (1)很小的实数可以构成集合;(2)集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合; (3)1,32,64,|-12|,0.5这些数组成的集合有5个元素;(4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. A .0个 B .1个 C .2个 D .3个解析:选A.(1)错的原因是元素不确定;(2)前者是数集,而后者是点集,种类不同;(3)32=64,|-12|=0.5,有重复的元素,应该是3个元素;(4)本集合还包括坐标轴. 5.下列集合中,不同于另外三个集合的是( ) A .{0} B .{y |y 2=0} C .{x |x =0} D .{x =0}解析:选D.A 是列举法,C 是描述法,对于B 要注意集合的代表元素是y ,故与A ,C 相同,而D 表示该集合含有一个元素,即“x =0”.6.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为( )A .4B .5C .19D .20解析:选C.易得P *Q 中元素的个数为4×5-1=19.故选C 项.7.由实数x ,-x ,x 2,-3x 3所组成的集合里面元素最多有________个. 解析:x 2=|x |,而-3x 3=-x ,故集合里面元素最多有2个. 答案:28.已知集合A =⎩⎨⎧⎭⎬⎫x ∈N |4x -3∈Z ,试用列举法表示集合A =________. 解析:要使4x -3∈Z ,必须x -3是4的约数.而4的约数有-4,-2,-1,1,2,4六个,则x =-1,1,2,4,5,7,要注意到元素x 应为自然数,故A ={1,2,4,5,7}答案:{1,2,4,5,7}9.集合{x |x 2-2x +m =0}含有两个元素,则实数m 满足的条件为________. 解析:该集合是关于x 的一元二次方程的解集,则Δ=4-4m >0,所以m <1. 答案:m <110. 用适当的方法表示下列集合: (1)所有被3整除的整数;(2)图中阴影部分点(含边界)的坐标的集合(不含虚线); (3)满足方程x =|x |,x ∈Z 的所有x 的值构成的集合B .解:(1){x |x =3n ,n ∈Z };(2){(x ,y )|-1≤x ≤2,-12≤y ≤1,且xy ≥0};(3)B ={x |x =|x |,x ∈Z }.11.已知集合A ={x ∈R |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A .解:∈1是集合A 中的一个元素,∈1是关于x 的方程ax 2+2x +1=0的一个根, ∈a ·12+2×1+1=0,即a =-3. 方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∈集合A =⎩⎨⎧⎭⎬⎫-13,1.12.已知集合A ={x |ax 2-3x +2=0},若A 中元素至多只有一个,求实数a 的取值范围. 解:∈a =0时,原方程为-3x +2=0,x =23,符合题意.∈a ≠0时,方程ax 2-3x +2=0为一元二次方程. 由Δ=9-8a ≤0,得a ≥98.∈当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根.综合∈∈,知a =0或a ≥98.1.下列各组对象中不能构成集合的是( ) A .水浒书业的全体员工 B .《优化方案》的所有书刊 C .2010年考入清华大学的全体学生 D .美国NBA 的篮球明星解析:选D.A 、B 、C 中的元素:员工、书刊、学生都有明确的对象,而D 中对象不确定,“明星”没有具体明确的标准.2.(2011年上海高一检测)下列所给关系正确的个数是( ) ∈π∈R ;∈3∈Q ;∈0∈N *;∈|-4|∈N *. A .1 B .2 C .3 D .4 解析:选B.∈∈正确,∈∈错误.3.集合A ={一条边长为1,一个角为40°的等腰三角形}中有元素( ) A .2个 B .3个 C .4个 D .无数个解析:选C.(1)当腰长为1时,底角为40°或顶角为40°.(2)当底边长为1时,底角为40°或顶角为40°,所以共有4个三角形.4.以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合中共有________个元素. 解析:由x 2-5x +6=0,解得x =2或x =3.由x2-x-2=0,解得x=2或x=-1.答案:31.若以正实数x,y,z,w四个元素构成集合A,以A中四个元素为边长构成的四边形可能是()A.梯形B.平行四边形C.菱形D.矩形答案:A2.设集合A只含一个元素a,则下列各式正确的是()A.0∈A B.a∈AC.a∈A D.a=A答案:C3.给出以下四个对象,其中能构成集合的有()∈教2011届高一的年轻教师;∈你所在班中身高超过1.70米的同学;∈2010年广州亚运会的比赛项目;∈1,3,5.A.1个B.2个C.3个D.4个解析:选C.因为未规定年轻的标准,所以∈不能构成集合;由于∈∈∈中的对象具备确定性、互异性,所以∈∈∈能构成集合.4.若集合M={a,b,c},M中元素是∈ABC的三边长,则∈ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:选D.根据元素的互异性可知,a≠b,a≠c,b≠c.5.下列各组集合,表示相等集合的是()∈M={(3,2)},N={(2,3)};∈M={3,2},N={2,3};∈M={(1,2)},N={1,2}.A.∈ B.∈C.∈ D.以上都不对解析:选B.∈中M中表示点(3,2),N中表示点(2,3),∈中由元素的无序性知是相等集合,∈中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.6.若所有形如a +2b (a ∈Q 、b ∈Q )的数组成集合M ,对于x =13-52,y =3+2π,则有( )A .x ∈M ,y ∈MB .x ∈M ,y ∈MC .x ∈M ,y ∈MD .x ∈M ,y ∈M 解析:选B.∈x =13-52=-341-5412,y =3+2π中π是无理数,而集合M 中,b ∈Q ,得x ∈M ,y ∈M .7.已知∈5∈R ;∈13∈Q ;∈0={0};∈0∈N ;∈π∈Q ;∈-3∈Z .其中正确的个数为________.解析:∈错误,0是元素,{0}是一个集合;∈0∈N ;∈π∈Q ,∈∈∈正确. 答案:38.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的取值是________. 解析:当a =2时,6-a =4∈A ; 当a =4时,6-a =2∈A ; 当a =6时,6-a =0∈A , 所以a =2或a =4. 答案:2或49.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b 的可能取值组成的集合中元素的个数为________.解析:当a >0,b >0时,|a |a +|b |b =2;当a ·b <0时,|a |a +|b |b =0;当a <0且b <0时,|a |a +|b |b=-2.所以集合中的元素为2,0,-2.即元素的个数为3. 答案:310.已知集合A 含有两个元素a -3和2a -1,若-3∈A ,试求实数a 的值. 解:∈-3∈A ,∈-3=a -3或-3=2a -1. 若-3=a -3,则a =0,此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1,此时集合A 含有两个元素-4,-3,符合题意. 综上所述,满足题意的实数a 的值为0或-1.11.集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,试判断12-3是不是集合A 中的元素?解:∈12-3=2+3=2+3×1,而2,1∈Z ,∈2+3∈A ,即12-3∈A .12.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,试求a 与b 的值. 解:根据集合中元素的互异性,有⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧a =b2b =2a, 解得⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧a =0b =0或⎩⎨⎧a =14b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0b =1或⎩⎨⎧a =14b =12.1.下列六个关系式,其中正确的有( )∈{a ,b }={b ,a };∈{a ,b }∈{b ,a };∈∈={∈};∈{0}=∈;∈∈{0};∈0∈{0}.A .6个B .5个C .4个D .3个及3个以下 解析:选C.∈∈∈∈正确.2.已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是( ) A .对任意的a ∈A ,都有a ∈B B .对任意的b ∈B ,都有b ∈A C .存在a 0,满足a 0∈A ,a 0∈B D .存在a 0,满足a 0∈A ,a 0∈B解析:选C.A 不是B 的子集,也就是说A 中存在不是B 中的元素,显然正是C 选项要表达的.对于A 和B 选项,取A ={1,2},B ={2,3}可否定,对于D 选项,取A ={1},B ={2,3}可否定.3.设A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是()A.a≥2 B.a≤1C.a≥1 D.a≤2解析:选A.A={x|1<x<2},B={x|x<a},要使A B,则应有a≥2.4.集合M={x|x2-3x-a2+2=0,a∈R}的子集的个数为________.解析:∈Δ=9-4(2-a2)=1+4a2>0,∈M恒有2个元素,所以子集有4个.答案:41.如果A={x|x>-1},那么()A.0∈A B.{0}∈AC.∈∈A D.{0}∈A解析:选D.A、B、C的关系符号是错误的.2.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A BC.B A D.A∈B解析:选C.利用数轴(图略)可看出x∈B∈x∈A,但x∈A∈x∈B不成立.3.定义A-B={x|x∈A且x∈B},若A={1,3,5,7,9},B={2,3,5},则A-B等于() A.A B.BC.{2} D.{1,7,9}解析:选D.从定义可看出,元素在A中但是不能在B中,所以只能是D.4.以下共有6组集合.(1)A={(-5,3)},B={-5,3};(2)M={1,-3},N={3,-1};(3)M=∈,N={0};(4)M={π},N={3.1415};(5)M={x|x是小数},N={x|x是实数};(6)M={x|x2-3x+2=0},N={y|y2-3y+2=0}.其中表示相等的集合有()A.2组B.3组C.4组D.5组解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.5.定义集合间的一种运算“*”满足:A*B={ω|ω=xy(x+y),x∈A,y∈B}.若集合A={0,1},B ={2,3},则A *B 的子集的个数是( )A .4B .8C .16D .32解析:选B.在集合A 和B 中分别取出元素进行*的运算,有0·2·(0+2)=0·3·(0+3)=0,1·2·(1+2)=6,1·3·(1+3)=12,因此可知A *B ={0,6,12},因此其子集个数为23=8,选B.6.设B ={1,2},A ={x |x ∈B },则A 与B 的关系是( ) A .A ∈B B .B ∈A C .A ∈B D .B ∈A解析:选D.∈B 的子集为{1},{2},{1,2},∈, ∈A ={x |x ∈B }={{1},{2},{1,2},∈},∈B ∈A .7.设x ,y ∈R ,A ={(x ,y )|y =x },B ={(x ,y )|yx =1},则A 、B 间的关系为________.解析:在A 中,(0,0)∈A ,而(0,0)∈B ,故B A .答案:BA8.设集合A ={1,3,a },B ={1,a 2-a +1},且A ∈B ,则a 的值为________. 解析:A ∈B ,则a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.答案:-1或29.已知A ={x |x <-1或x >5},B ={x |a ≤x <a +4},若A B ,则实数a 的取值范围是________.解析:作出数轴可得,要使A B ,则必须a +4≤-1或a >5,解之得{a |a >5或a ≤-5}.答案:{a |a >5或a ≤-5}10.已知集合A ={a ,a +b ,a +2b },B ={a ,ac ,ac 2},若A =B ,求c 的值.解:∈若⎩⎪⎨⎪⎧a +b =ac a +2b =ac2,消去b 得a +ac 2-2ac =0, 即a (c 2-2c +1)=0.当a =0时,集合B 中的三个元素相同,不满足集合中元素的互异性, 故a ≠0,c 2-2c +1=0,即c =1; 当c =1时,集合B 中的三个元素也相同, ∈c =1舍去,即此时无解.∈若⎩⎪⎨⎪⎧a +b =ac 2a +2b =ac ,消去b 得2ac 2-ac -a =0,即a (2c 2-c -1)=0.∈a ≠0,∈2c 2-c -1=0,即(c -1)(2c +1)=0. 又∈c ≠1,∈c =-12.11.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若AB ,求a 的取值范围;(2)若B ∈A ,求a 的取值范围. 解:(1)若AB ,由图可知,a >2.(2)若B ∈A ,由图可知,1≤a ≤2.12.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且B A ,求实数m 的值.解:A ={x |x 2+x -6=0}={-3,2}. ∈BA ,∈mx +1=0的解为-3或2或无解.当mx +1=0的解为-3时, 由m ·(-3)+1=0,得m =13;当mx +1=0的解为2时, 由m ·2+1=0,得m =-12;当mx +1=0无解时,m =0. 综上所述,m =13或m =-12或m =0.1.(2010年高考广东卷)若集合A ={x |-2<x <1},B ={x |0<x <2},则集合A ∩B =( ) A .{x |-1<x <1} B .{x |-2<x <1} C .{x |-2<x <2} D .{x |0<x <1}解析:选D.因为A ={x |-2<x <1},B ={x |0<x <2},所以A ∩B ={x |0<x <1}. 2.(2010年高考湖南卷)已知集合M ={1,2,3},N ={2,3,4}则( ) A .M ∈N B .N ∈M C .M ∩N ={2,3} D .M ∈N ={1,4}解析:选C.∈M={1,2,3},N={2,3,4}.∈选项A、B显然不对.M∈N={1,2,3,4},∈选项D错误.又M∩N={2,3},故选C.3.已知集合M={y|y=x2},N={y|x=y2},则M∩N=()A.{(0,0),(1,1)} B.{0,1}C.{y|y≥0} D.{y|0≤y≤1}解析:选C.M={y|y≥0},N=R,∈M∩N=M={y|y≥0}.4.已知集合A={x|x≥2},B={x|x≥m},且A∈B=A,则实数m的取值范围是________.解析:A∈B=A,即B∈A,∈m≥2.答案:m≥21.下列关系Q∩R=R∩Q;Z∈N=N;Q∈R=R∈Q;Q∩N=N中,正确的个数是() A.1B.2C.3 D.4解析:选C.只有Z∈N=N是错误的,应是Z∈N=Z.2.(2010年高考四川卷)设集合A={3,5,6,8},集合B={4,5,7,8},则A∩B等于() A.{3,4,5,6,7,8} B.{3,6}C.{4,7} D.{5,8}解析:选D.∈A={3,5,6,8},B={4,5,7,8},∈A∩B={5,8}.3.(2009年高考山东卷)集合A={0,2,a},B={1,a2}.若A∈B={0,1,2,4,16},则a的值为()A.0 B.1C.2 D.4解析:选D.根据元素特性,a≠0,a≠2,a≠1.∈a=4.4.已知集合P={x∈N|1≤x≤10},集合Q={x∈R|x2+x-6=0},则P∩Q等于() A.{2} B.{1,2}C.{2,3} D.{1,2,3}解析:选A.Q={x∈R|x2+x-6=0}={-3,2}.∈P∩Q={2}.5.(2010年高考福建卷)若集合A={x|1≤x≤3},B={x|x>2},则A∩B等于()A.{x|2<x≤3} B.{x|x≥1}C.{x|2≤x<3} D.{x|x>2}解析:选A.∈A={x|1≤x≤3},B={x|x>2},∈A ∩B ={x |2<x ≤3}.6.设集合S ={x |x >5或x <-1},T ={x |a <x <a +8},S ∈T =R ,则a 的取值范围是( )A .-3<a <-1B .-3≤a ≤-1C .a ≤-3或a ≥-1D .a <-3或a >-1 解析:选A.S ∈T =R ,∈⎩⎪⎨⎪⎧a +8>5,a <-1.∈-3<a <-1. 7.(2010年高考湖南卷)已知集合A ={1,2,3},B ={2,m,4},A ∩B ={2,3},则m =________. 解析:∈A ∩B ={2,3},∈3∈B ,∈m =3. 答案:38.满足条件{1,3}∈M ={1,3,5}的集合M 的个数是________. 解析:∈{1,3}∈M ={1,3,5},∈M 中必须含有5, ∈M 可以是{5},{5,1},{5,3},{1,3,5},共4个. 答案:49.若集合A ={x |x ≤2},B ={x |x ≥a },且满足A ∩B ={2},则实数a =________. 解析:当a >2时,A ∩B =∈; 当a <2时,A ∩B ={x |a ≤x ≤2}; 当a =2时,A ∩B ={2}.综上:a =2. 答案:210.已知A ={x |x 2+ax +b =0},B ={x |x 2+cx +15=0},A ∈B ={3,5},A ∩B ={3},求实数a ,b ,c 的值.解:∈A ∩B ={3},∈由9+3c +15=0,解得c =-8.由x 2-8x +15=0,解得B ={3,5},故A ={3}. 又a 2-4b =0,解得a =-6,b =9. 综上知,a =-6,b =9,c =-8.11.已知集合A ={x |x -2>3},B ={x |2x -3>3x -a },求A ∈B . 解:A ={x |x -2>3}={x |x >5}, B ={x |2x -3>3x -a }={x |x <a -3}. 借助数轴如图:∈当a -3≤5,即a ≤8时,A ∈B ={x |x <a -3或x >5}. ∈当a -3>5,即a >8时,A ∈B ={x |x >5}∈{x |x <a -3}={x |x ∈R }=R . 综上可知当a ≤8时,A ∈B ={x |x <a -3或x >5}; 当a >8时,A ∈B =R .12.设集合A ={(x ,y )|2x +y =1,x ,y ∈R },B ={(x ,y )|a 2x +2y =a ,x ,y ∈R },若A ∩B =∈,求a 的值.解:集合A 、B 的元素都是点,A ∩B 的元素是两直线的公共点.A ∩B =∈,则两直线无交点,即方程组无解.列方程组⎩⎪⎨⎪⎧2x +y =1a 2x +2y =a ,解得(4-a 2)x =2-a ,则⎩⎪⎨⎪⎧4-a 2=02-a ≠0,即a =-2.1.(2010年高考辽宁卷)已知集合U ={1,3,5,7,9},A ={1,5,7},则∈U A =( ) A .{1,3} B .{3,7,9} C .{3,5,9} D .{3,9} 解析:选D.∈U A ={3,9},故选D.2.(2010年高考陕西卷)集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∈R B )=( ) A .{x |x >1} B .{x |x ≥1} C .{x |1<x ≤2} D .{x |1≤x ≤2}解析:选D.∈B ={x |x <1},∈∈R B ={x |x ≥1}, ∈A ∩∈R B ={x |1≤x ≤2}.3. 已知全集U =Z ,集合A ={x |x 2=x },B ={-1,0,1,2},则图中的阴影部分所表示的集合等于( )A .{-1,2}B .{-1,0}C .{0,1}D .{1,2}解析:选A.依题意知A={0,1},(∈U A)∩B表示全集U中不在集合A中,但在集合B中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.选A.4.已知全集U={x|1≤x≤5},A={x|1≤x<a},若∈U A={x|2≤x≤5},则a=________.解析:∈A∈∈U A=U,∈A={x|1≤x<2}.∈a=2.答案:21.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩(∈U B)等于()A.{2} B.{5}C.{3,4} D.{2,3,4,5}解析:选C.∈U B={3,4,5},∈A∩(∈U B)={3,4}.2.已知全集U={0,1,2},且∈U A={2},则A=()A.{0} B.{1}C.∈ D.{0,1}解析:选D.∈∈U A={2},∈2∈A,又U={0,1,2},∈A={0,1}.3.(2009年高考全国卷∈)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∈B,则集合∈U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个解析:选A.U=A∈B={3,4,5,7,8,9},A∩B={4,7,9},∈∈U(A∩B)={3,5,8}.4.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6} B.M∈N=UC.(∈U N)∈M=U D.(∈U M)∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},得M∩N={4,5},(∈U N)∈M ={3,4,5,7},(∈U M)∩N={2,6},M∈N={2,3,4,5,6,7}=U,选B.5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∈U(A∈B)中元素个数为()A.1 B.2C.3 D.4解析:选B.∈A={1,2},∈B={2,4},∈A∈B={1,2,4},∈∈U(A∈B)={3,5}.6.已知全集U =A ∈B 中有m 个元素,(∈U A )∈(∈U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为( )A .mnB .m +nC .n -mD .m -n解析:选D.U =A ∈B 中有m 个元素,∈(∈U A )∈(∈U B )=∈U (A ∩B )中有n 个元素, ∈A ∩B 中有m -n 个元素,故选D.7.设集合U ={1,2,3,4,5},A ={2,4},B ={3,4,5},C ={3,4},则(A ∈B )∩(∈U C )=________. 解析:∈A ∈B ={2,3,4,5},∈U C ={1,2,5}, ∈(A ∈B )∩(∈U C )={2,3,4,5}∩{1,2,5}={2,5}. 答案:{2,5}8.已知全集U ={2,3,a 2-a -1},A ={2,3},若∈U A ={1},则实数a 的值是________. 解析:∈U ={2,3,a 2-a -1},A ={2,3},∈U A ={1}, ∈a 2-a -1=1,即a 2-a -2=0, 解得a =-1或a =2. 答案:-1或29.设集合A ={x |x +m ≥0},B ={x |-2<x <4},全集U =R ,且(∈U A )∩B =∈,求实数m 的取值范围为________.解析:由已知A ={x |x ≥-m }, ∈∈U A ={x |x <-m },∈B ={x |-2<x <4},(∈U A )∩B =∈, ∈-m ≤-2,即m ≥2, ∈m 的取值范围是m ≥2. 答案:{m |m ≥2}10.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},求A ∩B ,(∈U B )∈P ,(A ∩B )∩(∈U P ).解:将集合A 、B 、P 表示在数轴上,如图.∈A ={x |-4≤x <2},B ={x |-1<x ≤3},∈A ∩B ={x |-1<x <2}. ∈∈U B ={x |x ≤-1或x >3}, ∈(∈U B )∈P ={x |x ≤0或x ≥52},(A ∩B )∩(∈U P )={x |-1<x <2}∩{x |0<x <52}={x |0<x <2}.11.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足B ∩(∈U A )={2},A ∩(∈U B )={4},U =R ,求实数a ,b 的值.解:∈B ∩(∈U A )={2}, ∈2∈B ,但2∈A .∈A ∩(∈U B )={4},∈4∈A ,但4∈B .∈⎩⎪⎨⎪⎧42+4a +12b =022-2a +b =0,解得⎩⎨⎧a =87b =127.∈a ,b 的值为87,-127.12.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∈R B ,求实数a 的取值范围.解:∈R B ={x |x ≤1或x ≥2}≠∈, ∈A∈R B ,∈分A =∈和A ≠∈两种情况讨论. ∈若A =∈,此时有2a -2≥a , ∈a ≥2.∈若A ≠∈,则有⎩⎪⎨⎪⎧ 2a -2<a a ≤1或⎩⎪⎨⎪⎧2a -2<a 2a -2≥2.∈a ≤1.综上所述,a ≤1或a ≥2.第二章 基本初等函数1.下列说法中正确的为( ) A .y =f (x )与y =f (t )表示同一个函数 B .y =f (x )与y =f (x +1)不可能是同一函数 C .f (x )=1与f (x )=x 0表示同一函数D .定义域和值域都相同的两个函数是同一个函数解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.2.下列函数完全相同的是( ) A .f (x )=|x |,g (x )=(x )2 B .f (x )=|x |,g (x )=x 2 C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3解析:选B.A 、C 、D 的定义域均不同. 3.函数y =1-x +x 的定义域是( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1}解析:选D.由⎩⎪⎨⎪⎧1-x ≥0x ≥0,得0≤x ≤1.4.图中(1)(2)(3)(4)四个图象各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的有________.解析:由函数定义可知,任意作一条直线x =a ,则与函数的图象至多有一个交点,对于本题而言,当-1≤a ≤1时,直线x =a 与函数的图象仅有一个交点,当a >1或a <-1时,直线x =a 与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3).答案:(2)(3)1.函数y =1x 的定义域是( )A .RB .{0}C .{x |x ∈R ,且x ≠0}D .{x |x ≠1}解析:选C.要使1x 有意义,必有x ≠0,即y =1x 的定义域为{x |x ∈R ,且x ≠0}.2.下列式子中不能表示函数y =f (x )的是( ) A .x =y 2+1 B .y =2x 2+1 C .x -2y =6 D .x =y解析:选A.一个x 对应的y 值不唯一. 3.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了解析:选C.根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,x ∈A ,还可以是x →x 2,x ∈A .4.下列集合A 到集合B 的对应f 是函数的是( ) A .A ={-1,0,1},B ={0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =Q ,f :A 中的数取倒数D .A =R ,B ={正实数},f :A 中的数取绝对值解析:选A.按照函数定义,选项B 中集合A 中的元素1对应集合B 中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C 中的元素0取倒数没有意义,也不符合函数定义中集合A 中任意元素都对应唯一函数值的要求;选项D 中,集合A 中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A 符合函数定义.5.下列各组函数表示相等函数的是( ) A .y =x 2-3x -3与y =x +3(x ≠3)B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 解析:选C.A 、B 与D 对应法则都不同.6.设f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ∩B 一定是( ) A .∈ B .∈或{1} C .{1} D .∈或{2}解析:选B.由f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ={-1,1,-2,2}或A ={-1,1,-2}或A ={-1,1,2}或A ={-1,2,-2}或A ={1,-2,2}或A ={-1,-2}或A ={-1,2}或A ={1,2}或A ={1,-2}.所以A ∩B =∈或{1}.7.若[a,3a -1]为一确定区间,则a 的取值范围是________. 解析:由题意3a -1>a ,则a >12.答案:(12,+∞)8.函数y =x +103-2x的定义域是________.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧x +1≠03-2x >0,即x <32且x ≠-1.答案:(-∞,-1)∈(-1,32)9.函数y =x 2-2的定义域是{-1,0,1,2},则其值域是________. 解析:当x 取-1,0,1,2时, y =-1,-2,-1,2, 故函数值域为{-1,-2,2}. 答案:{-1,-2,2} 10.求下列函数的定义域: (1)y =-x 2x 2-3x -2;(2)y =34x +83x -2.解:(1)要使y =-x 2x 2-3x -2有意义,则必须⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12, 故所求函数的定义域为{x |x ≤0,且x ≠-12}.(2)要使y =34x +83x -2有意义,则必须3x -2>0,即x >23, 故所求函数的定义域为{x |x >23}. 11.已知f (x )=11+x(x ∈R 且x ≠-1),g (x )=x 2+2(x ∈R ). (1)求f (2),g (2)的值; (2)求f (g (2))的值. 解:(1)∈f (x )=11+x ,∈f (2)=11+2=13, 又∈g (x )=x 2+2, ∈g (2)=22+2=6. (2)由(1)知g (2)=6, ∈f (g (2))=f (6)=11+6=17. 12.已知函数y =ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的取值范围.解:函数y =ax +1(a <0且a 为常数). ∈ax +1≥0,a <0,∈x ≤-1a ,即函数的定义域为(-∞,-1a ].∈函数在区间(-∞,1]上有意义, ∈(-∞,1]∈(-∞,-1a ],∈-1a ≥1,而a <0,∈-1≤a <0.即a 的取值范围是[-1,0).1.下列各图中,不能是函数f (x )图象的是( )解析:选C.结合函数的定义知,对A 、B 、D ,定义域中每一个x 都有唯一函数值与之对应;而对C ,对大于0的x 而言,有两个不同值与之对应,不符合函数定义,故选C.2.若f (1x )=11+x ,则f (x )等于( )A.11+x(x ≠-1) B.1+x x (x ≠0)C.x1+x(x ≠0且x ≠-1) D .1+x (x ≠-1) 解析:选C.f (1x )=11+x=1x1+1x(x ≠0), ∈f (t )=t1+t (t ≠0且t ≠-1),∈f (x )=x1+x(x ≠0且x ≠-1). 3.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( ) A .3x +2 B .3x -2 C .2x +3 D .2x -3解析:选B.设f (x )=kx +b (k ≠0), ∈2f (2)-3f (1)=5,2f (0)-f (-1)=1,∈⎩⎪⎨⎪⎧ k -b =5k +b =1,∈⎩⎪⎨⎪⎧k =3b =-2,∈f (x )=3x -2. 4.已知f (2x )=x 2-x -1,则f (x )=________. 解析:令2x =t ,则x =t 2,∈f (t )=⎝⎛⎭⎫t 22-t 2-1,即f (x )=x 24-x2-1. 答案:x 24-x 2-11.下列表格中的x 与y 能构成函数的是( ) A.x非负数非正数y1 -1B.x 奇数 0 偶数 y1-1C.x 有理数 无理数 y1-1D.x 自然数 整数 有理数 y1-1解析:选C.A 中,当x =0时,y =±1;B 中0是偶数,当x =0时,y =0或y =-1;D 中自然数、整数、有理数之间存在包含关系,如x =1∈N(Z ,Q),故y 的值不唯一,故A 、B 、D 均不正确.2.若f (1-2x )=1-x 2x 2(x ≠0),那么f (12)等于( )A .1B .3C .15D .30解析:选C.法一:令1-2x =t ,则x =1-t2(t ≠1),∈f (t )=4t -12-1,∈f (12)=16-1=15. 法二:令1-2x =12,得x =14,∈f (12)=16-1=15. 3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是( ) A .2x +1 B .2x -1 C .2x -3 D .2x +7解析:选B.∈g (x +2)=2x +3=2(x +2)-1, ∈g (x )=2x -1.4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是( )解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A 、C ,又一开始跑步,速度快,所以D 符合.5.如果二次函数的二次项系数为1且图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式为( )A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1解析:选D.设f (x )=(x -1)2+c , 由于点(0,0)在函数图象上, ∈f (0)=(0-1)2+c =0, ∈c =-1,∈f (x )=(x -1)2-1.6.已知正方形的周长为x ,它的外接圆的半径为y ,则y 关于x 的函数解析式为( ) A .y =12x (x >0) B .y =24x (x >0)C .y =28x (x >0) D .y =216x (x >0) 解析:选C.设正方形的边长为a ,则4a =x ,a =x4,其外接圆的直径刚好为正方形的一条对角线长.故2a =2y ,所以y =22a =22×x 4=28x . 7.已知f (x )=2x +3,且f (m )=6,则m 等于________. 解析:2m +3=6,m =32.答案:328. 如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f [1f 3]的值等于________.解析:由题意,f (3)=1, ∈f [1f 3]=f (1)=2. 答案:29.将函数y =f (x )的图象向左平移1个单位,再向上平移2个单位得函数y =x 2的图象,则函数f (x )的解析式为__________________.解析:将函数y =x 2的图象向下平移2个单位,得函数y =x 2-2的图象,再将函数y =x 2-2的图象向右平移1个单位,得函数y =(x -1)2-2的图象,即函数y =f (x )的图象,故f (x )=x 2-2x -1.答案:f (x )=x 2-2x -110.已知f (0)=1,f (a -b )=f (a )-b (2a -b +1),求f (x ). 解:令a =0,则f (-b )=f (0)-b (-b +1) =1+b (b -1)=b 2-b +1. 再令-b =x ,即得f (x )=x 2+x +1. 11.已知f (x +1x )=x 2+1x 2+1x ,求f (x ).解:∈x +1x =1+1x ,x 2+1x 2=1+1x 2,且x +1x ≠1,∈f (x +1x )=f (1+1x )=1+1x 2+1x=(1+1x )2-(1+1x )+1.∈f (x )=x 2-x +1(x ≠1).12.设二次函数f (x )满足f (2+x )=f (2-x ),对于x ∈R 恒成立,且f (x )=0的两个实根的平方和为10,f (x )的图象过点(0,3),求f (x )的解析式.解:∈f (2+x )=f (2-x ),∈f (x )的图象关于直线x =2对称. 于是,设f (x )=a (x -2)2+k (a ≠0), 则由f (0)=3,可得k =3-4a , ∈f (x )=a (x -2)2+3-4a =ax 2-4ax +3. ∈ax 2-4ax +3=0的两实根的平方和为10, ∈10=x 21+x 22=(x 1+x 2)2-2x 1x 2=16-6a , ∈a =1.∈f (x )=x 2-4x +3.1.已知集合A ={a ,b },集合B ={0,1},下列对应不是A 到B 的映射的是( )解析:选C.A 、B 、D 均满足映射的定义,C 不满足A 中任一元素在B 中都有唯一元素与之对应,且A 中元素b 在B 中无元素与之对应.2.(2011年葫芦岛高一检测)设f (x )=⎩⎪⎨⎪⎧x +3 x >10f f x +5 x ≤10,则f (5)的值是( )A .24B .21C .18D .16解析:选A.f (5)=f (f (10)), f (10)=f (f (15))=f (18)=21, f (5)=f (21)=24.3.函数y =x +|x |x的图象为( )解析:选C.y =x +|x |x =⎩⎪⎨⎪⎧x +1 x >0x -1 x <0,再作函数图象.4.函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <11x , x >1的值域是________.解析:当x <1时,x 2-x +1=(x -12)2+34≥34;当x >1时,0<1x <1,则所求值域为(0,+∞),故填(0,+∞).答案:(0,+∞)1.设f :A →B 是集合A 到B 的映射,其中A ={x |x >0},B =R ,且f :x →x 2-2x -1,则A 中元素1+2的像和B 中元素-1的原像分别为( )A.2,0或2 B .0,2 C .0,0或2D .0,0或2答案:C2.某城市出租车起步价为10元,最长可租乘3 km(含3 km),以后每1 km 为1.6元(不足1 km ,按1 km 计费),若出租车行驶在不需等待的公路上,则出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为( )解析:选C.由题意,当0<x ≤3时,y =10;当3<x ≤4时,y =11.6; 当4<x ≤5时,y =13.2; …当n -1<x ≤n 时,y =10+(n -3)×1.6,故选C.3.函数f (x )=⎩⎪⎨⎪⎧2x -x 20≤x ≤3x 2+6x-2≤x ≤0的值域是( )A .RB .[-9,+∞)C .[-8,1]D .[-9,1]解析:选C.画出图象,也可以分段求出部分值域,再合并,即求并集. 4.已知f (x )=⎩⎪⎨⎪⎧x +2x ≤-1,x 2-1<x <22x x ≥2,若f (x )=3,则x 的值是( ) A .1B .1或32C .1,32或± 3D.3解析:选D.该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4), ∈f (x )=x 2=3,x =±3,而-1<x <2,∈x = 3.5.已知函数f (x )=⎩⎪⎨⎪⎧1, x 为有理数,0, x 为无理数,g (x )=⎩⎪⎨⎪⎧0, x 为有理数,1, x 为无理数,当x ∈R 时,f (g (x )),g (f (x ))的值分别为( )A .0,1B .0,0C .1,1D .1,0解析:选D.g (x )∈Q ,f (x )∈Q ,f (g (x ))=1,g (f (x ))=0.6.设f (x )=⎩⎪⎨⎪⎧x +12 x ≤-1,2x +1 -1<x <1,1x -1 x ≥1,已知f (a )>1,则实数a 的取值范围是( )A .(-∞,-2)∈⎝⎛⎭⎫-12,+∞ B.⎝⎛⎭⎫-12,12 C .(-∞,-2)∈⎝⎛⎭⎫-12,1D.⎝⎛⎭⎫-12,12∈(1,+∞) 解析:选C.f (a )>1∈⎩⎪⎨⎪⎧ a ≤-1a +12>1或⎩⎪⎨⎪⎧-1<a <12a +1>1或⎩⎪⎨⎪⎧a ≥11a -1>1∈⎩⎪⎨⎪⎧a ≤-1a <-2或a >0或⎩⎪⎨⎪⎧-1<a <1a >-12或⎩⎪⎨⎪⎧a ≥10<a <12∈a <-2或-12<a <1.即所求a 的取值范围是(-∞,-2)∈⎝⎛⎭⎫-12,1. 7.设A =B ={a ,b ,c ,d ,…,x ,y ,z }(元素为26个英文字母),作映射f :A →B 为A 中每一个字母与B 中下一个字母对应,即:a →b ,b →c ,c →d ,…,z →a ,并称A 中的字母组成的文字为明文,B 中相应的字母为密文,试破译密文“nbuj ”:________.解析:由题意可知m →n ,a →b ,t →u ,i →j , 所以密文“nbuj ”破译后为“mati ”. 答案:mati8.已知函数f (x )=⎩⎪⎨⎪⎧x 2, x ≤0,f x -2, x >0,则f (4)=________.解析:f (4)=f (2)=f (0)=0. 答案:09.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0,则不等式x +(x +2)·f (x +2)≤5的解集是________.解析:原不等式可化为下面两个不等式组⎩⎪⎨⎪⎧x +2≥0x +x +2·1≤5或⎩⎪⎨⎪⎧x +2<0x +x +2·-1≤5,解得-2≤x ≤32或x <-2,即x ≤32.答案:(-∞,32]10.已知f (x )=⎩⎨⎧x 2 -1≤x ≤11 x >1或x <-1,(1)画出f (x )的图象;(2)求f (x )的定义域和值域.解:(1)利用描点法,作出f (x )的图象,如图所示. (2)由条件知, 函数f (x )的定义域为R. 由图象知,当-1≤x ≤1时, f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.某汽车以52千米/小时的速度从A 地到260千米远的B 地,在B 地停留112小时后,再以65千米/小时的速度返回A 地.试将汽车离开A 地后行驶的路程s (千米)表示为时间t (小时)的函数.解:∈260÷52=5(小时),260÷65=4(小时),∈s =⎩⎪⎨⎪⎧52t 0≤t ≤5,260 ⎝⎛⎭⎫5<t ≤612,260+65⎝⎛⎭⎫t -612 ⎝⎛⎭⎫612<t ≤1012.12. 如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象.解:过点A ,D 分别作AG ∈BC ,DH ∈BC ,垂足分别是G ,H . 因为ABCD 是等腰梯形, 底角为45°,AB =2 2 cm , 所以BG =AG =DH =HC =2 cm. 又BC =7 cm ,所以AD =GH =3 cm. ∈当点F 在BG 上时, 即x ∈[0,2]时,y =12x 2;∈当点F 在GH 上时, 即x ∈(2,5]时,y =x +x -22×2=2x -2; ∈当点F 在HC 上时,即x ∈(5,7]时, y =S 五边形ABFED =S 梯形ABCD -S Rt∈CEF=12(7+3)×2-12(7-x )2 =-12(x -7)2+10.综合∈∈∈,得函数解析式为y =⎩⎪⎨⎪⎧12x 2x ∈[0,2]2x -2 x ∈2,5].-12x -72+10 x ∈5,7]函数图象如图所示.1.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )为增函数,当x ∈(-∞,-2]时,函数f (x )为减函数,则m 等于( )A .-4B .-8C .8D .无法确定解析:选B.二次函数在对称轴的两侧的单调性相反.由题意得函数的对称轴为x =-2,则m4=-2,所以m =-8. 2.函数f (x )在R 上是增函数,若a +b ≤0,则有( ) A .f (a )+f (b )≤-f (a )-f (b ) B .f (a )+f (b )≥-f (a )-f (b ) C .f (a )+f (b )≤f (-a )+f (-b ) D .f (a )+f (b )≥f (-a )+f (-b )解析:选C.应用增函数的性质判断. ∈a +b ≤0,∈a ≤-b ,b ≤-a . 又∈函数f (x )在R 上是增函数, ∈f (a )≤f (-b ),f (b )≤f (-a ). ∈f (a )+f (b )≤f (-a )+f (-b ).3.下列四个函数:∈y =x x -1;∈y =x 2+x ;∈y =-(x +1)2;∈y =x1-x +2.其中在(-∞,0)上为减函数的是( )A .∈B .∈C .∈∈D .∈∈∈解析:选A.∈y =x x -1=x -1+1x -1=1+1x -1.其减区间为(-∞,1),(1,+∞).∈y =x 2+x =(x +12)2-14,减区间为(-∞,-12).∈y =-(x +1)2,其减区间为(-1,+∞), ∈与∈相比,可知为增函数.4.若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是________. 解析:对称轴x =k 8,则k 8≤5,或k8≥8,得k ≤40,或k ≥64,即对称轴不能处于区间内.答案:(-∞,40]∈[64,+∞)1.函数y =-x 2的单调减区间是( ) A .[0,+∞) B .(-∞,0] C .(-∞,0) D .(-∞,+∞) 解析:选A.根据y =-x 2的图象可得.2.若函数f (x )定义在[-1,3]上,且满足f (0)<f (1),则函数f (x )在区间[-1,3]上的单调性是( )A .单调递增B .单调递减C .先减后增D .无法判断解析:选D.函数单调性强调x 1,x 2∈[-1,3],且x 1,x 2具有任意性,虽然f (0)<f (1),但不能保证其他值也能满足这样的不等关系.3.已知函数y =f (x ),x ∈A ,若对任意a ,b ∈A ,当a <b 时,都有f (a )<f (b ),则方程f (x )=0的根( )A .有且只有一个B .可能有两个C .至多有一个D .有两个以上解析:选C.由题意知f (x )在A 上是增函数.若y =f (x )与x 轴有交点,则有且只有一个交点,故方程f (x )=0至多有一个根.4.设函数f (x )在(-∞,+∞)上为减函数,则( ) A .f (a )>f (2a ) B .f (a 2)<f (a )C .f (a 2+a )<f (a )D .f (a 2+1)<f (a ) 解析:选D.∈a 2+1-a =(a -12)2+34>0,∈a 2+1>a ,∈f (a 2+1)<f (a ),故选D.5.下列四个函数在(-∞,0)上为增函数的是( ) ∈y =|x |;∈y =|x |x ;∈y =-x 2|x |;∈y =x +x|x |.A .∈∈B .∈∈C .∈∈D .∈∈解析:选C.∈y =|x |=-x (x <0)在(-∞,0)上为减函数; ∈y =|x |x =-1(x <0)在(-∞,0)上既不是增函数,也不是减函数;∈y =-x 2|x |=x (x <0)在(-∞,0)上是增函数;∈y =x +x|x |=x -1(x <0)在(-∞,0)上也是增函数,故选C.6.下列说法中正确的有( )∈若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数; ∈函数y =x 2在R 上是增函数; ∈函数y =-1x在定义域上是增函数;∈y =1x 的单调递减区间是(-∞,0)∈(0,+∞).A .0个B .1个C .2个D .3个解析:选A.函数单调性的定义是指定义在区间I 上的任意两个值x 1,x 2,强调的是任意,从而∈不对;∈y =x 2在x ≥0时是增函数,x ≤0时是减函数,从而y =x 2在整个定义域上不具有单调性;∈y =-1x 在整个定义域内不是单调递增函数.如-3<5,而f (-3)>f (5);∈y =1x 的单调递减区间不是(-∞,0)∈(0,+∞),而是(-∞,0)和(0,+∞),注意写法.7.若函数y =-bx 在(0,+∞)上是减函数,则b 的取值范围是________.解析:设0<x 1<x 2,由题意知 f (x 1)-f (x 2)=-b x 1+b x 2=bx 1-x 2x 1·x 2>0,∈0<x 1<x 2,∈x 1-x 2<0,x 1x 2>0. ∈b <0.答案:(-∞,0)8.已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与f (34 )的大小关系为________.解析:∈a 2-a +1=(a -12)2+34≥34,∈f (a 2-a +1)≤f (34).答案:f (a 2-a +1)≤f (34)9.y =-(x -3)|x |的递增区间是________. 解析: y =-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x x >0x 2-3x x ≤0,作出其图象如图,观察图象知递增区间为[0,32].答案:[0,32]10.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0. (1)求b 与c 的值;(2)试证明函数f (x )在区间(2,+∞)上是增函数. 解:(1)∈f (1)=0,f (3)=0,∈⎩⎪⎨⎪⎧1+b +c =09+3b +c =0,解得b =-4,c =3. (2)证明:∈f (x )=x 2-4x +3, ∈设x 1,x 2∈(2,+∞)且x 1<x 2,f (x 1)-f (x 2)=(x 21-4x 1+3)-(x 22-4x 2+3) =(x 21-x 22)-4(x 1-x 2) =(x 1-x 2)(x 1+x 2-4), ∈x 1-x 2<0,x 1>2,x 2>2, ∈x 1+x 2-4>0.∈f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∈函数f (x )在区间(2,+∞)上为增函数.11.已知f (x )是定义在[-1,1]上的增函数,且f (x -1)<f (1-3x ),求x 的取值范围.解:由题意可得⎩⎪⎨⎪⎧-1≤x -1≤1-1≤1-3x ≤1,x -1<1-3x即⎩⎪⎨⎪⎧0≤x ≤20≤x ≤23,x <12∈0≤x <12.12.设函数y =f (x )=ax +1x +2在区间(-2,+∞)上单调递增,求a 的取值范围.解:设任意的x 1,x 2∈(-2,+∞),且x 1<x 2, ∈f (x 1)-f (x 2)=ax 1+1x 1+2-ax 2+1x 2+2 =ax 1+1x 2+2-ax 2+1x 1+2x 1+2x 2+2=x 1-x 22a -1x 1+2x 2+2.∈f (x )在(-2,+∞)上单调递增, ∈f (x 1)-f (x 2)<0. ∈x 1-x 22a -1x 1+2x 2+2<0,∈x 1-x 2<0,x 1+2>0,x 2+2>0, ∈2a -1>0,∈a >12.1.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( ) A .9 B .9(1-a ) C .9-aD .9-a 2解析:选A.x ∈[0,3]时f (x )为减函数,f (x )max =f (0)=9. 2.函数y =x +1-x -1的值域为( ) A .(-∞, 2 ] B .(0, 2 ] C .[2,+∞)D .[0,+∞)解析:选B.y =x +1-x -1,∈⎩⎪⎨⎪⎧x +1≥0x -1≥0,∈x ≥1.∈y =2x +1+x -1为[1,+∞)上的减函数,∈f (x )max =f (1)=2且y >0.3.函数f (x )=x 2-2ax +a +2在[0,a ]上取得最大值3,最小值2,则实数a 为( ) A .0或1 B .1C .2D .以上都不对解析:选B.因为函数f (x )=x 2-2ax +a +2=(x -a )2-a 2+a +2, 对称轴为x =a ,开口方向向上,所以f (x )在[0,a ]上单调递减,其最大值、最小值分别在两个端点处取得,即f (x )max =f (0)=a +2=3,f (x )min =f (a )=-a 2+a +2=2.故a =1.4.(2010年高考山东卷)已知x ,y ∈R +,且满足x 3+y 4=1.则xy 的最大值为________.解析:y 4=1-x 3,∈0<1-x3<1,0<x <3.而xy =x ·4(1-x 3)=-43(x -32)2+3.当x =32,y =2时,xy 最大值为3.答案:31.函数f (x )=x 2在[0,1]上的最小值是( ) A .1 B .0 C.14D .不存在解析:选B.由函数f (x )=x 2在[0,1]上的图象(图略)知, f (x )=x 2在[0,1]上单调递增,故最小值为f (0)=0.2.函数f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2]x +7,x ∈[-1,1],则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对解析:选A.f (x )在x ∈[-1,2]上为增函数,f (x )max =f (2)=10,f (x )min =f (-1)=6. 3.函数y =-x 2+2x 在[1,2]上的最大值为( ) A .1 B .2 C .-1D .不存在解析:选A.因为函数y =-x 2+2x =-(x -1)2+1.对称轴为x =1,开口向下,故在[1,2]上为单调递减函数,所以y max =-1+2=1.。

