整式的乘法优秀教学设计1

合集下载

整式的乘法教案范文

整式的乘法教案范文

整式的乘法教案范文教案:整式的乘法一、教学目标:1.理解整式的含义和性质;2.掌握整式的乘法法则;3.能够灵活运用整式进行乘法运算。

二、教学重难点:1.整式的含义和性质;2.整式的乘法法则。

三、教学准备:课本、笔记、黑板、彩色粉笔。

四、教学过程:一、整式的复习(5分钟)1.复习整式的定义和例子;2.复习整式的加法运算。

二、整式的乘法概念(15分钟)1.整式的概念:由常数项和各种字母的幂和乘积组成的代数式称为整式;2.介绍整式的乘法定义;3.举例说明整式的乘法。

三、整式的乘法法则(30分钟)1.同底数幂相乘法则;(a^m)*(a^n)=a^(m+n),a为同一个底数,m和n为任意整数;例子:3x^2*4x^3=12x^(2+3)=12x^5;2.多项式乘法法则;(a+b)*(c+d) = ac + ad + bc + bd;例子:(3x+2y)*(4x-5y) = 3x*4x + 3x*(-5y) + 2y*4x + 2y*(-5y) = 12x^2 -15xy + 8xy - 10y^2;3.将乘法运算与整式相结合;例子:3x * (x^2 + 2y) = 3x^3 + 6xy。

四、练习与应用(30分钟)1.练习题:a)(x+2)(x-3)b)(3x-4y)(2x+5y)c)(2x+3y)^2d)(x^2+3)^2e)(a-b)^32.实际应用:一个正方形的边长是x+5,求其面积是多少?五、总结与拓展(10分钟)1.总结整式的乘法法则;2.引导学生发现整式乘法的规律与实际应用;3.拓展乘法法则的应用。

六、作业布置(5分钟)1.完成课堂练习题;2.自主整式乘法的应用题。

七、教学反思:通过本节课的教学,学生掌握了整式的乘法法则,并通过练习和实际应用加深了对整式乘法的理解。

同时,教师要注重引导学生发现整式乘法的规律,并帮助学生拓展乘法法则的应用,培养学生解决实际问题的能力。

为了提高学生的参与度,教师还可以引入一些有趣的例子或实际问题,激发学生的兴趣。

人教版八年级数学上册---《整式的乘法》课堂设计

人教版八年级数学上册---《整式的乘法》课堂设计

人教版八年级数学上册---《整式的乘法》课堂设计整式的乘法(第一课时)整式的乘法(第二课时)3 分钟4 分钟(2)创设情境引入新知【引入】为了扩大绿地面积,要把街心花园的一块长为p米,宽b米的长方形绿地,向两边分别加宽a米和c米.教师提出问题:(4)你能用哪些方法表示扩大后的绿地面积;(5)不同的表示方法之间有什么关系?为什么?学生并回答问题:(1)()cbap++或pcpbpa++或()p a b pc++或)(cbppa++(2)相等,都表示扩大后的长方形的面积.追问1:你还能通过别的方法得到等式()pcpbpacbap++=++吗?学生回答:乘法分配律.追问2:()pcpbpacbap++=++,请问这属于什么运算?学生回答:单项式乘多项式.教师引出本节课的课题——单项式乘多项式,明确本节课探究的主要内容:单项式乘多项式的运算是怎样进行的?如何确定运算结果?【问题1】:你能尝试计算()yxx22-吗?教师引导学生利用乘法分配律进行运算.()yxxxyxx22222⋅-⋅=-xyx422-=追问1:你能尝试归纳单项式与多项式乘法运算法则吗?学生尝试进行归纳,用自己的语言加以概括,小组讨论,教师在学生表述的基础上,和学生共同得到单项式乘以多项式的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.追问2:你能尝试归纳单项式与多项式相乘的步骤吗?①用单项式去乘多项式的每一项;②转化为单项式与单项式的乘法运算;整式的乘法(第三课时)5 分钟2 探究新知得出pbpabap+=+)(活动2:问题引入:为了扩大街心花园的绿地面积,把一块原长am、宽pm的长方形绿地,加长了bm, 加宽了qm.你能用几种方法求出扩大后的绿地面积?教师设问:(1)扩大后的公园的面积有几种表示法?学生思考,得出结论:第一种:整体求面积,得))((qpba++第二种:先求A和B的总面积为)(bap+再求C和D的总面积为)(baq+最后求和,得)()(baqbap+++第三种:先求A和C的总面积为)(qpa+再求B和D的总面积为)(qpb+最后求和,得)()(qpbqpa+++第四种:分别求出A,B,C,D的面积,再求和,得bqbpaqap+++教师设问:(2)用四种方法表示出来的代数式是什么关系呢?为什么呢?学生回答:用四种方法表示出来的代数式是相等关系,因为图形的面积是相等的。

七年级数学下册《整式的乘法》教案、教学设计

七年级数学下册《整式的乘法》教案、教学设计
二、学情分析
七年级下册的学生已经具备了一定的数学基础,掌握了基本的代数运算和简单的方程求解方法。在此基础上,学习整式的乘法,对学生来说既是对已有知识的巩固,也是对数学思维能力的进一步提升。学生在此阶段好奇心强,求知欲旺盛,但注意力容易分散,对抽象概念的理解和运用尚需加强。此外,学生的个体差异较大,部分学生对数学学习存在恐惧心理,需要教师在教学过程中给予关注和指导。因此,在教学整式乘法时,教师应结合学生的实际情况,设计富有启发性和趣味性的教学活动,激发学生的学习兴趣,提高学生的参与度,帮助学生在实践中掌握整式乘法的运算规则和应用技巧。同时,注重培养学生的数学思维能力,引导学生主动探索、发现、解决问题,使学生在轻松愉快的学习氛围中不断提高。
师:现在,请同学们完成以下练习题,检验一下自己对整式乘法的掌握程度。
2.教师巡回指导,针对学生的疑问和错误进行解答和纠正。
师:大家做题时要注意运算符号的处理,以及每一步的计算顺序。如果有问题,可以随时向我提问。
(五)总结归纳
1.教学活动设计:教师引导学生回顾本节课所学的内容,总结整式乘法的运算规则和技巧。
3.应用阶段:设计具有实际背景的练习题,让学生将所学的整式乘法知识应用于解决具体问题。例如,可以让学生计算不同形状的图形面积,或者解决与速度、距离等相关的实际问题。
4.巩固阶段:通过变式练习和拓展训练,巩固学生对整式乘法的理解和运用能力。同时,教师应关注学生的反馈,对学生的错误进行及时纠正和指导。
5.评价阶段:采用多元化的评价方式,包括课堂提问、小组讨论表现、课后作业和阶段测试等,全面评估学生对整式乘法的掌握程度。
-对于学习困难的学生,教师应给予个别指导,帮助他们克服难点,建立信心。
-对于学习优秀的学生,可以提供更高难度的挑战题,激发他们的学习兴趣和潜能。

整式的乘法的教学设计名师公开课获奖教案百校联赛一等奖教案

整式的乘法的教学设计名师公开课获奖教案百校联赛一等奖教案

整式的乘法的教学设计一、教学目标1. 掌握整式的乘法的基本概念和运算规则;2. 能够灵活运用整式的乘法进行计算;3. 培养学生的逻辑思维和运算能力;4. 提高学生解决实际问题的能力。

二、教学重点和难点1. 整式的乘法的基本概念和运算规则;2. 如何根据实际问题设立和解决整式的乘法运算。

三、教学内容和方法1. 教学内容整式的乘法是初中数学中的基本内容之一,本节课将重点讲解整式的乘法的基本概念和运算规则。

具体内容如下:(1)整式乘整式;(2)整式乘单项式;(3)整式乘多项式;(4)整式的平方。

2. 教学方法(1)导入新知识:通过引入实际问题,激发学生的学习兴趣,概括整式的乘法运算的基本规律。

(2)图示法:通过图形的方式,帮助学生理解整式的乘法的运算过程和结果,加深对整式乘法的印象。

(3)讲解法:通过详细讲解整式的乘法的运算规则和步骤,并配以实例演示,帮助学生逐步掌握整式的乘法的运算方法。

(4)练习与讨论:设计一系列的练习题,让学生进行实际运算和思考,鼓励学生积极参与讨论,提高他们解决问题和表达观点的能力。

四、教学流程1. 导入(5分钟)通过一个有趣的问题导入整式的乘法,例如:小明买了3个橙子,每个橙子的价格是2元,那么小明买这些橙子一共花了多少钱?引导学生思考并用代数式表示。

2. 图示法演示(10分钟)通过图示法演示整式的乘法运算,例如:使用方格纸上的图形,表示小明买3个橙子的过程,并展示整式的乘法的结果。

3. 讲解整式的乘法的规则(15分钟)讲解整式乘整式、整式乘单项式和整式乘多项式的运算规则,并配以实例进行讲解。

强调乘法的交换律和分配律。

4. 合作练习(15分钟)学生分组进行合作练习,通过小组合作的形式解决一些实际问题,例如:某公司生产了x台电视和y台洗衣机,其中电视的单价是2000元,洗衣机的单价是3000元,求这批产品的总价值。

