河南省周口市中学2017-2018年中招考试数学试卷模拟及答案(新人教版)1
河南周口市中学2017-2018年中招考试数学试卷模拟及答案(新人教版)1
2019-2019年中招考试数学试卷模拟及答案(新人教版)(总分120分 考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.31-的相反数是 ( ) A .31 B . -31C . 3D . -32. 下列运算正确的是( )A .523x x x =⋅B .336()x x = C .5510x x x +=D .336x x x =-3. 下列图形中,是中心对称图形的是 ( )A .B .C .D . 4、下图能说明∠1>∠2的是( )5、根据下图所示程序计算函数值,若输入的A .32B .25C .425D .2546.将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(2,3) B .(2,-1)C .(4,1)D. (0,1)7. 小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5,弧长是6π,那么这个的圆锥的高是( )A . 4B . 6C . 8D . 2OB(第7题图)51 2 ) A.8.若43=x ,79=y,则y x 23-的值为( )A .74B .47C .3-D .729. 方程0411)1(2=+---x k x k 有两个实数根,则k 的取值范围是( ). A . k ≥1 B . k ≤1 C . k >1 D . k <110. 小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线x y 6=上的概率为( )A .118 B .112 C .19D .1611. 如图,在直角坐标系中,矩形的顶点O 在坐标原点,边在x 轴上,在y 轴上,如果矩形′B ′C ′与矩形关于点O 位似,且矩形′B ′C ′的面积等于矩形面积的1,那么点B ′的坐标是( ) A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)12. 如图,一次函数3+=x y 的图象与x 轴,y 轴交于A ,B 两点,与反比例函数x y 4=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接,.有下列四个结论:①△与△的面积相等;②△∽△;③△≌△;其中正确的结论是( )A .①②B . ①②③C .①②③④D . ②③④(第11题图)(第12题图)第Ⅱ卷(非选择题 共84分)二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13、南海是我国固有领海,她的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法可表示为 . 14.分解因式:x x 93- = . 15. 某校篮球班21名同学的身高如下表:则该校篮球班21名同学身高的中位数是.16. 某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知垂直平分,48,则圆柱形饮水桶的底面半径的最大值是 .17. 在平面直角坐标系xOy 中,点1A ,2A ,3A ,…和1B ,2B ,3B ,…分别在直线y kx=和x 轴上.△1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果A 1(1,1), A 2(23,27),那么点n A 的纵坐标是_ .三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:()122160tan 33101+-+︒-⎪⎭⎫⎝⎛--; (2)先化简,再求代数式212312+-÷⎪⎭⎫ ⎝⎛+-x x x 的值,其中x 是不等式组⎩⎨⎧<+>-812,02x x 的整数解.19. (本题满分9分)某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽得 分评 卷 人BDC(第16题图得 分 评 卷 人 得 分评 卷 人样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A 、B 两组捐款人数的比为1 : 5.,本次调查样本的容量是 ;1”;1名学生进行调查,恰好是捐款数不少于309分)如图,是⊙O 的直径,和是它的两条O 于点E ,交于点D ,交于点C ,(1)求证:∥;(2)如果6,8,求的长.捐款人数分组统计图1捐款人数分组统计图2(第20题图)A DNEBC OM21.(本题满分9分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?22.(本题满分9分)如图某天上午9时,向阳号轮船位于A处,观测到某港口城市P位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到城市P位于该船的南偏西36.9°方向,求此时轮船所处位置B与城市P的距离?(参考数据:36.9°≈35,36.9°≈34,67.5°≈1213,67.5°≈125)(第22题图)APCB36.9°67.5°23.(本题满分10分)(1)如图1,在正方形中,E 是上一点,F 是延长线上一点,且=.求证:=;(2)如图2,在正方形中,E 是上一点,G 是上一点,如果∠=45°,请你利用(1)的结论证明:=+. (3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形中,∥(>),∠B =90°,=,E 是上一点,且∠=45°,=4,10, 求直角梯形的面积.24.y A (2(1)求b 的值,求出点P (2)如图,在直线3的坐标;若不存在,请说明理由;(3)在x 轴下方的抛物线上是否存在点M ,使△≌△?如果存在,试举例验证你的猜想;二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.3.6×106; 14(3)(x -3); 15. 187; 16. 30; 17.123-⎪⎭⎫⎝⎛n三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分7分,第⑴题3分,第⑵题4分)(1)解:原式=-3-33+1+23…………………………2分 2-3…………………………3分 (2)原式=122(1)(1)x x x x x -+·++-11x =+, ………………1分得 分 评 卷 人(第23题图1) (第23题BA DE(第23题图2)(第24题图)解不等式组⎩⎨⎧<+>-812,02x x 得722x <<,………………………2分因为x 是整数,所以3x =,……………………3分 当3x =时,原式=14.……………………4分 19. 解:(1)20,500;…………………………2分 (2)500×40200,C 组的人数为200. … 4分补图见图. …………………………5分 (3)∵D 、E 两组的人数和为:500×(288%)=180,………………7分 ∴捐款数不少于30元的概率是:1800.36.500=……………………………… 9分20.(1)证明:连接,∵、是⊙O 的切线,、是⊙O 的半径,∴∠∠, ∠∠90°, ……………………2分∴∠∠12∠, ∵∠12∠ ∴∠∠,∴∥ …………………5分(2)由(1)得:∠∠12∠, 同理,有:∠∠12∠∴∠∠∠∠180°∴∠∠90°,∴△是直角三角形,…………………………7分 ∴cm)(10643622=+=+OC OD ……………………9分21.解:(1)设工厂从A 地购买了x 吨原料,制成运往B 地的产品y 吨.则依题意,得:⎩⎨⎧=+=+.97200)120110(2.1,15000)1020(5.1x y x y …………………………4分 解这个方程组,得:⎩⎨⎧==.300,400y x∴工厂从A 地购买了400吨原料,制成运往B 地的产品300吨. ………7分(第20题答案图)A DNEBC OM(2)依题意,得:300×8000-400×1000-15000-97200=1887800∴批产品的销售款比原料费与运输费的和多1887800元. ………………9分 22.解:过点P 作⊥,垂足为C ,设海里.在△中,∵∠PC AC ,∴5tan 67.512PC x=︒.…………3分 在△中,∵∠PC BC ,∴4tan 36.93x x=︒.…………5分 ∵+21×5,∴54215123x x+=⨯,解得60x =.∵sin PC B PB ∠=,∴60560100sin sin 36.93PC PB B ===⨯=∠︒(海里). ∴向阳号轮船所处位置B 与城市P 的距离为100海里.………………9分23. 解答:(1)证明:在正方形中, ∵=,∠B =∠,=, ∴△≌△.∴=. …………………………2分 (2)证明: 如图2,延长至F ,使.连接. 由(1)知△≌△,∴∠=∠.∴∠+∠=∠+∠ 即∠=∠=90°,又∠=45°,∴∠=∠=45°.∵=,∠=∠,=,∴△≌△.…………………………5分 ∴=∴=+=+. ……………6分(3)解:如图3,过C 作⊥,交延长线于G .在直角梯形中, ∵∥,∴∠A =∠B =90°,又∠=90°,=,∴四边形 为正方形.∴=.…………………………7分 已知∠=45°,根据(1)(2)可知,=+.……8分所以10=4,即6.设=x ,则=x -4,=x -6在△中, ∵222AE AD DE +=,即()()2224610-+-=x x .解这个方程,得:x =12,或x =-2(舍去).…………………………9分 ∴=12.所以梯形的面积为.10812)126(21)(21=⨯+=+AB BC AD 答:梯形的面积为108. …………………………10分(第23题答案图1)(第23题答案图2)B C A D E G (第23题答案图3)24.解:(1)由于抛物线36232++=bx x y 经过A (2,0), 所以3624230++⨯=b , 解得34-=b .…………………………1分 所以抛物线的解析式为3634232+-=x x y . (*) 将(*)配方,得()324232--=x y , 所以顶点P 的坐标为(4,-23)…………………………2分令0,得()0324232=--x , 解得6,221==x x . 所以点B 的坐标是(6,0). ………………3分(2)在直线3上存在点D ,使四边形为平行四边形. ……4分理由如下:设直线的解析式为kx y =,把B (6,0)(423)分别代入,得⎪⎩⎪⎨⎧-=+=+.324,06b k b k解得⎪⎩⎪⎨⎧-==.36,3b k所以直线的解析式为363-=x y .…………………………5分 又直线的解析式为x y 3=所以直线∥. …………………………6分设设直线的解析式为mx y =,把P (423)代入,得324-=m 解得23-=m .如果∥,那么四边形为平行四边形.…………7分设直线的解析式为n x y +-=23,将B (6,0)代入,得0=n +-33,所以33=n 所以直线的解析式为n x y +-=23,第24题答案图解方程组⎪⎩⎪⎨⎧+-==.3323,3x y x y 得⎪⎩⎪⎨⎧==.32,2y x 所以D 点的坐标为(2,23)…………………8分(3)符合条件的点M 存在.验证如下:过点P 作x 轴的垂线,垂足为为C ,则23,2,由勾股定理,可得4,4,又4,所以△是等边三角形,只要作∠的平分线交抛物线于M 点,连接,由于, ∠∠,可得△≌△.因此即存在这样的点M ,使△≌△.…………………………11分。
河南省周口市2018年中考第二次模拟考试数学试题附答案
2018年河南省周口市九年级第二次模拟考试数学试题一、选择题(本大题共15小题,每小题3分,共45分)1. -3的倒数是( )A .13B .3C .-3D .-132.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.下列计算正确的是( )A .212= 2 B .2+3= 5 C .43-33=1 D .3+22=5 2 4.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg 的煤所产生的能量.把130 000 000kg 用科学记数法可表示为( ) A .13×107kg B .0.13×108kg C .1.3×107kg D .1.3×108kg 5.如图,AB ∥CD ,CB 平分∠ABD ,若∠C =40°,则∠D 的度数为 ( ) A .90° B .100° C .110° D .120°DA BC6.平面直角坐标系中,点P (-2,3)关于x 轴对称点的坐标为( ) A .(一2,一3) B .(2,一3) C .(一3,一2) D .(3,一2)7.某几何体的主视图、左视图和俯视图分别如图所示,则该几何体的体积为( )A .3πB .2πC .πD .129.如图,菱形ABCD 中,∠B =60°,AB =4,则以AC 为边长的正方形ACEF 的周长为( )A .14B .15C .16D .1710.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:x -y ,a -b ,2, x 2-y 2,a , x +y ,分别对应下列六个字:南、爱、我、美、游、济,现将2a (x 2-y 2)-2b (x 2-y 2)因式分解,结果呈现的密码信息可能是( )A .我爱美B .济南游C .我爱济南D .美我济南 11.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,3),则点B 的坐标为( ) A .(1-3,3+1)B .(-3,3+1) C .(-1,3+1) D .(-1,3)第11题图 第12题图 12.如图,在Rt △ABC 中,∠B =90°,∠A =30°,以点A 为圆心,以BC 长为半径画弧交AB 于点D ,分别以点A 、D 为圆心,AB 长为半径画弧,两弧交于点E ,连接AE ,DE ,则∠EAD 的余弦值是( )A .312 B .36 C .33D .3213.如图,反比例函数y =k x 的图象经过二次函数y =ax 2+bx 图象的顶点(-12,m )(m >0),则有( )A .a =b +2kB .a =b -2kC .k <b <0D .a <k <014.一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2017B 2017C 2017D 2017的边长是()第9题图A .(12)2016B .(12)2017C .(33)2016 D .(33)2017 15.定义[a ,b ,c ]为函数y =ax 2+bx +c 的特征数,下面给出特征数为[2m ,1-m ,-1-m ]的函数的一些结论,其中不正确的是( )A .当m =-3时,函数图象的顶点坐标是(13,83)B .当m >0时,函数图象截x 轴所得的线段长度大于32C .当m ≠0时,函数图象经过同一个点D .当m <0时,函数在x >14时,y 随x 的增大而减小二、填空题(本大题共6小题,每小题3分,共18分)16.比较大小:25____32(填“>”、“<”或“=”).17.若一元二次方程x 2十4x +k =0有两个不相等的实数根,则k 的取值范围是________18.如图,等腰△ABC 中,AB =AC ,∠BAC =50°,AB 的垂直平分线MN 交AC 于点D ,则∠DBC 的度数是____________.DAMN19.如图,量角器的直径与直角三角板ABC 的斜边AB 重合,其中量角器0刻度线的端点N 与点A 重合,射线CP 从CA 处出发沿顺时针方向以每秒3°的速度旋转,CP 与量角器的半圆弧交于点E ,第24秒,点E 在量角器上对应的度数是___________度.20.如图,M 为双曲线y =3x上的点,过点M 作x 轴、y 轴的垂线,分别交直线y =-x +m 于点D 、C 两点,若直线y =-x +m 与y 轴交于点A ,与x 轴相交于点B ,则AD ·BC 的值为_____________.21.如图,边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 点).将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的有_____________(写出所有正确结论的序号). ①∠N \AF =45°;②当P 为 BC 中点时,AE 为线段NP 的中垂线; ③四边形AMCB 的面积最大值为10; ④线段AM 的最小值为25; ⑤当△ABP ≌△ADN 时,BP =42一4.三、解答题(本大题共7小题,共57分)22.(本题满分7分)(1)计算:(a -b )2-a (a -2b ); (2)解方程:2x -3=3x .23.(本题满分7分)(1)如图,AD 、BC 相交于点O ,OA =OC ,∠OBD =∠ODB .求证:AB =CD .(2)如图,AB 是⊙O 的直径,OA =1,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D ,若OD =2,求∠BAC 的度数.24.(本题满分8分)某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价-进价),这两种服装的进价、标价如表所示:价格类型A型B型进价(元/件)60100标价(元/件)100160求这两种服装各购进的件数.25.(本题满分8分)空气质量倍受人们关注,我市某空气质量监测站点检测了该区域每天的空气质量情况,统计了1月至4月份若干天的空气质量情况,并绘制了如下不完整的统计图,请根据图中信息,解决下列问题:(1)统计图共统计了________天的空气质量情况;(2)请将条形统计图补充完整,并计算空气质量为“优”所在扇形的圆心角度数;(3)小明所在环保兴趣小组共4名同学(2名男同学,2名女同学).