高一数学(必修一)练习题 及答案

高一数学(必修一)练习题 及答案

高一数学(必修一)练习题及答案一、选择题(本大题共10小题,每小题5分,共60分)1. 下列四个函数中,与y=x表示同一函数的是bA.y=( )2B.y=C.y=D.y=2.已知A={x|y=x,x∈R},B={y|y=x2,x∈R},则A∩B等于aA.{x|x∈R}B.{y|y≥0}C.{(0,0),(1,1)}D.3.方程x2-px+6=0的解集为M,方程x2+6x-q=0的解集为N,且M∩N={2},那么p+q等于aA.21B.8C.6D.74. 下列四个函数中,在(0,+∞)上为增函数的是bA.f(x)=3-xB.f(x)=x2-3xC.f(x)=-D.f(x)=-|x|5.函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上递减,则a的取值范围是cA.[-3,+∞]B.(-∞,-3)C.(-∞,5]D.[3,+∞)6. 函数y= +1(x≥1)的反函数是bA.y=x2-2x+2(x<1)B.y=x2-2x+2(x≥1)C.y=x2-2x(x<1)D.y=x2-2x(x≥1)7. 已知函数f(x)= 的定义域是一切实数,则m的取值范围是dA.0<m≤4B.0≤m≤1C.m≥4D.0≤m≤48.某商场对顾客实行购物优惠活动,规定一次购物付款总额b:(1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是bA.413.7元B.513.7元C.546.6元D.548.7元9. 二次函数y=ax2+bx与指数函数y=( )x的图象只可能是才才c、10. 已知函数f(n)= 其中n∈N,则f(8)等于dA.2B.4C.6D.711.如图,设a,b,c,d>0,且不等于1,y=ax , y=bx , y=cx ,y=dx 在同一坐标系中的图象如图,则a,b,c,d的大小顺序()A、a<b<c<dB、a<b<d<cC、b<a<d<cD、b<a<c<d12..已知0<a<1,b<-1,函数f(x)=ax+b的图象不经过:(ba)A.第一象限; B.第二象限; C.第三象限; D.第四象限第Ⅱ卷(非选择题共70分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知f(x)=x2-1(x<0),则f-1(3)=8 ______.14.函数的定义域为__ ___15.某工厂8年来某产品产量y与时间t年的函数关系如下图,则:①前3年总产量增长速度增长速度越来越快;②前3年中总产量增长速度越来越慢;③第3年后,这种产品停止生产;④第3年后,这种产品年产量保持不变.以上说法中正确的是__1 4 _ 。