5. 总结(5分钟)对整节课的内容进行总结,强调整式的乘法是初中数学中的基础知识之一,要求学生熟练掌握整式的乘法的运算规则。

人教版数学八年级上册14.1《整式的乘法(1)》名师教案

人教版数学八年级上册14.1《整式的乘法(1)》名师教案

14.1整式的乘法〔第3课时〕14.1.4 整式的乘法〔第1课时〕〔刘小兰〕一、教学目标〔一〕学习目标1.以实际问题为背景引入,激发学生对新知探索的欲望,调动学生的学习积极性.2.理解单项式与单项式相乘的法那么和单项式与多项式相乘的法那么,并会运用法那么进展计算.3.两个法那么的熟练,灵活运用.〔二〕学习重点单项式与单项式、单项式与多项式相乘的运算法那么的理解及其运用.〔三〕学习难点灵活地运用单项式与单项式、单项式与多项式相乘的法那么进展计算.二、教学设计〔一〕课前设计〔1〕单项式与单项式相乘的法那么:单项式与单项式相乘,把他们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式.〔2〕单项式与多项式相乘的法那么:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.〔1〕计算:3425a b a【知识点】单项式与单项式相乘的法那么.【数学思想】【解题过程】343434725(25)()1010a b a a a b a b a b +=⨯==【思路点拨】利用单项式与单项式相乘的法那么计算.【答案】 710a b .〔2〕计算:23()(2)a a -【知识点】单项式与单项式相乘的法那么.【数学思想】【解题过程】23235()(2)()(8)8a a a a a -=-=-【思路点拨】先进展积的乘方运算,再利用单项式与单项式相乘的法那么计算.【答案】 58a -.〔3〕322(3)c c -【知识点】单项式与多项式相乘的法那么.【数学思想】转化思想【解题过程】32323532(3)22326c c c c c c c -=-⨯=-【思路点拨】先转化成单项式与单项式相乘,再利用单项式与单项式相乘的法那么.【答案】5326c c -.〔4〕23(3)(41)m m m --+【知识点】单项式与多项式相乘的法那么.【数学思想】转化思想【解题过程】23232322532(3)(41)9(41)994919369m m m m m m m m m m m m m m --+=-+=-+⨯=-+【思路点拨】先转化成单项式与单项式相乘,再利用单项式与单项式相乘的法那么,注意符号确实定.【答案】5329369m m m -+.(二)课堂设计〔1〕同底数幂的乘法的性质:同底数幂相乘,底数不变,指数相加.即m n m n a a a +=〔m ,n 为正整数〕.〔2〕幂的乘方的性质:幂的乘方,底数不变,指数相乘.即()m n mn a a =〔m ,n 为正整数〕.〔3〕积的乘方的性质:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.即()n n n ab a b =〔n 为正整数〕.探究一:回忆旧知,创设情境,引入新课.●活动① 回忆旧知,回忆乘法交换律,乘法结合律,乘法分配律乘法交换律:a b b a =乘法结合律:()()ab c a bc =乘法分配律:()m a b c ma mb mc ++=++【设计意图】通过对旧知识的复习,为新知识的学习作铺垫.●活动② 整合旧知,引出课题问题1:探索火星、月球以及其他星球的奥秘已逐渐被世人关注,飞向月球、进入太空也不再是遥远的事,浩瀚的宇宙期待着人们的光临.天文学上计算星球之间的距离的一种单位叫“光年〞,即光在一年里通过的距离.一年约等于7310⨯s ,光的速度约为5310⨯km /s ,那么1光年大约是多少千米?学生容易得出:1光年大约是〔7310⨯〕×〔5310⨯〕km .问题2:如何计算〔7310⨯〕×〔5310⨯〕呢?师:学习了今天的知识,你一定就会迎刃而解了.【设计意图】用光年知识,激发学生对新知主动探索的欲望,调动学生学习兴趣.●活动①大胆猜测,探究单项式与单项式相乘的法那么.问题1:怎样计算〔7310⨯〕×〔5310⨯〕?计算过程中用到哪些运算律及运算性质? 学生计算后,展示计算过程:〔7310⨯〕×〔5310⨯〕7512(33)(1010)910=⨯⨯⨯=⨯运用了乘法交换律、乘法结合律及同底数幂的乘法的性质.问题2:如果将上式中的数字改为字母,比方52ac bc ,怎样计算这个式子呢?学生独立思考后,展示:52527()()ac bc a b c c abc ==.【设计意图】学生通过类比〔7310⨯〕×〔5310⨯〕的计算,来计算52ac bc ,体会由特殊到一般,具体的数字抽象到字母的学习方法,让学生在独立思考,实践中获得计算的方法. 问题3:你能根据52ac bc 的计算方法,来计算以下式子吗?〔1〕2732m m ; 〔2〕23425(2)(3)p q p q m --.学生动手计算.展示答案:〔1〕96m ; 〔2〕6556p q m .【设计意图】让学生通过类比〔7310⨯〕×〔5310⨯〕和52ac bc 的计算方法,用前面获得经历来计算2732m m 和23425(2)(3)p q p q m --,从四个题目的计算,使单项式与多项式相乘的法那么在学生心中根本成型.●活动② 集思广益,归纳单项式与单项式相乘的法那么.师:观察52ac bc ,2732m m ,23425(2)(3)p q p q m --都是单项式与单项式相乘,通过刚刚的尝试,终究怎样进展单项式与单项式的乘法运算呢?先独立思考,再小组讨论.小组派代表发表小组的观点.学生发言,教师完善,得出结论:单项式与单项式相乘的法那么:单项式与单项式相乘,把他们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式.【设计意图】通过小组合作,用文字语言表述单项式与单项式相乘的法那么,培养学生的独立思考,观察,猜测,归纳,语言表达能力,和小组合作意识.例1计算:〔1〕2(5)(3)a b a --;〔2〕32(2)(5)x xy -.【知识点】单项式与单项式相乘的法那么【数学思想】【解题过程】解:〔1〕2(5)(3)a b a --[]23(5)(3)()15a a ba b =-⨯-=〔2〕32(2)(5)x xy -[]3232428(5)8(5)()40x xy x x y x y =-=⨯-=-【思路点拨】注意运算顺序,先算乘方,再算乘法,先确定运算中的符号,再利用单项式与单项式相乘的法那么进展计算.【答案】〔1〕315a b ;〔2〕4240x y -.练习:1.计算: 〔1〕2335x x ;〔2〕32(2)(3)a a --.【知识点】单项式与单项式相乘的法那么【数学思想】【解题过程】〔1〕2335x x =515x ;〔2〕32(2)(3)a a --=518a -【思路点拨】确定运算顺序,先算乘方,再算乘法,注意确定运算中的符号,再利用单项式与单项式相乘的法那么进展计算.【答案】〔1〕515x ; 〔2〕518a -.2.下面计算对不对?如果不对,应当怎样改正?〔1〕326326a a a =;〔2〕3515538y y y =.【知识点】单项式与单项式相乘的法那么【数学思想】【解题过程】〔1〕325326a a a =;〔2〕3585315y y y =【思路点拨】利用单项式与单项式相乘的法那么来判断【答案】〔1〕不对,应当为56a ;〔2〕不对,应当为815y .【设计意图】稳固新知,到达强化的目的.回忆课前引例,1光年大约是多少千米?怎样计算〔7310⨯〕×〔5310⨯〕?〔7310⨯〕×〔5310⨯〕7512(33)(1010)910=⨯⨯⨯=⨯实际上就是把〔7310⨯〕×〔5310⨯〕看作是单项式与单项式相乘,运用单项式与单项式相乘的法那么计算得到.【设计意图】解决引例,前后照应,让学生对引例问题豁然开朗,同时也让给学生感受到数学源于生活,又效劳于生活.探究三:再探新知,升华提高,探究单项式与多项式相乘的法那么,并会运用法那么计算.★●活动①展示实际问题,引出单项式与多项式相乘的法那么的思考.问题1:如图,为了扩大绿地面积,要把街心花园的一块长m米,宽b米的长方形绿地,向两边加宽a米和c米,你能用几种方法表示扩大后的绿地面积?学生思考.师生共同得出结论:方法一:()++;m a b c++.方法二:ma mb mc师:这两种方法结果有什么样的关系?学生思考得出关系:相等关系,即:()++=++.m a b c ma mb mc师:观察上式,左边是一个单项式与一个多项式的乘积,右边是几个单项式的和,怎样进展单项式与多项式的乘法运算呢?【设计意图】由生活中的实际问题,从不同的面积计算方法,引发对单项式与多项式相乘的运算法那么的思考,表达数学源于生活,渗透数形结合思想.同时让学生从直观上感知单项式与多项式的乘法运算.●活动②集思广益,归纳单项式与多项式相乘的法那么.师:观察式子()++=++,可以根据运算律得到这个等式吗?m a b c ma mb mc思考得出:可以根据乘法对加法的分配律得到.师:你能说说单项式与多项式的相乘的法那么吗?学生独立思考,再小组讨论,小组派代表发表看法学生发言,教师完善,得出结论:单项式与多项式相乘的法那么:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【设计意图】让学生从面积问题和乘法分配律两个角度,得到单项式与多项式的相乘的法那么,使得学生理解更深入,通过法那么的得出,培养学生的合作意识和归纳能力.例2 计算〔1〕2(4)(31)x x -+;〔2〕221(2)32ab ab ab -. 【知识点】单项式与多项式相乘的法那么.【数学思想】将单项式与多项式相乘转化成单项式与单项式相乘,渗透转化思想【解题过程】解:〔1〕2(4)(31)x x -+222232(4)(3)(4)1(43)()(4)124x x x x x x x x =-+-⨯=-⨯+-=--〔2〕221(2)32ab ab ab - 22322211(2)32213ab ab ab ab a b a b =+-=- 【思路点拨】利单项式与多项式相乘的法那么计算,要注意〔1〕单项式乘多项式,结果仍是多项式,且项数与原多项式的项数一样;〔2〕符号确实定.【答案】〔1〕32124x x --;〔2〕232213a b a b -. 练习:1.计算:〔1〕3(52)a a b -;〔2〕(3)(6)x y x --.【知识点】单项式与多项式相乘的法那么.【数学思想】【解题过程】〔1〕3(52)a a b -=2156a ab -;〔2〕(3)(6)x y x --=2618x xy -+.【思路点拨】运用单项式与多项式相乘的法那么计算【答案】〔1〕2156a ab -;〔2〕2618x xy -+.2.化简:(1)2(1)3(25)x x x x x x -++--.【知识点】单项式与多项式相乘的法那么,合并同类项.【数学思想】【解题过程】(1)2(1)3(25)x x x x x x -++--222222615316x x x x x xx x =-++-+=-+【思路点拨】运用单项式与多项式相乘的法那么计算,注意各项符号确实定.【答案】2316x x -+.【设计意图】稳固新知,到达强化的目的.●活动③ 灵活运用两个法那么进展计算.例3 化简求值: 2224(2)(3)(3)(2)y x y x x y x y --++-,其中4x =-,12y = 【知识点】单项式与单项式,单项式与多项式相乘的法那么,合并同类项【数学思想】【解题过程】2224(2)(3)(3)(2)y x y x x y x y --++-2322223222232223483(3)(4)48312(4312)8118xy y x xy x y xy y x xy xy xy y x x xy y =---+-=----=----=---当4x =-,12y =时,223118x xy y ---=-6 【思路点拨】根据单项式与单项式,单项式与多项式相乘的法那么计算,翻开括号,注意各项符号确实定,再根据整式加法的合并同类项法那么得223118x xy y ---,最后把4x =-,12y =值代入223118x xy y ---从而求解.