随机选取两名同学去该空气质量监涮站点参观,请用列表或画树状图的方法求出恰好选到一名男同学和一名女同学的概率.26.(本题满分9分)如图,在平面直角坐标系xOy中,直线y=33x与反比例函数y=k/x在第一象限内的图象相交于点A(m,3).(1)求该反比例函数的关系式;(2)将直线y=33x沿y轴向上平移8个单位后与反比例函数在第一象限内的图象相交于点B,连接AB,这时恰好AB ⊥OA ,求tan ∠AOB 的值;(3)在(2)的条件下,在射线OA 上存在一点P ,使△P AB ∽△BAO ,求点P 的坐标.27.(本题满分9分)如图1.在菱形ABCD 中,AB =25,tan ∠ABC =2,∠BCD =α,点E 从点D 出发,以每秒1个单位长度的速度沿着射线DA 的方向匀速运动,设运动时间为t (秒),将线段CE 绕点C 顺时针旋转α度,得到对应线段CF ,连接BD 、EF ,BD 交EC 、EF 于点P 、Q .(1)求证:△ECF ∽△BCD ;(2)当t 为何值时,△ECF ≌△BCD ? (3)当t 为何值时,△EPQ 是直角三角形?备用图2备用图1第27题图Q PDAQ PDACB CB E E28.(本题满分9分)如图,已知抛物线y =-14x 2+bx +c 交x 轴于点A (2,0)、B (一8,0),交y 轴于点C ,过点A 、B 、C 三点的⊙M 与y 轴的另一个交点为D .(1)求此抛物线的表达式及圆心M 的坐标;(2)设P 为弧BC 上任意一点(不与点B ,C 重合),连接AP 交y 轴于点N ,请问:AP ·AN 是否为定值,若是,请求出这个值;若不是,请说明理由;(3)延长线段BD 交抛物线于点E ,设点F 是线段BE 上的任意一点(不含端点),连接AF .动点Q 从点A 出发,沿线段AF 以每秒1个单位的速度运动到点F ,再沿线段FB 以每秒5个单位的速度运动到点B 后停止,问当点F的坐标是多少时,点Q 在整个运动过裎中所用时间最少?2018年河南省周口市九年级第二次模拟考试数学试题答 案一、选择题(每题3分,共45分) DDADB AABCC ABDCD 二、填空题(每题3分,共18分)16. > 17. k <4 18. 15° 19. 144 20. 32 21.①③⑤ 三、解答题22. (1) 解:原式=a 2-2ab +b 2-a 2+2ab ……………………………………2分 =b 2 …………………………………………………3分 (2) 解:)3(32-=x x ……………………………………………………1分 x =9 ……………………………………………………2分 经检验 x =9为原方程的根…………………………………………3分所以原方程的解为x =9 ……………………………………………4分 23.(1)∵∠OBD =∠ODB .∴OB =OD ………………………………1分 在△AOB 与△COD 中,OA OC AOB OD OB OD =⎧⎪∠=∠⎨⎪=⎩∴△AOB ≌△COD (SAS )……………………………………………………2分 ∴AB =CD . ……………………………………………………3分(2)解:连接OC ……………………………………………………1分 ∵ CD 与⊙O 相切,∴OC ⊥CD ……………………………2分 ∵OA =OC ,OA =1,∴OC =1.∴CD =OC∴∠COD =45°……………………………………………………3分 ∵OA =OC ,∴BAC =21∠COD =22.5°………………………………………………4分 24. 设购进A 型服装x 件,B 型服装y 件.…………………………………1分 由题意得601006000(10060)(160100)3800x y x y +=⎧⎨-+-=⎩,…………………………………5分解得5030x y =⎧⎨=⎩.……………………………………………………7分答:购进A 型服装50件,B 型服装30件.…………………………………………8分 25.解:(1)∵良有70人,占70%,∴统计图共统计了的空气质量情况的天数为:70÷70%=100(天);………………1分 (2)如图:条形统计图中,空气质量为“良”的天数为100×20%=20(天),……2分 空气质量为“优”所在扇形的圆心角度数是:20%×360°=72°,………………3分 (3)画树状图得:………………6分7分 8分 26.解:(1)∵点A (m ,3)在直线y =33x 上 ∴3=33m ,m =33,∴点A (33,3)…………………………………1分 ∵点A (33,3)在反比例函数y =kx上,∴k =33×3=39 …………2分 ∴y =x39 …………………………………3分 ∠AOB =∠COD(2)直线向上平移8个单位后表达式为:y =33x +8 ∵AB ⊥OA ,直线AB 过点A (33,3)∴直线AB 解析式:123+-=x y …………………………………4分∴123833+-=+x x . ∴x =3.∴B (3,9) …………………5分 ∴AB =43又∵OA =6,∴tan ∠AOB =332634=…………………………6分 (3)∵△APB ∽△ABO ,∴OAABAB AP =…………………………………7分 即63434=AP ∴AP =8…………………………………8分 ∴OP =14∴P (73,7) ……………………9分 27.(1)菱形ABCD 中,BC =CD , ∵旋转, ∴CE =CF ∴CBCECD CF =…………1分 又∵∠FCE =∠DCB∴△FCE ∽△DCB …………2分 (2)由(1)知,△FCE ∽△DCB ,∴当CE =CB =CD 时,△FCE ≌△DCBI )E 、D 重合,此时t =0; …………3分II )如图,过点C 作CM ⊥AD ,当EM =MD 时,EC =CD . Rt △CMD 中,MD =CD cos ∠CDA =5152⨯=2∴t =ED =2MD =4∴当t =0或者4时,△FCE ≌△DCB . …………5分(3)∵CE =CF ,∴∠CEQ <90°. ①当∠EQD =90°时,如图1,∠ECF =∠BCD ,BC =DC ,EC =FC , ∴∠CBD =∠CEF , ∵∠BPC =∠EPQ ,第27题图2M∴∠BCP =∠EQP =90°.在Rt △CDE 中,∠CED =90°,∵AB =CD =tan ∠ABC =tan ∠ADC =2,∴DE =2,∴t =2秒;……………………………………………………7分 ②当∠EPQ =90°时,如图2, ∵菱形ABCD 对角线AC ⊥BD , ∴EC 和AC 重合. ∴DE =∴t =∴当t =2或者5△APQ 为直角三角形.……………9分 28.解:(1)将A (2,0)、B (-8,0)两点代入c bx x y ++-=241得:{210816=++-=+--c b c b …………………………………1分解得:⎩⎨⎧-==234b c抛物线的表达式为:423412+--=x x y …………………………………2分 ∴ C (0,4)∴ BC =45, AC =25 ,AB =10∴△ABC 为直角三角形,且∠ACB =90°∵∠ACB =90° ∴AB 为直径∴M (-3,0) …………………………………3分(2)如图: ∵AB 为直径∴∠APB =90°…………………………………4分 ∵∠APB =∠AON , ∠NAO =∠BAP∴△APB ∽△AON …………………………………5分 ∴APAOAB AN = ∴AN ·AP =AB ·AO =20所以为定值,定值是20. …………………………………6分(3)过点B 在BE 的下面作射线BI ,交y 轴于点I ,图2QPDC GA(E )第28题图PN过点A 做AH ⊥BI ,垂足为点H ,与射线BE 的交点即为运动时间最少时点F 的位置.………7分 过点D 做DK ⊥BI ,垂足为K∵BE 平分∠ABI∴DI =DO =4,BO =BK =8设DI =x,则KI =2x -8∴16+(2x -8)2=x 24,32021==x x (舍去)∴I (0,332-)∴BI 表达式为:33234--=x y∴AH 表达式为2343-=x y …………………………………8分∵BD 表达式为421--=x y ∴4212343--=-x x∴x =-2∴F (-2,-3) …………………………………9分第28题备用图 F H I K。
2017年河南省普通高中中考数学模拟试卷及解析答案word版(一)
2017年河南省普通高中中考数学模拟试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在下面的四个有理数中,最小的数是()A.﹣1 B.0 C.﹣2 D.﹣1.92.(3分)我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为()A.7.5×105B.7.5×10﹣5C.0.75×10﹣4D.75×10﹣63.(3分)如图,已知∠1=∠2=∠3=62°,则∠4=()A.62°B.118°C.128° D.38°4.(3分)不等式组的最小整数解为()A.﹣1 B.0 C.1 D.45.(3分)下列调查中,适宜采用全面调查方式的是()A.了解商丘市的空气质量情况B.了解包河的水污染情况C.了解商丘市居民的环保意识D.了解全班同学每周体育锻炼的时间6.(3分)如图是一个由7个同样的立方体叠成的几何体.请问下列选项中,既是中心对称图形,又是这个几何体的三视图之一的是()A.B.C.D.DE的长等于()A.6 B.5 C.9 D.8.(3分)在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%,②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是()A.①②③B.①②C.①③D.②③9.(3分)抛物线y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围是()A.k>﹣B.k≥﹣且k≠0 C.k≥﹣D.k>﹣且k≠010.(3分)如图,边长为4的正方形ABCD的边BC与直角边分别是2和4的Rt △GEF的边GF重合,正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为S,则S关于t的函数图象为()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)计算:+(﹣1)0=.12.(3分)如图,▱ABCD,E是BA延长线上一点,AB=AE,连接CE交AD于点F,若CF平分∠BCD,AB=3,则BC的长为.13.(3分)已知双曲线和的部分图象如图所示,点C是y轴正半轴上一点,过点C作AB∥x轴分别交两个图象于点A、B.若CB=2CA,则k=.14.(3分)如图,以AD为直径的半圆O经过Rt△ABC的斜边AB的两个端点,交直角边AC于点E.B、E是半圆弧的三等分点,弧BE的长为,则图中阴影部分的面积为.15.(3分)如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD 上,折痕的一端E点在边BC上,BE=10.则折痕的长为.三、解答题(本大题共8小题,共75分)16.(8分)先化简,再求值:,其中﹣2<a≤2,请选择一个a的合适整数代入求值.17.(9分)某校260名学生参加植树活动,要求每人植4﹣7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图(1))和条形图(如图(2)),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是=;第二步:在该问题中,n=4,x1=4,x2=5,x3=6,x4=7;第三步:==5.5(份)①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.18.(9分)如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB 为平行四边形;(2)填空:①当t= s 时,四边形PBQE 为菱形;②当t= s 时,四边形PBQE 为矩形.19.(9分)如图,商丘市睢阳区南湖中有一小岛,湖边有一条笔直的观光小道,现决定从小岛架一座与观光小道垂直的小桥PD ,小坤在小道上测得如下数据:AB=200.0米,∠PAB=38.5°,∠PBA=26.5°.请帮助小坤求出小桥PD 的长.(结果精确到0.1米)(参考数据:sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)20.(9分)重阳节期间,某单位组织本单位退休职工前去距离商丘480千米的信阳鸡公山登高旅游,由于人数较多,共租用甲、乙两辆长途汽车沿同一路线赶赴景点.图中的折线、线段分别表示甲、乙两车所走的路程y 甲(千米),y 乙(千米)与时间x (小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲车在途中停留了 小时;(2)甲车排除故障后,立即提速赶往景点.请问甲车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙车在第一次相遇时约定此后两车之间的路程不超过35千米,请通过计算说明,按图象所表示的走法是否符合约定.21.(10分)我市计划购买甲、乙两种树苗共8000株用于城市绿化,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去210000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.22.(10分)已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B,C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.初步感知:(1)如图1,当点D在边BC上时,①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;问题探究:(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;类比分析:(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.23.(11分)将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C 及点B(﹣3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE 的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.2017年河南省普通高中中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在下面的四个有理数中,最小的数是()A.﹣1 B.0 C.﹣2 D.﹣1.9【解答】解:∵负数都小于0,∴四个选项中0最大.排除B.又∵|﹣1|=1,|﹣2|=2,|﹣1.9|=1.9,2>1.9>1,∴﹣2<﹣1.9<﹣1.故选C.2.(3分)我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为()A.7.5×105B.7.5×10﹣5C.0.75×10﹣4D.75×10﹣6【解答】解:将0.000075用科学记数法表示为:7.5×10﹣5.故选B.3.(3分)如图,已知∠1=∠2=∠3=62°,则∠4=()A.62°B.118°C.128° D.38°【解答】解:∵∠1=∠3,∴直线M∥直线N,∴∠5=∠2=62°,∴∠4=180°﹣∠5=180°﹣62°=118°.故选:B.4.(3分)不等式组的最小整数解为()A.﹣1 B.0 C.1 D.4【解答】解:由①得x>﹣;由②得3x≤12,即x≤4;由以上可得<x≤4.故这个不等式组的最小整数解是0.故选B5.(3分)下列调查中,适宜采用全面调查方式的是()A.了解商丘市的空气质量情况B.了解包河的水污染情况C.了解商丘市居民的环保意识D.了解全班同学每周体育锻炼的时间【解答】解:A、了解某市的空气质量情况适宜采用抽样的方式,此选项错误;B、了解包河的水污染情况适宜抽样调查,此选项错误;C、了解商丘市居民的环保意识适宜采用抽样的方式;D、了解全班同学每周体育锻炼的时间适宜采用全面调查的方式;故选:D.6.(3分)如图是一个由7个同样的立方体叠成的几何体.请问下列选项中,既是中心对称图形,又是这个几何体的三视图之一的是()A.B.C.D.【解答】解:A,这是主视图,它不是中心对称图形,故此选项错误;B,这是俯视图,它是中心对称图形,故此选项正确;C,这是左视图,它不是中心对称图形,故此选项错误;D,它不是由7个同样的立方体叠成的几何体的三视图,故此选项错误;故选:B.7.(3分)如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长等于()A.6 B.5 C.9 D.【解答】解:根据题意,△ABC与△DEF位似,且AB:DE=2:3,AB=4∴DE=6故选A.8.(3分)在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%,②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是()A.①②③B.①②C.①③D.②③【解答】解:∵在一个不透明的布袋中,红球、黑球、白球共有若干个,其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,∴①若进行大量摸球实验,摸出白球的频率稳定于:1﹣20%﹣50%=30%,故此选项正确;∵摸出黑球的频率稳定于50%,大于其它频率,∴②从布袋中任意摸出一个球,该球是黑球的概率最大,故此选项正确;③若再摸球100次,不一定有20次摸出的是红球,故此选项错误;故正确的有①②.