高一数学函数经典习题及答案

高一数学函数经典习题及答案

函 数 练 习 题(一)班级 姓名一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =01(21)111y x x =+-++-2___________;3、若函数(1)f x+(21)f x -的定义域是;函数1(2)f x+的定义域为。

4、 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+-()x R ∈⑵223y x x =+-[1,2]x ∈⑶311x y x -=+⑷311x y x -=+(5)x ≥ ⑸y =225941x x y x +=-+⑺31y x x=-++⑻2y x x =-⑼y =⑽4y =y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x =。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =_____()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间:⑴223y x x =++⑵y =⑶261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是;函数y =五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学必修1习题及答案5篇

高一数学必修1习题及答案5篇

高一数学必修1习题及答案5篇习题1:已知∠ABC=60°,AB=4,BC=6,求AC的长度。

解答:通过画图可知,△ABC为一个等边三角形,因此AC=AB=4。

习题2:已知一条直线l1:x-2y+3=0,求平行于l1且过点P(1,2)的直线l2的方程式。

解答:l1的斜率为2,因此l2的斜率也为2。

同时,由于l2过点P(1,2),因此可得l2的方程式为y-2=2(x-1),即y=2x。

习题3:已知函数f(x)=2x-1,求f(3)的值和f(-2)的值。

解答:将3代入f(x)=2x-1,可得f(3)=2(3)-1=5。

将-2代入f(x)=2x-1,可得f(-2)=2(-2)-1=-5。

习题4:已知弧AB所对的圆心角为60°,AB的弧长为π,求该圆的半径。

解答:圆心角60°所对的弧长为圆的1/6,即π/6。

因此可知该圆的周长为2π,因此半径为1。

习题5:已知平面直角坐标系中两点A(2,5)和B(-3,-4),求线段AB的长度。

解答:通过勾股定理可知,线段AB的长度为√(2-(-3))^2+(5-(-4))^2=√25+81=√106。

以上是数学必修1的5道典型习题及解答,这些题目涵盖了数学必修1的不同知识点,包括三角函数、直线方程、函数、圆和勾股定理等。

对于高一学生来说,这些内容都是必须掌握的基础知识。

在学习数学时,不仅要了解知识点本身的定义和公式,还要学会思考如何运用所学知识解决问题。

因此,在学习习题时,除了知晓解答方法和答案外,还需深入思考,理解其背后的思维过程和逻辑。

在解答习题时,需要注意的是细节问题。

比如在第三道题中,如果没有注意到f(x)的定义式中有-1这一项,就会出现计算错误。

因此,在解答问题时,不仅需要整体考虑,还需要对计算细节进行仔细检查。

在学习数学时,还需要注重实践操作和分类整理。

对于复杂的习题和知识点,可以多练习相关问题,通过不断反复联系和思考,形成自己的解题思路和方法。

高一数学必修一全章节练习题(附答案解析)

高一数学必修一全章节练习题(附答案解析)