【答案】-6练习:化简求值:223(43)(2)(3)a a a a a -+--,其中2a =-【知识点】单项式与单项式,多单项式与多项式相乘的法那么,合并同类项.【数学思想】【解题过程】223(43)(2)(3)a a a a a -+--322323321239(2)(9)123918639a a a a a a a a a a a a =-+-=-+-=--+当2a =-时,3263918a a a --+=【思路点拨】根据单项式与单项式,单项式与多项式相乘的法那么计算,翻开括号,注意各项符号确实定,再根据整式加法合并同类项法那么得32639a a a --+,再把2a =-代入32639a a a --+从而求解.【答案】18【设计意图】稳固所学两个法那么,灵活运用两个法那么进展计算.例422x y =,求523(243)xy x y x y x --的值.【知识点】单项式与多项式相乘的法那么【数学思想】整体代换思想【解题过程】解:523(243)xy x y x y x --63422232222432()4()3x y x y x yx y x y x y =--=--因为22x y =,所以:23222322()4()32242326x y x y x y --=⨯-⨯-⨯=-【思路点拨】用单项式与多项式相乘的法那么对式子化简,再观察条件22x y =中,x y 的可能值较多,不可能逐一代入求解,所以考虑整体代换思想,将22x y =整体代入,从而求解.【答案】-6练习:3mn =,求322(234)(2)m n m n m n -+-的值.【知识点】单项式与多项式相乘的法那么【数学思想】整体代换思想【解题过程】解:322(234)(2)m n m n m n -+-3322324684()6()8m n m n mnmn mn mn=-+-=-+- 因为3mn =,所以:32324()6()8436383108542478mn mn mn-+-=-⨯+⨯-⨯=-+-=-【思路点拨】用单项式与多项式相乘的法那么对式子化简,再观察条件3mn =中,m n 的可能值较多,不可能逐一代入求解,所以考虑整体代换思想,将3mn =整体代入,从而求解.【答案】-78【设计意图】熟练运用法那么进展计算,渗透整体代换的数学思想.3.课堂总结知识梳理〔1〕单项式与单项式相乘的法那么:单项式与单项式相乘,把他们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式.〔2〕单项式与多项式相乘的法那么:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.〔3〕计算时要注意的方面:运算顺序,符号确实定重难点归纳:〔1〕两个法那么的理解及灵活熟练运用;〔2〕学习和运用法那么过程中,类比,特殊到一般等方法的运用,渗透了转化,整体代换,数形结合等数学思想.〔三〕课后作业根底型 自主突破1.计算262x x 结果正确的选项是〔 〕A .212xB .38xC .28xD .312x【知识点】单项式与单项式相乘法那么【数学思想】【解题过程】236212x x x =【思路点拨】利用单项式与单项式相乘法那么计算【答案】D .2.以下计算正确的选项是〔 〕A .23622x x x =B .2324(2)2ab a b a b -=-C .2236611()28x y xy x y -=- D .322398()(3)27m n mn m n --=- 【知识点】单项式与单项式相乘法那么【数学思想】【解题过程】3223623698()(3)(27)27m n mn m n m n m n --=-=-【思路点拨】利用单项式与单项式相乘法那么计算【答案】D .3.计算42(31)x x -结果正确的选项是〔 〕A .552x x -B . 561x -C . 562x x -D .462x x -【知识点】单项式与多项式相乘的法那么【数学思想】【解题过程】452(31)62x x x x -=-【思路点拨】利用单项式与多项式相乘的法那么计算【答案】C .4.以下计算正确的选项是〔 〕A.22()xy x y x y xy -=+B.2323(21)363m m m m m m --=--C.23(1)1x x x x x --=--D.2322(1)222a a a a a a ---=---【知识点】单项式与多项式相乘的法那么【数学思想】【解题过程】2323(21)363m m m m m m --=--【思路点拨】利用单项式与多项式相乘的法那么计算,注意符号确实定.【答案】B .5.假设2(2)()x ax x -+-的展开式中2x 项的系数为4-,那么a 的值为〔 〕A.4-B.2-C.2D.4【知识点】单项式与多项式相乘的法那么【数学思想】对应思想【解题过程】2(2)()x ax x -+-322x ax x =-+-因为原式中的2x 的系数为4-,所以4a =-【思路点拨】单项式与多项式相乘的法那么,展开括号,再根据要求,对应求出a .【答案】A .6.通过计算几何图形的面积可表示一些代数恒等式,如下图的几何图形的面积可表示的代数恒等式是〔 〕A.222()2a b a ab b +=++B.22()()a b a b a b +-=-C.222()2a b a ab b -=-+D.22()22a a b a ab +=+【知识点】通过面积恒等反映单项式与多项式相乘的运算方法.【数学思想】数形结合思想【解题过程】几个图形的面积相加得:222a ab +,长乘以宽得长方形的面积为2()a a b +,即:22()22a a b a ab +=+【思路点拨】大长方形由两个面积相等的正方形和两个面积相等的的长方形组成,因此,面积有两种算法:一是由几个图形的面积相加得:22222a a ab ab a ab +++=+;二是由长乘以宽得长方形的面积为2()a a b +,所以可以得到一个恒等式:22()22a a b a ab +=+【答案】D .能力型 师生共研7.“三角〞表示3abc ,“方框〞 表示4y z x w -,那么×=__________.【知识点】单项式与单项式相乘的法那么【数学思想】对应思想【解题过程】525236(33)(4)9(4)36mn n m mn n m m n ⨯-=-=-【思路点拨】根据题中新定义化简所求的式子,利用单项式与单项式相乘的法那么计算即可得结果.【答案】3636m n -.8.解以下方程:24(3)3(3)(2)0a a a a a a +--++-+=【知识点】单项式与多项式相乘的法那么,解一元一次方程.【数学思想】【解题过程】24(3)3(3)(2)0a a a a a a +--++-+=2224412932031204a a a a a a a a +----+=--==-【思路点拨】利用单项式与多项式相乘的法那么计算,把左边化简,再解关于a 一元一次方程.【答案】4a =-.探究型 多维突破9.有理数,m n 满足条件2231(35)0m n m n -++++=,求代数式222(2)()(6)mn n mn --的值.【知识点】单项式与单项式相乘的法那么,等式的非负性.【数学思想】方程思想【解题过程】222222236(2)()(6)4()(6)24mn n mn m n n mn m n --=-=- 因为2231(35)0m n m n -++++= 所以22310,(35)0m n m n -+≥++≥2310350m n m n -+=⎧⎨++=⎩ 解得21m n =-⎧⎨=-⎩,所以3624192m n -= 【思路点拨】根据单项式与单项式相乘的法那么进展计算化简,在化简过程中注意运算顺序和符号确实定,再根据等式非负性组成方程组求出,m n 的值,将,m n 的值代入化简的式子,从而求解.【答案】192.10.试说明:对于任意自然数x ,代数式[](3)(9)6x x x x +--+的值能被6整除.【知识点】单项式与多项式相乘的法那么,合并同类项【数学思想】【解题过程】[](3)(9)6x x x x +--+22223(96)3961266(21)x x x x x x x x x x =+--+=+-+-=-=-因为代数式[](3)(9)6x x x x +--+计算后的结果为6和21x -的积,所以原代数式能被6整除.【思路点拨】化简式子后,观察是6的倍数.【答案】见解答过程.自助餐1.假设51015()m n x y xy x y =,那么3(1)m n +的值为〔 〕A .9B .15C .18D .10【知识点】单项式与单项式相乘的法那么【数学思想】对应思想【解题过程】51155555()()m n m n m n x y xy x y x y ++++==因为 51015()m n x y xy x y =,所以 55551015m n x y x y ++=,所以55105515m n +=⎧⎨+=⎩,解得:12m n =⎧⎨=⎩,即3(1)9m n += 【思路点拨】先计算括号内单项式与单项式的乘法,再利用积的乘方得到55551015m n x y x y ++=,组成方程组55105515m n +=⎧⎨+=⎩,求出m ,n 的值,再代入式子求解. 【答案】A .2.假设三角形的底边为21x +,高为2x ,那么此三角形的面积为〔 〕A .241x +B .242x x +C . 2122x x +D .22x x + 【知识点】单项式与多项式相乘的法那么【数学思想】 【解题过程】21(21)222x x x x +=+ 【思路点拨】根据三角形面积公式求面积【答案】D .3.计算232221()3(2)2a b ab c ab -=____________ 【知识点】单项式与单项式相乘的法那么【数学思想】 【解题过程】232221()3(2)2a b ab c ab - 6322499134832a b ab c a b a b c =-=- 【思路点拨】根据单项式与单项式相乘法那么计算,对于三个单项式相乘,单项式与单项式相乘法那么仍然适用. 【答案】9932a b c -. 4.单项式A 、B 满足234(3)7x A x x y B -=+,那么A =_________,B =_________.【知识点】单项式与多项式相乘的法那么【数学思想】对应思想【解题过程】24(3)412x A x Ax x -=-因为234(3)7x A x x y B -=+,所以2347Ax x y =,212B x =-所以 374A xy = 【思路点拨】利用单项式与多项式相乘的法那么化简,与右边局部对应相等,从而求解【答案】 374A xy =,212B x =-. 5.小敏家新购了一套构造如图的住房,正准备装修.〔1〕试用代数式表示这套住房的总面积;〔2〕假设x =2.6m ,y =3.1m, ,装修客厅和卧室至少需要准备多少面积的木地板?【知识点】单项式与单项式相乘的法那么【数学思想】数学源于生活,又效劳于生活【解题过程】解:〔1〕24222x y x y x y x y +++15xy =〔2〕客厅和卧室的总面积为:4812xy xy xy +=,将x =2.6,y =3.1代入,得12xy =12×2.6×3.1=〔2m 〕.【思路点拨】先根据单项式乘以单项式法那么求出总面积,再根据条件,代入求出答案.【答案】〔1〕15xy ;〔2〕〔2m 〕.6.2232(2)(36)4m m pm m m ----+中不含3m 项,求p 的值.【知识点】单项式与多项式相乘的法那么,合并同类项.【数学思想】【解题过程】解:2232(2)(36)4m m pm m m ----+43232432621246(24)13m pm m m m m p m m=-++-+=-+-+因为原式不含3m 项,所以240p -=,p =2 【思路点拨】先利用单项式与多项式相乘的法那么将式子化简,在合并同类项,得出3m 的系数为24p -,再根据条件,得到240p -=,从而求出p 值.【答案】2.。