故选:B.9.(3分)抛物线y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围是()A.k>﹣B.k≥﹣且k≠0 C.k≥﹣D.k>﹣且k≠0【解答】解:∵抛物线y=kx2﹣7x﹣7的图象和x轴有交点,即y=0时方程kx2﹣7x﹣7=0有实数根,即△=b2﹣4ac≥0,即49+28k≥0,解得k≥﹣,且k≠0.故选B.10.(3分)如图,边长为4的正方形ABCD的边BC与直角边分别是2和4的Rt △GEF的边GF重合,正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为S,则S关于t的函数图象为()A.B.C.D.【解答】解:当0≤t≤2时,如图,BG=t,BE=2﹣t,∵PB∥GF,∴△EBP∽△EGF,∴=,即=,∴PB=4﹣2t,∴S=(PB+FG)•GB=(4﹣2t+4)•t=﹣t2+4t;当2<t≤4时,S=FG•GE=4;当4<t≤6时,如图,GA=t﹣4,AE=6﹣t,∵PA∥GF,∴△EAP∽△EGF,∴=,即=,∴PA=2(6﹣t),∴S=PA•AE=×2×(6﹣t)(6﹣t)=(t﹣6)2,综上所述,当0≤t≤2时,s关于t的函数图象为开口向下的抛物线的一部分;当2<t≤4时,s关于t的函数图象为平行于x轴的一条线段;当4<t≤6时,s 关于t的函数图象为开口向上的抛物线的一部分.故选B.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)计算:+(﹣1)0=3.【解答】解:原式=2+1=3.故答案为:3.12.(3分)如图,▱ABCD,E是BA延长线上一点,AB=AE,连接CE交AD于点F,若CF平分∠BCD,AB=3,则BC的长为6.【解答】解:∵CF平分∠BCD,∴∠BCE=∠DCF,∵AD∥BC,∴∠BCE=∠DFC,∴∠BCE=∠EFA,∵BE∥CD,∴∠E=∠DCF,∴∠E=∠BCE,∵AD∥BC,∴∠BCE=∠EFA,∴∠E=∠EFA,∴AE=AF=AB=3,∵AB=AE,AF∥BC,∴△AEF∽△BEC,∴===,∴BC=2AF=6.故答案为:6.13.(3分)已知双曲线和的部分图象如图所示,点C是y轴正半轴上一点,过点C作AB∥x轴分别交两个图象于点A、B.若CB=2CA,则k=﹣6.【解答】解:连结OA、OB,如图,∵AB∥x轴,即OC⊥AB,而CB=2CA,=2S△OAC,∴S△OBC∵点A在图象上,=×3=,∴S△OAC∴S=2S△OAC=3,△OBC∵|k|=3,而k<0,∴k=﹣6.故答案为﹣6.14.(3分)如图,以AD为直径的半圆O经过Rt△ABC的斜边AB的两个端点,交直角边AC于点E.B、E是半圆弧的三等分点,弧BE的长为,则图中阴影部分的面积为.【解答】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=∠EBA=30°,∴BE∥AD,∵的长为,∴=,解得:R=2,∴AB=ADcos30°=2,∴BC=AB=,∴AC===3,∴S=×BC×AC=××3=,△ABC∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC ﹣S扇形BOE=﹣=﹣.故答案为:.15.(3分)如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD 上,折痕的一端E点在边BC上,BE=10.则折痕的长为5或4.【解答】解:(1)如图(1)所示:过点E作EH⊥AD于点H,则AH=BE=10,HE=AB=8,∵△GFE由△BFE翻折而成,∴GE=BE=10,在Rt△EGH中,∵GH===6,∴AG=AH﹣GH=10﹣6=4,设AF=x,则BF=GF=8﹣x,在Rt△AGF中,∵AG2+AF2=GF2,即42+x2=(8﹣x)2,解得x=3,∴BF=8﹣3=5,在Rt△BEF中,EF===5.(2)连接BF、BG与折痕EF交于O,过点F作FL⊥BC于点L,如图(2),由于折叠,∴BG⊥EF,BO=OG,BE=GE,四边形ABCD为长方形,∴AD∥BC∴∠FGO=∠OBE,∴△BOE≌△GOF(ASA),∴OF=OE,又OB=OG,BG⊥EF∴四边形BEGF是菱形,∴BF=BE=10;Rt△ABF中,AF2+AB2=BF2,AF2=102﹣82,解得AF=6.则有BL=6,LE=10﹣6=4,在Rt△FLE中,由勾股定理得:FE==4.故答案为:5或4.三、解答题(本大题共8小题,共75分)16.(8分)先化简,再求值:,其中﹣2<a≤2,请选择一个a的合适整数代入求值.【解答】解:===,当a=﹣1时,原式=.17.(9分)某校260名学生参加植树活动,要求每人植4﹣7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图(1))和条形图(如图(2)),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是=;第二步:在该问题中,n=4,x1=4,x2=5,x3=6,x4=7;第三步:==5.5(份)①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.【解答】解:(1)D错误,理由为:20×10%=2≠3;(2)众数为5,中位数为5;(3)①第二步;②==5.3(棵),估计这260名学生共植树5.3×260=1378(棵).18.(9分)如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t=2s时,四边形PBQE为菱形;②当t=0或4s时,四边形PBQE为矩形.【解答】(1)证明:∵正六边形ABCDEF内接于⊙O,∴AB=BC=CD=DE=EF=FA,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,∴AP=DQ=t,PF=QC=4﹣t,在△ABP和△DEQ中,,∴△ABP≌△DEQ(SAS),∴BP=EQ,同理可证PE=QB,∴四边形PEQB是平行四边形.(2)解:①当PA=PF,QC=QD时,四边形PBEQ是菱形时,此时t=2s.②当t=0时,∠EPF=∠PEF=30°,∴∠BPE=120°﹣30°=90°,∴此时四边形PBQE是矩形.当t=4时,同法可知∠BPE=90°,此时四边形PBQE是矩形.综上所述,t=0s或4s时,四边形PBQE是矩形.故答案为2s,0s或4s.19.(9分)如图,商丘市睢阳区南湖中有一小岛,湖边有一条笔直的观光小道,现决定从小岛架一座与观光小道垂直的小桥PD,小坤在小道上测得如下数据:AB=200.0米,∠PAB=38.5°,∠PBA=26.5°.请帮助小坤求出小桥PD的长.(结果精确到0.1米)(参考数据:sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)【解答】解:设PD=x米,∵PD⊥AB,∴∠ADP=∠BDP=90°,在Rt△PAD中,tan∠PAD=,∴AD=≈=x,在Rt△PBD中,tan∠PBD=,∴DB=≈=2x,又∵AB=80.0米,∴x +2x=200.0,解得:x ≈61.5,即PD ≈61.5(米), ∴DB=123.0(米).答:小桥PD 的长度约为61.5米,位于AB 之间距B 点约123.0米.20.(9分)重阳节期间,某单位组织本单位退休职工前去距离商丘480千米的信阳鸡公山登高旅游,由于人数较多,共租用甲、乙两辆长途汽车沿同一路线赶赴景点.图中的折线、线段分别表示甲、乙两车所走的路程y 甲(千米),y 乙(千米)与时间x (小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲车在途中停留了 2 小时;(2)甲车排除故障后,立即提速赶往景点.请问甲车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙车在第一次相遇时约定此后两车之间的路程不超过35千米,请通过计算说明,按图象所表示的走法是否符合约定.【解答】解:(1)观察图象可知,甲车在途中停留了6.6﹣4.5=2小时, 故答案为2.(2)由题意直线OD 的解析式为y=60x ,设直线BC 的解析式为y=kx +b , ∵E (7.25,435),C (7.7,480), 则有,解得,∴y=100x ﹣290, x=6.5时,y=360,∴甲车在排除故障时,距出发点的路程是360千米(3)符合约定.由图象可知:甲乙两个家庭第一次相遇后在B和C相距最远.在点B处有y乙﹣y甲=60×6.5﹣360=30千米<35千米;在点C处有y甲﹣y乙=100×7.7﹣290﹣(60×7.7)=18千米<35千米.∴按图象所表示的走法符合约定.21.(10分)我市计划购买甲、乙两种树苗共8000株用于城市绿化,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去210000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.【解答】解:(1)设购买甲种树苗x株,则购买乙种树苗(8000﹣x)株,由题意,得:24x+30(8000﹣x)=210000,解得:x=5000,故8000﹣x=3000(株)答:购买甲种树苗5000株,则购买乙种树苗3000株;(2)设购买甲种树苗x株,则购买乙种树苗(800﹣x)株,由题意,得85% x+90%(8000﹣x)≥8000×88%,解得:x≤32000,答:甲种树苗至多购买3200株;(3)设总费用为:y,故y=24x+30(8000﹣x)=﹣6x+240000,∵k=﹣6,则y随x的增大而减小,∴x=3200时,y最小=220800元,答:当甲种树苗购进3200株,乙种树苗购进4800株时,总费用最低为220800元.22.(10分)已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B,C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.初步感知:(1)如图1,当点D在边BC上时,①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;问题探究:(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;类比分析:(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.【解答】(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵∠DAF=60°,∴∠BAC=∠DAF,∴∠BAD=∠CAF,∵四边形ADEF是菱形,∴AD=AF,在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),∴∠ADB=∠AFC,②解:∠AFC=∠ACB+∠DAC成立.理由如下:∵△ABD≌△ACF,∴∠ADB=∠AFC,∵∠ADB=∠ACB+∠DAC,∴∠AFC=∠ACB+∠DAC;(2)解:∠AFC=∠ACB+∠DAC不成立.∠AFC、∠ACB、∠DAC之间的等量关系是∠AFC=∠ACB﹣∠DAC.理由如下:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵∠BAC=∠DAF,∴∠BAD=∠CAF,∵四边形ADEF是菱形,∴AD=AF.在△ABD和△ACF中,,∴△ABD≌△ACF(SAS).∴∠ADB=∠AFC.又∵∠ACB=∠ADC+∠DAC,∴∠AFC=∠ACB﹣∠DAC.(3)解:补全图形如图所示:∠AFC、∠ACB、∠DAC之间的等量关系是:∠AFC+∠DAC+∠ACB=180°;理由如下:同(2)得:△ABD≌△ACF,∴∠ADC=∠AFC,∵∠ADC+∠ACB+∠DAC=180°,∴∠AFC+∠DAC+∠ACB=180°.23.(11分)将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C 及点B(﹣3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE 的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.【解答】解:(1)如图,∵抛物线y=ax2+bx+c(a≠0)的图象经过点A(0,6),∴c=6.∵抛物线的图象又经过点(﹣3,0)和(6,0),∴,解之得,故此抛物线的解析式为:y=﹣x2+x+6.(2)设点P的坐标为(m,0),则PC=6﹣m,S=BC•AO=×9×6=27;△ABC∵PE∥AB,∴△CEP∽△CAB;∴,即=()2,=(6﹣m)2,∴S△CEP=PC•AO=(6﹣m)×6=3(6﹣m),∵S△APC∴S=S△APC﹣S△CEP=3(6﹣m)﹣(6﹣m)2=﹣(m﹣)2+;△APE当m=时,S有最大面积为;△APE此时,点P的坐标为(,0).(3)如图,过G作GH⊥BC于点H,设点G的坐标为G(a,b),连接AG、GC,=a(b+6),∵S梯形AOHGS△CHG=(6﹣a)b,=a(b+6)+(6﹣a)b=3(a+b).∴S四边形AOCG=S四边形AOCG﹣S△AOC,∵S△AGC∴=3(a+b)﹣18,∵点G(a,b)在抛物线y=﹣x2+x+6的图象上,∴b=﹣a2+a+6,∴=3(a﹣a2+a+6)﹣18,化简,得4a2﹣24a+27=0,解之得a1=,a2=;故点G的坐标为(,)或(,).赠送:初中数学几何模型【模型一】半角型:图形特征:F AB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-aa B E挖掘图形特征:x-aa-a运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.。
2018年周口市中考数学试题与答案
2018年周口市中考数学试题及答案(试卷满分120分,考试时间100分钟)一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1. -52的相反数是( )A. -52 B.52 C.-25 D.252. 今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿元”用科学记数法表示为( ) A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10113. 某正方体的每个面上那有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A.厉B.害C.了D.我 4. 下列运算正确的是( ) A.(-x 2)3=-x5B.x 2+x 3=x 5C.x 3·x 4=x 7D.2x 3-x 3=15.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%,关于这组数据,下列说法正确的是( ) A.中位数是12.7% B.众数是15.3% C.平均数是15.98% D.方差是06.《九章算术》中记载:”今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱.问:合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为 ) A.B.C.D.7. 下列一元二次方程中,有两个不相等实数根的是( )A.x 2+6x +9=0 B.x 2=x C.x 2+3=2x D.(x -1)2+1=08. 现有4张卡片,其中3张卡片正面上的图案是“ ”,1张卡片正面上的图案是“ ”,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片正面图案相同的概率是( ) A.169 B.43 C.83 D.219. 如图,已知Y AOBC 的顶点O (0,0),A (-1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于21DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为( )A.,2) B.2) C.(-2) D.,2)10. 如图,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运到点B .图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s)变化的关系图象,则a 的值为( )A.B.2C.25二、填空题(每小题3分,共15分) 11. 计算:-512. 如图,直线AB ,C D 相交于点O ,EO ⊥AB 于点O ,∠EOD =50°,则∠BOC 的度数为_______.13.不等式组x 524x 3+>⎧⎨-≥⎩,的最小整数解是_______.14.如图,在△ABC 中,∠A CB =90°,AC =BC =2.将△ABC 绕AC 的中点D 逆时针旋转90°得到△A B C ''',其中点B 的运动路径为¼'B B ,则图中阴影部分的面积为______.15.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△'A B C与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交'A B所在直线于点F,连接'A E.当△'A E F为直角三角形时,AB的长为________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:)÷,其中x=.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如图所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(k>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是圆0的直径,DO垂直于点O,连接DA交圆O于点C,过点C作圆O的切线交DO于点E,连接BC交DO于点F。