第一章 集合与函数的概念1.某公司为了适应市场需求,对产品结构做了重大调整.调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与产量x 的关系,则可选用( )A .一次函数B .二次函数C .指数型函数D .对数型函数 解析:选D.一次函数保持均匀的增长,不符合题意; 二次函数在对称轴的两侧有增也有降;而指数函数是爆炸式增长,不符合“增长越来越慢”;因此,只有对数函数最符合题意,先快速增长,后来越来越慢. 2.某种植物生长发育的数量y 与时间x 的关系如下表:x 1 2 3 … y 1 3 8 …则下面的函数关系式中,能表达这种关系的是( ) A .y =2x -1 B .y =x 2-1 C .y =2x -1 D .y =1.5x 2-2.5x +2解析:选D.画散点图或代入数值,选择拟合效果最好的函数,故选D.3.如图表示一位骑自行车者和一位骑摩托车者在相距80 km 的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时; ②骑自行车者是变速运动,骑摩托车者是匀速运动; ③骑摩托车者在出发了1.5小时后,追上了骑自行车者. 其中正确信息的序号是( ) A .①②③ B .①③ C .②③ D .①②解析:选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了1.5小时后,追上了骑自行车者,正确.4.长为4,宽为3的矩形,当长增加x ,且宽减少x2时面积最大,此时x =________,面积S =________.解析:依题意得:S =(4+x )(3-x 2)=-12x 2+x +12=-12(x -1)2+1212,∴当x =1时,S max =1212.答案:1 12121x 1 2 3 4 5 y 3 5 6.99 9.01 11( )A .指数函数B .反比例函数C .一次函数D .二次函数解析:选C.画出散点图,结合图象(图略)可知各个点接近于一条直线,所以可用一次函数表示.2.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( ) A .14400亩 B .172800亩 C .17280亩 D .20736亩 解析:选C.y =10000×(1+20%)3=17280.3.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格相比,变化情况是( )A .增加7.84%B .减少7.84%C .减少9.5%D .不增不减 解析:选B.设该商品原价为a ,四年后价格为a (1+0.2)2·(1-0.2)2=0.9216a . 所以(1-0.9216)a =0.0784a =7.84%a , 即比原来减少了7.84%.4.据调查,某自行车存车处在某星期日的存车量为2000辆次,其中变速车存车费是每辆一次0.8元,普通车存车费是每辆一次0.5元,若普通车存车数为x 辆次,存车费总收入为y 元,则y 关于x 的函数关系式是( )A .y =0.3x +800(0≤x ≤2000)B .y =0.3x +1600(0≤x ≤2000)C .y =-0.3x +800(0≤x ≤2000)D .y =-0.3x +1600(0≤x ≤2000)解析:选D.由题意知,变速车存车数为(2000-x )辆次, 则总收入y =0.5x +(2000-x )×0.8=0.5x +1600-0.8x =-0.3x +1600(0≤x ≤2000).5.如图,△ABC 为等腰直角三角形,直线l 与AB 相交且l ⊥AB ,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则y =f (x )的图象大致为四个选项中的( )解析:选C.设AB =a ,则y =12a 2-12x 2=-12x 2+12a 2,其图象为抛物线的一段,开口向下,顶点在y 轴上方.故选C.6.小蜥蜴体长15 cm ,体重15 g ,问:当小蜥蜴长到体长为20 cm 时,它的体重大约是( )A .20 gB .25 gC .35 gD .40 g解析:选C.假设小蜥蜴从15 cm 长到20 cm ,体形是相似的.这时蜥蜴的体重正比于它的体积,而体积与体长的立方成正比.记体长为20 cm 的蜥蜴的体重为W 20,因此有W 20=W 15·203153≈35.6(g),合理的答案为35 g .故选C.7.现测得(x ,y )的两组值为(1,2),(2,5),现有两个拟合模型,甲:y =x 2+1;乙:y =3x -1.若又测得(x ,y )的一组对应值为(3,10.2),则应选用________作为拟合模型较好.解析:图象法,即描出已知的三个点的坐标并画出两个函数的图象(图略),比较发现选甲更好.答案:甲8.一根弹簧,挂重100 N 的重物时,伸长20 cm ,当挂重150 N 的重物时,弹簧伸长________.解析:由10020=150x,得x =30.答案:30 cm9.某工厂8年来某产品年产量y 与时间t 年的函数关系如图,则: ①前3年总产量增长速度越来越快; ②前3年中总产量增长速度越来越慢; ③第3年后,这种产品停止生产;④第3年后,这种产品年产量保持不变. 以上说法中正确的是________.解析:观察图中单位时间内产品产量y 变化量快慢可知①④. 答案:①④10.某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单价,又不高于800元.经试销调查,发现销售量y (件)与销售单价x (元)之间的关系可近似看作一次函数y =kx +b (k ≠0),函数图象如图所示.(1)根据图象,求一次函数y =kx +b (k ≠0)的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S 元.试问销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?解:(1)由图象知,当x =600时,y =400;当x =700时,y =300,代入y =kx +b (k ≠0)中,得⎩⎪⎨⎪⎧ 400=600k +b ,300=700k +b ,解得⎩⎪⎨⎪⎧k =-1,b =1000. 所以,y =-x +1000(500≤x ≤800). (2)销售总价=销售单价×销售量=xy , 成本总价=成本单价×销售量=500y , 代入求毛利润的公式,得S =xy -500y =x (-x +1000)-500(-x +1000) =-x 2+1500x -500000=-(x -750)2+62500(500≤x ≤800).所以,当销售单价定为750元时,可获得最大毛利润62500元,此时销售量为250件. 11.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t 后的温度是T ,则T -T a =(T 0-T a )·(12)th ,其中T a 表示环境温度,h 称为半衰期.现有一杯用88 ℃热水冲的速溶咖啡,放在24 ℃的房间中,如果咖啡降温到40 ℃需要20 min ,那么降温到35 ℃时,需要多长时间?解:由题意知40-24=(88-24)·(12)20h ,即14=(12)20h . 解之,得h =10.故T -24=(88-24)·(12)t10.当T =35时,代入上式,得35-24=(88-24)·(12)t10,即(12)t 10=1164. 两边取对数,用计算器求得t ≈25. 因此,约需要25 min ,可降温到35 ℃.12.某地区为响应上级号召,在2011年初,新建了一批有200万平方米的廉价住房,供困难的城市居民居住.由于下半年受物价的影响,根据本地区的实际情况,估计今后住房的年平均增长率只能达到5%.(1)经过x 年后,该地区的廉价住房为y 万平方米,求y =f (x )的表达式,并求此函数的定义域.(2)作出函数y =f (x )的图象,并结合图象求:经过多少年后,该地区的廉价住房能达到300万平方米?解:(1)经过1年后,廉价住房面积为 200+200×5%=200(1+5%); 经过2年后为200(1+5%)2; …经过x 年后,廉价住房面积为200(1+5%)x , ∴y =200(1+5%)x (x ∈N *).(2)作函数y =f (x )=200(1+5%)x (x ≥0)的图象,如图所示.作直线y =300,与函数y =200(1+5%)x的图象交于A 点,则A (x 0,300),A 点的横坐标x 0的值就是函数值y =300时所经过的时间x 的值.因为8<x 0<9,则取x 0=9,即经过9年后,该地区的廉价住房能达到300万平方米.1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是( ) A .{x |x 是小于18的正奇数} B .{x |x =4k +1,k ∈Z ,且k <5} C .{x |x =4t -3,t ∈N ,且t ≤5} D .{x |x =4s -3,s ∈N *,且s ≤5}解析:选D.A 中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B 中k 取负数,多了若干元素;C 中t =0时多了-3这个元素,只有D 是正确的.2.集合P ={x |x =2k ,k ∈Z },M ={x |x =2k +1,k ∈Z },S ={x |x =4k +1,k ∈Z },a ∈P ,b ∈M ,设c =a +b ,则有( )A .c ∈PB .c ∈MC .c ∈SD .以上都不对解析:选B.∵a ∈P ,b ∈M ,c =a +b , 设a =2k 1,k 1∈Z ,b =2k 2+1,k 2∈Z , ∴c =2k 1+2k 2+1=2(k 1+k 2)+1, 又k 1+k 2∈Z ,∴c ∈M .3.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B },设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为( )A .0B .2C .3D .6解析:选D.∵z =xy ,x ∈A ,y ∈B ,∴z 的取值有:1×0=0,1×2=2,2×0=0,2×2=4, 故A *B ={0,2,4},∴集合A *B 的所有元素之和为:0+2+4=6.4.已知集合A ={1,2,3},B ={1,2},C ={(x ,y )|x ∈A ,y ∈B },则用列举法表示集合C =____________.解析:∵C ={(x ,y )|x ∈A ,y ∈B }, ∴满足条件的点为:(1,1),(1,2),(2,1),(2,2),(3,1),(3,2).答案:{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}1.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合 答案:D2.设集合M ={x ∈R |x ≤33},a =26,则( ) A .a ∉M B .a ∈MC .{a }∈MD .{a |a =26}∈M 解析:选B.(26)2-(33)2=24-27<0, 故26<3 3.所以a ∈M .3.方程组⎩⎪⎨⎪⎧x +y =1x -y =9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D.由⎩⎪⎨⎪⎧ x +y =1x -y =9,得⎩⎪⎨⎪⎧x =5y =-4,该方程组有一组解(5,-4),解集为{(5,-4)}.4.下列命题正确的有( ) (1)很小的实数可以构成集合;(2)集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合;(3)1,32,64,|-12|,0.5这些数组成的集合有5个元素;(4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. A .0个 B .1个 C .2个 D .3个解析:选A.(1)错的原因是元素不确定;(2)前者是数集,而后者是点集,种类不同;(3)32=64,|-12|=0.5,有重复的元素,应该是3个元素;(4)本集合还包括坐标轴. 5.下列集合中,不同于另外三个集合的是( ) A .{0} B .{y |y 2=0} C .{x |x =0} D .{x =0}解析:选D.A 是列举法,C 是描述法,对于B 要注意集合的代表元素是y ,故与A ,C 相同,而D 表示该集合含有一个元素,即“x =0”.6.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为( )A .4B .5C .19D .20解析:选C.易得P *Q 中元素的个数为4×5-1=19.故选C 项.7.由实数x ,-x ,x 2,-3x 3所组成的集合里面元素最多有________个.解析:x 2=|x |,而-3x 3=-x ,故集合里面元素最多有2个. 答案:28.已知集合A =⎩⎨⎧⎭⎬⎫x ∈N |4x -3∈Z ,试用列举法表示集合A =________.解析:要使4x -3∈Z ,必须x -3是4的约数.而4的约数有-4,-2,-1,1,2,4六个,则x =-1,1,2,4,5,7,要注意到元素x 应为自然数,故A ={1,2,4,5,7}答案:{1,2,4,5,7}9.集合{x |x 2-2x +m =0}含有两个元素,则实数m 满足的条件为________. 解析:该集合是关于x 的一元二次方程的解集,则Δ=4-4m >0,所以m <1. 答案:m <110. 用适当的方法表示下列集合: (1)所有被3整除的整数;(2)图中阴影部分点(含边界)的坐标的集合(不含虚线); (3)满足方程x =|x |,x ∈Z 的所有x 的值构成的集合B .解:(1){x |x =3n ,n ∈Z };(2){(x ,y )|-1≤x ≤2,-12≤y ≤1,且xy ≥0};(3)B ={x |x =|x |,x ∈Z }.11.已知集合A ={x ∈R |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A .解:∵1是集合A 中的一个元素,∴1是关于x 的方程ax 2+2x +1=0的一个根, ∴a ·12+2×1+1=0,即a =-3. 方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∴集合A =⎩⎨⎧⎭⎬⎫-13,1.12.已知集合A ={x |ax 2-3x +2=0},若A 中元素至多只有一个,求实数a 的取值范围.解:①a =0时,原方程为-3x +2=0,x =23,符合题意.②a ≠0时,方程ax 2-3x +2=0为一元二次方程.由Δ=9-8a ≤0,得a ≥98.∴当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根.综合①②,知a =0或a ≥98.1.下列各组对象中不能构成集合的是( ) A .水浒书业的全体员工 B .《优化方案》的所有书刊C .2010年考入清华大学的全体学生D .美国NBA 的篮球明星解析:选D.A 、B 、C 中的元素:员工、书刊、学生都有明确的对象,而D 中对象不确定,“明星”没有具体明确的标准.2.(2011年上海高一检测)下列所给关系正确的个数是( ) ①π∈R ;②3∉Q ;③0∈N *;④|-4|∉N *. A .1 B .2 C .3 D .4 解析:选B.①②正确,③④错误.3.集合A ={一条边长为1,一个角为40°的等腰三角形}中有元素( ) A .2个 B .3个 C .4个 D .无数个解析:选C.(1)当腰长为1时,底角为40°或顶角为40°.(2)当底边长为1时,底角为40°或顶角为40°,所以共有4个三角形.4.以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合中共有________个元素. 解析:由x 2-5x +6=0,解得x =2或x =3. 由x 2-x -2=0,解得x =2或x =-1. 答案:31.若以正实数x ,y ,z ,w 四个元素构成集合A ,以A 中四个元素为边长构成的四边形可能是( )A .梯形B .平行四边形C .菱形D .矩形 答案:A2.设集合A 只含一个元素a ,则下列各式正确的是( ) A .0∈A B .a ∉A C .a ∈A D .a =A 答案:C3.给出以下四个对象,其中能构成集合的有( ) ①教2011届高一的年轻教师;②你所在班中身高超过1.70米的同学; ③2010年广州亚运会的比赛项目; ④1,3,5.A .1个B .2个C .3个D .4个 解析:选C.因为未规定年轻的标准,所以①不能构成集合;由于②③④中的对象具备确定性、互异性,所以②③④能构成集合.4.若集合M ={a ,b ,c },M 中元素是△ABC 的三边长,则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形解析:选D.根据元素的互异性可知,a ≠b ,a ≠c ,b ≠c . 5.下列各组集合,表示相等集合的是( ) ①M ={(3,2)},N ={(2,3)}; ②M ={3,2},N ={2,3}; ③M ={(1,2)},N ={1,2}. A .① B .②C .③D .以上都不对解析:选B.①中M 中表示点(3,2),N 中表示点(2,3),②中由元素的无序性知是相等集合,③中M 表示一个元素:点(1,2),N 中表示两个元素分别为1,2.6.若所有形如a +2b (a ∈Q 、b ∈Q )的数组成集合M ,对于x =13-52,y =3+2π,则有( )A .x ∈M ,y ∈MB .x ∈M ,y ∉MC .x ∉M ,y ∈MD .x ∉M ,y ∉M解析:选B.∅x =13-52=-341-5412,y =3+2π中π是无理数,而集合M 中,b ∈Q ,得x ∈M ,y ∉M .7.已知①5∈R ;②13∈Q ;③0={0};④0∉N ;⑤π∈Q ;⑥-3∈Z .其中正确的个数为________.解析:③错误,0是元素,{0}是一个集合;④0∈N ;⑤π∉Q ,①②⑥正确. 答案:38.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的取值是________. 解析:当a =2时,6-a =4∈A ; 当a =4时,6-a =2∈A ; 当a =6时,6-a =0∉A , 所以a =2或a =4. 答案:2或49.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b 的可能取值组成的集合中元素的个数为________.解析:当a >0,b >0时,|a |a +|b |b=2;当a ·b <0时,|a |a +|b |b=0;当a <0且b <0时,|a |a +|b |b=-2.所以集合中的元素为2,0,-2.即元素的个数为3. 答案:310.已知集合A 含有两个元素a -3和2a -1,若-3∈A ,试求实数a 的值. 解:∵-3∈A ,∴-3=a -3或-3=2a -1. 若-3=a -3,则a =0,此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1,此时集合A 含有两个元素-4,-3,符合题意.综上所述,满足题意的实数a 的值为0或-1.11.集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,试判断12-3是不是集合A 中的元素?解:∵12-3=2+3=2+3×1,而2,1∈Z ,∴2+3∈A ,即12-3∈A .12.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,试求a 与b 的值. 解:根据集合中元素的互异性,有 ⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧a =b 2b =2a , 解得⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧a =0b =0或⎩⎨⎧a =14b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0b =1或⎩⎨⎧a =14b =12.1.下列六个关系式,其中正确的有( )①{a ,b }={b ,a };②{a ,b }⊆{b ,a };③∅={∅};④{0}=∅;⑤∅{0};⑥0∈{0}. A .6个 B .5个C .4个D .3个及3个以下 解析:选C.①②⑤⑥正确.2.已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是( ) A .对任意的a ∈A ,都有a ∉B B .对任意的b ∈B ,都有b ∈A C .存在a 0,满足a 0∈A ,a 0∉B D .存在a 0,满足a 0∈A ,a 0∈B解析:选C.A 不是B 的子集,也就是说A 中存在不是B 中的元素,显然正是C 选项要表达的.对于A 和B 选项,取A ={1,2},B ={2,3}可否定,对于D 选项,取A ={1},B ={2,3}可否定.3.设A ={x |1<x <2},B ={x |x <a },若A B ,则a 的取值范围是( )A .a ≥2B .a ≤1C .a ≥1D .a ≤2解析:选A.A ={x |1<x <2},B ={x |x <a },要使A B ,则应有a ≥2. 4.集合M ={x |x 2-3x -a 2+2=0,a ∈R }的子集的个数为________.解析:∵Δ=9-4(2-a 2)=1+4a 2>0,∴M 恒有2个元素,所以子集有4个. 答案:41.如果A ={x |x >-1},那么( ) A .0⊆A B .{0}∈AC .∅∈AD .{0}⊆A解析:选D.A 、B 、C 的关系符号是错误的.2.已知集合A ={x |-1<x <2},B ={x |0<x <1},则( ) A .A >B B .ABC .B AD .A ⊆B解析:选C.利用数轴(图略)可看出x ∈B ⇒x ∈A ,但x ∈A ⇒x ∈B 不成立.3.定义A -B ={x |x ∈A 且x ∉B },若A ={1,3,5,7,9},B ={2,3,5},则A -B 等于( ) A .A B .BC .{2}D .{1,7,9}解析:选D.从定义可看出,元素在A 中但是不能在B 中,所以只能是D. 4.以下共有6组集合.(1)A ={(-5,3)},B ={-5,3}; (2)M ={1,-3},N ={3,-1}; (3)M =∅,N ={0};(4)M ={π},N ={3.1415};(5)M ={x |x 是小数},N ={x |x 是实数};(6)M ={x |x 2-3x +2=0},N ={y |y 2-3y +2=0}. 其中表示相等的集合有( ) A .2组 B .3组 C .4组 D .5组解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.5.定义集合间的一种运算“*”满足:A *B ={ω|ω=xy (x +y ),x ∈A ,y ∈B }.若集合A ={0,1},B ={2,3},则A *B 的子集的个数是( )A .4B .8C .16D .32解析:选B.在集合A 和B 中分别取出元素进行*的运算,有0·2·(0+2)=0·3·(0+3)=0,1·2·(1+2)=6,1·3·(1+3)=12,因此可知A *B ={0,6,12},因此其子集个数为23=8,选B.6.设B ={1,2},A ={x |x ⊆B },则A 与B 的关系是( ) A .A ⊆B B .B ⊆A C .A ∈B D .B ∈A解析:选D.∵B 的子集为{1},{2},{1,2},∅, ∴A ={x |x ⊆B }={{1},{2},{1,2},∅},∴B ∈A .7.设x ,y ∈R ,A ={(x ,y )|y =x },B ={(x ,y )|yx=1},则A 、B 间的关系为________.解析:在A 中,(0,0)∈A ,而(0,0)∉B ,故BA .答案:B A8.设集合A ={1,3,a },B ={1,a 2-a +1},且A ⊇B ,则a 的值为________.解析:A ⊇B ,则a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.答案:-1或29.已知A ={x |x <-1或x >5},B ={x |a ≤x <a +4},若A B ,则实数a 的取值范围是________.解析:作出数轴可得,要使A B ,则必须a +4≤-1或a >5,解之得{a |a >5或a ≤-5}.答案:{a |a >5或a ≤-5}10.已知集合A ={a ,a +b ,a +2b },B ={a ,ac ,ac 2},若A =B ,求c 的值.解:①若⎩⎪⎨⎪⎧a +b =aca +2b =ac 2,消去b 得a +ac 2-2ac =0, 即a (c 2-2c +1)=0.当a =0时,集合B 中的三个元素相同,不满足集合中元素的互异性,故a ≠0,c 2-2c +1=0,即c =1;当c =1时,集合B 中的三个元素也相同, ∴c =1舍去,即此时无解.②若⎩⎪⎨⎪⎧a +b =ac2a +2b =ac ,消去b 得2ac 2-ac -a =0,即a (2c 2-c -1)=0.∵a ≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0.又∵c ≠1,∴c =-12.11.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}.(1)若A B ,求a 的取值范围; (2)若B ⊆A ,求a 的取值范围. 解:(1)若AB ,由图可知,a >2.(2)若B ⊆A ,由图可知,1≤a ≤2.12.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且B A ,求实数m 的值.解:A ={x |x 2+x -6=0}={-3,2}.∵B A ,∴mx +1=0的解为-3或2或无解. 当mx +1=0的解为-3时,由m ·(-3)+1=0,得m =13;当mx +1=0的解为2时,由m ·2+1=0,得m =-12;当mx +1=0无解时,m =0.综上所述,m =13或m =-12或m =0.1.(2010年高考广东卷)若集合A ={x |-2<x <1},B ={x |0<x <2},则集合A ∩B =( ) A .{x |-1<x <1} B .{x |-2<x <1} C .{x |-2<x <2} D .{x |0<x <1}解析:选D.因为A ={x |-2<x <1},B ={x |0<x <2},所以A ∩B ={x |0<x <1}. 2.(2010年高考湖南卷)已知集合M ={1,2,3},N ={2,3,4}则( ) A .M ⊆N B .N ⊆MC .M ∩N ={2,3}D .M ∪N ={1,4} 解析:选C.∵M ={1,2,3},N ={2,3,4}. ∴选项A 、B 显然不对.M ∪N ={1,2,3,4}, ∴选项D 错误.又M ∩N ={2,3},故选C.3.已知集合M ={y |y =x 2},N ={y |x =y 2},则M ∩N =( ) A .{(0,0),(1,1)} B .{0,1} C .{y |y ≥0} D .{y |0≤y ≤1}解析:选C.M ={y |y ≥0},N =R ,∴M ∩N =M ={y |y ≥0}. 4.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.解析:A ∪B =A ,即B ⊆A ,∴m ≥2. 答案:m ≥21.下列关系Q ∩R =R ∩Q ;Z ∪N =N ;Q ∪R =R ∪Q ;Q ∩N =N 中,正确的个数是( )A .1B .2C .3D .4解析:选C.只有Z ∪N =N 是错误的,应是Z ∪N =Z .2.(2010年高考四川卷)设集合A ={3,5,6,8},集合B ={4,5,7,8},则A ∩B 等于( ) A .{3,4,5,6,7,8} B .{3,6} C .{4,7} D .{5,8}解析:选D.∵A ={3,5,6,8},B ={4,5,7,8},∴A ∩B ={5,8}.3.(2009年高考山东卷)集合A ={0,2,a },B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4解析:选D.根据元素特性,a ≠0,a ≠2,a ≠1. ∴a =4.4.已知集合P ={x ∈N |1≤x ≤10},集合Q ={x ∈R |x 2+x -6=0},则P ∩Q 等于( ) A .{2} B .{1,2} C .{2,3} D .{1,2,3}解析:选A.Q ={x ∈R |x 2+x -6=0}={-3,2}. ∴P ∩Q ={2}.5.(2010年高考福建卷)若集合A ={x |1≤x ≤3},B ={x |x >2},则A ∩B 等于( ) A .{x |2<x ≤3} B .{x |x ≥1} C .{x |2≤x <3} D .{x |x >2}解析:选A.∵A ={x |1≤x ≤3},B ={x |x >2}, ∴A ∩B ={x |2<x ≤3}.6.设集合S ={x |x >5或x <-1},T ={x |a <x <a +8},S ∪T =R ,则a 的取值范围是( )A .-3<a <-1B .-3≤a ≤-1C .a ≤-3或a ≥-1D .a <-3或a >-1 解析:选A.S ∪T =R , ∴⎩⎪⎨⎪⎧a +8>5,a <-1.∴-3<a <-1. 7.(2010年高考湖南卷)已知集合A ={1,2,3},B ={2,m,4},A ∩B ={2,3},则m =________. 解析:∵A ∩B ={2,3},∴3∈B ,∴m =3. 答案:38.满足条件{1,3}∪M ={1,3,5}的集合M 的个数是________. 解析:∵{1,3}∪M ={1,3,5},∴M 中必须含有5, ∴M 可以是{5},{5,1},{5,3},{1,3,5},共4个. 答案:49.若集合A ={x |x ≤2},B ={x |x ≥a },且满足A ∩B ={2},则实数a =________. 解析:当a >2时,A ∩B =∅; 当a <2时,A ∩B ={x |a ≤x ≤2}; 当a =2时,A ∩B ={2}.综上:a =2. 答案:210.已知A ={x |x 2+ax +b =0},B ={x |x 2+cx +15=0},A ∪B ={3,5},A ∩B ={3},求实数a ,b ,c 的值.解:∵A ∩B ={3},∴由9+3c +15=0,解得c =-8.由x 2-8x +15=0,解得B ={3,5},故A ={3}. 又a 2-4b =0,解得a =-6,b =9. 综上知,a =-6,b =9,c =-8.11.已知集合A ={x |x -2>3},B ={x |2x -3>3x -a },求A ∪B . 解:A ={x |x -2>3}={x |x >5}, B ={x |2x -3>3x -a }={x |x <a -3}. 借助数轴如图:①当a -3≤5,即a ≤8时, A ∪B ={x |x <a -3或x >5}. ②当a -3>5,即a >8时,A ∪B ={x |x >5}∪{x |x <a -3}={x |x ∈R }=R .综上可知当a ≤8时,A ∪B ={x |x <a -3或x >5}; 当a >8时,A ∪B =R .12.设集合A ={(x ,y )|2x +y =1,x ,y ∈R },B ={(x ,y )|a 2x +2y =a ,x ,y ∈R },若A ∩B =∅,求a 的值.解:集合A 、B 的元素都是点,A ∩B 的元素是两直线的公共点.A ∩B =∅,则两直线无交点,即方程组无解.列方程组⎩⎪⎨⎪⎧2x +y =1a 2x +2y =a ,解得(4-a 2)x =2-a ,则⎩⎪⎨⎪⎧4-a 2=02-a ≠0,即a =-2.1.(2010年高考辽宁卷)已知集合U ={1,3,5,7,9},A ={1,5,7},则∁U A =( ) A .{1,3} B .{3,7,9} C .{3,5,9} D .{3,9} 解析:选D.∁U A ={3,9},故选D.2.(2010年高考陕西卷)集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∁R B )=( ) A .{x |x >1} B .{x |x ≥1} C .{x |1<x ≤2} D .{x |1≤x ≤2}解析:选D.∵B ={x |x <1},∴∁R B ={x |x ≥1}, ∴A ∩∁R B ={x |1≤x ≤2}.3. 已知全集U =Z ,集合A ={x |x 2=x },B ={-1,0,1,2},则图中的阴影部分所表示的集合等于( )A .{-1,2}B .{-1,0}C .{0,1}D .{1,2}解析:选A.依题意知A ={0,1},(∁U A )∩B 表示全集U 中不在集合A 中,但在集合B 中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.选A.4.已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________.解析:∵A∪∁U A=U,∴A={x|1≤x<2}.∴a=2.答案:21.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩(∁U B)等于()A.{2} B.{5}C.{3,4} D.{2,3,4,5}解析:选C.∁U B={3,4,5},∴A∩(∁U B)={3,4}.2.已知全集U={0,1,2},且∁U A={2},则A=()A.{0} B.{1}C.∅D.{0,1}解析:选D.∵∁U A={2},∴2∉A,又U={0,1,2},∴A={0,1}.3.(2009年高考全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个解析:选A.U=A∪B={3,4,5,7,8,9},A∩B={4,7,9},∴∁U(A∩B)={3,5,8}.4.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6} B.M∪N=UC.(∁U N)∪M=U D.(∁U M)∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},得M∩N={4,5},(∁U N)∪M={3,4,5,7},(∁U M)∩N={2,6},M∪N={2,3,4,5,6,7}=U,选B.5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中元素个数为()A.1 B.2C.3 D.4解析:选B.∵A={1,2},∴B={2,4},∴A∪B={1,2,4},∴∁U(A∪B)={3,5}.6.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A∩B的元素个数为()A.mn B.m+nC.n-m D.m-n解析:选D.U=A∪B中有m个元素,∵(∁U A)∪(∁U B)=∁U(A∩B)中有n个元素,∴A∩B中有m-n个元素,故选D.7.设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则(A∪B)∩(∁U C)=________.解析:∵A∪B={2,3,4,5},∁U C={1,2,5},∴(A∪B)∩(∁U C)={2,3,4,5}∩{1,2,5}={2,5}.答案:{2,5}8.已知全集U={2,3,a2-a-1},A={2,3},若∁U A={1},则实数a的值是________.解析:∵U={2,3,a2-a-1},A={2,3},∁U A={1},∴a2-a-1=1,即a2-a-2=0,解得a=-1或a=2.答案:-1或29.设集合A ={x |x +m ≥0},B ={x |-2<x <4},全集U =R ,且(∁U A )∩B =∅,求实数m 的取值范围为________.解析:由已知A ={x |x ≥-m }, ∴∁U A ={x |x <-m },∵B ={x |-2<x <4},(∁U A )∩B =∅, ∴-m ≤-2,即m ≥2, ∴m 的取值范围是m ≥2. 答案:{m |m ≥2}10.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},求A ∩B ,(∁U B )∪P ,(A ∩B )∩(∁U P ).解:将集合A 、B 、P 表示在数轴上,如图.∵A ={x |-4≤x <2},B ={x |-1<x ≤3}, ∴A ∩B ={x |-1<x <2}. ∵∁U B ={x |x ≤-1或x >3},∴(∁U B )∪P ={x |x ≤0或x ≥52},(A ∩B )∩(∁U P )={x |-1<x <2}∩{x |0<x <52}={x |0<x <2}.11.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足B ∩(∁U A )={2},A ∩(∁U B )={4},U =R ,求实数a ,b 的值.解:∵B ∩(∁U A )={2}, ∴2∈B ,但2∉A .∵A ∩(∁U B )={4},∴4∈A ,但4∉B .∴⎩⎪⎨⎪⎧42+4a +12b =022-2a +b =0,解得⎩⎨⎧a =87b =127.∴a ,b 的值为87,-127.12.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求实数a 的取值范围. 解:∁R B ={x |x ≤1或x ≥2}≠∅, ∵A ∁R B ,∴分A =∅和A ≠∅两种情况讨论. ①若A =∅,此时有2a -2≥a , ∴a ≥2.②若A ≠∅,则有⎩⎪⎨⎪⎧ 2a -2<a a ≤1或⎩⎪⎨⎪⎧2a -2<a 2a -2≥2. ∴a ≤1.综上所述,a ≤1或a ≥2.第二章 基本初等函数1.下列说法中正确的为( )A .y =f (x )与y =f (t )表示同一个函数B .y =f (x )与y =f (x +1)不可能是同一函数C .f (x )=1与f (x )=x 0表示同一函数D .定义域和值域都相同的两个函数是同一个函数 解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.2.下列函数完全相同的是( ) A .f (x )=|x |,g (x )=(x )2 B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3解析:选B.A 、C 、D 的定义域均不同. 3.函数y =1-x +x 的定义域是( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1}解析:选D.由⎩⎪⎨⎪⎧1-x ≥0x ≥0,得0≤x ≤1.4.图中(1)(2)(3)(4)四个图象各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的有________.解析:由函数定义可知,任意作一条直线x =a ,则与函数的图象至多有一个交点,对于本题而言,当-1≤a ≤1时,直线x =a 与函数的图象仅有一个交点,当a >1或a <-1时,直线x =a 与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3).答案:(2)(3)1.函数y =1x的定义域是( )A .RB .{0}C .{x |x ∈R ,且x ≠0}D .{x |x ≠1}解析:选C.要使1x 有意义,必有x ≠0,即y =1x的定义域为{x |x ∈R ,且x ≠0}.2.下列式子中不能表示函数y =f (x )的是( ) A .x =y 2+1 B .y =2x 2+1 C .x -2y =6 D .x =y解析:选A.一个x 对应的y 值不唯一. 3.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了解析:选C.根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,x ∈A ,还可以是x →x 2,x ∈A .4.下列集合A 到集合B 的对应f 是函数的是( ) A .A ={-1,0,1},B ={0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =Q ,f :A 中的数取倒数D .A =R ,B ={正实数},f :A 中的数取绝对值解析:选A.按照函数定义,选项B 中集合A 中的元素1对应集合B 中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C 中的元素0取倒数没有意义,也不符合函数定义中集合A 中任意元素都对应唯一函数值的要求;选项D 中,集合A 中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A 符合函数定义.5.下列各组函数表示相等函数的是( )A .y =x 2-3x -3与y =x +3(x ≠3)B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 解析:选C.A 、B 与D 对应法则都不同.6.设f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ∩B 一定是( ) A .∅ B .∅或{1} C .{1} D .∅或{2}解析:选B.由f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ={-1,1,-2,2}或A ={-1,1,-2}或A ={-1,1,2}或A ={-1,2,-2}或A ={1,-2,2}或A ={-1,-2}或A ={-1,2}或A ={1,2}或A ={1,-2}.所以A ∩B =∅或{1}.7.若[a,3a -1]为一确定区间,则a 的取值范围是________.解析:由题意3a -1>a ,则a >12.答案:(12,+∞)8.函数y =(x +1)03-2x的定义域是________.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧x +1≠03-2x >0,即x <32且x ≠-1.答案:(-∞,-1)∪(-1,32)9.函数y =x 2-2的定义域是{-1,0,1,2},则其值域是________. 解析:当x 取-1,0,1,2时, y =-1,-2,-1,2,故函数值域为{-1,-2,2}. 答案:{-1,-2,2}10.求下列函数的定义域: (1)y =-x 2x 2-3x -2;(2)y =34x +83x -2.解:(1)要使y =-x 2x 2-3x -2有意义,则必须⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12, 故所求函数的定义域为{x |x ≤0,且x ≠-12}.(2)要使y =34x +83x -2有意义,则必须3x -2>0,即x >23, 故所求函数的定义域为{x |x >23}. 11.已知f (x )=11+x(x ∈R 且x ≠-1),g (x )=x 2+2(x ∈R ). (1)求f (2),g (2)的值; (2)求f (g (2))的值.解:(1)∵f (x )=11+x ,∴f (2)=11+2=13,又∵g (x )=x 2+2, ∴g (2)=22+2=6. (2)由(1)知g (2)=6,∴f (g (2))=f (6)=11+6=17.12.已知函数y =ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的取值范围.解:函数y =ax +1(a <0且a 为常数).∵ax +1≥0,a <0,∴x ≤-1a ,即函数的定义域为(-∞,-1a].∵函数在区间(-∞,1]上有意义,∴(-∞,1]⊆(-∞,-1a],∴-1a≥1,而a <0,∴-1≤a <0.即a 的取值范围是[-1,0).1.下列各图中,不能是函数f (x )图象的是( )解析:选C.结合函数的定义知,对A 、B 、D ,定义域中每一个x 都有唯一函数值与之对应;而对C ,对大于0的x 而言,有两个不同值与之对应,不符合函数定义,故选C.2.若f (1x )=11+x,则f (x )等于( )A.11+x(x ≠-1) B.1+x x (x ≠0)C.x 1+x(x ≠0且x ≠-1) D .1+x (x ≠-1) 解析:选C.f (1x )=11+x =1x 1+1x(x ≠0),∴f (t )=t1+t (t ≠0且t ≠-1),∴f (x )=x1+x(x ≠0且x ≠-1).3.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( ) A .3x +2 B .3x -2 C .2x +3 D .2x -3解析:选B.设f (x )=kx +b (k ≠0), ∵2f (2)-3f (1)=5,2f (0)-f (-1)=1, ∴⎩⎪⎨⎪⎧ k -b =5k +b =1,∴⎩⎪⎨⎪⎧k =3b =-2,∴f (x )=3x -2. 4.已知f (2x )=x 2-x -1,则f (x )=________.解析:令2x =t ,则x =t2,∴f (t )=⎝⎛⎭⎫t 22-t 2-1,即f (x )=x 24-x 2-1.答案:x 24-x 2-11.下列表格中的x 与y 能构成函数的是( ) A.x 非负数 非正数 y 1 -1B.x 奇数 0 偶数y 1 0-1 C.x 有理数 无理数 y 1 -1D.x 自然数 整数 有理数y 1 0 -1解析:选C.A 中,当x =0时,y =±1;B 中0是偶数,当x =0时,y =0或y =-1;D 中自然数、整数、有理数之间存在包含关系,如x =1∈N(Z ,Q),故y 的值不唯一,故A 、B 、D 均不正确.2.若f (1-2x )=1-x 2x 2(x ≠0),那么f (12)等于( )A .1B .3C .15D .30解析:选C.法一:令1-2x =t ,则x =1-t2(t ≠1),∴f (t )=4(t -1)2-1,∴f (12)=16-1=15. 法二:令1-2x =12,得x =14,∴f (12)=16-1=15.3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是( ) A .2x +1 B .2x -1 C .2x -3 D .2x +7解析:选B.∵g (x +2)=2x +3=2(x +2)-1, ∴g (x )=2x -1.4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是( )解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A 、C ,又一开始跑步,速度快,所以D 符合.5.如果二次函数的二次项系数为1且图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式为( )A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1 解析:选D.设f (x )=(x -1)2+c , 由于点(0,0)在函数图象上, ∴f (0)=(0-1)2+c =0,∴c =-1,∴f (x )=(x -1)2-1.6.已知正方形的周长为x ,它的外接圆的半径为y ,则y 关于x 的函数解析式为( )A .y =12x (x >0)B .y =24x (x >0)C .y =28x (x >0)D .y =216x (x >0)解析:选C.设正方形的边长为a ,则4a =x ,a =x4,其外接圆的直径刚好为正方形的一条对角线长.故2a =2y ,所以y =22a =22×x 4=28x .7.已知f (x )=2x +3,且f (m )=6,则m 等于________.解析:2m +3=6,m =32.答案:328. 如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f [1f (3)]的值等于________.解析:由题意,f (3)=1,∴f [1f (3)]=f (1)=2.答案:2 9.将函数y =f (x )的图象向左平移1个单位,再向上平移2个单位得函数y =x 2的图象,则函数f (x )的解析式为__________________.解析:将函数y =x 2的图象向下平移2个单位,得函数y =x 2-2的图象,再将函数y =x 2-2的图象向右平移1个单位,得函数y =(x -1)2-2的图象,即函数y =f (x )的图象,故f (x )=x 2-2x -1.答案:f (x )=x 2-2x -110.已知f (0)=1,f (a -b )=f (a )-b (2a -b +1),求f (x ). 解:令a =0,则f (-b )=f (0)-b (-b +1) =1+b (b -1)=b 2-b +1.再令-b =x ,即得f (x )=x 2+x +1.11.已知f (x +1x )=x 2+1x 2+1x,求f (x ).解:∵x +1x =1+1x ,x 2+1x 2=1+1x 2,且x +1x ≠1,∴f (x +1x )=f (1+1x )=1+1x 2+1x=(1+1x )2-(1+1x)+1.∴f (x )=x 2-x +1(x ≠1).12.设二次函数f (x )满足f (2+x )=f (2-x ),对于x ∈R 恒成立,且f (x )=0的两个实根的平方和为10,f (x )的图象过点(0,3),求f (x )的解析式.解:∵f (2+x )=f (2-x ),∴f (x )的图象关于直线x =2对称. 于是,设f (x )=a (x -2)2+k (a ≠0), 则由f (0)=3,可得k =3-4a ,∴f (x )=a (x -2)2+3-4a =ax 2-4ax +3.∵ax 2-4ax +3=0的两实根的平方和为10,∴10=x 21+x 22=(x 1+x 2)2-2x 1x 2=16-6a, ∴a =1.∴f (x )=x 2-4x +3.1.已知集合A ={a ,b },集合B ={0,1},下列对应不是A 到B 的映射的是( )解析:选C.A 、B 、D 均满足映射的定义,C 不满足A 中任一元素在B 中都有唯一元素与之对应,且A 中元素b 在B 中无元素与之对应.2.(2011年葫芦岛高一检测)设f (x )=⎩⎪⎨⎪⎧x +3 (x >10)f (f (x +5)) (x ≤10),则f (5)的值是( ) A .24 B .21 C .18 D .16 解析:选A.f (5)=f (f (10)), f (10)=f (f (15))=f (18)=21, f (5)=f (21)=24.3.函数y =x +|x |x的图象为( )解析:选C.y =x +|x |x =⎩⎪⎨⎪⎧x +1 (x >0)x -1 (x <0),再作函数图象.4.函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <11x, x >1的值域是________.解析:当x <1时,x 2-x +1=(x -12)2+34≥34;当x >1时,0<1x<1,则所求值域为(0,+∞),故填(0,+∞).答案:(0,+∞)1.设f :A →B 是集合A 到B 的映射,其中A ={x |x >0},B =R ,且f :x →x 2-2x -1,则A 中元素1+2的像和B 中元素-1的原像分别为( )A.2,0或2 B .0,2 C .0,0或2 D .0,0或2 答案:C2.某城市出租车起步价为10元,最长可租乘3 km(含3 km),以后每1 km 为1.6元(不足1 km ,按1 km 计费),若出租车行驶在不需等待的公路上,则出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为( )解析:选C.由题意,当0<x ≤3时,y =10; 当3<x ≤4时,y =11.6; 当4<x ≤5时,y =13.2; …当n -1<x ≤n 时,y =10+(n -3)×1.6,故选C.3.函数f (x )=⎩⎪⎨⎪⎧2x -x 2(0≤x ≤3)x 2+6x (-2≤x ≤0)的值域是( )A .RB .[-9,+∞)C .[-8,1]D .[-9,1]解析:选C.画出图象,也可以分段求出部分值域,再合并,即求并集.4.已知f (x )=⎩⎪⎨⎪⎧x +2(x ≤-1),x 2(-1<x <2)2x (x ≥2),若f (x )=3,则x 的值是( ) A .1B .1或32C .1,32或± 3 D.3解析:选D.该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4), ∴f (x )=x 2=3,x =±3,而-1<x <2,∴x = 3.5.已知函数f (x )=⎩⎪⎨⎪⎧1, x 为有理数,0, x 为无理数,g (x )=⎩⎪⎨⎪⎧0, x 为有理数,1, x 为无理数,当x ∈R 时,f (g (x )),g (f (x ))的值分别为( )A .0,1B .0,0C .1,1D .1,0解析:选D.g (x )∈Q ,f (x )∈Q ,f (g (x ))=1,g (f (x ))=0.6.设f (x )=⎩⎪⎨⎪⎧(x +1)2 (x ≤-1),2(x +1) (-1<x <1),1x -1 (x ≥1),已知f (a )>1,则实数a 的取值范围是( )A .(-∞,-2)∪⎝⎛⎭⎫-12,+∞ B.⎝⎛⎭⎫-12,12 C .(-∞,-2)∪⎝⎛⎭⎫-12,1 D.⎝⎛⎭⎫-12,12∪(1,+∞) 解析:选C.f (a )>1⇔⎩⎪⎨⎪⎧ a ≤-1(a +1)2>1或⎩⎪⎨⎪⎧-1<a <12(a +1)>1或⎩⎪⎨⎪⎧a ≥11a-1>1⇔⎩⎪⎨⎪⎧a ≤-1a <-2或a >0或⎩⎪⎨⎪⎧-1<a <1a >-12或⎩⎪⎨⎪⎧a ≥10<a <12⇔a <-2或-12<a <1.即所求a 的取值范围是(-∞,-2)∪⎝⎛⎭⎫-12,1. 7.设A =B ={a ,b ,c ,d ,…,x ,y ,z }(元素为26个英文字母),作映射f :A →B 为A中每一个字母与B 中下一个字母对应,即:a →b ,b →c ,c →d ,…,z →a ,并称A 中的字母组成的文字为明文,B 中相应的字母为密文,试破译密文“nbuj ”:________.解析:由题意可知m →n ,a →b ,t →u ,i →j , 所以密文“nbuj ”破译后为“mati ”. 答案:mati8.已知函数f (x )=⎩⎪⎨⎪⎧x 2, x ≤0,f (x -2), x >0,则f (4)=________.解析:f (4)=f (2)=f (0)=0.答案:09.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0,则不等式x +(x +2)·f (x +2)≤5的解集是________.解析:原不等式可化为下面两个不等式组 ⎩⎪⎨⎪⎧ x +2≥0x +(x +2)·1≤5或⎩⎪⎨⎪⎧x +2<0x +(x +2)·(-1)≤5, 解得-2≤x ≤32或x <-2,即x ≤32.答案:(-∞,32]10.已知f (x )=⎩⎨⎧x 2 (-1≤x ≤1)1 (x >1或x <-1),(1)画出f (x )的图象;(2)求f (x )的定义域和值域.解:(1)利用描点法,作出f (x )的图象,如图所示. (2)由条件知,函数f (x )的定义域为R.由图象知,当-1≤x ≤1时, f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.某汽车以52千米/小时的速度从A 地到260千米远的B 地,在B 地停留112小时后,再以65千米/小时的速度返回A 地.试将汽车离开A 地后行驶的路程s (千米)表示为时间t (小时)的函数.解:∵260÷52=5(小时),260÷65=4(小时),∴s =⎩⎪⎨⎪⎧52t (0≤t ≤5),260 ⎝⎛⎭⎫5<t ≤612,260+65⎝⎛⎭⎫t -612 ⎝⎛⎭⎫612<t ≤1012.12. 如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象.解:过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H . 因为ABCD 是等腰梯形, 底角为45°,AB =2 2 cm , 所以BG =AG =DH =HC =2 cm. 又BC =7 cm ,所以AD =GH =3 cm. ①当点F 在BG 上时,。