整式的乘法教案(通用3篇)

整式的乘法教案(通用3篇)

整式的乘法教案(通用3篇)整式的乘法篇1内容:整式的乘法单项式乘以多项式 P58—59课型:新授时间:学习目标:1、在具体情景中,了解单项式和多项式相乘的意义。

2、在通过学生活动中,理解单项式和多项式相乘的法则,会用它们进行计算。

3、培养学生有条理的思考和表达能力。

学习重点:单项式乘以多项式的法则学习难点:对法则的理解学习过程1、学习准备1、叙述单项式乘以单项式的法则2、计算(1)(— a2b)(2ab)3=(2)(—2x2y)2 (— xy)—(—xy)3(—x2)3、举例说明乘法分配律的应用。

2、合作探究(一)独立思考,解决问题1、问题:一个施工队修筑一条路面宽为n m的公路,第一天修筑 a m长,第二天修筑长 b m,第三天修筑长 c m,3天工修筑路面的面积是多少?结合图形,完成填空。

算法一:3天共修筑路面的总长为(a+b+c)m,因为路面的宽为bm,所以3天共修筑路面 m2。

算法二:先分别计算每天修筑路面的面积,然后相加,则3天修路面 m2。

因此,有 = 。

3、你能用字母表示乘法分配律吗?4、你能尝试总结单项式乘以多项式的法则吗?(二)师生探究,合作交流1、例3 计算:(1)(—2x)(—x2x+1)(2)a(a2+a)— a2 (a—2)2、练一练(1)5x(3x+4)(2)(5a2 a+1)(—3a)(3)x(x2+3)+x2(x—3)—3x(x2x—1)(4)(a)(—2ab)+3a(ab—b—1))(三)学习体会对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?(四)自我测试1、教科书P59 练习 3,结合解题,体会单项式乘以多项式的几何意义。

2、判断题(1)—2a(3a—4b) =—6a2—8ab ()(2)(3x2—xy—1) x =x3 —x2y—x ()(3)m2—(1— m) = m2—— m ()3、已知ab2=—1,—ab(a2b3—ab3—b)的值等于()A、—1B、0C、1D、无法确定4、计算(20xx贺州中考)(—2a)( a3 —1) =5、(3m)2(m2+mn—n2)=(五)应用拓展1、计算(1)2a(9a2—2a+3)—(3a2)(2a—1)(2)x(x—3)+2x(x—3)=3(x2—1)2、若一个梯形的上底长(4m+3n)cm,下底长(2m+n)cm,高为3m2n cm,求此梯形的面积。

14.1.4整式的乘法教案

14.1.4整式的乘法教案
此外,我也注意到学生在面对开放性问题时,有时不知从何下手。这可能是因为他们习惯了有固定答案的问题,对于需要创造性思考的问题感到不适应。因此,我打算在接下来的课程中,逐步增加开放性问题的比例,引导学生学会独立思考和解决问题。
(1)正确识别同类项:学生容易在系数和字母的幂次上出现混淆,需要教师重点强调和讲解。
举例:5x^2与4x^3不是同类项,不能直接相乘。
(2)多项式与多项式相乘的计算顺序:学生容易在计算过程中出现漏项、重复项或计算错误,需要教师指导正确的计算顺序和技巧。
举例:在计算(x + 2) * (x + 3)时,容易漏掉2x * 3或重复计算x * x。
3.重点难点解析:在讲授过程中,我会特别强调单项式相乘和多项式相乘这两个重点。对于难点部分,如多项式与多项式相乘,我会通过举例和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整式乘法相关的实际问题,如计算不同形状的面积或体积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际测量和计算,演示整式乘法在计算面积中的应用。
举例:长方形的长和宽分别为(x + 3)和(x + 2),求长方形的面积,即(x + 3)(x + 2)。
在教学过程中,教师要针对以上重点和难点进行详细讲解和示范,确保学生能够透彻理解整式乘法的核心知识,并能够熟练运用到实际问题中。同时,通过设计不同难度的练习题,帮助学生巩固所学,逐步突破教学难点。
二、核心素养目标
本章节的核心素养目标主要包括以下方面:
1.培养学生的逻辑思维能力:通过整式乘法的学习,使学生能够理解数学概念之间的内在联系,提高解决问题的逻辑思维水平。

人教版数学八年级上册14.1.4整式的乘法(第1课时)优秀教学案例

人教版数学八年级上册14.1.4整式的乘法(第1课时)优秀教学案例
人教版数学八年级上册14.1.4整式的乘法(第1课时)优秀教学案例
一、案例背景
本节课为人教版数学八年级上册第14章第1节第4课时,内容为整式的乘法。在此之前,学生已经学习了有理数的乘法、乘方的概念和性质,以及整式的加减法。本节课的学习为后续多项式乘多项式、多项式乘单项式、单项式乘单项式等知识的学习奠定基础。
(二)问题导向
1.自主探究:鼓励学生自主探究整式乘法的运算法则,培养学生的问题解决能力。例如,让学生尝试计算两个多项式的乘积,总结规律。
2.引导发现:教师引导学生发现整式乘法的运算法则,帮助学生建立知识体系。例如,通过分析两个多项式的乘积,引导学生发现整式乘法的分配律。
(三)小组合作
1.分组讨论:将学生分成小组,让学生在小组内讨论整式乘法的运算法则,培养学生的合作交流能力。例如,让学生分组讨论如何计算两个多项式的乘积,并总结出运算法则。
(二)讲授新知
1.自主探究:鼓励学生自主探究整式乘法的运算法则,培养学生的问题解决能力。例如,让学生尝试计算两个多项式的乘积,总结规律。
2.引导发现:教师引导学生发现整式乘法的运算法则,帮助学生建立知识体系。例如,通过分析两个多项式的乘积,引导学生发现整式乘法的分配律。
(三)学生小组讨论
1.分组讨论:将学生分成小组,让学生在小组内讨论整式乘法的运算法则,培养学生的合作交流能力。例如,让学生分组讨论如何计算两个多项式的乘积,并总结出运算法则。
2.问题导向与自主探究的结合:教师引导学生发现整式乘法的运算法则,帮助学生建立知识体系。同时,鼓励学生自主探究、尝试计算,培养学生的自主学习能力。
3.小组合作与互动交流:将学生分成小组,鼓励小组间的互动交流,让学生在分享经验中共同成长。通过小组讨论,培养学生的合作交流能力和团队协作精神。