2017-2018学年最新河南省周口市中考数学第二次模拟试题及答案解析
2018年河南省周口市中考数学二模试卷一、选择题:每小题3分,共24分1.下列各数中,最大的数是()A.(﹣2)2 B.﹣C.D.﹣(﹣1)2.国家统计局于2015年6日发布的《2014年国民经济和社会发展统计公报》显示,2014年全国普通高中招生796.6万人,796.6万用科学记数法表示为()A.7.966×102B.7.966×105C.7.966×106D.7.966×10103.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.4.以下四种说法:①为检测酸奶的质量,应采用抽查的方式;②甲乙两人打靶比赛,平均各中5环,方差分别为0.15,0.17,所以甲稳定;③等腰梯形既是中心对称图形,又是轴对称图形;④举办校运会期间的每一天都是晴天是必然事件.其中正确的个数是()A.4 B.3 C.2 D.15.下列各式计算正确的是()A.2x•3x2=6x2B.(﹣3a2b)2=6a4b2C.﹣a2+2a2=a2D.(a+b)(a﹣2b)=a2﹣2b26.如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°7.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2 D.y=x28.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6 B.7 C.8 D.10二、填空题:每小题3分,共21分9.计算:(﹣)﹣2+(﹣2015)0﹣3tan60°+= .10.不等式组的所有整数解的和为.11.已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣3时,y= .12.在一个不透明的袋子中装有三个小球,它们除分别标有的号码2,3,6不同外,其他完全相同.任意从袋子中摸出一球后不放回,再任意摸出一球,则第二次摸出球的号码比第一次摸出球的号码大的概率是.13.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(接缝处不计),则每个圆锥容器的底面半径为.14.如图,将边长为12cm的正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN,若MN的长为13cm,则CE的长为cm.15.如图,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是(结果保留π).三、简答题:本大题共8小题,满分76分16.先化简,再求值:÷(﹣),其中x=2cos30°+1.17.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点O作一条直线分别交DA、BC 的延长线于点E、F,连接BE、DF.(1)求证:四边形BFDE是平行四边形;(2)若EF⊥AB,垂足为M,tan∠MBO=,求EM:MF的值.18.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?19.如图,轮船从点A处出发,先航行至位于点A的南偏西15°且与点A相距100km的点B处,再航行至位于点B的北偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:≈1.414,≈1.732)20.已知:如图,一次函数y=kx+3的图象与反比例函数(x>0)的图象交于点P.PA⊥x轴=27,.于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、点D,且S△DBP(1)求点D的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?21.某商场计划从厂家购进甲,乙两种电视机,乙种电视机每台的价格比甲种电视机每台的价格贵600元,且购进甲种电视机2台与乙种电视机3台共需9300元.(1)求购进甲种电视机与乙种电视机各多少元?(2)若商场同时购进甲种电视机与乙种电视机共50台,金额不超过76000元,请你帮助商场决策有几种进货方案?22.已知:在△ABC中AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF 的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.(1)如图1,当∠ABC=45°时,求证AE=MD;(2)如图2,当∠ABC=60°时,则线段AE、MD之间的数量关系为;(3)在(2)的条件下,延长BM到P,使MP=BM,连接CP,若AB=7,AE=,求tan∠BCP的值.23.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x 轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.参考答案与试题解析一、选择题:每小题3分,共24分1.下列各数中,最大的数是()A.(﹣2)2 B.﹣C.D.﹣(﹣1)【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得,所以各数中最大的数是(﹣2)2.故选:A.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.国家统计局于2015年6日发布的《2014年国民经济和社会发展统计公报》显示,2014年全国普通高中招生796.6万人,796.6万用科学记数法表示为()A.7.966×102B.7.966×105C.7.966×106D.7.966×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:796.6万用科学记数法表示为7.966×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是从物体上面看所得到的图形.【解答】解:从几何体的上面看俯视图是,故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.以下四种说法:①为检测酸奶的质量,应采用抽查的方式;②甲乙两人打靶比赛,平均各中5环,方差分别为0.15,0.17,所以甲稳定;③等腰梯形既是中心对称图形,又是轴对称图形;④举办校运会期间的每一天都是晴天是必然事件.其中正确的个数是()A.4 B.3 C.2 D.1【考点】全面调查与抽样调查;等腰梯形的性质;方差;随机事件.【分析】利用全面调查与抽样调查、等腰三角形的性质、方差及随机事件的有关知识逐一判断即可得到正确的选项.【解答】解:①为检测酸奶的质量,因范围比较大,且不易操作,因此应采用抽查的方式,故正确;②甲乙两人打靶比赛,平均各中5环,方差分别为0.15,0.17,因为甲的方差小于乙的方程,所以甲稳定正确;③等腰梯形是轴对称图形但不是中心对称图形,故错误;④举办校运会期间的每一天都是晴天是随机事件,故错误.故正确的有①②两个,故选C.【点评】本题考查了全面调查与抽样调查、等腰三角形的性质、方差及随机事件的有关知识,虽然知识点比较多,但比较简单.5.下列各式计算正确的是()A.2x•3x2=6x2B.(﹣3a2b)2=6a4b2C.﹣a2+2a2=a2D.(a+b)(a﹣2b)=a2﹣2b2【考点】整式的混合运算.【专题】计算题;整式.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=6x3,错误;B、原式=9a4b2,错误;C、原式=a2,正确;D、原式=a2﹣2ab+ab﹣2b2=a2﹣ab﹣2b2,错误,故选C.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6.如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°【考点】平行线的性质.【分析】根据平角的定义求出∠1,再根据两直线平行,内错角相等解答.【解答】解:∵∠1=∠2,∠3=40°,∴∠1=×(180°﹣∠3)=×(180°﹣40°)=70°,∵a∥b,∴∠4=∠1=70°.故选:C.【点评】本题考查了平行线的性质,平角等于180°,熟记性质并求出∠1是解题的关键.7.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2 D.y=x2【考点】根据实际问题列二次函数关系式.【专题】压轴题.【分析】由图中可以看出,所求抛物线的顶点在原点,对称轴为y轴,可设此函数解析式为:y=ax2,利用待定系数法求解.【解答】解:设此函数解析式为:y=ax2,a≠0;那么(2,﹣2)应在此函数解析式上.则﹣2=4a即得a=﹣,那么y=﹣x2.故选:C.【点评】根据题意得到函数解析式的表示方法是解决本题的关键,关键在于找到在此函数解析式上的点.8.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6 B.7 C.8 D.10【考点】三角形中位线定理;直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半得到CD=AB=3,则结合已知条件CE=CD 可以求得ED=4.然后由三角形中位线定理可以求得BF=2ED=8.【解答】解:如图,∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=3.又CE=CD,∴CE=1,∴ED=CE+CD=4.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=8.故选:C.【点评】本题考查了三角形中位线定理和直角三角形斜边上的中线.根据已知条件求得ED的长度是解题的关键与难点.二、填空题:每小题3分,共21分9.计算:(﹣)﹣2+(﹣2015)0﹣3tan60°+= 5﹣.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果.【解答】解:原式=4+1﹣3+2=5﹣,故答案为:5﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10.不等式组的所有整数解的和为﹣2 .【考点】一元一次不等式组的整数解.【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相加即可求解.【解答】解:,由①得:x≥﹣2,由②得:x<2,∴﹣2≤x<2,∴不等式组的整数解为:﹣2,﹣1,0,1.所有整数解的和为﹣2﹣1+0+1=﹣2.故答案为:﹣2.【点评】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣3时,y= 2 .【考点】反比例函数图象上点的坐标特征.【分析】先把点A(﹣2,3)代入y=求得k的值,然后将x=﹣3代入,即可求出y的值.【解答】解:∵反比例函数y=的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,∴反比例函数解析式为y=﹣,∴当x=﹣3时,y=﹣=2.故答案为:2.【点评】本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.12.在一个不透明的袋子中装有三个小球,它们除分别标有的号码2,3,6不同外,其他完全相同.任意从袋子中摸出一球后不放回,再任意摸出一球,则第二次摸出球的号码比第一次摸出球的号码大的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次摸出球的号码比第一次摸出球的号码大的情况,再利用概率公式即可求得答案.【解答】解:画树形图得:由树形图可知第二次摸出球的号码比第一次摸出球的号码大的概率=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验13.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(接缝处不计),则每个圆锥容器的底面半径为10cm .【考点】圆锥的计算.【专题】计算题.【分析】根据已知得出直径为60cm的圆形铁皮,被分成三个圆心角是120°,半径为30的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案.【解答】解:根据将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),∴直径为60cm的圆形铁皮,被分成三个圆心角是120°,半径为30的扇形,假设每个圆锥容器的底面半径为r,∴=2πr,解得:r=10(cm).故答案为:10cm.【点评】此题主要考查了圆锥的有关计算,得出扇形弧长等于圆锥底面圆的周长是解决问题的关键.14.如图,将边长为12cm的正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN,若MN的长为13cm,则CE的长为7 cm.【考点】翻折变换(折叠问题).【分析】根据图形折叠前后图形不发生大小变化得出∠D=∠AHM=90°,进而得出∠AMN=∠AED,再证明△NFM≌△ADE,从而求出CE的长.【解答】解:作NF⊥AD,垂足为F,连接AE,NE,∵将正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN,∴∠D=∠AHM=90°,∠DAE=∠DAE,∴△AHM∽△ADE,∴∠AMN=∠AED,又∵AD=NF,∠NFM=∠D=90°,∴△NFM≌△ADE(AAS),∴FM=DE,∵在直角三角形MNF中,FN=12,MN=13,∴根据勾股定理得:FM=5,∴DE=5,∴CE=DC ﹣DE=12﹣5=7.故答案是:7.【点评】此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键.15.如图,△ABC 是等腰直角三角形,∠ACB=90°,BC=AC ,把△ABC 绕点A 按顺时针方向旋转45°后得到△AB ′C ′,若AB=2,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是 (结果保留π).【考点】扇形面积的计算;等腰直角三角形;旋转的性质.【分析】根据等腰直角三角形的性质得到AC=BC=,再根据旋转的性质得到AC ′=AC=,AB ′=AB=2,∠BAB ′=45°,∠B ′AC ′=45°,而S 阴影部分=S 扇形ABB ′+S △AB ′C ′﹣S △ABC ﹣S 扇形ACC ′=S 扇形ABB ′﹣S 扇形ACC ′,根据扇形的面积公式计算即可.【解答】解:∵∠ACB=90°,CB=AC ,AB=2,∴AC=BC=,∵△ABC 绕点A 按顺时针方向旋转45°后得到△AB ′C ′,∴AC ′=AC=,AB ′=AB=2,∠BAB ′=45°,∠B ′AC ′=45°,∴S 阴影部分=S 扇形ABB ′+S △AB ′C ′﹣S △ABC ﹣S 扇形ACC ′=S 扇形ABB ′﹣S 扇形ACC ′=﹣=.故答案为.【点评】本题考查了扇形的面积公式:S=.也考查了等腰直角三角形的性质.三、简答题:本大题共8小题,满分76分16.先化简,再求值:÷(﹣),其中x=2cos30°+1.【考点】分式的化简求值;特殊角的三角函数值.【分析】先根据分式混合运算的法则把原式进行化简,再根据x=2cos30°+1求出x的值,代入原式进行计算即可.【解答】解:原式=×=,当x=2cos30°+1=1时,原式=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点O作一条直线分别交DA、BC 的延长线于点E、F,连接BE、DF.(1)求证:四边形BFDE是平行四边形;(2)若EF⊥AB,垂足为M,tan∠MBO=,求EM:MF的值.【考点】菱形的性质;平行四边形的判定.【专题】几何综合题.【分析】(1)根据两直线平行,内错角相等可得∠AEO=∠CFO,然后利用“角角边”证明△AEO 和△CFO全等,根据全等三角形对应边相等可得OE=OF,再根据对角线互相平分的四边形是平行四边形证明即可;(2)设OM=x,根据∠MBO的正切值表示出BM,再根据△AOM和△OBM相似,利用相似三角形对应边成比例求出AM,然后根据△AEM和△BFM相似,利用相似三角形对应边成比例求解即可.【解答】(1)证明:在菱形ABCD中,AD∥BC,OA=OC,OB=OD,∴∠AEO=∠CFO,在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴OE=OF,又∵OB=OD,∴四边形BFDE是平行四边形;(2)解:设OM=x,∵EF⊥AB,tan∠MBO=,∴BM=2x,又∵AC⊥BD,∴∠AOM=∠OBM,∴△AOM∽△OBM,∴=,∴AM==x,∵AD∥BC,∴△AEM∽△BFM,∴EM:FM=AM:BM=x:2x=1:4.【点评】本题考查了菱形的性质,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数的定义,难点在于(2)两次求出三角形相似.18.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000 名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.【解答】解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.如图,轮船从点A处出发,先航行至位于点A的南偏西15°且与点A相距100km的点B处,再航行至位于点B的北偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用-方向角问题.