数学高一全优练习册及答案

数学高一全优练习册及答案

数学高一全优练习册及答案### 数学高一全优练习册及答案#### 第一章:函数与方程练习题 1:已知函数 \( f(x) = 2x^2 - 3x + 1 \),求其定义域和值域。

答案:定义域:\( \mathbb{R} \),因为这是一个多项式函数,对所有实数都有定义。

值域:\( [1, +\infty) \),通过完成平方或求导数找到最小值点,\( f(x) \) 在 \( x = \frac{3}{4} \) 处取得最小值 1。

练习题 2:求函数 \( g(x) = \frac{1}{x} \) 的反函数。

答案:反函数为 \( g^{-1}(x) = \frac{1}{x} \),因为 \( g(x) \) 和\( g^{-1}(x) \) 是互为反函数。

#### 第二章:三角函数练习题 3:已知 \( \sin(\alpha) = \frac{3}{5} \),求\( \cos(\alpha) \) 和 \( \tan(\alpha) \) 的值。

答案:\( \cos(\alpha) = \pm\sqrt{1 - \sin^2(\alpha)} =\pm\frac{4}{5} \),取决于 \( \alpha \) 的象限。

\( \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} =\pm\frac{3}{4} \),同样取决于 \( \alpha \) 的象限。

练习题 4:求 \( \sin(2\theta) \) 的值,已知 \( \cos(\theta)= \frac{1}{2} \)。

答案:\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \),首先求\( \sin(\theta) \),由于 \( \cos(\theta) = \frac{1}{2} \),\( \theta \) 可能在第一或第四象限,因此 \( \sin(\theta) \) 可以是 \( \frac{\sqrt{3}}{2} \) 或 \( -\frac{\sqrt{3}}{2} \)。

高一数学练习试题及答案

高一数学练习试题及答案

高一数学练习试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-6x+8,则f(1)的值为()A. 3B. 5C. -3D. -12. 已知集合A={x|x^2-5x+6=0},B={x|x^2-3x+2=0},则A∩B 为()A. {1, 2}B. {2, 3}C. {1, 3}D. {2}3. 若a,b,c是等差数列,且a+c=10,b=5,则a+b+c的值为()A. 15B. 20C. 25D. 304. 函数y=x^3-3x^2+2在x=1处的导数为()A. 0B. 1C. -1D. 25. 已知向量a=(3, -2),b=(1, 2),则向量a+b的坐标为()A. (4, 0)B. (2, 0)C. (1, 0)D. (0, 0)6. 已知函数f(x)=2sin(x)+√3cos(x),x∈[0, 2π],则f(x)的最大值为()A. 3B. 2C. 1D. 07. 已知双曲线x^2/a^2 - y^2/b^2 = 1的离心率为√5,且a=1,则b的值为()A. 2B. 3C. 4D. 58. 已知直线l:y=kx+b与圆x^2+y^2=1相切,则|b|的最小值为()A. 0B. 1C. √2D. 29. 已知等比数列{an}的前n项和为S_n,若a_1=1,q=2,则S_4的值为()A. 15B. 16C. 8D. 410. 已知函数f(x)=x^2-4x+m,若f(x)在[2, +∞)上单调递增,则实数m的取值范围为()A. m≥-4B. m>-4C. m<-4D. m≥0二、填空题(每题4分,共20分)11. 已知函数f(x)=x^3-3x+1,则f'(x)=_________。

12. 已知向量a=(2, 3),b=(-1, 2),则向量a·b=_________。

13. 已知等差数列{an}的公差d=3,a_1=2,则a_5=_________。

高一数学必修一全册练习题(解析版)

高一数学必修一全册练习题(解析版)