整式的乘法(一)教学设计

整式的乘法(一)教学设计

第一章 整式的运算6.整式的乘法(一)一、 学生起点分析:学生的知识技能基础:在七年级上册的学习中,学生已经学习了数的运算、字母表示数、合并同类项、去括号等内容,了解有关运算律和法则,同时在前面几节课又学习了同底数幂乘法、幂的乘方、积的乘方法则,具备了类比有理数运算进行整式运算的知识基础。

对于整式乘法法则的理解,不是学生学习的难点,需要注意的是学生在运用法则进行计算时易混淆对于幂的运算性质法则的应用,出现计算错误,所以应加强训练,帮助学生提高认识。

学生的活动经验基础:学生在小学及七年级上的学习中,受到了较好的运算能力训练,能够独立完成计算活动,并具有一定的将实际问题转化为数学问题,通过计算解决实际问题的能力。

但是学生在进行计算时往往仅关注对于法则的掌握及应用,对于算理认识不足,所以教学中要通过设计问题,让学生经历获得法则的过程,真正理解算理。

二、教学任务分析:本节课的主要教学任务是通过带领学生解决实际问题,经历探索、验证单项式乘法运算法则的过程,正确理解法则,并能应用法则进行计算。

在此过程中要关注学生理解算理,体会乘法交换律和结合律的作用和转化的思想。

教学目标为:1.经历探索单项式乘法法则的过程,在具体情境中了解单项式乘法的意义,理解单项式乘法法则.2.会利用法则进行单项式的乘法运算。

3.理解单项式乘法运算的算理,发展学生有条理的思考能力和语言表达能力。

4.体验探求数学问题的过程,体验转化的思想方法,获得成功的体验。

教学重点:单项式乘法法则及其应用。

教学难点:理解运算法则及其探索过程。

三、 教学设计分析:本节课共设计了六个环节:温故育新—实例引入—探索规律—及时训练—延伸拓展-随堂测评.第一环节:温故育新活动内容:教师提出问题,引导学生复习幂的运算性质问题1:前面学习了哪三种幂的运算?运算方法分别是什么?让学生分别用语言和字母表示幂的三种运算性质:(1)同底数幂相乘,底数不变,指数相加。

(m ,n 是正整数) (2)幂的乘方,底数不变,指数相乘。

初中数学《整式的乘法》教案设计

初中数学《整式的乘法》教案设计

初中数学《整式的乘法》教案设计初中数学《整式的乘法》教案设计「篇一」15.1.1 整式教学目标1.单项式、单项式的定义.2.多项式、多项式的次数.3、理解整式概念.教学重点单项式及多项式的有关概念.教学难点单项式及多项式的有关概念.教学过程Ⅰ.提出问题,创设情境在七年级,我们已经学习了用字母可以表示数,思考下列问题1.要表示△ABC的周长需要什么条件?要表示它的面积呢?2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?结论:1、要表示△ABC的周长,需要知道它的各边边长.要表示△ABC 的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,•那么△ABC的周长可以表示为a+b+c;△ABC的面积可以表示为 ch.2.小王的平均速度是.问题:这些式子有什么特征呢?(1)有数字、有表示数字的字母.(2)数字与字母、字母与字母之间还有运算符号连接.归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.判断上面得到的三个式子:a+b+c、 ch、是不是代数式?(是)代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.Ⅱ.明确和巩固整式有关概念(出示投影)结论:(1)正方形的周长:4x.(2)汽车走过的路程:vt.(3)正方体有六个面,每个面都是正方形,这六个正方形全等,•所以它的表面积为6a2;正方体的体积为长宽高,即a3.(4)n的相反数是-n.分析这四个数的特征.它们符合代数式的'定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、 ch、中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.请同学们阅读课本P160~P161单项式有关概念.根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、 ch、这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.结论:4x、vt、6a2、a3、-n、 ch是单项式.它们的系数分别是4、1、6、1、-1、.它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、• ch都是二次单项式;a3是三次单项式.问题:vt中v和t的指数都是1,它不是一次单项式吗?结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?写出下列式子(出示投影)结论:(1)t-5.(2)3x+5y+2z.(3)三角尺的面积应是直角三角形的面积减去圆的面积,即 ab-3.12r2.(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为32、43,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.我们可以观察下列代数式:a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?这样推理合情合理.请看投影,熟悉下列概念.根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.a+b+c的项分别是a、b、c.t-5的项分别是t、-5,其中-5是常数项.3x+5y+2z的项分别是3x、5y、2z.ab-3.12r2的项分别是 ab、-3.12r2.x2+2x+18的项分别是x2、2x、18.找多项式的次数应抓住两条,一是找准每个项的次数,•二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也体会到符号的魅力所在.我们把单项式与多项式统称为整式.Ⅲ.随堂练习1.课本P162练习Ⅳ.课时小结通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,•发展符号感.Ⅴ.课后作业1.课本P165~P166习题15.1─1、5、8、9题.2.预习“整式的加减”.课后作业:《课堂感悟与探究》15.1.2 整式的加减(1)教学目的:1、解字母表示数量关系的过程,发展符号感。

冀教版数学七年级下册8.4《整式的乘法》教学设计1

冀教版数学七年级下册8.4《整式的乘法》教学设计1

冀教版数学七年级下册8.4《整式的乘法》教学设计1一. 教材分析冀教版数学七年级下册8.4《整式的乘法》是整式乘除单元的重要内容。

本节内容通过实例引入整式乘法,让学生掌握整式乘法的基本法则和运算技巧。

教材从实际问题出发,引导学生探究整式乘法,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析七年级的学生已经掌握了整式的基本知识,对加减乘除运算有了初步了解。

但学生在进行整式乘法运算时,容易出错,对乘法分配律的理解不够深入。

因此,在教学过程中,需要帮助学生巩固整式乘法的基本规则,引导学生发现运算规律,提高运算速度和准确性。

三. 教学目标1.知识与技能:使学生掌握整式乘法的基本法则,能够熟练进行整式乘法运算。

2.过程与方法:通过实例探究,让学生理解并掌握整式乘法的运算过程,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:整式乘法的基本法则和运算过程。

2.难点:乘法分配律的理解和运用。

五. 教学方法1.情境教学法:通过生活实例引入整式乘法,让学生在实际问题中感受数学的价值。

2.启发式教学法:引导学生主动探究整式乘法的运算规律,培养学生的逻辑思维能力。

3.小组合作学习:鼓励学生之间相互讨论、交流,提高学生的团队合作意识和沟通能力。

六. 教学准备1.教学课件:制作课件,展示整式乘法的运算过程和实例。

2.练习题:准备一些整式乘法的练习题,用于巩固所学知识。

3.板书设计:设计板书,突出整式乘法的基本法则和运算规律。

七. 教学过程1.导入(5分钟)利用生活实例,如计算商品的折扣,引入整式乘法的学习。

激发学生的学习兴趣,引导学生思考如何进行整式乘法运算。

2.呈现(10分钟)展示整式乘法的运算过程,让学生观察和思考。

通过讲解和示范,使学生掌握整式乘法的基本法则。

3.操练(10分钟)让学生分组进行练习,互相讨论和交流。

《14.1.4整式的乘法》教学设计教学反思-2023-2024学年初中数学人教版12八年级上册

《14.1.4整式的乘法》教学设计教学反思-2023-2024学年初中数学人教版12八年级上册

《整式的乘法》教学设计方案(第一课时)一、教学目标本课教学目标为:使学生理解整式乘法的概念及运算规则,能正确进行同类项合并及多项式乘法计算,通过实践操作掌握整式乘法的具体应用。