【专题】几何图形问题.【分析】(1)作辅助线,构造直角三角形,解直角三角形即可;(2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C 相对于点A的方向.【解答】解:(1)如右图,过点A作AD⊥BC于点D,∠ABE=∠BAF=15°,由图得,∠ABC=∠EBC﹣∠ABE=∠EBC﹣∠BAF=75°﹣15°=60°,在Rt△ABD中,∵∠ABC=60°,AB=100,∴BD=50,AD=50,∴CD=BC﹣BD=200﹣50=150,在Rt△ACD中,由勾股定理得:AC==100≈173(km).答:点C与点A的距离约为173km.(2)在△ABC中,∵AB2+AC2=1002+(100)2=40000,BC2=2002=40000,∴AB2+AC2=BC2,∴∠BAC=90°,∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.答:点C位于点A的南偏东75°方向.【点评】考查了解直角三角形的应用﹣方向角问题,关键是熟练掌握勾股定理,体现了数学应用于实际生活的思想.20.已知:如图,一次函数y=kx+3的图象与反比例函数(x>0)的图象交于点P.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、点D,且S=27,.△DBP(1)求点D的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?【考点】反比例函数与一次函数的交点问题.【专题】计算题;数形结合.【分析】(1)本题需先根据题意一次函数与y轴的交点,从而得出D点的坐标.=27,从而得出(2)本题需先根据在Rt△COD和Rt△CAP中,,OD=3,再根据S△DBPBP得长和P点的坐标,即可求出结果.(3)根据图形从而得出x的取值范围即可.【解答】解:(1)∵一次函数y=kx+3与y轴相交,∴令x=0,解得y=3,得D的坐标为(0,3);(2)∵OD⊥OA,AP⊥OA,∠DCO=∠ACP,∠DOC=∠CAP=90°,∴Rt△COD∽Rt△CAP,则=,OD=3,∴AP=OB=6,∴DB=OD+OB=9,在Rt△DBP中,∴,即=27,∴BP=6,故P(6,﹣6),把P坐标代入y=kx+3,得到k=﹣,则一次函数的解析式为:;把P坐标代入反比例函数解析式得m=﹣36,则反比例解析式为:;(3)根据图象可得:,解得:或故直线与双曲线的两个交点为(﹣4,9),(6,﹣6),∵x>0,∴当x>6时,一次函数的值小于反比例函数的值.【点评】本题主要考查了反比例函数和一次函数的交点问题,在解题时要注意知识的综合运用与图形相结合是解题的关键.21.某商场计划从厂家购进甲,乙两种电视机,乙种电视机每台的价格比甲种电视机每台的价格贵600元,且购进甲种电视机2台与乙种电视机3台共需9300元.(1)求购进甲种电视机与乙种电视机各多少元?(2)若商场同时购进甲种电视机与乙种电视机共50台,金额不超过76000元,请你帮助商场决策有几种进货方案?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)利用“乙种电视机每台的价格比甲种电视机每台的价格贵600元,购进甲种电视机2台与乙种电视机3台共需9300元”分别得出等式求出即可;(2)利用(1)中所求表示出总金额进而得出不等关系求出即可.【解答】解:(1)设甲种电视机x元,乙种电视机y元,根据题意可得:,解得:.答:甲种电视机1500元,乙种电视机2100元;(2)设购进甲a台,则购进乙(50﹣a)台,根据题意可得:1500a+2100(50﹣a)≤76000,解得:a≥48,则a可以为49,则50﹣a=1,当a=50,则50﹣a=0,故有两种购货方案,即购进甲49台,则购进乙1台,购进甲50台,则购进乙0台.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,得出正确的不等关系是解题关键.22.已知:在△ABC中AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF 的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.(1)如图1,当∠ABC=45°时,求证AE=MD;(2)如图2,当∠ABC=60°时,则线段AE、MD之间的数量关系为;(3)在(2)的条件下,延长BM到P,使MP=BM,连接CP,若AB=7,AE=,求tan∠BCP的值.【考点】相似三角形的判定与性质;等边三角形的性质;解直角三角形.【专题】探究型.【分析】1)由题意知∠BAE=∠BDM,∠ABE=∠DBM故有△ABE∽△DBM⇒AE:DM=AB:BD,而∠ABC=45°⇒AB=BD,则有AE=MD;(2)由于△ABE∽△DBM,相似比为2,故有EB=2BM,由题意知得△BEP为等边三角形,有EM⊥BP,∠BMD=∠AEB=90°,在Rt△AEB中求得AE、AB、tan∠EAB的值,由D为BC 中点,M为BP中点,得DM∥PC,求得tan∠PCB的值,在Rt△ABD和Rt△NDC中,由锐角三角函数的定义求得AD、ND的值,进而求得tan∠ACP的值.【解答】解(1)证明:如图1,连接AD.∵AB=AC,BD=CD,∴AD⊥BC.又∵∠ABC=45°,∴BD=AB•cos∠ABC即AB=BD.∵∠BAE=∠BDM,∠ABE=∠DBM,∴△ABE∽△DBM.∴==2,∴AE=MD.(2)如图2,连接AD,EP,过N作NH⊥AC,垂足为H,连接NH,∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,又∵D为BC的中点,∴AD⊥BC,∠DAC=30°,BD=DC=AB,∵∠BAE=∠BDM,∠ABE=∠DBM,∴△ABE∽△DBM,∴==2,∠AEB=∠DMB,∴EB=2BM,又∵BM=MP,∴EB=BP,∵∠EBM=∠EBA+∠ABM=∠MBD+∠ABM=∠ABC=60°,∴△BEP为等边三角形,∴EM⊥BP,∴∠BMD=90°,∴∠AEB=90°,在Rt△AEB中,AE=2,AB=7,∴BE==,∴tan∠EAB==,∵D为BC中点,M为BP中点,∴DM∥PC,∴∠MDB=∠PCB,∴∠EAB=∠PCB,∴tan∠PCB=,在Rt△ABD中,AD=AB•sin∠ABD=,在Rt△NDC中,ND=DC•tan∠NCD=,∴NA=AD﹣ND=,在Rt△ANH中,NH=AN=,AH=AN•cos∠NAH=,∴CH=AC﹣AH=,∴tan∠ACP==.【点评】此题考查了相似三角形的判定与性质,等边三角形的判定与性质,直角三角形的性质,以及锐角三角函数的定义,通过作辅助线使线段与线段的关系得到明确.本题的计算量大,难度适中.23.如图,抛物线y=﹣x 2+mx+n 与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知A (﹣1,0),C (0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(3)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.【考点】二次函数综合题.【专题】综合题.【分析】(1)直接把A 点和C 点坐标代入y=﹣x 2+mx+n 得m 、n 的方程组,然后解方程组求出m 、n 即可得到抛物线解析式;(2)先利用抛物线对称轴方程求出抛物线的对称轴为直线x=﹣,则D (,0),则利用勾股定理计算出CD=,然后分类讨论:如图1,当CP=CD 时,利用等腰三角形的性质易得P 1(,4);当DP=DC 时,易得P 2(,),P 3(,﹣);(3)先根据抛物线与x 轴的交点问题求出B (4,0),再利用待定系数法求出直线BC 的解析式为y=﹣x+2,利用一次函数图象上点的坐标特征和二次函数图象上点的坐标特征,设E (x ,﹣x+2)(0≤x ≤4),则F (x ,﹣ x 2+x+2),则FE=﹣x 2+2x ,由于△BEF 和△CEF 共底边,高的和为4,则S △BCF =S △BEF +S △CEF =•4•EF=﹣x 2+4x ,加上S △BCD =,所以S 四边形CDBF =S△BCF +S △BCD =﹣x 2+4x+(0≤x ≤4),然后根据二次函数的性质求四边形CDBF 的面积最大,并得到此时E 点坐标.【解答】解:(1)把A (﹣1,0),C (0,2)代入y=﹣x 2+mx+n 得,解得,∴抛物线解析式为y=﹣x 2+x+2;(2)存在.抛物线的对称轴为直线x=﹣=,则D (,0),∴CD===,如图1,当CP=CD 时,则P 1(,4);当DP=DC 时,则P 2(,),P 3(,﹣),综上所述,满足条件的P 点坐标为(,4)或(,)或(,﹣);(3)当y=0时,=﹣x 2+x+2=0,解得x 1=﹣1,x 2=4,则B (4,0),设直线BC 的解析式为y=kx+b ,把B (4,0),C (0,2)代入得,解得,∴直线BC 的解析式为y=﹣x+2,设E (x ,﹣ x+2)(0≤x ≤4),则F (x ,﹣ x 2+x+2),∴FE=﹣x 2+x+2﹣(﹣x+2)=﹣x 2+2x ,∵S △BCF =S △BEF +S △CEF =•4•EF=2(﹣x 2+2x )=﹣x 2+4x ,而S △BCD =×2×(4﹣)=,∴S 四边形CDBF =S △BCF +S △BCD=﹣x2+4x+(0≤x≤4),=﹣(x﹣2)2+有最大值,最大值为,此时E点坐标为(2,1).当x=2时,S四边形CDBF【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、一次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数的解析式;理解坐标与图形性质;灵活应用三角形的面积公式;学会运用分类讨论的思想解决数学问题.。
河南省周口市中考数学模拟试卷(一)
河南省周口市中考数学模拟试卷(一)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)如果a<0,那么下列各式中一定为负数的是()A . -aB . -(-a)-1C . 1-aD . |a|2. (2分)把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A . 富B . 强C . 文D . 民3. (2分) (2016七下·宝坻开学考) 下列各组运算中,结果为负数的是()A . ﹣(﹣3)B . (﹣3)×(﹣2)C . ﹣|﹣3|D . (﹣3)24. (2分) (2018七上·普陀期末) 下列说法中,正确的是()A . 将一个图形先向左平移3厘米,再向下平移5厘米,那么平移的距离是8厘米B . 将一个图形绕任意一点旋转360°后,能与初始图形重合C . 等边三角形至少旋转60°能与本身重合D . 面积相等的两个三角形一定关于某条直线成轴对称5. (2分)地球上的陆地面积约为149 000 000千米2 ,用科学记数法表示为()A . 149×106千米2B . 14.9×107千米2C . 1.49×108千米2D . 0.149×109千米26. (2分)(2018·泰安) 如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A .B .C .D .7. (2分)小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是()A .B .C .D .8. (2分)下列语句中,命题有()①两个钝角相等;②等式两边加上同一个数或同一个整式,所得的结果仍是等式;③今天天气很晴朗啊;④三角形的内角和是180°.A . 1个B . 2个C . 3个D . 4个9. (2分)(2017·开江模拟) A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运40千克,A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等.设B型机器人每小时搬运化工原料x千克,根据题意可列方程为()A . =B . =C . =D . =10. (2分) (2020七上·扬州期末) 身份证号码是321011************的同学的生日是()A . 5月22日B . 6月08 日C . 8月22日D . 2月24日11. (2分)(2017·临沂模拟) 如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2 ,则阴影部分图形的面积为()A . 4πB . 2πC .D .12. (2分) (2020八上·绵阳期末) 如图,在四边形 ABCD 中,∠C=70°,∠B=∠D=90°,E、F 分别是 BC、DC 上的点,当△AEF 的周长最小时,∠EAF 的度数为()A . 30°B . 40°C . 50°D . 70°二、填空题 (共4题;共4分)13. (1分)(2018·湖州模拟) 分解因式:x2﹣16=________.14. (1分)在一次青年歌手大赛上,七位评委为某歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0,去掉一个最高分和一个最低分后,所剩数据的平均数为________ .15. (1分) (2015八下·安陆期中) 菱形ABCD中,对角线AC、BD交于点O,若AC=6cm,BD=8cm,则菱形ABCD 的周长为________ cm,面积为________ cm2 .16. (1分)如图,点P在双曲线y=上,以P为圆心的⊙P与两坐标轴都相切,E为y轴负半轴上的一点,PF⊥PE交x轴于点F,则OF﹣OE的值是________ .三、解答题 (共7题;共75分)17. (5分)(2017九上·浙江月考) 计算下列各题:(1)计算: (-2)0+|2﹣|+2sin60° ;(2)解分式方程:=-218. (5分) (2019八下·平顶山期中) 解不等式组,并把解集在数轴上表示出来.19. (20分)某中学开展“绿化家乡、植树造林”活动,为了解全校植树情况,对该校甲、乙、丙、丁四个班级植树情况进行了调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:(1)这四个班共植树多少棵?(2)请你在答题卡上不全两幅统计图;(3)求图1中“甲”班级所对应的扇形圆心角的度数;(4)若四个班级植树的平均成活率是95%,全校共植树2000棵,请你估计全校种植的树中成活的树有多少棵?20. (5分) (2019九上·西城期中) 2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的点和东人工岛上的点间的距离约为5.6千米,点是与西人工岛相连的大桥上的一点,,,在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达点时观测两个人工岛,分别测得,与观光船航向的夹角,,求此时观光船到大桥段的距离的长(参考数据:,,,,,).21. (10分)为了丰富学生的体育生活,学校准备购进一些篮球和足球,已知用900元购买篮球的个数比购买足球的个数少1个,足球的单价为篮球单价的0.9倍.(1)求篮球、足球的单价分别为多少元?(2)如果计划用5000元购买篮球、足球共52个,那么至少要购买多少个足球?22. (15分) (2016九上·门头沟期末) 如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.23. (15分)(2018·莱芜) 如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E.(1)求抛物线的函数表达式;(2)如图1,求线段DE长度的最大值;(3)如图2,设AB的中点为F,连接CD,CF,是否存在点D,使得△CDE中有一个角与∠CFO相等?若存在,求点D的横坐标;若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共75分)17-1、17-2、18-1、19-1、20-1、21-1、21-2、22-1、22-2、23-1、23-2、。
2018年4月河南省周口市中考数学模拟试卷((含答案))