第一章集合与函数的概念1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是()A.{x|x是小于18的正奇数}B.{x|x=4k+1,k∈Z,且k<5}C.{x|x=4t-3,t∈N,且t≤5}D.{x|x=4s-3,s∈N*,且s≤5}解析:选D.A中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B中k取负数,多了若干元素;C中t=0时多了-3这个元素,只有D是正确的.2.集合P={x|x=2k,k∈Z},M={x|x=2k+1,k∈Z},S={x|x=4k+1,k∈Z},a∈P,b∈M,设c=a+b,则有()A.c∈P B.c∈MC.c∈S D.以上都不对解析:选B.∵a∈P,b∈M,c=a+b,设a=2k1,k1∈Z,b=2k2+1,k2∈Z,∴c=2k1+2k2+1=2(k1+k2)+1,又k1+k2∈Z,∴c∈M.3.定义集合运算:A*B={z|z=xy,x∈A,y∈B},设A={1,2},B={0,2},则集合A*B 的所有元素之和为()A.0B.2C.3D.6解析:选D.∵z=xy,x∈A,y∈B,∴z的取值有:1×0=0,1×2=2,2×0=0,2×2=4,故A*B={0,2,4},∴集合A*B的所有元素之和为:0+2+4=6.4.已知集合A={1,2,3},B={1,2},C={(x,y)|x∈A,y∈B},则用列举法表示集合C =____________.解析:∵C={(x,y)|x∈A,y∈B},∴满足条件的点为:(1,1),(1,2),(2,1),(2,2),(3,1),(3,2).答案:{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}1.集合{(x ,y )|y =2x -1}表示()A .方程y =2x -1B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合答案:D2.设集合M ={x ∈R |x ≤33},a =26,则()A .a ∉MB .a ∈MC .{a }∈MD .{a |a =26}∈M解析:选B.(26)2-(33)2=24-27<0,故26<3 3.所以a ∈M .3+y =1-y =9的解集是()A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D.+y =1-y =9=5=-4,该方程组有一组解(5,-4),解集为{(5,-4)}.4.下列命题正确的有()(1)很小的实数可以构成集合;(2)集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合;(3)1,32,64,|-12|,0.5这些数组成的集合有5个元素;(4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集.A .0个B .1个C .2个D .3个解析:选A.(1)错的原因是元素不确定;(2)前者是数集,而后者是点集,种类不同;(3)32=64,|-12|=0.5,有重复的元素,应该是3个元素;(4)本集合还包括坐标轴.5.下列集合中,不同于另外三个集合的是()A .{0}B .{y |y 2=0}C .{x |x =0}D .{x =0}解析:选D.A 是列举法,C 是描述法,对于B 要注意集合的代表元素是y ,故与A ,C 相同,而D 表示该集合含有一个元素,即“x =0”.6.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为()A .4B .5C .19D .20解析:选C.易得P *Q 中元素的个数为4×5-1=19.故选C 项.7.由实数x ,-x ,x 2,-3x 3所组成的集合里面元素最多有________个.解析:x 2=|x |,而-3x 3=-x ,故集合里面元素最多有2个.答案:28.已知集合A ∈N |4x -3∈A =________.解析:要使4x -3∈Z ,必须x -3是4的约数.而4的约数有-4,-2,-1,1,2,4六个,则x =-1,1,2,4,5,7,要注意到元素x 应为自然数,故A ={1,2,4,5,7}答案:{1,2,4,5,7}9.集合{x |x 2-2x +m =0}含有两个元素,则实数m 满足的条件为________.解析:该集合是关于x 的一元二次方程的解集,则Δ=4-4m >0,所以m <1.答案:m <110.用适当的方法表示下列集合:(1)所有被3整除的整数;(2)图中阴影部分点(含边界)的坐标的集合(不含虚线);(3)满足方程x =|x |,x ∈Z 的所有x 的值构成的集合B .解:(1){x |x =3n ,n ∈Z };(2){(x ,y )|-1≤x ≤2,-12≤y ≤1,且xy ≥0};(3)B ={x |x =|x |,x ∈Z }.11.已知集合A ={x ∈R |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A .解:∵1是集合A 中的一个元素,∴1是关于x 的方程ax 2+2x +1=0的一个根,∴a ·12+2×1+1=0,即a =-3.方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∴集合A -1312.已知集合A ={x |ax 2-3x +2=0},若A 中元素至多只有一个,求实数a 的取值范围.解:①a =0时,原方程为-3x +2=0,x =23,符合题意.②a ≠0时,方程ax 2-3x +2=0为一元二次方程.由Δ=9-8a ≤0,得a ≥98.∴当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根.综合①②,知a =0或a ≥98.1.下列各组对象中不能构成集合的是()A .水浒书业的全体员工B .《优化方案》的所有书刊C .2010年考入清华大学的全体学生D .美国NBA 的篮球明星解析:选D.A 、B 、C 中的元素:员工、书刊、学生都有明确的对象,而D 中对象不确定,“明星”没有具体明确的标准.2.(2011年上海高一检测)下列所给关系正确的个数是()①π∈R ;②3∉Q ;③0∈N *;④|-4|∉N *.A .1B .2C .3D .4解析:选B.①②正确,③④错误.3.集合A ={一条边长为1,一个角为40°的等腰三角形}中有元素()A .2个B .3个C .4个D .无数个解析:选C.(1)当腰长为1时,底角为40°或顶角为40°.(2)当底边长为1时,底角为40°或顶角为40°,所以共有4个三角形.4.以方程x2-5x+6=0和方程x2-x-2=0的解为元素的集合中共有________个元素.解析:由x2-5x+6=0,解得x=2或x=3.由x2-x-2=0,解得x=2或x=-1.答案:31.若以正实数x,y,z,w四个元素构成集合A,以A中四个元素为边长构成的四边形可能是()A.梯形B.平行四边形C.菱形D.矩形答案:A2.设集合A只含一个元素a,则下列各式正确的是()A.0∈A B.a∉AC.a∈A D.a=A答案:C3.给出以下四个对象,其中能构成集合的有()①教2011届高一的年轻教师;②你所在班中身高超过1.70米的同学;③2010年广州亚运会的比赛项目;④1,3,5.A.1个B.2个C.3个D.4个解析:选C.因为未规定年轻的标准,所以①不能构成集合;由于②③④中的对象具备确定性、互异性,所以②③④能构成集合.4.若集合M={a,b,c},M中元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:选D.根据元素的互异性可知,a≠b,a≠c,b≠c.5.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对解析:选B.①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.6.若所有形如a+2b(a∈Q、b∈Q)的数组成集合M,对于x=13-52,y=3+2π,则有()A.x∈M,y∈M B.x∈M,y∉MC.x∉M,y∈M D.x∉M,y∉M解析:选B.∅x=13-52=-341-5412,y=3+2π中π是无理数,而集合M中,b∈Q,得x∈M,y∉M.7.已知①5∈R;②13∈Q;③0={0};④0∉N;⑤π∈Q;⑥-3∈Z.其中正确的个数为________.解析:③错误,0是元素,{0}是一个集合;④0∈N;⑤π∉Q,①②⑥正确.答案:38.对于集合A={2,4,6},若a∈A,则6-a∈A,那么a的取值是________.解析:当a=2时,6-a=4∈A;当a=4时,6-a=2∈A;当a=6时,6-a=0∉A,所以a=2或a=4.答案:2或49.若a,b∈R,且a≠0,b≠0,则|a|a+|b|b的可能取值组成的集合中元素的个数为________.解析:当a>0,b>0时,|a|a+|b|b=2;当a·b<0时,|a|a+|b|b=0;当a<0且b<0时,|a|a+|b|b=-2.所以集合中的元素为2,0,-2.即元素的个数为3.答案:310.已知集合A含有两个元素a-3和2a-1,若-3∈A,试求实数a的值.解:∵-3∈A,∴-3=a-3或-3=2a-1.若-3=a-3,则a=0,此时集合A含有两个元素-3,-1,符合题意.若-3=2a-1,则a=-1,此时集合A含有两个元素-4,-3,符合题意.综上所述,满足题意的实数a 的值为0或-1.11.集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,试判断12-3是不是集合A 中的元素?解:∵12-3=2+3=2+3×1,而2,1∈Z ,∴2+3∈A ,即12-3∈A .12.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,试求a 与b 的值.解:根据集合中元素的互异性,有=2a =b2=b 2=2a,=0=1=0=0=14=12.再根据集合中元素的互异性,=0=1=14=12.1.下列六个关系式,其中正确的有()①{a ,b }={b ,a };②{a ,b }⊆{b ,a };③∅={∅};④{0}=∅;⑤∅{0};⑥0∈{0}.A .6个B .5个C .4个D .3个及3个以下解析:选C.①②⑤⑥正确.2.已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是()A .对任意的a ∈A ,都有a ∉B B .对任意的b ∈B ,都有b ∈AC .存在a 0,满足a 0∈A ,a 0∉BD .存在a 0,满足a 0∈A ,a 0∈B解析:选C.A 不是B 的子集,也就是说A 中存在不是B 中的元素,显然正是C 选项要表达的.对于A 和B 选项,取A ={1,2},B ={2,3}可否定,对于D 选项,取A ={1},B ={2,3}可否定.3.设A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是()A.a≥2B.a≤1C.a≥1D.a≤2解析:选A.A={x|1<x<2},B={x|x<a},要使A B,则应有a≥2.4.集合M={x|x2-3x-a2+2=0,a∈R}的子集的个数为________.解析:∵Δ=9-4(2-a2)=1+4a2>0,∴M恒有2个元素,所以子集有4个.答案:41.如果A={x|x>-1},那么()A.0⊆A B.{0}∈AC.∅∈A D.{0}⊆A解析:选D.A、B、C的关系符号是错误的.2.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A BC.B A D.A⊆B解析:选C.利用数轴(图略)可看出x∈B⇒x∈A,但x∈A⇒x∈B不成立.3.定义A-B={x|x∈A且x∉B},若A={1,3,5,7,9},B={2,3,5},则A-B等于() A.A B.BC.{2}D.{1,7,9}解析:选D.从定义可看出,元素在A中但是不能在B中,所以只能是D.4.以下共有6组集合.(1)A={(-5,3)},B={-5,3};(2)M={1,-3},N={3,-1};(3)M=∅,N={0};(4)M={π},N={3.1415};(5)M={x|x是小数},N={x|x是实数};(6)M={x|x2-3x+2=0},N={y|y2-3y+2=0}.其中表示相等的集合有()A.2组B.3组C.4组D.5组解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.5.定义集合间的一种运算“*”满足:A*B={ω|ω=xy(x+y),x∈A,y∈B}.若集合A={0,1},B={2,3},则A*B的子集的个数是()A.4B.8C.16D.32解析:选B.在集合A和B中分别取出元素进行*的运算,有0·2·(0+2)=0·3·(0+3)=0,1·2·(1+2)=6,1·3·(1+3)=12,因此可知A*B={0,6,12},因此其子集个数为23=8,选B.6.设B={1,2},A={x|x⊆B},则A与B的关系是()A.A⊆B B.B⊆AC.A∈B D.B∈A解析:选D.∵B的子集为{1},{2},{1,2},∅,∴A={x|x⊆B}={{1},{2},{1,2},∅},∴B∈A.7.设x,y∈R,A={(x,y)|y=x},B={(x,y)|yx=1},则A、B间的关系为________.解析:在A中,(0,0)∈A,而(0,0)∉B,故B A.答案:B A8.设集合A={1,3,a},B={1,a2-a+1},且A⊇B,则a的值为________.解析:A⊇B,则a2-a+1=3或a2-a+1=a,解得a=2或a=-1或a=1,结合集合元素的互异性,可确定a=-1或a=2.答案:-1或29.已知A={x|x<-1或x>5},B={x|a≤x<a+4},若A B,则实数a的取值范围是________.解析:作出数轴可得,要使A B,则必须a+4≤-1或a>5,解之得{a|a>5或a≤-5}.答案:{a|a>5或a≤-5}10.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求c的值.+b=ac+2b=ac2,消去b得a+ac2-2ac=0,即a(c2-2c+1)=0.当a=0时,集合B中的三个元素相同,不满足集合中元素的互异性,故a≠0,c2-2c+1=0,即c=1;当c=1时,集合B中的三个元素也相同,∴c=1舍去,即此时无解.+b=ac2+2b=ac,消去b得2ac2-ac-a=0,即a(2c2-c-1)=0.∵a ≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0.又∵c ≠1,∴c =-12.11.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}.(1)若AB ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.解:(1)若AB ,由图可知,a >2.(2)若B ⊆A ,由图可知,1≤a ≤2.12.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且B A ,求实数m 的值.解:A ={x |x 2+x -6=0}={-3,2}.∵BA ,∴mx +1=0的解为-3或2或无解.当mx +1=0的解为-3时,由m ·(-3)+1=0,得m =13;当mx +1=0的解为2时,由m ·2+1=0,得m =-12;当mx +1=0无解时,m =0.综上所述,m =13或m =-12或m =0.1.(2010年高考广东卷)若集合A ={x |-2<x <1},B ={x |0<x <2},则集合A ∩B =()A .{x |-1<x <1}B .{x |-2<x <1}C .{x |-2<x <2}D .{x |0<x <1}解析:选D.因为A ={x |-2<x <1},B ={x |0<x <2},所以A ∩B ={x |0<x <1}.2.(2010年高考湖南卷)已知集合M ={1,2,3},N ={2,3,4}则()A .M ⊆NB .N ⊆MC .M ∩N ={2,3}D .M ∪N ={1,4}解析:选C.∵M={1,2,3},N={2,3,4}.∴选项A、B显然不对.M∪N={1,2,3,4},∴选项D错误.又M∩N={2,3},故选C.3.已知集合M={y|y=x2},N={y|x=y2},则M∩N=()A.{(0,0),(1,1)}B.{0,1}C.{y|y≥0}D.{y|0≤y≤1}解析:选C.M={y|y≥0},N=R,∴M∩N=M={y|y≥0}.4.已知集合A={x|x≥2},B={x|x≥m},且A∪B=A,则实数m的取值范围是________.解析:A∪B=A,即B⊆A,∴m≥2.答案:m≥21.下列关系Q∩R=R∩Q;Z∪N=N;Q∪R=R∪Q;Q∩N=N中,正确的个数是()A.1B.2C.3D.4解析:选C.只有Z∪N=N是错误的,应是Z∪N=Z.2.(2010年高考四川卷)设集合A={3,5,6,8},集合B={4,5,7,8},则A∩B等于() A.{3,4,5,6,7,8}B.{3,6}C.{4,7}D.{5,8}解析:选D.∵A={3,5,6,8},B={4,5,7,8},∴A∩B={5,8}.3.(2009年高考山东卷)集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a 的值为()A.0B.1C.2D.4解析:选D.根据元素特性,a≠0,a≠2,a≠1.∴a=4.4.已知集合P={x∈N|1≤x≤10},集合Q={x∈R|x2+x-6=0},则P∩Q等于() A.{2}B.{1,2}C.{2,3}D.{1,2,3}解析:选A.Q={x∈R|x2+x-6=0}={-3,2}.∴P∩Q={2}.5.(2010年高考福建卷)若集合A={x|1≤x≤3},B={x|x>2},则A∩B等于()A.{x|2<x≤3}B.{x|x≥1}C.{x|2≤x<3}D.{x|x>2}解析:选A.∵A={x|1≤x≤3},B={x|x>2},∴A∩B={x|2<x≤3}.6.设集合S={x|x>5或x<-1},T={x|a<x<a+8},S∪T=R,则a的取值范围是()A.-3<a<-1B.-3≤a≤-1C.a≤-3或a≥-1D.a<-3或a>-1解析:选A.S∪T=R,+8>5,<-1.∴-3<a<-1.7.(2010年高考湖南卷)已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=________.解析:∵A∩B={2,3},∴3∈B,∴m=3.答案:38.满足条件{1,3}∪M={1,3,5}的集合M的个数是________.解析:∵{1,3}∪M={1,3,5},∴M中必须含有5,∴M可以是{5},{5,1},{5,3},{1,3,5},共4个.答案:49.若集合A={x|x≤2},B={x|x≥a},且满足A∩B={2},则实数a=________.解析:当a>2时,A∩B=∅;当a<2时,A∩B={x|a≤x≤2};当a=2时,A∩B={2}.综上:a=2.答案:210.已知A={x|x2+ax+b=0},B={x|x2+cx+15=0},A∪B={3,5},A∩B={3},求实数a,b,c的值.解:∵A∩B={3},∴由9+3c+15=0,解得c=-8.由x2-8x+15=0,解得B={3,5},故A={3}.又a2-4b=0,解得a=-6,b=9.综上知,a=-6,b=9,c=-8.11.已知集合A={x|x-2>3},B={x|2x-3>3x-a},求A∪B.解:A={x|x-2>3}={x|x>5},B={x|2x-3>3x-a}={x|x<a-3}.借助数轴如图:①当a-3≤5,即a≤8时,A∪B={x|x<a-3或x>5}.②当a-3>5,即a>8时,A∪B={x|x>5}∪{x|x<a-3}={x|x∈R}=R.综上可知当a≤8时,A∪B={x|x<a-3或x>5};当a>8时,A∪B=R.12.设集合A={(x,y)|2x+y=1,x,y∈R},B={(x,y)|a2x+2y=a,x,y∈R},若A∩B=∅,求a的值.解:集合A、B的元素都是点,A∩B的元素是两直线的公共点.A∩B=∅,则两直线无交点,即方程组无解.x+y=12x+2y=a,解得(4-a2)x=2-a,-a2=0-a≠0,即a=-2.1.(2010年高考辽宁卷)已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}解析:选D.∁U A={3,9},故选D.2.(2010年高考陕西卷)集合A={x|-1≤x≤2},B={x|x<1},则A∩(∁R B)=()A.{x|x>1}B.{x|x≥1}C.{x|1<x≤2}D.{x|1≤x≤2}解析:选D.∵B={x|x<1},∴∁R B={x|x≥1},∴A∩∁R B={x|1≤x≤2}.3.已知全集U=Z,集合A={x|x2=x},B={-1,0,1,2},则图中的阴影部分所表示的集合等于()A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}解析:选A.依题意知A={0,1},(∁U A)∩B表示全集U中不在集合A中,但在集合B 中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.选A.4.已知全集U={x|1≤x≤5},A={x|1≤x<a},若∁U A={x|2≤x≤5},则a=________.解析:∵A∪∁U A=U,∴A={x|1≤x<2}.∴a=2.答案:21.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩(∁U B)等于()A.{2}B.{5}C.{3,4}D.{2,3,4,5}解析:选C.∁U B={3,4,5},∴A∩(∁U B)={3,4}.2.已知全集U={0,1,2},且∁U A={2},则A=()A.{0}B.{1}C.∅D.{0,1}解析:选D.∵∁U A={2},∴2∉A,又U={0,1,2},∴A={0,1}.3.(2009年高考全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个解析:选A.U=A∪B={3,4,5,7,8,9},A∩B={4,7,9},∴∁U(A∩B)={3,5,8}.4.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6}B.M∪N=UC.(∁U N)∪M=U D.(∁U M)∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},得M∩N={4,5},(∁U N)∪M ={3,4,5,7},(∁U M)∩N={2,6},M∪N={2,3,4,5,6,7}=U,选B.5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中元素个数为()A.1B.2C.3D.4解析:选B.∵A={1,2},∴B={2,4},∴A∪B={1,2,4},∴∁U(A∪B)={3,5}.6.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A∩B的元素个数为()A.mn B.m+nC.n-m D.m-n解析:选D.U=A∪B中有m个元素,∵(∁U A)∪(∁U B)=∁U(A∩B)中有n个元素,∴A∩B中有m-n个元素,故选D.7.设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则(A∪B)∩(∁U C)=________.解析:∵A∪B={2,3,4,5},∁U C={1,2,5},∴(A∪B)∩(∁U C)={2,3,4,5}∩{1,2,5}={2,5}.答案:{2,5}8.已知全集U={2,3,a2-a-1},A={2,3},若∁U A={1},则实数a的值是________.解析:∵U={2,3,a2-a-1},A={2,3},∁U A={1},∴a2-a-1=1,即a2-a-2=0,解得a=-1或a=2.答案:-1或29.设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁U A)∩B=∅,求实数m的取值范围为________.解析:由已知A={x|x≥-m},∴∁U A={x|x<-m},∵B={x|-2<x<4},(∁U A)∩B=∅,∴-m≤-2,即m≥2,∴m的取值范围是m≥2.答案:{m|m≥2}10.已知全集U=R,A={x|-4≤x<2},B={x|-1<x≤3},P={x|x≤0或x≥5},求A∩B,2(∁U B)∪P,(A∩B)∩(∁U P).解:将集合A、B、P表示在数轴上,如图.∵A={x|-4≤x<2},B={x|-1<x≤3},∴A∩B={x|-1<x<2}.∵∁U B={x|x≤-1或x>3},∴(∁U B)∪P={x|x≤0或x≥52 },(A∩B)∩(∁U P)={x|-1<x<2}∩{x|0<x<52}={x|0<x<2}.11.已知集合A={x|x2+ax+12b=0}和B={x|x2-ax+b=0},满足B∩(∁U A)={2},A∩(∁U B)={4},U=R,求实数a,b的值.解:∵B∩(∁U A)={2},∴2∈B,但2∉A.∵A∩(∁U B)={4},∴4∈A,但4∉B.2+4a+12b=02-2a+b=0=87=127.∴a,b的值为87,-127.12.已知集合A={x|2a-2<x<a},B={x|1<x<2},且A∁R B,求实数a的取值范围.解:∁R B={x|x≤1或x≥2}≠∅,∵A∁R B,∴分A=∅和A≠∅两种情况讨论.①若A=∅,此时有2a-2≥a,∴a≥2.②若A≠∅a-2<a≤1a-2<aa-2≥2.∴a≤1.综上所述,a≤1或a≥2.第二章基本初等函数1.下列说法中正确的为()A.y=f(x)与y=f(t)表示同一个函数B.y=f(x)与y=f(x+1)不可能是同一函数C.f(x)=1与f(x)=x0表示同一函数D.定义域和值域都相同的两个函数是同一个函数解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.2.下列函数完全相同的是()A.f(x)=|x|,g(x)=(x)2B.f(x)=|x|,g(x)=x2C.f(x)=|x|,g(x)=x2xD.f(x)=x2-9x-3,g(x)=x+3解析:选B.A、C、D的定义域均不同.3.函数y=1-x+x的定义域是()A.{x|x≤1}B.{x|x≥0}C.{x|x≥1或x≤0}D.{x|0≤x≤1}解析:选D.-x≥0≥0,得0≤x≤1.4.图中(1)(2)(3)(4)四个图象各表示两个变量x,y的对应关系,其中表示y是x的函数关系的有________.解析:由函数定义可知,任意作一条直线x=a,则与函数的图象至多有一个交点,对于本题而言,当-1≤a≤1时,直线x=a与函数的图象仅有一个交点,当a>1或a<-1时,直线x=a与函数的图象没有交点.从而表示y是x的函数关系的有(2)(3).答案:(2)(3)1.函数y =1x 的定义域是()A .RB .{0}C .{x |x ∈R ,且x ≠0}D .{x |x ≠1}解析:选C.要使1x 有意义,必有x ≠0,即y =1x 的定义域为{x |x ∈R ,且x ≠0}.2.下列式子中不能表示函数y =f (x )的是()A .x =y 2+1B .y =2x 2+1C .x -2y =6D .x =y解析:选A.一个x 对应的y 值不唯一.3.下列说法正确的是()A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了解析:选C.根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,x ∈A ,还可以是x →x 2,x ∈A .4.下列集合A 到集合B 的对应f 是函数的是()A .A ={-1,0,1},B ={0,1},f :A 中的数平方B .A ={0,1},B ={-1,0,1},f :A 中的数开方C .A =Z ,B =Q ,f :A 中的数取倒数D .A =R ,B ={正实数},f :A 中的数取绝对值解析:选A.按照函数定义,选项B 中集合A 中的元素1对应集合B 中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C 中的元素0取倒数没有意义,也不符合函数定义中集合A 中任意元素都对应唯一函数值的要求;选项D 中,集合A 中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A 符合函数定义.5.下列各组函数表示相等函数的是()A .y =x 2-3x -3与y =x +3(x ≠3)B .y =x 2-1与y =x -1C.y=x0(x≠0)与y=1(x≠0)D.y=2x+1,x∈Z与y=2x-1,x∈Z解析:选C.A、B与D对应法则都不同.6.设f:x→x2是集合A到集合B的函数,如果B={1,2},则A∩B一定是()A.∅B.∅或{1}C.{1}D.∅或{2}解析:选B.由f:x→x2是集合A到集合B的函数,如果B={1,2},则A={-1,1,-2,2}或A={-1,1,-2}或A={-1,1,2}或A={-1,2,-2}或A={1,-2,2}或A={-1,-2}或A={-1,2}或A={1,2}或A={1,-2}.所以A∩B=∅或{1}.7.若[a,3a-1]为一确定区间,则a的取值范围是________.解析:由题意3a-1>a,则a>1 2 .答案:(12,+∞)8.函数y=x+103-2x的定义域是________.解析:要使函数有意义,+1≠0-2x>0,即x<32且x≠-1.答案:(-∞,-1)∪(-1,32)9.函数y=x2-2的定义域是{-1,0,1,2},则其值域是________.解析:当x取-1,0,1,2时,y=-1,-2,-1,2,故函数值域为{-1,-2,2}.答案:{-1,-2,2}10.求下列函数的定义域:(1)y=-x2x2-3x-2;(2)y=34x+83x-2.解:(1)要使y=-x2x2-3x-2有意义,则必须x≥0,x2-3x-2≠0,解得x≤0且x≠-12,故所求函数的定义域为{x|x≤0,且x≠-12}.(2)要使y =34x +83x -2有意义,则必须3x -2>0,即x >23,故所求函数的定义域为{x |x >23}.11.已知f (x )=11+x (x ∈R 且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值;(2)求f (g (2))的值.解:(1)∵f (x )=11+x ,∴f (2)=11+2=13,又∵g (x )=x 2+2,∴g (2)=22+2=6.(2)由(1)知g (2)=6,∴f (g (2))=f (6)=11+6=17.12.已知函数y =ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的取值范围.解:函数y =ax +1(a <0且a 为常数).∵ax +1≥0,a <0,∴x ≤-1a ,即函数的定义域为(-∞,-1a ].∵函数在区间(-∞,1]上有意义,∴(-∞,1]⊆(-∞,-1a ],∴-1a ≥1,而a <0,∴-1≤a <0.即a 的取值范围是[-1,0).1.下列各图中,不能是函数f (x )图象的是()解析:选C.结合函数的定义知,对A 、B 、D ,定义域中每一个x 都有唯一函数值与之对应;而对C ,对大于0的x 而言,有两个不同值与之对应,不符合函数定义,故选C.2.若f (1x )=11+x ,则f (x )等于()A.11+x(x ≠-1) B.1+xx(x ≠0)C.x1+x(x ≠0且x ≠-1)D .1+x (x ≠-1)解析:选C.f (1x )=11+x =1x 1+1x (x ≠0),∴f (t )=t1+t(t ≠0且t ≠-1),∴f (x )=x1+x(x ≠0且x ≠-1).3.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=()A .3x +2B .3x -2C .2x +3D .2x -3解析:选B.设f (x )=kx +b (k ≠0),∵2f (2)-3f (1)=5,2f (0)-f (-1)=1,-b =5+b =1=3=-2,∴f (x )=3x -2.4.已知f (2x )=x 2-x -1,则f (x )=________.解析:令2x =t ,则x =t2,∴f (t )-t 2-1,即f (x )=x 24-x 2-1.答案:x 24-x2-11.下列表格中的x 与y 能构成函数的是()A.x非负数非正数y1-1B.x 奇数0偶数y10-1C.x 有理数无理数y1-1D.x 自然数整数有理数y10-1解析:选C.A 中,当x =0时,y =±1;B 中0是偶数,当x =0时,y =0或y =-1;D 中自然数、整数、有理数之间存在包含关系,如x =1∈N(Z ,Q),故y 的值不唯一,故A 、B 、D 均不正确.2.若f (1-2x )=1-x 2x 2(x ≠0),那么f (12)等于()A .1B .3C .15D .30解析:选C.法一:令1-2x =t ,则x =1-t2(t ≠1),∴f (t )=4t -12-1,∴f (12)=16-1=15.法二:令1-2x =12,得x =14,∴f (12)=16-1=15.3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是()A .2x +1B .2x -1C .2x -3D .2x +7解析:选B.∵g (x +2)=2x +3=2(x +2)-1,∴g (x )=2x -1.4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是()解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A 、C ,又一开始跑步,速度快,所以D 符合.5.如果二次函数的二次项系数为1且图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式为()A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1解析:选D.设f (x )=(x -1)2+c ,由于点(0,0)在函数图象上,∴f (0)=(0-1)2+c =0,∴c =-1,∴f (x )=(x -1)2-1.6.已知正方形的周长为x ,它的外接圆的半径为y ,则y 关于x 的函数解析式为()A .y =12x (x >0)B .y =24x (x >0)C .y =28x (x >0)D .y =216x (x >0)解析:选C.设正方形的边长为a ,则4a =x ,a =x4,其外接圆的直径刚好为正方形的一条对角线长.故2a =2y ,所以y =22a =22×x 4=28x .7.已知f (x )=2x +3,且f (m )=6,则m 等于________.解析:2m +3=6,m =32.答案:328.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f [1f 3]的值等于________.解析:由题意,f (3)=1,∴f [1f 3]=f (1)=2.答案:29.将函数y =f (x )的图象向左平移1个单位,再向上平移2个单位得函数y =x 2的图象,则函数f (x )的解析式为__________________.解析:将函数y =x 2的图象向下平移2个单位,得函数y =x 2-2的图象,再将函数y =x 2-2的图象向右平移1个单位,得函数y =(x -1)2-2的图象,即函数y =f (x )的图象,故f (x )=x 2-2x -1.答案:f (x )=x 2-2x -110.已知f (0)=1,f (a -b )=f (a )-b (2a -b +1),求f (x ).解:令a =0,则f (-b )=f (0)-b (-b +1)=1+b (b -1)=b 2-b +1.再令-b =x ,即得f (x )=x 2+x +1.11.已知f (x +1x =x 2+1x2+1x ,求f (x ).解:∵x +1x =1+1x ,x 2+1x 2=1+1x 2,且x +1x ≠1,∴f (x +1x)=f (1+1x )=1+1x 2+1x =(1+1x )2-(1+1x )+1.∴f (x )=x 2-x +1(x ≠1).12.设二次函数f (x )满足f (2+x )=f (2-x ),对于x ∈R 恒成立,且f (x )=0的两个实根的平方和为10,f (x )的图象过点(0,3),求f (x )的解析式.解:∵f (2+x )=f (2-x ),∴f (x )的图象关于直线x =2对称.于是,设f (x )=a (x -2)2+k (a ≠0),则由f (0)=3,可得k =3-4a ,∴f (x )=a (x -2)2+3-4a =ax 2-4ax +3.∵ax 2-4ax +3=0的两实根的平方和为10,∴10=x 21+x 22=(x 1+x 2)2-2x 1x 2=16-6a ,∴a =1.∴f (x )=x 2-4x +3.1.已知集合A ={a ,b },集合B ={0,1},下列对应不是A 到B 的映射的是()解析:选C.A 、B 、D 均满足映射的定义,C 不满足A 中任一元素在B 中都有唯一元素与之对应,且A 中元素b 在B 中无元素与之对应.2.(2011年葫芦岛高一检测)设f (x )=+3x >10f x +5x ≤10,则f (5)的值是()A .24B .21C .18D .16解析:选A.f (5)=f (f (10)),f (10)=f (f (15))=f (18)=21,f (5)=f (21)=24.3.函数y =x +|x |x的图象为()解析:选C.y =x +|x |x =+1x >0-1x <0,再作函数图象.4.函数f (x )-x +1,x <1x >1的值域是________.解析:当x <1时,x 2-x +1=(x -12)2+34≥34;当x >1时,0<1x <1,则所求值域为(0,+∞),故填(0,+∞).答案:(0,+∞)1.设f :A →B 是集合A 到B 的映射,其中A ={x |x >0},B =R ,且f :x →x 2-2x -1,则A 中元素1+2的像和B 中元素-1的原像分别为()A.2,0或2B .0,2C .0,0或2D .0,0或2答案:C2.某城市出租车起步价为10元,最长可租乘3km(含3km),以后每1km 为1.6元(不足1km ,按1km 计费),若出租车行驶在不需等待的公路上,则出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为()解析:选C.由题意,当0<x ≤3时,y =10;当3<x ≤4时,y =11.6;当4<x≤5时,y=13.2;…当n-1<x≤n时,y=10+(n-3)×1.6,故选C.3.函数f(x)x-x20≤x≤32+6x-2≤x≤0的值域是()A.R B.[-9,+∞)C.[-8,1]D.[-9,1]解析:选C.画出图象,也可以分段求出部分值域,再合并,即求并集.4.已知f(x)+2x≤-1,2-1<x<2x x≥2,若f(x)=3,则x的值是()A.1B.1或32C.1,32或±3 D.3解析:选D.该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4),∴f(x)=x2=3,x=±3,而-1<x<2,∴x= 3.5.已知函数f(x),x为有理数,,x为无理数,g(x),x为有理数,,x为无理数,当x∈R时,f(g(x)),g(f(x))的值分别为()A.0,1B.0,0C.1,1D.1,0解析:选D.g(x)∈Q,f(x)∈Q,f(g(x))=1,g(f(x))=0.6.设f(x)x+12x≤-1,x+1-1<x<1,1x≥1,已知f(a)>1,则实数a的取值范围是()A.(-∞,-2)-1 2,+-1 2,C.(-∞,-2)-12,-12,(1,+∞)解析:选C.f(a)>1⇔≤-1a +12>11<a <1a +1>11>1≤-1<-2或a >01<a <1>-12≥1a <12⇔a <-2或-12<a <1.即所求a 的取值范围是(-∞,-2)-12,7.设A =B ={a ,b ,c ,d ,…,x ,y ,z }(元素为26个英文字母),作映射f :A →B 为A 中每一个字母与B 中下一个字母对应,即:a →b ,b →c ,c →d ,…,z →a ,并称A 中的字母组成的文字为明文,B 中相应的字母为密文,试破译密文“nbuj ”:________.解析:由题意可知m →n ,a →b ,t →u ,i →j ,所以密文“nbuj ”破译后为“mati ”.答案:mati8.已知函数f (x )2,x ≤0,x -2,x >0,则f (4)=________.解析:f (4)=f (2)=f (0)=0.答案:09.已知f (x ),x ≥0,1,x <0,则不等式x +(x +2)·f (x +2)≤5的解集是________.解析:原不等式可化为下面两个不等式组+2≥0+x +2·1≤5+2<0+x +2·-1≤5,解得-2≤x ≤32或x <-2,即x ≤32.答案:(-∞,32]10.已知f (x )2-1≤x ≤1x >1或x <-1,(1)画出f (x )的图象;(2)求f (x )的定义域和值域.解:(1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R.由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.某汽车以52千米/小时的速度从A 地到260千米远的B 地,在B 地停留112小时后,再以65千米/小时的速度返回A 地.试将汽车离开A 地后行驶的路程s (千米)表示为时间t (小时)的函数.解:∵260÷52=5(小时),260÷65=4(小时),∴st 0≤t ≤5,<t+612<t 12.如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7cm 腰长为22cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象.解:过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H .因为ABCD 是等腰梯形,底角为45°,AB =22cm ,所以BG =AG =DH =HC =2cm.又BC =7cm ,所以AD =GH =3cm.①当点F 在BG 上时,即x ∈[0,2]时,y =12x 2;②当点F 在GH 上时,即x ∈(2,5]时,y =x +x -22×2=2x -2;③当点F 在HC 上时,即x ∈(5,7]时,y =S 五边形ABFED =S 梯形ABCD -S Rt △CEF =12(7+3)×2-12(7-x )2=-12(x -7)2+10.综合①②③,得函数解析式为y 2x ∈[0,2]-2x ∈2,5].-12x -72+10x ∈5,7]函数图象如图所示.1.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )为增函数,当x ∈(-∞,-2]时,函数f (x )为减函数,则m 等于()A .-4B .-8C .8D .无法确定解析:选B.二次函数在对称轴的两侧的单调性相反.由题意得函数的对称轴为x =-2,则m4=-2,所以m =-8.2.函数f (x )在R 上是增函数,若a +b ≤0,则有()A .f (a )+f (b )≤-f (a )-f (b )B .f (a )+f (b )≥-f (a )-f (b )C .f (a )+f (b )≤f (-a )+f (-b )D .f (a )+f (b )≥f (-a )+f (-b )解析:选C.应用增函数的性质判断.∵a +b ≤0,∴a ≤-b ,b ≤-a .又∵函数f (x )在R 上是增函数,∴f (a )≤f (-b ),f (b )≤f (-a ).∴f (a )+f (b )≤f (-a )+f (-b ).3.下列四个函数:①y =x x -1;②y =x 2+x ;③y =-(x +1)2;④y =x1-x +2.其中在(-∞,0)上为减函数的是()A .①B .④C .①④D .①②④解析:选A.①y=xx-1=x-1+1x-1=1+1x-1.其减区间为(-∞,1),(1,+∞).②y=x2+x=(x+12)2-14,减区间为(-∞,-12).③y=-(x+1)2,其减区间为(-1,+∞),④与①相比,可知为增函数.4.若函数f(x)=4x2-kx-8在[5,8]上是单调函数,则k的取值范围是________.解析:对称轴x=k8,则k8≤5,或k8≥8,得k≤40,或k≥64,即对称轴不能处于区间内.答案:(-∞,40]∪[64,+∞)1.函数y=-x2的单调减区间是()A.[0,+∞)B.(-∞,0]C.(-∞,0)D.(-∞,+∞)解析:选A.根据y=-x2的图象可得.2.若函数f(x)定义在[-1,3]上,且满足f(0)<f(1),则函数f(x)在区间[-1,3]上的单调性是()A.单调递增B.单调递减C.先减后增D.无法判断解析:选D.函数单调性强调x1,x2∈[-1,3],且x1,x2具有任意性,虽然f(0)<f(1),但不能保证其他值也能满足这样的不等关系.3.已知函数y=f(x),x∈A,若对任意a,b∈A,当a<b时,都有f(a)<f(b),则方程f(x)=0的根()A.有且只有一个B.可能有两个C.至多有一个D.有两个以上解析:选C.由题意知f(x)在A上是增函数.若y=f(x)与x轴有交点,则有且只有一个交点,故方程f(x)=0至多有一个根.4.设函数f(x)在(-∞,+∞)上为减函数,则()A.f(a)>f(2a)B.f(a2)<f(a)C.f(a2+a)<f(a)D.f(a2+1)<f(a)解析:选D.∵a2+1-a=(a-12)2+34>0,∴a2+1>a,∴f(a2+1)<f(a),故选D.5.下列四个函数在(-∞,0)上为增函数的是()①y =|x |;②y =|x |x ;③y =-x 2|x |;④y =x +x|x |.A .①②B .②③C .③④D .①④解析:选C.①y =|x |=-x (x <0)在(-∞,0)上为减函数;②y =|x |x =-1(x <0)在(-∞,0)上既不是增函数,也不是减函数;③y =-x 2|x |=x (x <0)在(-∞,0)上是增函数;④y =x +x|x |=x -1(x <0)在(-∞,0)上也是增函数,故选C.6.下列说法中正确的有()①若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数;②函数y =x 2在R 上是增函数;③函数y =-1x④y =1x 的单调递减区间是(-∞,0)∪(0,+∞).A .0个B .1个C .2个D .3个解析:选A.函数单调性的定义是指定义在区间I 上的任意两个值x 1,x 2,强调的是任意,从而①不对;②y =x 2在x ≥0时是增函数,x ≤0时是减函数,从而y =x 2在整个定义域上不具有单调性;③y =-1x 在整个定义域内不是单调递增函数.如-3<5,而f (-3)>f (5);④y =1x 的单调递减区间不是(-∞,0)∪(0,+∞),而是(-∞,0)和(0,+∞),注意写法.7.若函数y =-bx 在(0,+∞)上是减函数,则b 的取值范围是________.解析:设0<x 1<x 2,由题意知f (x 1)-f (x 2)=-b x 1+b x 2=bx 1-x 2x 1·x 2>0,∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0.∴b <0.答案:(-∞,0)8.已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与f (34)的大小关系为________.解析:∵a 2-a +1=(a -12)2+34≥34,∴f (a 2-a +1)≤f (34).答案:f (a 2-a +1)≤f (34)9.y =-(x -3)|x |的递增区间是________.解析:y =-(x -3)|x |=x 2+3x x >02-3x x ≤0,作出其图象如图,观察图象知递增区间为[0,32].答案:[0,32]10.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0.(1)求b 与c 的值;(2)试证明函数f (x )在区间(2,+∞)上是增函数.解:(1)∵f (1)=0,f (3)=0,+b +c =0+3b +c =0,解得b =-4,c =3.(2)证明:∵f (x )=x 2-4x +3,∴设x 1,x 2∈(2,+∞)且x 1<x 2,f (x 1)-f (x 2)=(x 21-4x 1+3)-(x 22-4x 2+3)=(x 21-x 22)-4(x 1-x 2)=(x 1-x 2)(x 1+x 2-4),∵x 1-x 2<0,x 1>2,x 2>2,∴x 1+x 2-4>0.∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴函数f (x )在区间(2,+∞)上为增函数.11.已知f (x )是定义在[-1,1]上的增函数,且f (x -1)<f (1-3x ),求x 的取值范围.1≤x -1≤11≤1-3x ≤1,-1<1-3xx≤2x≤23,<12∴0≤x<12.12.设函数y=f(x)=ax+1x+2在区间(-2,+∞)上单调递增,求a的取值范围.解:设任意的x1,x2∈(-2,+∞),且x1<x2,∵f(x1)-f(x2)=ax1+1x1+2-ax2+1x2+2=ax1+1x2+2-ax2+1x1+2x1+2x2+2=x1-x22a-1x1+2x2+2.∵f(x)在(-2,+∞)上单调递增,∴f(x1)-f(x2)<0.∴x1-x22a-1x1+2x2+2<0,∵x1-x2<0,x1+2>0,x2+2>0,∴2a-1>0,∴a>12.1.函数f(x)=9-ax2(a>0)在[0,3]上的最大值为()A.9B.9(1-a)C.9-a D.9-a2解析:选A.x∈[0,3]时f(x)为减函数,f(x)max=f(0)=9.2.函数y=x+1-x-1的值域为()A.(-∞,2]B.(0,2]C.[2,+∞)D.[0,+∞)解析:选B.y=x+1-x-1+1≥0-1≥0,∴x≥1.∵y=2x+1+x-1为[1,+∞)上的减函数,∴f(x)max=f(1)=2且y>0.3.函数f (x )=x 2-2ax +a +2在[0,a ]上取得最大值3,最小值2,则实数a 为()A .0或1B .1C .2D .以上都不对解析:选B.因为函数f (x )=x 2-2ax +a +2=(x -a )2-a 2+a +2,对称轴为x =a ,开口方向向上,所以f (x )在[0,a ]上单调递减,其最大值、最小值分别在两个端点处取得,即f (x )max =f (0)=a +2=3,f (x )min =f (a )=-a 2+a +2=2.故a =1.4.(2010年高考山东卷)已知x ,y ∈R +,且满足x 3+y4=1.则xy 的最大值为________.解析:y 4=1-x 3,∴0<1-x3<1,0<x <3.而xy =x ·4(1-x 3)=-43(x -32)2+3.当x =32,y =2时,xy 最大值为3.答案:31.函数f (x )=x 2在[0,1]上的最小值是()A .1B .0C.14D .不存在解析:选B.由函数f (x )=x 2在[0,1]上的图象(图略)知,f (x )=x 2在[0,1]上单调递增,故最小值为f (0)=0.2.函数f (x )x +6,x ∈[1,2]+7,x ∈[-1,1],则f (x )的最大值、最小值分别为()A .10,6B .10,8C .8,6D .以上都不对解析:选A.f (x )在x ∈[-1,2]上为增函数,f (x )max =f (2)=10,f (x )min =f (-1)=6.3.函数y =-x 2+2x 在[1,2]上的最大值为()A .1B .2C .-1D .不存在解析:选A.因为函数y =-x 2+2x =-(x -1)2+1.对称轴为x =1,开口向下,故在[1,2]上为单调递减函数,所以y max =-1+2=1.4.函数y =1x -1在[2,3]上的最小值为()A .2B.12C.1 3D.-12解析:选B.函数y=1x-1在[2,3]上为减函数,∴y min=13-1=12.5.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销售量(单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为() A.90万元B.60万元C.120万元D.120.25万元解析:选C.设公司在甲地销售x辆(0≤x≤15,x为正整数),则在乙地销售(15-x)辆,∴公司获得利润L=-x2+21x+2(15-x)=-x2+19x+30.∴当x=9或10时,L最大为120万元,故选C.6.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为() A.-1B.0C.1D.2解析:选C.f(x)=-(x2-4x+4)+a+4=-(x-2)2+4+a.∴函数f(x)图象的对称轴为x=2,∴f(x)在[0,1]上单调递增.又∵f(x)min=-2,∴f(0)=-2,即a=-2.f(x)max=f(1)=-1+4-2=1.7.函数y=2x2+2,x∈N*的最小值是________.解析:∵x∈N*,∴x2≥1,∴y=2x2+2≥4,即y=2x2+2在x∈N*上的最小值为4,此时x=1.答案:48.已知函数f(x)=x2-6x+8,x∈[1,a],并且f(x)的最小值为f(a),则实数a的取值范围是________.解析:由题意知f(x)在[1,a]上是单调递减的,又∵f(x)的单调减区间为(-∞,3],∴1<a≤3.答案:(1,3]9.函数f(x)=xx+2在区间[2,4]上的最大值为________;最小值为________.。