培养学生分析问题和解决问题的能力,激发学生对数学学习的兴趣和热情。

二、教学重难点教学重点:掌握整式乘法的基本法则,包括单项式乘单项式、单项式乘多项式等。

教学难点:理解整式乘法中同类项的合并过程,以及多项式乘法中如何灵活运用乘法分配律和乘法结合律。

三、教学准备课前准备:准备教材、教具(如白板、多媒体设备)、练习题以及课后作业。

教师需提前熟悉教材内容,准备好讲解用的示例和练习题,确保学生能够通过练习巩固所学知识。

同时,需确保教学环境安静舒适,为学生提供一个良好的学习氛围。

在上述教学准备基础上,教师应根据实际情况调整教学方法和策略,以适应不同学生的学习需求,提高教学效果。

四、教学过程:一、导课启思本环节将通过实际生活中的问题,引出整式乘法的概念和必要性。

教师可以利用具体的例子,如面积计算、速度与距离的关系等,让学生感受到整式乘法在现实生活中的广泛应用。

二、知识铺垫1. 复习旧知:回顾之前学过的单项式、多项式等概念,为整式的概念打下基础。

2. 引入新课:通过具体问题引出整式的概念,强调整式中各个项的乘积和相加关系。

三、新课讲解(一)整式的定义与分类1. 定义讲解:清晰、准确地阐述整式的定义,包括单项式和多项式等类型。

2. 实例展示:通过具体的数学表达式,让学生明确整式的形式。

3. 互动讨论:鼓励学生提出疑问,通过师生互动加深对整式定义的理解。

(二)整式的乘法法则1. 同类项的乘法:讲解同类项相乘的规则,强调乘法运算的顺序。

2. 分配律的应用:通过具体例子展示分配律在整式乘法中的应用,如(a+b)×c=a×c+b×c等。

3. 乘法的交换律和结合律:强调在整式乘法中交换律和结合律的重要性,并通过实例加以说明。

整式的乘法(1) 教案

整式的乘法(1)    教案

整式的乘法一、教学目标1. 使学生探索并了解单项式与单项式相乘的法则;会运用法则进行简单计算.2. 使学生进一步理解数学中“转化”、“换元”的思想方法,即把幂的运算法则转化为单项式与单项式相乘的法则.3. 逐步形成独立思考、主动探索的习惯,培养思维的批评性、严密性和初步解决问题的愿望和能力.二、教学重难点教学重点:单项式与单项式相乘的法则及运算规律.教学难点:单项式与单项式相乘的运用.三、教学过程(一)知识回顾1.回忆幂的运算性质及其法则(1)a m·a n=a m+n(m,n都是正整数)同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

(2)(a m)n=a mn(m,n都是正整数)幂的乘方法则:幂的乘方,底数不变,指数相乘(3)(ab)n=a n b n (n是正整数)积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘2. 计算(1) (-9a2)·(8a); (2) (-2x2y3)2;(3)(3y2)3.说明:通过这组题目,使学生回顾前面所学的幂的运算法则(二)创设情境,引入新课1.问题:光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米吗?2.学生分析解决:(3×105)×(5×102)=(3×5)×(105×102)=15×107 3.问题的推广:如果将上式中的数字改为字母,即ac5·bc2,如何计算?ac5·bc2=(a·c5)·(b·c2)=(a·b)·(c 5·c 2)=abc 5+2=abc 7(三)自己动手,得到新知1.类似地,请你试着计算:(1)2c 5·5c 2;(2)(-5a 2b 3)·(-4b 2c)2.得出结论:单项式与单项式相乘:把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

《整式的乘法》教案

《整式的乘法》教案

《整式的乘法》教案一、教学目标1. 理解整式乘法的概念和意义。

2. 掌握整式乘法的基本方法和步骤。

3. 能够运用整式乘法解决实际问题。

二、教学内容1. 整式乘法的定义和性质。

2. 整式乘法的基本方法和步骤。

3. 整式乘法在实际问题中的应用。

三、教学重点与难点1. 整式乘法的概念和意义。

2. 整式乘法的基本方法和步骤。

3. 整式乘法在实际问题中的应用。

四、教学方法1. 采用讲解法,引导学生理解整式乘法的概念和意义。

2. 采用示范法,演示整式乘法的基本方法和步骤。

3. 采用练习法,让学生通过实际问题运用整式乘法。

五、教学准备1. 教学课件或黑板。

2. 练习题。

教案内容:一、导入(5分钟)1. 引入整式乘法的概念,引导学生回顾整式的基本知识。

2. 通过实际例子,让学生感受整式乘法的意义。

二、讲解整式乘法(15分钟)1. 讲解整式乘法的定义和性质。

2. 演示整式乘法的基本方法和步骤。

3. 引导学生通过例子理解和掌握整式乘法。

三、练习整式乘法(15分钟)1. 分组练习,让学生相互讨论和交流。

2. 教师选取部分学生的作业进行讲解和指导。

四、应用整式乘法解决实际问题(15分钟)1. 给出实际问题,让学生运用整式乘法进行解决。

2. 引导学生总结整式乘法在实际问题中的应用。

五、总结与布置作业(5分钟)1. 对整式乘法进行总结,强调重点和难点。

2. 布置相关练习题,让学生巩固所学知识。

六、教学过程1. 复习导入:回顾上一节课的内容,通过几个简单的整式乘法例子,让学生回顾并巩固整式乘法的基本方法和步骤。

2. 讲解新课:讲解整式乘法的进阶概念和技巧,如平方差公式、完全平方公式等。

通过示例和练习,让学生理解和掌握这些概念和技巧。

3. 应用练习:给出一些实际问题,让学生运用整式乘法进行解决。

通过讨论和交流,引导学生总结整式乘法在实际问题中的应用。

七、教学评价1. 课堂练习:在课堂上,让学生完成一些整式乘法的练习题,通过学生的解答情况,了解学生对整式乘法的掌握程度。

人教初中数学八上《整式的乘法 》教案 (公开课获奖)

人教初中数学八上《整式的乘法  》教案 (公开课获奖)

整式的乘法〔1〕〔一〕教学目标 知识与技能目标:掌握单项式与单项式相乘的法那么. 过程与方法目标:理解单项式的乘法运算的算理,体会乘法的交换律、结合律的作用,开展有条理的思考及语言表达能力. 情感态度与价值观:通过学生板算、讨论、争论等方法培养学生归纳、概括能力,以及运算能力. 教学重点:单项式与单项式相乘的法那么. 教学难点:对单项式的乘法运算的算理的理解. 教学用具: 〔二〕教学程序 教学过程师生活动设计意图一、复习导入1.以下单项式各是几次单项式?它们的系数各是什么? 7x, -2a²bc, -t²,103ab , 74ut³, -10xy³z². 2.以下代数式中,哪些是单项式?哪些不是? -2x³, ab, 1+y,54ab³, -y, 6x²-x+5, 3.利用乘法的交换律、结合律计算6×4×13×25. 4.前面学习了哪三种幂的运算性质?内容是什么?5.计算: (2)x².x³.x³, (2)-x.(-x)² ,(3) (a²)³ , (4)(-2x³y)²复习回忆式导入新课有助于让学生回忆所学知识,为本节课的学习做好铺垫.二、新知讲解探究1: (1)2x²y.3xy²; (2)4a 2x 5·(-3a 3bx),这是什么运算?如何进行运算?让学生召开讨论研究所提的问题.引出课题并板书 方法提示:利用乘法交换律、结合律以及前面所学的幂的运算性质,来计算这两个单项式乘以单项式问题. (1)2x 2y·3xy 2=(2×3)(x 2·x)(y·y 2) (利用乘法交换律、结合律将系数与系数, = 6x 3y 3; 相同字母分别结合,有理数的乘法、同底数幂的乘法)(2)4a 2x 5·(-3a 3bx)=[4×(-3)](a 2· a 3)· b·(x 5· x) (字母b 只在一个单项式中出现,= -12a 5bx 6. 这个字母及其指数不变) 总结出单项式的乘法法那么:单项式相乘,把它的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式. 教师进一步分析单项式乘以单项式的法那么(1)①系数相乘—有理数的乘法,先确定符号,再计算绝对值; ②相同字母相乘—同底数幂的乘法,底数不变,指数相加; ③只在一个单项式中含有的字母,连同它的指数作为积的一个因式,不能丢掉这个因式.(2)不管几个单项式相乘,都可以用这个法那么. (3)单项式相乘的结果仍是单项式教师对单项式乘以单项式的法那么的阐述,有助于学生更深层的理解此法那么.例题讲解: 例题1 :计算(1)(-5a 2b 3)(-3a); (2)(2x)3(-5x 2y); (3)32x³y².(-23xy²)²; (4)(-3ab).(-ac).6ab(c ²)³ 参考答案:解:(1)(-5a 2b 3)(-3a)=[(-5)(- 3)](a 2·a)·b 3= 15a 3b 3; (2)(2x)3(-5x 2y)= 8x 3·(-5x 2y)=[8×(-5)](x 3·x 2)·y= - 40x 5y ; (3)32x³y².(-23xy²)²=32x³y².49x²y 4通过例题让学生学会运用所学知识解决问题,特别是要注意总结单项式乘以单项式运算中会出现的问题以便今后能有所注意.=(32×49)(x³.x²)(y².y 4)=23x 5y 6 (4)(-3ab)(-a 2c)2· 6ab(c 2)3=(-3ab)·a 4c 2·6abc 6=[(-3)×6]a 6b 2c 8= -18a 6b 2c 8.例题2: 下面的计算对不对?如果不对,应怎样改正? (1)4a³. 2a²=8a 6 (2)2x 4. 3x 4=6x 8 (3)3x² 4x²=12x² (4)3y³. 4y 4=12y 12参考答案:(1)4a³. 2a²=8a 6×, 改:4a³. 2a²=8a 5(2)∨,(3)3x² 4x²=12x²×,改: 3x² 4x²=12x4 (4)3y³. 4y 4=12y 12×,改: 3y³. 4y 4=12y7例题3: 选择:〔1〕以下计算正确的选项是( ) A.(-3x³).(-2x²)²=-12x 12B(-3ab)(-2ab)²=12a³b³ C.(-0.1x).(-10x²)²=x 5D.(2⨯10n)(21⨯10n )=10n 2 (2)(-1.2⨯ 10²)²⨯ ( 5⨯10³)⨯ (2 ⨯!04)³的值等于〔 〕 A.5.76 ⨯1019B.5.76 ⨯1020⨯ 1019 D.2.88 ⨯1020参考答案: (1)D, (2)B 四、达标训练1.计算:(1)3x 5·5x 3; (2)4y·(- 2xy 3); 2.计算:(1)(3x 2y)3·(- 4xy 2); (2)(-xy 2z 3)4·(-x 2y)3帮助学生及时稳固、运用所学知识.并且体验到成功的快乐.3.光的速度每秒约为3×105千米,太阳光射到地球上需要的时间约是5×102秒,地球与太阳的距离约是多少千米?8次运算,它工作5×102 秒可作多少次运算?5.计算: (1) (2x²)(31xy²z )(-6yz) (2) -2a.(-a²bc)².21a(bc)³ 参考答案:8, -8xy 4, 10x³,81x³y 4z 08x 7y5,-x 10y 11z 12,×108, 4. 5×105.(1) -4x³y³z² (2) -a 6b 5c 5五、点评与小结让学生小结本节课所学内容,应注意的地方.激发学生主动参与的意识,为每一位学生创造在数学学习活动中获得成功的体验时机.六、作业由学生根据自己学习能力,恰中选做,既面向全体学生,又满足不同学生的学习需要.整式的乘法(1)单项式相乘,把它的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .D CA BD CABDC A B于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?DCAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .D CAB求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得E DC A B P2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解 〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习1.计算:(1))1)(1(y x x y x y +--+ (2)22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)zxyz xy xy z y x ++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、〔1〕2x 〔2〕ba ab - 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.。