2018年河南省周口市中考数学模拟试卷(4月份)一.选择题(共15小题,满分45分)1.﹣3的倒数是()A.3B.C.﹣D.﹣32.民族图案是数学文化中的一块瑰宝.下列图案中,既是中心对称图形也是轴对称图形的是()A.B.C.D.3.下列计算,正确的是()A.B.C.D.4.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为()A.0.21×107B.2.1×106C.21×105D.2.1×1075.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°6.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)7.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.48.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.50 4.60 4.65 4.70 4.75 4.80人数232341则这些运动员成绩的中位数、众数分别是()A.4.65、4.70B.4.65、4.75C.4.70、4.75D.4.70、4.709.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.16B.12C.24D.1810.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为()A.﹣2B.﹣1C.1D.211.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是()A.(﹣2,4),(1,3)B.(﹣2,4),(2,3)C.(﹣3,4),(1,4)D.(﹣3,4),(1,3)12.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的长是()A.3B.C.D.13.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线()A.x=1B.x=C.x=﹣1D.x=﹣14.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A.()B.(2,﹣1)C.(1,)D.(﹣1.,)15.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC是该抛物线的内接格点三角形,AB=3,且点A,B,C的横坐标x A,x B,x C满足x A<x C<x B,那么符合上述条件的抛物线条数是()A .7B .8C .14D .16二.填空题(共6小题,满分18分,每小题3分)16.比较大小:3(填“>”、“<”或“=”).17.若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为.18.如图,在△ABC 中,DM 垂直平分AC ,交BC 于点D ,连接AD ,若∠C=28°,AB=BD ,则∠B 的度数为度.19.如图,△ABC 是⊙O 的内接三角形,AD 是⊙O 的直径,∠ABC=50°,则∠CAD=.20.双曲线y 1=、y 2=在第一象限的图象如图,过y 2上的任意一点A ,作x 轴的平行线交y 1于B ,交y 轴于C ,过A 作x 轴的垂线交y 1于D ,交x 轴于E ,连接BD 、CE ,则=.21.如图,边长一定的正方形ABCD ,Q 为CD 上一个动点,AQ 交BD 于点M ,过M 作MN ⊥AQ 交BC 于点N ,作NP ⊥BD 于点P ,连接NQ ,下列结论:①AM=MN ;②MP=BD ;③BN+DQ=NQ ;④为定值.其中一定成立的是.三.解答题(共8小题,满分48分)22.(7分)(1)计算:(a﹣b)2﹣a(a﹣2b);(2)解方程:=.23.如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.求证:FC∥AB.24.(4分)如图所示,AB是⊙O的一条弦,DB切⊙O于点B,过点D作DC⊥OA于点C,DC与AB相交于点E.(1)求证:DB=DE;(2)若∠BDE=70°,求∠AOB的大小.25.(8分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:时间(分钟)里程数(公里)车费(元)小明8812小刚121016(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?26.(8分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是人;(2)图2中α是度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.27.(9分)如图1,▱OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=(x >0)的图象经过点B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,将线段OA延长交y=(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,①求直线BD的解析式;②求线段ED的长度.28.(9分)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分∠ABE;(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.29.如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E (0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E,A′两点.(1)填空:∠AOB=°,用m表示点A′的坐标:A′(,);(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且=时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.参考答案与试题解析一.选择题1.﹣3的倒数是()A.3B.C.﹣D.﹣3【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.2.民族图案是数学文化中的一块瑰宝.下列图案中,既是中心对称图形也是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选:D.3.下列计算,正确的是()A.B.C.D.【解答】解:∵=2,∴选项A不正确;∵=2,∴选项B正确;∵3﹣=2,∴选项C不正确;∵+=3≠,∴选项D不正确.故选:B.4.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为()A.0.21×107B.2.1×106C.21×105D.2.1×107【解答】解:210万=2.1×106,故选:B.5.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°【解答】解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠F EC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选:B.6.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.7.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.4【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.8.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.50 4.60 4.65 4.70 4.75 4.80人数232341则这些运动员成绩的中位数、众数分别是()A.4.65、4.70B.4.65、4.75C.4.70、4.75D.4.70、4.70【解答】解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选:C.9.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.16B.12C.24D.18【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=BC=4,∴以AC为边长的正方形ACEF的周长为:4AC=16.故选:A.10.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为()A.﹣2B.﹣1C.1D.2【解答】解:a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.故选:C.11.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是()A.(﹣2,4),(1,3)B.(﹣2,4),(2,3)C.(﹣3,4),(1,4)D.(﹣3,4),(1,3)【解答】解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°,∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD,在△AOE和△OCD中,,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD,∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3),同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4);故选:A.12.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的长是()A.3B.C.D.【解答】解:∵cosA=,∴AB=,故选:A.13.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线()A.x=1B.x=C.x=﹣1D.x=﹣【解答】解:∵A在反比例函数图象上,∴可设A点坐标为(a,),∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣),又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得,解得或,∴二次函数对称轴为x=﹣.故选:D.14.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A.()B.(2,﹣1)C.(1,)D.(﹣1.,)【解答】解:作AD⊥y轴于D,作CE⊥y轴于E,如图所示:则∠ADO=∠OEC=90°,∴∠1+∠2=90°,∵点A的坐标为(1,),∴AD=1,OD=,∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠2,在△OCE和△AOD中,,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴点C的坐标为(,﹣1).故选:A.15.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC是该抛物线的内接格点三角形,AB=3,且点A,B,C的横坐标x A,x B,x C满足x A<x C<x B,那么符合上述条件的抛物线条数是()A.7B.8C.14D.16【解答】解:如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=﹣x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=14.故选:C.二.填空题(共6小题,满分18分,每小题3分)16.比较大小:3<(填“>”、“<”或“=”).【解答】解:32=9,=10,∴3<.17.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为﹣1.【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,∴△=b2﹣4ac=0,即:22﹣4(﹣m)=0,解得:m=﹣1,故选答案为﹣1.18.如图,在△ABC中,DM垂直平分AC,交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数为68度.【解答】解:∵DM垂直平分AC,∴AD=CD,∴∠DAC=∠C=28°,∴∠ADB=∠C+∠DAC=28°+28°=56°,∵AB=BD,∴∠ADB=∠BAD=56°,在△ABD中,∠B=180°﹣∠BAD﹣∠ADB=180°﹣56°﹣56°=68°.故答案为:68.19.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=40°.【解答】解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠ABC=50°,∴∠CAD=90°﹣∠D=40°.故答案为:40°.20.双曲线y 1=、y 2=在第一象限的图象如图,过y 2上的任意一点A ,作x 轴的平行线交y 1于B ,交y 轴于C ,过A 作x 轴的垂线交y 1于D ,交x 轴于E ,连接BD 、CE ,则=.【解答】解:设A 点的横坐标为a ,把x=a 代入y=得y=,则点A 的坐标为(a ,),∵AC ⊥y 轴,AE ⊥x 轴,∴C 点坐标为(0,),B 点的纵坐标为;E 点坐标为(a ,0),D 点的横坐标为a ,∵B 点、D 点在y=上,∴当y=时,x=;当x=a ,y=,∴B 点坐标为(,),D 点坐标为(a ,),∴AB=a ﹣=,AC=a ,AD=﹣=,AE=,∴AB=AC ,AD=AE ,而∠BAD=∠CAD ,∴△BAD ∽△CAE ,∴==.故答案为.21.如图,边长一定的正方形ABCD ,Q 为CD 上一个动点,AQ 交BD 于点M ,过M 作MN ⊥AQ 交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=BD;③BN+DQ=NQ;④为定值.其中一定成立的是①②③④.【解答】解:如图1所示:作AU⊥NQ于U,连接AN,AC,∵∠AMN=∠ABC=90°,∴A,B,N,M四点共圆,∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,∴∠ANM=∠NAM=45°,∴AM=MN,故①正确.由同角的余角相等知,∠HAM=∠PMN,在△AHM和△MPN中,,∴△AHM≌△MPN(AAS),∴MP=AH=AC=BD,故②正确,∵∠BAN+∠QAD=∠NAQ=45°,∴△ADQ绕点A顺时针旋转90度至△ABR,使AD和AB重合,连接AN,则∠RAQ=90°,△ABR≌△ADQ,∴AR=AQ,∠RAN=90°﹣45°=45°=∠NAM,在△△AQN和△ANR中,,∴△AQN≌△ANR(SAS),∴NR=NQ,则BN=NU,DQ=UQ,∴点U在NQ上,有BN+DQ=QU+UN=NQ,故③正确.如图2所示,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,∴四边形SMWB是正方形,∴MS=MW=BS=BW,∠SMW=90°,∴∠AMS=∠NMW,在△AMS和△NMW中,,∴△AMS≌△NMW(ASA),∴AS=NW,∴AB+BN=SB+BW=2BW,∵BW:BM=1:,∴==,故④正确.故答案为:①②③④.三.解答题(共8小题,满分48分)22.(7分)(1)计算:(a﹣b)2﹣a(a﹣2b);(2)解方程:=.【解答】(1)解:原式=a2﹣2ab+b2﹣a2+2ab=b2.(2)解:两边乘x(x﹣3)得到2x=3(x﹣3)解得x=9经检验,x=9为原方程的根,所以原方程的解为x=9.23.如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.求证:FC∥AB.【解答】证明:∵E是AC的中点,∴AE=CE,又EF=DE,∠AED=∠FEC,在△ADE与△CFE中,,∴△ADE≌△CFE(SAS).∴∠EAD=∠ECF.∴FC∥AB.24.(4分)如图所示,AB是⊙O的一条弦,DB切⊙O于点B,过点D作DC⊥OA于点C,DC与AB相交于点E.(1)求证:DB=DE;(2)若∠BDE=70°,求∠AOB的大小.【解答】解(1)证明:∵DC⊥OA,∴∠OAB+∠CEA=90°,∵BD为切线,∴OB⊥BD,∴∠OBA+∠ABD=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠CEA=∠ABD,∵∠CEA=∠BED,∴∠BED=∠ABD,∴DE=DB.(2)∵DE=DB,∠BDE=70°,∴∠BED=∠ABD=55°,∵BD为切线,∴OB⊥BD,∴∠OBA=35°,∵OA=OB,∴∠OBA=180°﹣2×35°=110°.25.(8分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:时间(分钟)里程数(公里)车费(元)小明8812小刚121016(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?【解答】解:(1)根据题意得:,解得:.(2)11×1+14×=18(元).答:小华的打车总费用是18元.26.(8分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是40人;(2)图2中α是54度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有330人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.【解答】解:(1)∵自主学习的时间是1小时的有12人,占30%,∴12÷30%=40,故答案为:40;…(2分)(2)×360°=54°,故答案为:54;40×35%=14;补充图形如图:故答案为:54;(3)600×=330;…(2分)故答案为:330;(4)画树状图得:∵共有12种等可能的结果,选中小亮A的有6种,∴P(A)=.…(2分)27.(9分)如图1,▱OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=(x >0)的图象经过点B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,将线段OA延长交y=(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,①求直线BD的解析式;②求线段ED的长度.【解答】解:(1)如图1,过点A作AP⊥x轴于点P,则AP=1,OP=2.又∵四边形OABC是平行四边形,∴AB=OC=3,∴B(2,4).∵反比例函数y=(x>0)的图象经过的B,∴4=.∴k=8.∴反比例函数的关系式为y=.(2)①点A(2,1),∴直线OA的解析式为y=x(Ⅰ).∵点D在反比例y=(Ⅱ)函数图象上,联立(Ⅰ)(Ⅱ)解得,或∵点D在第一象限,∴D(4,2).由B(2,4),点D(4,2),∴直线BD的解析式为y=﹣x+6.②如图2,把y=0代入y=﹣x+6,解得x=6.