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。

然后根据分式的定义,分母不能为零,即 $x\neq0$。

同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。

综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。

⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。

然后根据分式的定义,分母不能为零,即 $x\neq-1$。

同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。

综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。

2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。

_。

_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。

综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。

对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。

因此定义域为 $\{x|2\leq x\leq3\}$。

3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。

答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。

综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。

对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。

(高一)高一数学必修1习题及答案5篇

(高一)高一数学必修1习题及答案5篇

高一数学必修1习题及答案5篇进入高中一之后,第一个学习的重要数学知识点就是集合,学生需要通过练习稳固集合内容,那么,高一数学必修1习题及答案怎么写以下是我精心收集整理的高一数学必修1习题及答案,下面我就和大家分享,来欣赏一下吧。

高一数学必修1习题及答案1一、选择题:(在每题给出的四个选项中,只有一项为哪一项符合题目要求的.)1.假设集合,那么m∩p= ( )a. b. c. d.2.以下函数与有相同图象的一个函数是( )a. b. c. d.3. 设a={x|0≤x≤2},b={y|1≤y≤2},在以下各图中,能表示从集合a 到集合b的映射的是( )4设,,,那么,,的大小关系为( ). . . . .5.定义为与中值的较小者,那么函数的值是( )6.假设,那么的表达式为( )a. b. c. d.7.函数的反函数是( )a. b.c. d.8假设那么的值为( )a.8b.c.2d.9假设函数在区间上的图象为连续不断的一条曲线,那么以下说法正确的选项是( )a.假设,不存在实数使得;b.假设,存在且只存在一个实数使得;c.假设,有可能存在实数使得;d.假设,有可能不存在实数使得;10.求函数零点的个数为( ) a. b. c. d.11.定义域为r的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么以下式子一定成立的是( )a.f(-1)f(9)f(13) p=b.f(13)f(9)f(-1)c.f(9)f(-1)f(13) p=d.f(13)f(-1)f(9)12.某学生离家去,由于怕迟到,一开始就跑步,等跑累了再步行走完余下的路程,假设以纵轴表示离家的距离,横轴表示离家后的时间,那么以下四个图形中,符合该学生走法的是( )二、填空题:本大题共6小题,每题4分,共24分.把答案直接填在题中横线上.13、,那么的取值范围是14.实数满足等式,以下五个关系式:(1) ,(2) ,(3) ,(4) ,(5)其中可能成立的关系式有.15.如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的下方,那么函数的图象给我们向上凸起的印象,我们称函数为上凸函数;反之,如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的上方,那么我们称函数为下凸函数.例如:就是一个上凸函数.请写出两个不同类型的下凸函数的解析式:16.某批发商批发某种商品的单价p(单位:元/千克)与一次性批发数量q(单位:千克)之间函数的图像如图2,一零售商仅有现金2700元,他最多可购置这种商品千克(不考虑运输费等其他费用).三、解答题:.解容许写出文字说明、证明过程或演算步骤.17.(本小题总分值12分)全集u=r,集合,,求,,。

高一数学立体几何练习题及答案

高一数学立体几何练习题及答案

高一数学立体几何练习题及答案一、选择题1. 下列哪个图形不是立体图形?A. 立方体B. 圆锥C. 圆柱D. 正方形答案:D2. 已知一个立方体的边长为5cm,求它的表面积和体积分别是多少?A. 表面积:150cm²,体积:125cm³B. 表面积:100cm²,体积:125cm³C. 表面积:150cm²,体积:100cm³D. 表面积:100cm²,体积:100cm³答案:A3. 以下哪个选项可以形成一个正方体?A. 六个相等的长方体B. 一个正方形和一个长方体C. 六个相等的正方形D. 一个正方形和一个正方体答案:C4. 以下哪个图形可以形成一个圆柱?A. 一个正方形和一个长方体B. 一个圆和一个长方体C. 一个长方形和一个长方体D. 一个正方形和一个正方体答案:C5. 以下哪个选项可以形成一个圆锥?A. 一个圆和一个长方体B. 一个圆和一个正方体C. 一个正方形和一个长方体D. 一个正方形和一个正方体答案:B二、填空题1. 已知一个正方体的表面积为96cm²,求它的边长是多少?答案:4cm2. 已知一个圆柱的半径为3cm,高为10cm,求它的表面积和体积分别是多少?答案:表面积:198cm²,体积:90π cm³3. 以下哪个选项可以形成一个长方体?A. 六个相等的正方形B. 一个圆和一个长方形C. 六个相等的长方形D. 一个正方形和一个正方体答案:C三、解答题1. 某长方体的长、宽、高分别为3cm、4cm、5cm,请回答以下问题:(1)它的表面积是多少?(2)它的体积是多少?答案:(1)表面积 = 2(长×宽 + 长×高 + 宽×高)= 2(3×4 + 3×5 + 4×5)= 2(12 + 15 + 20)= 2(47)= 94cm²(2)体积 = 长×宽×高= 3×4×5= 60cm³2. 某圆锥的半径是5cm,高是12cm,请回答以下问题:(1)它的表面积是多少?(2)它的体积是多少?答案:(1)斜面积= π×半径×斜高= π×5×13≈ 204.2cm²(2)体积= (1/3)π×半径²×高= (1/3)π×5²×12≈ 314.2cm³四、解析题某正方体的表面积是96cm²,它的边长是多少?解答:设正方体的边长为x,由表面积的计算公式可得:表面积 = 6x²96 = 6x²16 = x²x = 4所以,该正方体的边长为4cm。

高一数学练习题及答案

高一数学练习题及答案

高一数学练习题及答案一、选择题(每题5分,共30分)1. 已知函数\( f(x) = 3x^2 - 2x + 1 \),求\( f(-1) \)的值。

A. 6B. 4C. 2D. -22. 若\( a \)和\( b \)是方程\( x^2 - 5x + 6 = 0 \)的两个根,则\( a + b \)的值为:A. 3B. 5C. 6D. 83. 已知\( \sin 45^\circ = \frac{\sqrt{2}}{2} \),求\( \cos 45^\circ \)的值。

A. \( \frac{\sqrt{2}}{2} \)B. \( \frac{1}{2} \)C. \( \frac{\sqrt{3}}{2} \)D. \( \frac{\sqrt{6}}{3} \)4. 圆的半径为5,圆心到直线的距离为3,求圆与直线的位置关系。

A. 相离B. 相切C. 相交D. 包含5. 已知等差数列的首项是2,公差是3,求第5项的值。

A. 17B. 14C. 11D. 86. 函数\( y = \log_2 x \)的定义域是:A. \( x > 1 \)B. \( x < 1 \)C. \( x \geq 1 \)D. \( x \geq 0 \)二、填空题(每题4分,共20分)1. 若\( a \),\( b \),\( c \)是三角形的三边,且\( a^2 + b^2= c^2 \),则此三角形是________。

2. 已知\( \tan \theta = 3 \),求\( \sin \theta \)的值。

3. 函数\( y = x^3 - 3x^2 + 2 \)的导数是________。

4. 已知\( \cos \alpha = \frac{4}{5} \),\( \alpha \)在第一象限,求\( \sin \alpha \)的值。

5. 等比数列\( 2, 4, 8, \ldots \)的第6项是________。

高一数学练习题加答案

高一数学练习题加答案

高一数学练习题加答案在高一数学的学习中,练习题是帮助学生巩固知识点和提高解题能力的重要工具。

以下是一些高一数学的练习题,以及相应的答案,供学生参考和练习。

练习题一:集合的概念与运算1. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。

2. 若集合C = {x | x > 5},D = {x | x < 10},求C∩D。

3. 集合E = {x | x^2 - 4x + 3 = 0},求E的元素。

答案一:1. A∪B = {1, 2, 3, 4}。

2. C∩D = {x | 5 < x < 10}。

3. E = {1, 3}。

练习题二:函数的基本概念1. 判断函数f(x) = x^2 - 4x + 3的单调性。

2. 求函数g(x) = 3x + 2的反函数。

3. 已知f(x) = 2x + 1,求f(-1)。

答案二:1. 函数f(x) = x^2 - 4x + 3在(-∞, 2]上单调递减,在[2, +∞)上单调递增。

2. 函数g(x) = 3x + 2的反函数为g^(-1)(x) = (x - 2) / 3。

3. f(-1) = 2*(-1) + 1 = -1。

练习题三:不等式的解法1. 解不等式:2x + 5 > 3x - 2。

2. 已知不等式组:\[ \begin{cases} x + y \geq 3 \\ 2x - y \leq 4 \end{cases} \],求其解集。

3. 解绝对值不等式:|x - 2| < 4。

答案三:1. 解得:x < 7。

2. 解集为:1 ≤ x ≤ 5,y ≥ -2。

3. 解得:-2 < x < 6。

练习题四:三角函数的基本性质1. 已知sinθ = 3/5,求cosθ(假设θ为锐角)。

2. 求值:\[ \sin(\frac{\pi}{6}) + \cos(\frac{\pi}{6}) \]。

高一数学练习题带答案

高一数学练习题带答案

高一数学练习题带答案高一数学是高中数学学习的重要基础阶段,涵盖了代数、几何、函数等多个领域。

以下是一些高一数学练习题及答案,供同学们练习和参考。

练习题一:代数基础1. 解不等式:\( 2x - 5 < 3x + 1 \)2. 化简表达式:\( \frac{3x^2 - 7x + 2}{x - 1} \)3. 求多项式\( 4x^3 - 3x^2 + 2x - 1 \)的因式分解。

答案一:1. 解不等式:首先将不等式两边的\( x \)项合并,得到\( -x < 6 \),然后两边同时除以-1,注意不等号方向要改变,得到\( x > -6 \)。

2. 化简表达式:通过长除法或多项式除法,可以得到\( 3x - 5 \)。

3. 因式分解:首先提取公因式\( x - 1 \),得到\( x - 1 (4x^2 - 4x + 2) \),然后对余下的二次多项式继续分解,得到\( x - 1 (2x - 1)(2x - 2) \)。

练习题二:几何问题1. 在直角三角形ABC中,角C为直角,已知AB=5,AC=3,求BC的长度。

2. 已知圆的半径为7,求圆的面积。

3. 已知点P(1,2),求点P到直线\( x - 2y + 3 = 0 \)的距离。

答案二:1. 根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和,即\( BC^2 = AB^2 - AC^2 = 5^2 - 3^2 = 25 - 9 = 16 \),所以BC=4。

2. 圆的面积公式为\( A = \pi r^2 \),代入半径r=7,得到\( A =49\pi \)。

3. 点到直线的距离公式为\( d = \frac{|Ax + By + C|}{\sqrt{A^2+ B^2}} \),代入点P(1,2)和直线方程\( x - 2y + 3 = 0 \),得到\( d = \frac{|1 - 4 + 3|}{\sqrt{1^2 + (-2)^2}} =\frac{0}{\sqrt{5}} = 0 \)。