整式的乘法教学设计 人教版(优秀教案)

整式的乘法教学设计 人教版(优秀教案)

第一章整式的乘除整式的乘法(第课时)一、学生起点分析:学生的知识技能基础:学生在小学就已经了解乘法分配律,在本章前面几节课中学生了解了幂的运算性质,并能正确运用幂的运算性质解决相关问题.在整式乘法的第一课时中又学习了单项式乘以单项式的运算法则,为本课时单项式乘多项式的学习奠定了充足的知识基础.学生的活动经验基础:在前面学习幂的运算时,学生经历了一些探索活动,初步积累了一些经验.在第一课时探索单项式乘单项式法则的过程中,学生也体会了转化思想在解决新问题中的重要作用,这都为本课时的探索积累了活动经验.二、教学任务分析:教科书根据整式运算的知识脉络和学生的认知基础确定了本节课的主要教学任务:让学生经历猜想、验证单项式与多项式相乘的运算法则的过程,能运用法则进行计算并解决实际问题.单项式乘以多项式看起来是一个新问题,但是学生结合前面的学习经验,类比数的乘法分配律,很容易将它转化为单项式乘单项式,使新知识的学习水到渠成.因此本节课应关注学生对算理的理解,发展学生有条理的思考及语言表达能力.具体教学目标为:.知识与技能:在具体情境中了解单项式与多项式乘法的意义,会进行单项式与多项式的乘法运算..过程与方法:经历探索单项式与多项式乘法法则的过程,理解单项式与多项式相乘的算理,体会乘法分配律的重要作用及转化的数学思想,发展学生有条理的思考和语言表达能力..情感与态度:在探索单项式与多项式乘法运算法则的过程中,获得成就感,激发学习数学的兴趣.三、教学设计分析:本节课共设计了七个环节:前置诊断,开辟道路——创设情境,自然引入——设问质疑,探究尝试——目标导向,应用新知——变式训练,巩固提高——总结串联,纳入系统——达标检测,评价矫正第一环节:前置诊断,开辟道路活动内容:教师提出问题,引导学生复习上节课所学的单项式乘单项式 、如何进行单项式乘单项式的运算?你能举例说明吗?、计算: ()223123abc abc b a ⋅⋅ ()4233)2()21(n m n m -⋅- 、写一个多项式,并说明它的次数和项数.活动目的:首先引导学生回忆单项式乘单项式的运算法则,目的是为探索单项式乘以多项式法则做好铺垫,因为最终我们要将它转化为单项式乘以单项式,所以这里通过活动、来进行回顾十分必要.有上一课时的课堂学习加上课后作业的巩固,学生应该能够熟练应用法则进行计算,所以问题设置的综合性较上节课的练习更强一些.问题的设置为今天的新课学习奠定基础.实际教学效果:绝大多数学生能够较熟练的说出单项式乘单项式的运算法则,通过练习发现学生在处理问题的第()小题时出错较多,既有符号的错误,也有幂的乘方出现问题.通过教师与学生共同订正错误,使学生的认识有了进一步的提高.第二环节:创设情境,自然引入活动内容:延续上节课的问题情境,才艺展示中,小颖也作了一幅画,所用纸的大小如图所示,她在纸的左、右两边各留了m 81x 的空白,这幅画的画面面积是多少?先让学生独立思考,之后全班交流.交流时引导学生呈现出自己的思考过程?同学之中主要有两种做法: 法一:先表示出画面的长和宽,由此得到画面的面积为)41(x mx x -; 法二:先求出纸的面积,再减去两块空白处的面积,由此得到画面的面积为2241x mx -m 1x m 1x教师启发学生:两种方法得到的答案不一样,到底哪种方法对?短暂的思考之后,学生回答都对,由此引出)41(x mx x -2241x mx -这个等式. 引导学生观察这个算式,并思考两个问题:式子的左边是什么运算?能不能用学过的法则说明这个等式成立的原因? 学生不难总结出,式子的左边是一个单项式与一个多项式相乘,利用乘法分配律可得)41(x mx x -x x mx x 41⋅-⋅,再根据单项式乘单项式法则或同底数幂的乘法性质得到x x mx x 41⋅-⋅2241x mx -,即)41(x mx x -2241x mx - 由此引出本节课的学习内容:单项式乘以多项式.活动目的:从实际问题出发,学生通过对同一面积的不同表达,引出)41(x mx x -2241x mx -这个等式.教师再引导学生运用乘法分配律、同底数幂乘法的性质说明上述等式成立的原因,由此引出新课.实际教学效果:这个问题让学生独立思考之后,全班交流.在这一问题的解决过程中学生可以体会到通过不同方法求同一图形面积就可以得到一个等式,而这种方法在后面的乘法法则探索中将一直沿用.第三环节:设问质疑,探究尝试活动内容:在刚才的数学活动基础上,教师再提出以下两个问题:问题:)2(x abc ab +⋅及)(2p n m c -+⋅等于什么?你是怎样计算的?问题: 如何进行单项式与多项式相乘的运算?要求学生先独立思考,再在四人小组内交流,之后全班交流.问题有上一环节的铺垫,学生几乎都能做出答案.在全班交流环节,教师重点引导学生说说是怎样计算的,目的是让学生明白每一步的算理,理解知识的形成过程.问题多数学生明白怎么做,但是组织语言时不够简练,只要意思正确,教师都加以肯定,再鼓励他们不断精炼语言,最后总结出单项式乘多项式的法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.活动目的:设置问题是让学生获得更充分的体验,为下面顺利归纳单项式与多项式的乘法法则铺平道路.问题交给学生尝试解决,目的是引导学生进一步理解算理,体会到乘法分配律的重要作用和转化的数学思想,在此基础上,学生自己总结出单项式乘以多项式的运算法则,并运用语言进行描述.实际教学效果:实际教学中,学生能够较顺利的发现规律,得到法则.只是在法则的归纳中,语言不够简练,需要教师不断的引导帮助.在这里重要的是能够理解运算法则及其探索过程,体会运用乘法分配律将单项式乘以多项式转化为上节课学习的单项式乘以单项式,不必要求学生背诵法则.第四环节:目标导向,应用新知活动内容:教师通过例题,引导学生应用单项式乘多项式的法则进行计算.实际教学中,教师将四道例题全部呈现,让学生先独立尝试完成,教师巡视批阅,根据巡视批阅中发现的问题,有针对性地进行讲解.例 计算:())35(222b a ab ab +()ab ab ab 21)232(2⋅- ())32()5(-22n m n n m -+⋅ ()xyz z xy z y x ⋅++)(2322教师先批阅每个学习小组中做的最快的同学,再由他批阅组内另三个同学的练习,之后由他总结汇报组内同学的完成情况,并分析错误成因.交流之后,留给学生两分钟的反思时间,一方面为刚才有错误的同学留下改错和消化的时间,另一方面也让学生结合刚才的例题总结做单项式与多项式乘法时,需要注意什么问题.让学生反思总结,升华提高,再有目的的进行练习.活动目的:例题的处理并不是单一的教师讲,学生模仿,而是先让学生独立尝试解决.事实上,教师提前就预料到学生容易出现哪些错误,但只有让学生在解决问题的过程中亲身经历错误,才能真正提高解决问题的能力.教师批阅每个组最快的学生,然后再让这个学生当小老师去批阅其他同学的,既调动了优生的积极性,又让老师有精力去关注那些学困生.例中第,,题是课本例题,第题教师在例题的基础上稍作改动,增加了符号这一易错点,这样学生才能结合自己的实践提高认识.实际教学效果:学生运用法则的正确率较高,说明能够理解单项式乘以多项式的实质就是运用乘法分配律,将其转化为单项式乘以单项式,但仍有学生出现符号错误、漏乘等问题.给学生分钟时间反思和消化,进一步加深对算理的理解,同时总结易错点,提高做题的正确率.第五环节:变式训练,巩固提高活动内容:★、计算:())(2n m a a + ())3(22a a b b -+())121(33-xy y x ()d ef d f e 22)(4⋅+ ★★、计算: )(5)21(2-2222ab b a a b ab a --+⋅ ★★★、已知的值求)3(,352732y y x y x xy xy ----=活动目的:设置了三个层次的练习,以题组的形式抛给学生,既避免了优生早早做完题无事可干,又能让基础薄弱的学生进行基本的巩固练习.通过不同难度的练习题,不断促进学生思考,运用所学知识解决新问题,在解决问题的过程中获得能力的提高.教学中,教师可以通过灵活的评价方式,激励学生挑战多星题,培养学生乐于钻研的精神.实际教学效果:通过前面例题有针对性的讲解,再加上学生的反思消化,第题的计算正确率明显提高.第三题考察学生整体代入思想,求值过程需要教师的点拨.第六环节:总结串联,纳入系统活动内容: 教师引导学生回顾本节课的学习过程,自己总结:、本节课学习了哪些知识?、领悟到哪些解决问题的方法?感触最深的是什么?、对于本节课的学习还有什么困惑?活动目的:回顾一节课的学习过程,教师引导学生从知识的学习、方法的领悟、相关内容的逻辑关联,这几个方面进行归纳总结本节课,使学生将本节课所学知识纳入个人的知识体系.教师希望学生能从前面所讲的内容中得到启发,解决后面遇到的问题,所以让学生理解知识之间内在的逻辑联系,是掌握全部内容的重要环节.实际教学效果:学生能够总结出单项式与多项式相乘的运算法则以及在练习中自己所出的错误,理解将单项式乘多项式转化为单项式乘单项式这种转化的数学思想.第七环节:达标检测,评价矫正计算:())478)(21-3+-x x x ( ())3)(1944(22x x x -+- 活动目的:用两道比较基本的题作为本节课的达标检测题,既检查了本节课重点内容的掌握,又能帮助学生树立自信,收获成功.实际教学效果:两道题的通过率比较高.课后作业:1. 习题.拓展作业:.,,62)3(232532的值求若n m y x y x xy y x y x nm -=+-- 四、 教学设计反思:本节课的教学设计以“阿克斯()动机”教学模式为指导:(),引起注意;(),教学内容与学习者的贴切性和相关性;(),通过成就增强自信;(),对学习效果满意.这一单元的教学是以习题训练为主的,知识前后联系紧密,层层递进,教学时注意选择了有层次的例题和练习,更主要的渗透了类比、转化等重要的数学思想方法.课堂上充分利用学习小组,组织学生开展合作学习,教师通过对小组进行评价,激发学生的竞争意识,让课堂学习更高效.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘法
【教学要求】
1. 探索并了解正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),并会运用它们进行计算。