∴E(6,0),过点D作DH⊥x轴于H,∵D(4,2),∴DH=2,HE=6﹣4=2,由勾股定理可得:ED==2.28.(9分)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分∠ABE;(2)若BD=1,连结D N,当四边形DNBC为平行四边形时,求线段BC的长;(3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵M为BC的中点,∴AM⊥BC,在Rt△ABM中,∠MAB+∠ABC=90°,在Rt△CBE中,∠EBC+∠ACB=90°,∴∠MAB=∠EBC,又∵MB=MN,∴△MBN为等腰直角三角形,∴∠MNB=∠MBN=45°,∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,∴∠NBE=∠ABN,即BN平分∠ABE;(2)设BM=CM=MN=a,∵四边形DNBC是平行四边形,∴DN=BC=2a,在△ABN和△DBN中,∵,∴△ABN≌△DBN(SAS),∴AN=DN=2a,在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,解得:a=±(负值舍去),∴BC=2a=;(3)∵F是AB的中点,∴在Rt△MAB中,MF=AF=BF,∴∠MAB=∠FMN,又∵∠MAB=∠CBD,∴∠FMN=∠CBD,∵==,∴==,∴△MFN∽△BDC.29.如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E (0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E,A′两点.(1)填空:∠AOB=45°,用m表示点A′的坐标:A′(m,﹣m);(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且=时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.【解答】解:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m,即A′(m,﹣m);故答案为:45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵=,∴P(2m,m),∵A′为抛物线的顶点,∴设抛物线解析式为y=a(x﹣m)2﹣m,∵抛物线过点E(0,n),∴n=a(0﹣m)2﹣m,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①当点E与点O重合时,E(0,0),∵抛物线y=ax2+bx+n过点E,A′,∴,整理得:am+b=﹣1,即b=﹣1﹣am;②∵抛物线与四边形ABCD有公共点,∴抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,∴a(3m)2﹣(1+am)•3m=0,整理得:am=,即抛物线解析式为y=x2﹣x,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;若抛物线过点A(2m,2m),则a(2m)2﹣(1+am)•2m=2m,解得:am=2,∵m=2,∴a=1,则抛物线与四边形ABCD有公共点时a的范围为≤a≤1.。
河南省周口市西华县2017年中招第一次模拟考试数学试题含答案
2017年西华县普通高中招生第一次模拟考试试题卷数 学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟. 2.请用黑色水笔把答案直接写在答题卡上,写在试题卷上的答案无效.一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母 涂在答题卡上.1.12-的倒数是 A .12- B .12 C . 2- D .22.估计14的值在哪两个数之间 A .1与2 B . 2 与3 C .3与4 D .4与5 3.有10位同学参加数学竞赛,成绩如下表:则上列数据中的中位数是 A . 80 B . 82.5 C . 85 D . 87.54.我国计划在2020年左右发射火星探测卫星,据科学研究测量,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法表示为 A .5.5×106 B . 5.5×107 C .55×107 D .0.55×108 5.如图,直线m ∥n ,△ABC 的顶点B ,C 分别在n ,m 上,且∠C = 90°,若∠1= 40° ,则∠2的度数为A . 130°B .120°C .110°D .100°6.如图所示是某个几何体的三视图,该几何体是 A . 圆锥 B .三棱锥 C .圆柱 D .三棱柱432190858075分数人数第5题图C BAm n21第6题图7.关于x 的一元二次方程22(21)10x m x m +++-=有两个不相等的实数根,则m 的取值范围是 A .m ≥ 54-B .m ≤ 54-C .m < 54-D .m > 54-8.在矩形ABCD 中,AD = 2AB = 4,E 为AD 的中点,一块 足够大的三角板的直角顶点与E 重合,将三角板绕点E 旋转,三角板的两直角边分别交AB 、BC (或它们的延长线)于点M 、N ,设∠AEM = α(0°<α < 90°),给出四个结论: ①AM =CN ②∠AME =∠BNE ③BN -AM =2 ④上述结论中正确的个数是 A .1 B .2 C .3 D .4 二、填空题( 每小题3分,共21分) 9.化简:231-的结果是 . 10.化简:6(7+1)(72+1)(74+1)(78+1)(716+1)+1= .11.有一个正五边形和一个正方形边长相等,如图放置,则∠1= .12.二次函数y =x 2-2x +3的图象向左平移一个单位,再向上平移两个单位后,所得二次函数的解析式 为 . 13.如图,小强和小华共同站在路灯下,小强的身高EF =1.8m ,小华的身高 MN =1.5m ,他们的影子恰巧等于自 己的身高,即BF =1.8m ,CN =1.5m ,且两人相距4.7m ,则路灯AD 的高度是 .14.如图,在△ABC 中,AB =AC ,∠A =36°,且BC =2,则AB = . 15.如图,在平面直角坐标系中,函数y =2x 和y =- x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2 作x 轴的垂线交l 1于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…,依次进行下去,第8题图NM ED ABCα第11题图G FABCD E1第13题图AB CDEFMN则点A 2017的坐标为 .三、解答题:(本大题共8个小题,满分75分) 16.(8分)先化简,再求值:11()11x x --+÷221x x +-,其中x =2sin30°+22cos45°.17.(9分)如图,在矩形OABC 中,OA =3,OC =2,F 是AB 上的一个动点(F 不A 、B 与重合),过点 F 的反比例函数y =kx的图象与边BC 交于点E . (1)当F 为AB 的中点时,求该函数的解析式; (2)当k 为何值时,△EF A 的面积最大,最大面 积是多少?第14题图ABC第15题图O A 4A 3A 2A 1l 2l 1yx 第17题图y xOF ECBA18.(9分)在甲、乙两名同学中选拔一人参加“中国诗词大会”,在相同的测试条件下,两人5次测试成绩(单位:分)如下: 甲:79,86,82,85,83 乙:88,79,90,81,72回答下列问题:(1)甲成绩的平均数是 ,乙成绩的平均数是 ;(2)经计算可知:S 2甲=6,S 2乙=42,你认为选谁参加竞赛比较合适,说明理由;(3)如果从两个人5次的成绩中各随机抽取一次进行分析,求抽到的两个人的成绩都大于80分的概率.19.(9分)如图,AB 为⊙O 的直径,F 为弦AC 的中点,连接OF 并延长交弧AC 于点D ,过点D作⊙O 的切线,交BA 的延长线于点E . (1)求证:AC ∥DE ;(2)连接CD ,若OA =AE =2时, 求出四边形ACDE 的面积.第19题图DOABC EF20.(9分)南沙群岛是我国的固有领土,现在我南海渔民要在南沙群岛某海岛附近进行捕鱼作业,当渔船航行至B 处时,测得该岛位于正北方向20(1+3)海里的C 处, 为防止某国的巡警干扰,就请求我A 处的鱼监船前往C 处护航,已知C 位于A 处的北偏东45°方向上,A 位于 B 的北偏西30°的方向上,求A 、C 之间的距离.21.(10分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品商店购买直握球拍和横握球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直握球拍和15副横握球拍共花费9000元;购买10副横握球拍比购买5副直握球拍多花费1600元. (1)求两种球拍每副多少元?(2)若学校购买两种球拍共40副,且直握球拍数量不多于横握球拍的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.第20题图ABC北北22.(10分)如图(1),在正方形ABCD 中,点E 、F 分别是边BC ,AB 上的点,且CE =BF ,连接DE ,过点E 作EG ⊥DE ,使EG =DE ,连接FG ,FC .(1)请判断:FG 与CE 的数量关系是 ,位置关系是 ;(2)如图(2),若点E ,F 分别是CB ,BA 的延长线上的点,其它条件不变,(1)中的结论是否仍然成立?请作出判断并给出证明;(3)如图(3)若点E ,F 分别是BC ,AB 延长线上的点,其它条件不变,(1)中的结论是否仍然成立?请直接写出你的判断.(3)(2)(1)第22题图GGG A BC DEFABCDE FABC DEF23.(11分)如图,在平面直角坐标系中,直线y =-2x +10与x 轴,y 轴相交于A ,B两点,点C 的坐标为(8,4),连接AC ,BC .(1)求过O ,A ,C 三点的抛物线的解析式,并判断△ABC 的形状;(2)动点P 从O 点出发,沿OB 以每秒两个单位长度的速度向点B 运动,同时动点Q 从点B 出发,沿BC 以每秒一个单位长度的速度向点C 运动,规定其中一个 动点到达端点时另一个动点也随之停止运动,设运动时间为t 秒,当t 为何值时, P A =QA ?;(3)在抛物线的对称轴上,是否存在点M ,使A ,B ,M 为顶点的三角形是等腰三角形?若存在,直接写出M 点的坐标;若不存在,请说明理由.备用图第23题图A OBCxy y x C BOA2017九年级数学第一次模拟考试参考答案及评分标准一、选择题(每题3分 共24分) 题号 1 2 3 4 5 6 7 8 答案 CCBBADDC二、填空题9.31+ 10.327 11.18° 12.y =x 2+4 13.4m 14.51+15.(10082,10092) 三、解答题16.解:原式=2(1)(1)1x x x +---÷221x x +- ……………………3分=221x -×212x x -+ =22x + ……………………5分 ∵x =2sin30°+22cos45° =2×12+22×22=3, ……………………7分 ∴原式=22325=+. ……………………8分 17.解:(1)∵四边形OABC 是矩形,∴AB =OC =2,又∵F 是AB 的中点, ∴AF =1,∴F (3,1),∴k =3×1=3,∴反比例函数的解析式为y =3x……………………4分 (2)解:∵E (2k ,2),F (3,3k),∴S △EF A =12AF ×BE =12×3k ×(3-2k )=-112k 2+12k=-112(k -3)2+34,∴当k =3时,△EF A 的面积最大,最大面积是34. ……………………9分第17题图y xOF E C B A18.解:(1)甲成绩的平均数是 83 ,乙成绩的平均数是 82 ; ……………………2分(2)因为甲的平均成绩大于乙的平均成绩,且甲的方差小于乙的方差,说明甲的成绩更稳定,因此,选甲参加竞赛更合适; ……………………4分 (3)列表如下:设抽到的两个人的成绩都大于80分的概率为P 则P =1225……………………9分 19.证明:(1)∵F 为弦AC (非直径)的中点,∴AF =CF ,∴OD ⊥AC ,∵DE 切⊙O 于点D ,∴OD ⊥DE ,∴AC ∥DE . ……………………3分 (2)∵AC ∥DE ,且OA =AE ,∴F 为OD 的中点,即OF =FD ,又∵AF =CF , ∠AFO =∠CFD ,∴△AFO ≌△CFD (SAS ),∴S △AFO =S △CFD ,∴S 四边形ACD E =S △ODE 在Rt △ODE 中,OD =OA =AE =2,∴OE =4,∴DE =222242OE OD -=-=23∴S 四边形ACDE =S △ODE =12×OD ×OE =12×2×23=23. ……………………9分20.解:作AD ⊥BC 于D ,设AD =x ,依题意可知∠ABC =30°,∠ACB =45°,在Rt △ADC 中,CD =AD =x ,在Rt △ADB 中第19题图DOA BCEF D第20题图ABC北北8181818181909090909079888888888883838383838585858585828282828286868686867272727279797979797979797972( ,) ( ,) ( ,) ( ,) ( , )72819079888385828679乙甲∵ADBD=tan30°,∴BD =3AD =3x ,∵BC =CD +BD =x +3x =20(1+3), 即x +3x =20(1+3),解之得x =20,∴AC =2AD =202.∴A 、C 之间的距离为202海里. ……………………9分21.解:(1)设直握球拍每副x 元,横握球拍每副y 元,依题意可得:20(102)15(102)90005(102)160010(102)x y x y ì+?+?ïïíï+?=+?ïî……………………3分解得:220260x y ì=ïïíï=ïî……………………5分 ∴直握球拍每副220元,横握球拍每副260元;(2)设购买直握球拍m 副,则购买横握球拍(40-m )副 ,则,m ≤3(40-m ),解之得:m ≤30 ……………………7分 设购买两种球拍的总费用为W 元,则W =(220+2×10)m +(260+2×10)(40-m ) =-40 m +11200∵-40<0,∴W 随 m 的增大而减小,∴ m 取最大值30时,W 最小,此时40-m =10 即学校购买直握球拍30副,购买横握球拍10副时,费用最少, W =-40 m +11200=-40×30+11200=10000,∴最少费用为10000元. ……………………10分 22.(1)FG 与CE 的数量关系是FG =CE ,位置关系是FG ∥CE ; ……………………2分(2)(1)中结论仍然成立,证明:CE =BF ,∠ABC =∠ECD =90°,BC =CD ,∴△ECD ≌△FBC (SAS ),∴ED =FC ,∠DEC =∠CFB ,……………………5分 又∵EG =DE ,∴EG =FC ,又∵AB ∥CD ,∴∠CFB =∠FCD ,∴∠DEC =∠FCD ,∵∠DEC +∠EDC =90°, ∠FCD +∠EDC =90°,即∠CMD =90°,即ED ⊥FC ,又EG ⊥DE ,∴EG ∥FC ,又EG =FC ,∴四边形CEGF 为平行四边形,∴FG =CE ,FG ∥CE ; ……………………9分 (3)(1)中结论仍然成立. ……………………10分23.解:(1)在y =-2x +10中,当x =0时,y =10,y =0时,x =5,∴A (5,0),B (0,10),∵抛物线经过O (0,0),故设过O ,A ,C 三点的抛物线的解析式为y =ax 2+bx (a ≠ 0),则25506484a b a b ì+=ïïíï+=ïî,解得:1656a b ìïï=ïïíïï=-ïïïî∴过O ,A ,C 三点的抛物线的解析式为y =16x 2-56x ,……………………2分 ∵BA 2=102+52=125,BC 2=82+62=100,AC 2=32+42=25,∴AC 2+BC 2=BA 2,即△ABC 为直角三角形,且∠ACB =90°;……………………3分(2)作CE ⊥y 轴于E 点,QD ⊥y 轴于D 点,QF ⊥x 轴于点F ,△BEC 中,BE ︰EC ︰BC =6︰8︰10=3︰4︰5,∵CE ⊥y 轴,QD ⊥y 轴, ∴QD ∥ CE ,∴△BDQ ∽△BEC , ∴BD ︰DQ ︰BQ =BE ︰EC ︰BC =3︰4︰5,∵BQ =t ,∴BD =35t ,DQ =45t , ∴QA 2=QF 2+F A 2=(10-35t )2+(5-45t )2=t 2-20t +125P A 2=(2t )2+52=4t 2+25,若P A =QA ,则P A 2=QA 2,∴4t 2+25=t 2-20t +125,∴3t 2+20t -100=0,解之得:t 1=103,t 2=-10,∵0≤t ≤5,∴t =103P F E D Q第23题图y xCB OA M(3)(2)(1)第22题图GGGAB CDEFABCDE F ABC DEF∴当t=103秒时,P A=QA;……………………7分(3)存在满足条件的点M.M1(52,5192),M2(52,-5192),M3(52,205192+),M4(52,205192-).……………………11分。
2017年河南省中招数学试题与答案(1)
=9xy
当 x= 2 +1,y= 2 -1 时,
原式 =9×( 2 +1)×( 2 -1 )=9 17. ( 9 分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部 分学生,根据调查的结果,绘制出了如下两个尚步完整的统计图表:
.