高一数学练习及答案

高一数学练习及答案

高一数学练习及答案一、单选题1.已知全集U ={1,2,3,4,5,6,7} ,集合A ={1,3,5,6} ,则∁U A = ( ) A .{1,3,5,6} B .{2,3,7} C .{2,4,7} D .{2,5,7} 【答案】C【解析】直接利用补集的定义求解即可. 【详解】全集U ={1,2,3,4,5,6,7} ,集合A ={1,3,5,6} , 所以∁U A ={2,4,7}. 【点睛】本题主要考查了集合的补集运算,属于基础题. 2.函数f (x )=√2x+1x的定义域为( )A .(−12,+∞) B .[−12,+∞) C .(−12,0)∪(0,+∞) D .[−12,0)∪(0,+∞) 【答案】D【解析】直接由根式内部的代数式大于等于0,分式的分母不等于0,联立不等式组求解即可. 【详解】解:由{2x +1⩾0x ≠0,解得x ⩾−12且x ≠0.∴函数f(x)=√2x+1x 的定义域为[−12,0)∪(0,+∞).故选:D . 【点睛】本题考查函数的定义域及其求法,考查不等式的解法,是基础题.3.已知函数f (x )={3−x,x >0x 2+4x+3,x≤0则f (f (5))=( ) A .0 B .−2 C .−1 D .1 【答案】C【解析】分段函数求函数值时,看清楚自变量所处阶段,分别代入不同的解析式求值即可得结果. 【详解】解:因为5>0,代入函数解析式f(x)={x 2+4x +3,x ⩽ 03−x,x >0得f (5)=3−5=−2,所以f(f (5))=f(−2),因为−2<0,代入函数解析式f(x)={x 2+4x +3,x ⩽ 03−x,x >0 得f(−2)=(−2)2+4×(−2)+3=−1.故选:C . 【点睛】本题考查了分段函数的定义,求分段函数函数值的方法,属于基础题. 4.若角α的顶点在坐标原点,始边在x 轴的非负半轴上,终边经过点(1,-2),则tanα的值为( ) A .√55 B .−2 C .−2√55 D .−12【答案】B【解析】根据任意角的三角函数的定义即可求出. 【详解】解:由题意可得x =1,y =−2,tanα=yx =−2, 故选:B . 【点睛】本题主要考查任意角的三角函数的定义,属于基础题.5.下列函数中,在其定义域内既是奇函数又是增函数的是( ) A .y =log 3x B .y =1x C .y =x 3D .y =x 12【答案】C【解析】对选项一一判断函数的奇偶性和单调性,即可得到结论.【详解】解:A,y=log3x(x>0)在x>0递增,不具奇偶性,不满足条件;B,函数y=1x是奇函数,在(−∞,0),(0,+∞)上是减函数,在定义域内不具备单调性,不满足条件;C,y=x3,y′=3x2⩾0,函数为增函数;(−x)3=−x3,函数是奇函数,满足条件;D,y=x 12=√x,其定义域为[0,+∞),不是奇函数,不符合题意.故选:C.【点睛】本题考查函数的奇偶性和单调性的判断,掌握常见函数的单调性和奇偶性是解题的关键,属于基础题.6.函数f(x)=lnx+3x-4的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(2,4)【答案】B【解析】根据函数零点的判定定理可得函数f(x)的零点所在的区间.【详解】解:∵函数f(x)=lnx+3x−4在其定义域上单调递增,∴f(2)=ln2+2×3−4=ln2+2>0,f(1)=3−4=−1<0,∴f(2)f(1)<0.根据函数零点的判定定理可得函数f(x)的零点所在的区间是(1,2),故选:B.【点睛】本题考查求函数的值及函数零点的判定定理,属于基础题.7.若a=50.3,b=0.35,c=log0.35,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.b>a>c D.c>a>b【答案】A【解析】利用指数函数、对数函数的单调性直接求解.【详解】解:∵a=50.3>50=1,0<b=0.35<0.30=1,c=log0.35<log0.31=0,∴a,b,c的大小关系为a>b>c.故选:A.【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,是基础题.8.已知函数y=x2+2(a-1)+2在(-∞,4)上是减函数,则实数a的取值范围是()A.[3,+∞)B.(−∞.−3]C.[−3,+∞)D.(−∞,3]【答案】B【解析】求出函数y=x2+2(a−1)+2的对称轴,结合二次函数的性质可得1−a⩾4,可得a的取值范围.【详解】解:根据题意,函数y=x2+2(a−1)+2开口向上,且其对称轴为x=1−a,若该函数在(−∞,4)上是减函数,必有1−a⩾4,解可得:a⩽−3,即a的取值范围为(−∞,−3];故选:B.【点睛】本题考查二次函数的性质,分析该二次函数的对称轴与区间端点是解题关键,属于基础题.9.为了得到函数y=sin(2x+π3)的图象,只要将y=sinx(x∈R)的图象上所有的点()A.向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B.向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D.向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【答案】A【解析】利用左加右减的原则,直接推出平移后的函数解析式即可.【详解】解:将函数y=sinx的图象向左平移π3个单位后所得到的函数图象对应的解析式为:y=sin(x+π3),再把所得各点的横坐标缩短到原来的12倍,所得到的函数图象对应的解析式为y=sin(2x+π3).故选:A.【点睛】本题考查三角函数的图象变换,平移变换中x的系数为1是解题关键,属于基础题.10.已知sinα,cosα是方程3x2-2x+a=0的两根,则实数a的值为()A.65B.−56C.43D.−34【答案】B【解析】根据韦达定理表示出sinα+cosα及sinαcosα,利用同角三角函数间的基本关系得出关系式,把表示出的sinα+cosα及sinαcosα代入得到关于a 的方程,求出方程的解可得a 的值. 【详解】解:由题意,根据韦达定理得:sinα+cosα=23,sinαcosα=a3,∵sin 2α+cos 2α=1 ∴sin 2α+cos 2α=(sinα+cosα)2−2sinαcosα=49−2a 3=1,解得:a =−56,把a =−56,代入原方程得:3x 2−2x −56=0,∵△>0, ∴a =−56符合题意. 故选:B . 【点睛】本题考查三角函数的化简求值,同角三角函数基本关系及韦达定理的应用,属于基础题.11.已知函数f (x )={log a x,x ≥1(3a−1)x+4a,x<1的值域为R ,则实数a 的取值范围为()A .(0,1)B .[17,1) C .(0,17]∪(1,+∞) D .[17,13)∪(1,+∞) 【答案】C【解析】运用一次函数和对数函数的单调性可解决此问题. 【详解】 解:根据题意得,(1)若f(x)两段在各自区间上单调递减,则: {3a −1<00<a <1(3a −1)·1+4a ≤log a 1 ; 解得0<a ≤17;(2)若f(x)两段在各自区间上单调递增,则: {3a −1>0a >1(3a −1)·1+4a ≥log a 1 ;解得a >1;∴综上得,a 的取值范围是(0,17]∪(1,+∞) 故选:C . 【点睛】本题考查一次函数、对数函数以及分段函数单调性的判断,值域的求法,属于基础题.12.设函数f (x )={3x +4,x <0x 2−2x+2,x≥0,若互不相等的实数x1,x2,x3满足f (x1)=f (x2)=f (x3),则x1+x2+x3的取值范围是( ) A .[43,+∞) B .[1,43) C .(1,43] D .(1,+∞) 【答案】C【解析】作出函数f(x)的图象,根据对称求得x 1+x 2+x 3的取值范围即可. 【详解】解:函数f(x)={x 2−2x +2,x ⩾03x +4,x <0,函数的图象如下图所示:不妨设x 1<x 2<x 3,则x 2,x 3关于直线x =1对称,故x 2+x 3=2,∵1<3x +4≤2,∴ −1<x 1⩽−23,则x 1+x 2+x 3的取值范围是:1<x 1+x 2+x 3⩽43; 即x 1+x 2+x 3∈(1,43] 故选:C .【点睛】本题考查分段函数图象的作法、函数的值域的应用、函数与方程的综合运用等基础知识,考查运算求解能力与数形结合思想,化归与转化思想,属于基础题.二、填空题13.在半径为10的圆中,30°的圆心角所对的弧长为______. 【答案】5π3【解析】根据弧长公式l =nπr 180进行计算即可.【详解】解:在半径为10的圆中,30°的圆心角所对的弧长是:30×π×10180=5π3.故答案为:5π3. 【点睛】此题主要考查了弧长公式的应用,熟记弧长公式是解题关键,属于基础题. 14.若cosα=−35,且α∈(π,3π2),则tanα= ;【答案】 【解析】略15.已知函数f (x )=ax3+bx+2,且f (π)=1,则f (-π)=______. 【答案】3【解析】根据题意,设g(x)=f(x)−2=ax 3+bx ,分析可得g(x)为奇函数,进而可得g(π)+g(−π)=[f(π)−2]+[f(−π)−2]=0,计算可得f(π)的值,即可得答案. 【详解】解:根据题意,设g(x)=f(x)−2=ax 3+bx ,则g(−x)=a(−x)3+b(−x)=−(ax 3+bx)=−g(x),则g(x)为奇函数,则g(π)+g(−π)=[f(π)−2]+[f(−π)−2]=0,因为f (π)=1,则有f(−π)=3; 故答案为:3 【点睛】本题考查函数的奇偶性的性质,注意构造g(x)=f(x)−2,分析g(x)的奇偶性是解题关键,属于基础题.16.如果定义在R 上的函数f (x )满足对任意x1≠x2都有x1f (x1)+x2f (x2)>x1f (x2)+x2f (x1),则称函数f (x )为“H 函数”,给出下列函数:①f (x )=2x-5;②f (x )=x2;③f (x )={x +2,x ≥−1−1x ,x,−1 ;④f (x )=(12)x .其中是“H 函数”的有______.(填序号) 【答案】①③【解析】根据题意,将x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1),变形可得:[f(x 1)−f(x 2)](x 1−x 2)>0,分析可得函数f(x)为增函数;依次分析4个函数在R 上的单调性,综合即可得答案. 【详解】解:根据题意,若x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1), 变形可得:[f(x 1)−f(x 2)](x 1−x 2)>0, 则函数f(x)为增函数;对于①,f(x)=2x −5,在R 上是增函数,是“H 函数”,对于②,f(x)=x 2,是二次函数,在R 上不是增函数,不是“H 函数”, 对于③,f(x)={x +2,x ⩾−1−1x,x <−1;是分段函数,在R 上是增函数,是“H 函数”, 对于④,f(x)=(12)x ,是指数函数,在R 上是减函数,不是“H 函数”, 故其中为“H 函数”的有①③; 故答案为:①③. 【点睛】本题考查函数的单调性的性质以及判定,关键是对x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1)的变形分析,属于基础题.三、解答题17.已知全集为R ,集合A={x|2≤x <4},B={x|2x-7≥8-3x},C={x|x <a}. (1)求A∩B ,A ∪(∁RB ); (2)若A∩C=A ,求a 的取值范围.【答案】(1)A ∩B ={x|4>x ≥3},A ∪(C R B )={x|x <4};(2)[4,+∞). 【解析】(1)根据集合的基本运算即可求A ∩B ,(∁R B)∪A ;(2)根据A ∩C =A ,可得A ⊆C ,建立条件关系即可求实数a 的取值范围. 【详解】解:(1)集合A ={x |2≤x <4},B ={x |2x -7≥8-3x }={x |x ≥3}, ∴A ∩B ={x |2≤x <4}∩{x |x ≥3}={x |4>x ≥3}; ∵∁R B ={x |x <3}, ∴A ∪(∁R B )={x |x <4};(2)集合A ={x |2≤x <4},C ={x |x <a }. ∵A ∩C =A ,可得A ⊆C , ∴a ≥4.故a 的取值范围是[4,+∞). 【点睛】本题主要考查集合的基本运算,属于基础题. 18.已知f (α)=sin(π−α)cos(π2+α)cos(π+α)sin(3π2−α)cos(3π2+α)sin(π2−α).(1)化简f (α);(2)若f (α)=12,求sinα−3cosαsinα+cosα的值. 【答案】(1)−tanα;(2)−7.【解析】(1)利用诱导公式化简即可得到结果; (2)由(1)知tanα值,再弦化切,即可得出结论.【详解】解:(1)f (α)=sin(π−α)cos(π2+α)cos(π+α)sin(3π2−α)cos(3π2+α)sin(π2−α)=sinα⋅(−sinα)⋅(−cosα)−cosα⋅sinα⋅cosα=-tanα;(2)由f (α)=12,得tan α=−12, ∴sinα−3cosαsinα+cosα=tanα−3tanα+1=−12−3−12+1=−7.【点睛】此题考查了诱导公式的化简求值,以及同角三角函数间的基本关系,熟练掌握诱导公式是解本题的关键,属于基础题.19.已知函数f (x )=Asin (ωx+φ),x ∈R (其中A >0,ω>0,0<φ<π2)的周期为π,且图象上的一个最低点为M (2π3,−2 ). (1)求f (x )的解析式及单调递增区间; (2)当x ∈[0,π3]时,求f (x )的值域.【答案】(1)[kπ−π3,kπ+π6],k∈Z;; (2)[1,2].【解析】(1)由f(x)的图象与性质求出T、ω和A、φ的值,写出f(x)的解析式,再求f(x)的单调增区间;(2)求出0≤x≤π3时f(x)的最大、最小值,即可得出函数的值域. 【详解】(1)由f(x)=Asin(ωx+φ),且T=2πω=π,可得ω=2; 又f(x)的最低点为M(2π3,−2 )∴A=2,且sin(4π3+φ)=-1; ∵0<φ<π2,∴4π3<4π3+φ<11π6∴4π3+φ=3π2∴φ=π6∴f (x )=2sin (2x+π6); 令2kπ-π2≤2x+π6≤2kπ+π2,k ∈Z , 解得kπ-π3≤x≤kπ+π6,k ∈Z ,∴f(x)的单调增区间为[kπ-π3,kπ+π6],k ∈Z ; (2)0≤x≤π3,π6≤2x+π6≤5π6 ∴当2x+π6=π6或5π6,即x=0或π3时,f min (x )=2×12=1,当2x+π6=π2,即x=π6时,f max (x )=2×1=2; ∴函数f(x)在x∈[0,π3]上的值域是[1,2]. 【点睛】本题考查了正弦型函数的图象与性质的应用问题,是基础题. 20.已知f (x )=mx+n x 2+1是定义在[-1,1]上的奇函数,且f (-14)=817. (1)求f (x )的解析式;(2)用单调性的定义证明:f (x )在[-1,1]上是减函数. 【答案】(1)f (x )=−2xx 2+1;(2)详见解析.【解析】(1)由奇函数的性质f(0)=0,即得n 值,又由f(−14),解可得m 的值,将m 、n 的值代入f(x)的解析式,计算可得答案; (2)根据题意,由作差法证明即可得结论. 【详解】解:(1)根据题意,f (x )=mx+n x 2+1是定义在[-1,1]上的奇函数,且f (-14)=817,则f (0)=n 1=0,即n =0,则f (x )=mxx 2+1, 又由f (-14)=817,则f (-14)=−m 4116+1=817,解可得m =-2,则f (x )=−2xx 2+1;(2)函数f (x )在[-1,1]上为减函数, 证明:设-1≤x 1<x 2≤1,f (x 1)-f (x 2)=−2x 1x 12+1-−2x 2x 22+1=2x 2x 22+1-2x1x 12+1=2×(x 1−x 2)(x 1x 2−1)(x 12+1)(x 22+1),又由-1≤x 1<x 2≤1,则(x 1-x 2)<0,x 1-x 2-1<0,(x 12+1)>0,(x 22+1)>0, 则f (x 1)-f (x 2)>0,则函数f (x )在[-1,1]上是减函数. 【点睛】本题考查函数的奇偶性单调性的性质以及应用,关键是求出函数的解析式,属于基础题.21.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100x v x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=,1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ?(2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位? (3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?【答案】(1)1.70/min km ;(2)466;(3)9【解析】试题分析:(1)直接代入求值即可,其中要注意对数的运算;(2)还是代入求值即可;(3)代入后得两个方程,此时我们不需要解出1x 、2x ,只要求出它们的比值即可,所以由对数的运算性质,让两式相减,就可求得129x x =.试题解析:(1)将02x =,8100x =代入函数式可得:31log 81lg 22lg 220.30 1.702v =-=-=-=故此时候鸟飞行速度为1.70/min km . (2)将05x =,0v =代入函数式可得:310log lg52100x =-即3log 2lg52(1lg 2)20.70 1.40100x ==⋅-=⨯= 1.43 4.66100x∴==于是466x =.故候鸟停下休息时,它每分钟的耗氧量为466个单位. (3)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟的耗氧量为2x ,依题意可得:13023012.5log lg 210011.5log lg 2100x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩两式相减可得:13211log 2x x =,于是129x x =.故此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的9倍. 【考点】1.函数代入求值;2.解方程;3.对数运算. 22.已知函数f (x )=-sin2x+mcosx-1,x ∈[−π3,2π3].(1)若f (x )的最小值为-4,求m 的值; (2)当m=2时,若对任意x1,x2∈[-π3,2π3]都有|f (x1)-f (x2)|≤2a −1恒成立,求实数a 的取值范围.【答案】(1)m =4.5或m =−3;(2)[2,+∞).【解析】(1)利用函数的公式化简后换元,转化为二次函数问题求解最小值,可得m 的值;(2)根据|f(x 1)−f(x 2)|⩽2a −14恒成立,转化为函数f(x)=|f(x 1)−f(x 2)|的最值问题求解; 【详解】解:(1)函数f (x )=-sin 2x +m cos x -1=cos 2x +m cos x -2=(cos x +m2)2-2-m 24.当cos x =−m2时,则2+m 24=4,解得:m =±2√2那么cos x =±√2显然不成立. x ∈[−π3,2π3].∴−12≤cos x ≤1. 令cos x =t . ∴−12≤t ≤1.①当−12>−m 2时,即m >1,f (x )转化为g (t )min =(−12+m2)2-2-m 24=-4解得:m =4.5,满足题意;②当1<−m2时,即m <-2,f (x )转化为g (t )min =(1+m2)2-2-m 24=-4解得:m =-3,满足题意;故得f (x )的最小值为-4,m 的值4.5或-3; (2)当m =2时,f (x )=(cos x +1)2-3, 令cos x =t . ∴−12≤t ≤1.∴f (x )转化为h (t )=(t +1)2-3,其对称轴t =-1,∴t ∈[−12,1]上是递增函数. h (t )∈[−114,1]. 对任意x 1,x 2∈[-π3,2π3]都有|f (x 1)-f (x 2)|≤2a −14恒成立, |f (x 1)-f (x 2)|max =1−(−114)≤2a −14 可得:a ≥2.故得实数a 的取值范围是[2,+∞). 【点睛】本题考查三角函数的有界性,二次函数的最值,考查转化思想以及计算能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学练习题及答案高一数学集合练习题及答案(通用5篇)导读:数学是一个要求大家严谨对待的科目,有时一不小心一个小小的小数点都会影响最后的结果。

下文应届毕业生店铺就为大家送上了高一数学集合练习题及答案,希望大家认真对待。

高一数学练习题及答案篇1一、填空题.(每小题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满足{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,-1},B={2a-1,| a-2 |,3a2+4},A∩B={-1},则a的值是( )A.-1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则下列结论正确的是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x-1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5- x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y2-1},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题满分10分)已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx2-4x+m-1>0 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,-1} 1或-1或016、x=-1 y=-117、解:A={0,-4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={-4}时,把x=-4代入得a=1或a=7.当a=1时,B={0,-4}≠{-4},∴a≠1.当a=7时,B={-4,-12}≠{-4},∴a≠7.(4)若B={0,-4},则a=1 ,当a=1时,B={0,-4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,-4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2-ax+a2-19=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,-4 A,由3∈A,得32-3a+a2-19=0,解得a=5或a=-2?当a=5时,A={x|x2-5x+6=0}={2,3},与2 A矛盾;当a=-2时,A={x|x2+2x-15=0}={3,-5},符合题意.∴a=-2.19、解:A={x|x2-3x+2=0}={1,2},由x2-ax+3a-5=0,知Δ=a2-4(3a-5)=a2-12a+20=(a-2)(a-10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1-a+3a-5=0,得a=2,此时B={x|x2-2x+1=0}={1} A;若x=2,则4-2a+3a-5=0,得a=1,此时B={2,-1} A.综上所述,当2≤a<10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设矛盾.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x-1)(x+2)≤0}={x|-2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。

∴ 。

∵ ,∴ 的解为x<-2 x="">3,即,方程的两根分别为x=-2和x=3,由一元二次方程由根与系数的关系,得b=-(-2+3)=-1,c=(-2)×3=-6高一数学练习题及答案篇2一、选择题(每小题5分,共20分)1.下列关系式中一定成立的是()A.cos(-)=cos -cosB.cos(-)C.cos(2-)=sinD.cos(2+)=sin答案: C2.sin =35,2,,则cos4-的值为()A.-25B.-210C.-7210D.-725解析:由sin =35,2,,得cos =-45,cos4-=cos 4cos +sin 4sin=22(-45)+2235=-210.答案: B3.cos 80cos 35+cos 10cos 55的值为()A.22B.6-24C.32D.12解析:cos 80cos 35+cos 10cos 55=cos 80cos 35+cos(90-80)cos(90-35)=cos 80cos 35+sin 80sin 35=cos(80-35)=cos 45=22.答案: A4.若sin()=-35,是第二象限角,sin=-255,是第三象限角,则cos(-)的值是()A.-55B.55C.11525D.5解析:∵sin()=-35,sin =35,是第二象限角,cos =-45.∵sin=-255,cos =-255,是第三象限角,sin =-55,cos(-)=cos cos +sin sin=-45-255+35-55=55.答案: B二、填空题(每小题5分,共10分)5.若cos(-)=13,则(sin +sin )2+(cos +cos )2=________.解析:原式=2+2(sin sin +cos cos )=2+2cos(-)=83.答案: 836.已知cos(3-)=18,则cos +3sin 的值为________.解析:∵cos(3-)=cos 3cos +sin 3sin=12cos +32sin=12(cos +3sin )=18.cos +3sin =14.答案: 14三、解答题(每小题10分,共20分)7.已知sin =-35,,2,求cos 4-的值.解析:∵sin =-35,,2.cos =1-sin2=1--352=45.cos4-=cos 4cos +sin 4sin =2245+22-35=210.8.已知a=(cos ,sin ),b=(cos ,sin ),02,且ab=12,求证:3+.证明: ab=cos cos +sin sin =cos (-)=12,∵02,0-2,-3,3+.尖子生题库?☆☆☆9.(10分)已知sin -sin =-12,cos -cos =12,且、均为锐角,求tan(-)的值.解析:∵sin -sin =-12,①cos -cos =12.②①2+②2,得cos cos +sin sin =34.③即cos(-)=34.∵、均为锐角,--2.由①式知,--0.sin(-)=-1-342=-74.tan(-)=sin-cos-=-73. 文高一数学练习题及答案篇3空间直角坐标系定义:过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位、这三条轴分别叫做x轴横轴)、y轴纵轴、z轴竖轴;统称坐标轴、通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。

1、右手直角坐标系①右手直角坐标系的建立规则:x轴、y轴、z轴互相垂直,分别指向右手的拇指、食指、中指;②已知点的坐标P(x,y,z)作点的方法与步骤(路径法):沿x轴正方向(x>0时)或负方向(x<0时)移动|x|个单位,再沿y轴正方向(y>0时)或负方向(y<0时)移动|y|个单位,最后沿x轴正方向(z>0时)或负方向(z<>③已知点的位置求坐标的方法:过P作三个平面分别与x轴、y轴、z轴垂直于A,B,C,点A,B,C在x轴、y轴、z轴的坐标分别是a,b,c则a,b,c就是点P的坐标。

2、在x轴上的点分别可以表示为a,0,0,0,b,0,0,0,c。

在坐标平面xOy,xOz,yOz内的点分别可以表示为a,b,0,a,0,c,0,b,c。

3、点Pa,b,c关于x轴的对称点的坐标为a,-b,-c;点Pa,b,c关于y轴的对称点的坐标为-a,b,-c;点Pa,b,c关于z轴的对称点的坐标为-a,-b,c;点Pa,b,c关于坐标平面xOy的对称点为a,b,-c;点Pa,b,c关于坐标平面xOz的对称点为a,-b,c;点Pa,b,c关于坐标平面yOz的对称点为-a,b,c;点Pa,b,c关于原点的对称点-a,-b,-c。

4、已知空间两点Px1,y1,z1,Qx2,y2,z2,则线段PQ的中点坐标为5、空间两点间的距离公式已知空间两点Px1,y1,z1,Qx2,y2,z2,则两点的距离为特殊点Ax,y,z到原点O的距离为6、以Cx0,y0,z0为球心,r为半径的球面方程为特殊地,以原点为球心,r为半径的球面方程为x2+y2+z2=r2练习题:选择题:1.在空间直角坐标系中,已知点P(x,y,z),给出下列4条叙述:①点P关于x轴的对称点的坐标是(x,-y,z)②点P关于yOz平面的对称点的坐标是(x,-y,-z)③点P关于y轴的对称点的坐标是(x,-y,z)④点P关于原点的对称点的坐标是(-x,-y,-z)其中正确的个数是()A.3B.2C.1D.02.若已知A(1,1,1),B(-3,-3,-3),则线段AB的长为()A.43B.23C.42D.323.已知A(1,2,3),B(3,3,m),C(0,-1,0),D (2,―1,―1),则()A.|AB|>|CD|B.|AB|<|CD|C.|AB|≤|CD|D.|AB|≥|CD|4.设A(3,3,1),B(1,0,5),C(0,1,0),AB的中点M,则|CM|?()A.5B.2C.3D.4高一数学练习题及答案篇4一、填空题已知a=(m+1,-3),b=(1,m-1),且(a+b)⊥(a -b),则m的值是________。

相关文档
最新文档