2. 探索并了解单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会进行简单的整式的乘法运算。

3. 会由整式的乘法推导乘法公式,并能运用公式进行简单计算。

4. 理解因式分解的意义及其与整式的乘法之间的关系,从中体会事物之间可以相互转化的辩证思想。

5. 会用提公因式法、公式法、分组法、十字相乘法进行因式分解(指数是正整数)。

6. 让学生主动参与到一些探索过程中去逐步形成独立思考,主动探索的习惯,提高自己数学学习兴趣。

教学过程:
1. 正整数幂的运算性质:
(1)同底数幂相乘:
同底数幂相乘,底数不变,指数相加。

即:a a a m n m n ·=+(m 、n 均为正整数)
(2)幂的乘方: 幂的乘方:底数不变,指数相乘。

即:()a a m n
m n =·(m 、n 均为正整数)
(3)积的乘方:
积的乘方:等于各因数的乘方之积(把积的每一个因式分别乘方,再把所得幂相乘)。

即:()a b a b m m m ·=(m 为正整数)
注:①用同底数幂的乘法法则,首先要看是否同底,底不同,就不能用。

只有底数相同,才能指数相加。

如:a a 23·中底数a 相同,指数2和3才能相加。

②同底数幂的乘法法则要注意指数是相加,而不是相乘,不能与幂的乘方法则中的指数相乘混淆。

③同底数幂乘法法则中,底数不一定只是一个数或一个字母,可以是一个式子,如:单项式、多项式等。

如:()()()()x y x y x y x y --=-=-+23235·,其中x y -是一个多项式。

④同底数幂乘法法则中,幂的个数可以推广到任意多个数。

如:()()()()()a b a b a b a b a b +++=+=+++23523510·· ⑤要善于逆用积的乘方法则,有时可得不错结果,可使计算简便。

如:
8
1
2
2
17
8
1
2
2
17
11 101010
10









⎪=⨯




⎪==·
⑥在计算中要注意符号的变化,如:()
-a43

()
[]
-a43
的符号有区别。

⑦在进行幂的乘方时,要分清底数、指数,然后用法则。

2. 整式的乘法:
(1)单项式与单项式相乘
单项式与单项相乘,只要将它们的系数相同字母的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式。

注:在进行单项式乘法时,可分别按系数各单项式中都含有的字母进行计算,有乘方的要先算乘方。

如:()
--




⎪3
1
3
23
2 x y xyz xy
··
(2)单项式与多项式相乘
单项式与多项式相乘,只要将单项式分别乘以多项式的各项,再将所得积相加,用式子表示如下:
注:单项式与多项式相乘的关键是转化,即运用乘法对加法的分配律将单项式乘以多项式转化为单项式乘以单项式,计算时要注意符号。

如:
() ---232
2
x x x
(3)多项式与多项式相乘
多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加,用式子表示如下:
注:a. 进行多项式乘法的关键是两次转化:第一次是把其中一个多项式看作一项,运用分配律将多项式乘法转化为单项式乘以多项式。

第二次是将单项式乘以多项式转化为单项式乘法。

b. 多项式乘法计算时注意不能漏项。

c. 多项式乘法计算时要注意符号,是同类项的一定要合并,最后对结果按某个指定的字母进行升(降)幂排列。

3. 乘法公式:
(1)平方差公式:()()
a b a b a b
+-=-
22
,即两数和与它们的差的积等于这
两数的平方差。

注:a. 运用平方差公式的关键是正确识别两数(或式),即看是哪两个数(或式)的和与差的积。

如:()()
---
m m
11可以写成()
[]()
[]
---+
m m
11
即:()
-m与1的和与差的积。

b. 在平方差公式()()
a b a b a b
+-=-
22
中,字母a、b可以表示具体的数(正
数、负数)、字母、单项式,也可以表示一个多项式,只要式子符合公式的结构特征,或变形后符合公式的结构特征,就可以运用公式进行计算。

如:()()a b c a b c +--+ (2)完全平方公式:()a b a ab b ±=±+2222,即两数的和(差)的平方,等于它们的平方和加上(减去)它们乘积的2倍。

注:a. 在运用完全平方公式时要注意符号与项数,不要漏掉中间的乘积项。

b. 三项式的平方,也可以写成两项和与第三项和的完全平方。

如: ()a b c +-232
c. 在综合运用公式时,要分清不同的公式的结构特征和不同的计算结果。

4. 因式分解:
(1)因式分解定义:把一个多项式化为几个整式的乘积形式,就是因式分解。

(2)公因式:多项式中各项都含有公共因式。

注:找公因式方法:a. 系数部分要提出各项系数的最大公因数。

b. 字母部分要找出相同字母。

c. 指数部分要找出相同字母的最低次幂。

如:7282332x y x y -中公因式为722x y 。

(3)提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种方法叫做提公因式法。

如:()ma mb mc m a b c ++=++
注:a. 当多项式的首项系数为负数,提公因式时要将负号提出,使括号内第一项的系数是正的,且要注意括号内其他各项的变号。

如:()-+=--55532a ab a a b 。

b. 当公因式是多项式时,引入“整体”概念,只要把这个多项式看成一个“整体”或一个字母,按照提字母公因式一样提出即可。

如:()()()()2323a b c b c b c a +-+=+-。

c. 有时需要对多项式的项进行适当的变形之后才能提公因式,这时要注意各项的符号变化。

如:()()()()()()62262226x x x x x x x x -+-=---=--
(4)公式法:
平方差公式:()()a b a b a b 22-=+- 完全平方公式:()a ab b a b 222±+=±2 注:a. 用公式法因式分解时,关键是掌握公式的结构特征。

b. 两种方法的综合运用是难点:一般情况下是先考虑是否可提公因式,然后,再运用公式法,要求分解时要分解到不能分解为止。

分解之后,有时要合并
同类项,即“一提,二套,三化简”。

如:()
()()282422232x x x x x x x -=-=-+。

另外补充两种因式分解方法: (1)十字相乘法:()()()x a b x ab x a x b 2+++=++
(2)分组分解法:四项式:二二分组或三一分组,分组后能提公因式继续分解,或分组后用公式,最终达到将四项式最后写成几个整式积的形式。

如:x x 256++。

相关文档
最新文档