.
..
.
调查结果统计表
.
.
调查结果扇形统计图
B C 32%
值。
A
D
ME
P
GU
N 图1
CB
A E
M
D P
N 图2
解:( 1) PM=PN,PM⊥PN,
(2)( 2)△ PMN是等腰直角三角形 ,
理由如下: ∵△ ABC和△ ADE都是等腰直角三角形, ∴AB=AC,AD=AE∠, BAC=∠ DAE=900,
∴∠ BAD+∠DAC=∠ DAC+∠ CAE,即∠ BAD=∠ DAE,
( 1)填空:一次函数解析式为
,反比例函数解析式
。
( 2)点 P 是线段 AB上一点,过点 P 作 PD⊥ x 轴于点 D.连接 OP,若△ POD的面
积为 S,求 S 的取值围。
解:( 1) y=-x+4 , y= 3 x
(2)( 2)由( 1)得 3m=3,∴ m=1,则 A( 1, 3)
设 P( a, -a+4 )( 1≤ a≤ 3)
3
3
3
3
二、填空题(每小题 3 分,共 15 分)
11. 计算: 23- 4 = 6
B/ O/
GU O 第10题 B
12. 不等式组
x20 x 1< x 的解集是
2
-1 ≤x≤2
2017年河南省中考数学仿真试卷(一)有答案
2017年河南省普通高中招生考试数学仿真试卷(一)注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效。
一、选择题(每小题3分,共24分)1. 一个数的绝对值等于3,这个数是【 】A .3B .-3C .±3D .132. 如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为【 】 A .20° B .25° C .30° D .35°m l 21BAE FDB AQPFE DCBA第2题图 第6题图 第8题图 3. 下列运算正确的是【 】A .326a a a ⋅= B .3226()ab a b = C .222()a b a b -=- D .532a a -=4. 某校九年级(1)班学生在男子50米跑步测试中,第一小组8名同学的测试成绩(单位:秒)如下:7.0,7.2,7.5,7.0,7.4,7.5,7.0,7.8,则下列说法正确的是【 】 A .这组数据的中位数是7.4 B .这组数据的众数是7.5 C .这组数据的平均数是7.3 D .这组数据的极差是0.55. 中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为【 】A .B .C .D .6. 如图,在等腰Rt △ABC 中,∠BAC =90°,D 是AC 的中点,CE ⊥BD 于点E ,交BA 的延长线于点F .若BF =12,则△FBC 的面积为【 】 A .40 B .46 C .48 D .507. 如图所示,在平面直角坐标系中,直线OM 是正比例函数y =的图象,点A 的坐标为(1,0),在直线OM 上找一点N ,使△ONA 是等腰三角形,则符合条件的点N 有【 】 A .2个 B .3个 C .4个 D .5个8. 如图,在直角梯形ABCD 中,AD ∥BC ,∠BCD =90°,BC =CD =2AD ,E ,F 分别为BC ,CD 边的中点,连接BF ,DE 交于点P ,连接CP 并延长交AB 于点Q ,连接AF .则下列结论不正确的是【 】 A .CP 平分∠BCD B .四边形ABED 为平行四边形 C .CQ 将直角梯形分为面积相等的两部分 D .△ABF 为等腰三角形二、填空题(每小题3分,共21分)9. 分解因式:24x -=_____________.10. 若圆锥的底面半径为2cm ,母线长为5cm ,则此圆锥的表面积为__________.11. 如果m 是从0,1,2,3四个数中任取的一个数,n 是从0,1,2三个数中任取的一个数,那么关于x 的一元二次方程x 2-2mx +n 2=0有实数根的概率为________.12. 某一型号飞机着陆后滑行的距离y (单位:m )与滑行时间x (单位:s )之间的函数关系式为21.560y x x =-+,该型号飞机着陆后滑行__________m 才能停下来.13. 如图,直线y =-x+6与x 轴、y 轴分别交于A ,B 两点,P 是反比例函数4y x=(x >0)图象上位于直线下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F .则AF BE ⋅=__________.EFA B CD第14题图 14. 如图,在□ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F 处.若△FDE 的周长为8cm ,△FCB 的周长为20cm ,则FC 的长为________. 15. 如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P ,O 两点的二次函数y 1和过P ,A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B ,C ,射线OB 与AC 相交于点D .当OD =AD =3时,这两个二次函数的最大值之和为_________.三、解答题(本大题共8小题,满分75分)16. (8分)先化简,再求值:22444442x x x x x x x ++--÷++-,其中x =2sin60°-212-⎛⎫⎪⎝⎭. 17. (9分)某校积极开展每天锻炼1小时活动,老师对本校八年级学生进行一分钟跳绳测试,并对跳绳次数进行统计,绘制了八(1)班一分钟跳绳次数的频数分布直方图和八年级其余班级一分钟跳绳次数的扇形统计图.已知在图1中,组中值为190次一组的频率为0.12.(说明:组中值为190次的组别为180≤次数<200) 请结合统计图完成下列问题:(1)八(1)班的人数是______,组中值为110次一组的频率为______; (2)请把频数分布直方图补充完整;墙图1八(1)班一分钟跳绳次数的频数分布直方图跳绳次数180≤次数<200120≤次数<180图2八年级其余班级一分钟跳绳 次数的扇形统计图100≤次数<120D BA 45°30°(3)如果一分钟跳绳次数不低于120次的同学视为达标,八年级同学一分钟跳绳的达标率不低于90%,那么八年级至少有多少人?18. (9分)如图,在梯形ABCD 中,AD ∥BC ,E 是BC 边上一点,且CE=8,BC=12,CD=C=30°,∠B=60°.点P 是BC 边上一动点(包括B ,C 两点),设PB 的长为x . (1)当x=_________时,以P ,A ,D ,E 为顶点的 四边形是直角梯形.(2)当x=_________时,以P ,A ,D ,E 为顶点的 四边形是平行四边形.(3)当点P 在BC 边上运动时,以P ,A ,D ,E 为 顶点的四边形能否为菱形?请说明理由.19. (9分)如图,在平面直角坐标系中有Rt △ABC ,已知∠CAB =90°,AB =AC ,A (-2,0),B (0,1).(1)求点C 的坐标;(2)将△ABC 沿x 轴正方向平移,在第一象限 内B ,C 两点的对应点B ′,C ′恰好落在某反比 例函数图象上,求该反比例函数的解析式; (3)若把上一问中的反比例函数记为1y ,点B ′, C ′所在的直线记为2y ,请直接写出在第一象限内当12y y <时x 的取值范围. 20. (9滑滑板AB 的长为4米,点D ,B ,C 在同一水平地面上. (1)改善后滑滑板会加长多少米?(2)若滑滑板的正前方有3米长的空地就能保证安全, 已知原滑滑板的前方有5米长的空地,则这样改造是否可行?请说明理由. ≈1.414≈1.732≈2.449, 以上结果均保留到小数点后两位) 21. (10分)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款; (2)设该家庭购买商品房的人均面积为x 平方米,缴纳房款y 万元,请求出y 关于x 的函数关系式; (3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y 万元,且57<y ≤60时,求m 的取值范围.22. (10分)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD 的顶点A 重合,将此三角板绕点A 旋转,使三角板中该锐角的两条边分别交正方形的两边BC ,CD 于点E ,F ,连接EF . (1)猜想BE ,EF ,DF 三条线段之间的数量关系,并证明你的猜想.(2)在图1中,过点A 作AM ⊥EF 于点M ,请直接写出AM 与AB 的数量关系.(3)如图2,将Rt △ABC 沿斜边AC 翻折得到Rt △ADC ,E ,F 分别是BC ,CD 边上的点,∠EAF =12∠BAD ,连接EF ,过点A 作AM ⊥EF 于点M ,试猜想AM 与AB 之间的数量关系,并证明你的猜想.FE B CD A MFB DA图1 图223.(11分)如图,抛物线y =ax 2+bx +c 的开口向下,与x 轴交于点A (-3,0)和点B (1,0),与y 轴交于点C ,顶点为D .(1)求顶点D 的坐标(用含a 的代数式表示). (2)若△ACD 的面积为3. ①求抛物线的解析式;②将抛物线向右平移,使得平移后的抛物线与原抛物线交于点P ,且∠PAB =∠DAC ,求平移后抛物线的解析式.2017年河南省普通高中招生考试数学仿真试卷(一)答题卡一、选择题(每小题3分,共24分)1.[A ] [B ] [C ] [D ] 3.[A ] [B ] [C ] [D ] 5.[A ] [B ] [C ] [D ] 7.[A ] [B ] [C ] [D ] 2.[A ] [B ] [C ] [D ]4.[A ] [B ] [C ] [D ]6.[A ] [B ] [C ] [D ]8.[A ] [B ] [C ] [D ]参考答案一、选择题9.(2)(2)x x+-10.14π cm²11.21112.600 13.814.615三、解答题16.原式24x=-+,当x=2sin60°-212-⎛⎫⎪⎝⎭4=时,原式=.17.(1)50,0.16;(2)组中值为130次一组的频数为12人,图形略;(3)350.18.(1)2或6;(2)0或8;(3)当BP=0或8时,以P,A,D,E为顶点的四边形为菱形.19.(1)C(3 2)-,;(2)6yx=;(3)36x<<.20.(1)1.66米;(2)不可行,理由略.21.(1)42;(2)()()()()0.90301.5183045602.1180.6≤≤≤≤x xy x x m mx m x m⎧⎪=-<<⎨⎪-->⎩(3)4550≤m<.22.(1)EF=BE+DF,证明略;(2)AM=AB;(3)AM=AB,证明略.23.(1)点D的坐标为()14a--,;(2)①223y x x=--+;②平移后抛物线的解析式为2743y x⎛⎫=--+⎪⎝⎭或21143y x⎛⎫=--+⎪⎝⎭.。
2017年河南省中考数学仿真试卷1含答案解析
2017年河南省中考数学仿真试卷(1)一、选择题(每小题3分,共24分)1.一个数的绝对值等于3,这个数是()A.3 B.﹣3 C.±3 D.2.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.35°3.下列运算正确的是()A.a3•a2=a6 B.(ab3)2=a2b6C.(a﹣b)2=a2﹣b2 D.5a﹣3a=24.某校九年级(一)班学生在男子50米跑测试中,第一小组8名同学的测试成绩如下(单位:秒):7.0,7.2,7.5,7.0,7.4,7.5,7.0,7.8,则下列说法正确的是()A.这组数据的中位数是7.4 B.这组数据的众数是7.5C.这组数据的平均数是7.3 D.这组数据极差的是0.55.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A.B.C.D.6.等腰Rt△ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于F,若BF=12,则△FBC的面积为()A.40 B.46 C.48 D.507.如图所示,在平面直角坐标系中,直线OM是正比例函数y=﹣x的图象,点A的坐标为(1,0),在直线OM上找点N,使△ONA是等腰三角形,符合条件的点N的个数是()A.2个 B.3个 C.4个 D.5个8.已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF.则下列结论不正确的是()A.CP平分∠BCDB.四边形ABED为平行四边形C.CQ将直角梯形分为面积相等的两部分D.△ABF为等腰三角形二、填空题(每小题3分,共21分)9.分解因式:x2﹣4=.10.若圆锥的底面半径为2cm,母线长为5cm,则此圆锥的表面积为.11.如果m是从0,1,2,3四个数中任取的一个数,n是从0,1,2三个数中任取的一个数,那么关于x的一元二次方程x2﹣2mx+n2=0有实数根的概率为.12.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式为y=﹣1.5x2+60x,该型号飞机着陆后滑行m才能停下来.13.如图,直线y=6﹣x交x轴、y轴于A、B两点,P是反比例函数图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=.14.如图,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD 上的F点,若△FDE的周长为8 cm,△FCB的周长为20cm,则FC的长为cm.15.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于.三、解答题(本大题共8小题,满分75分)16.先化简,再求值:,其中x=2sin60°﹣()﹣2.17.某校积极开展每天锻炼1小时活动,老师对本校八年级学生进行一分钟跳绳测试,并对跳绳次数进行统计,绘制了八(1)班一分钟跳绳次数的频数分布直方图和八年级其余班级一分钟跳绳次数的扇形统计图.已知在图1中,组中值为190次一组的频率为0.12.(说明:组中值为190次的组别为180≤次数<200)请结合统计图完成下列问题:(1)八(1)班的人数是,组中值为110次一组的频率为;(2)请把频数分布直方图补充完整;(3)如果一分钟跳绳次数不低于120次的同学视为达标,八年级同学一分钟跳绳的达标率不低于90%,那么八年级同学至少有多少人?18.如图,在梯形ABCD中,AD∥BC,E是BC上的一点,且CE=8,BC=12,CD=4,∠C=30°,∠B=60°.点P是线段BC边上一动点(包括B、C两点),设PB的长是x.(1)当x为何值时,以点P、A、D、E为顶点的四边形为直角梯形.(2)当x为何值时,以点P、A、D、E为顶点的四边形为平行四边形.(3)P在BC上运动时,以点P、A、D、E为顶点的四边形能否为菱形.19.如图,在平面直角坐标系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴正方向平移,在第一象限内B,C两点的对应点B′,C′恰好落在某反比例函数图象上,求该反比例函数的解析式;(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值范围.20.如图所示,某幼儿园为加强安全管理,决定将园内滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上.(1)改善后滑滑板会加长多少米?(2)若滑滑板的正前方有3米长的空地就能保证安全,已知原滑滑板的前方有5米长的空地,则这样改造是否可行?请说明理由.(参考数据:≈1.414,≈1.732,≈2.449,以上结果均保留到小数点后两位)21.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米左右,缴纳房款为y万元,且57<y≤60 时,求m的取值范围该.22.如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A 旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.23.如图,抛物线y=ax2+bx+c的开口向下,与x轴交于点A(﹣3,0)和点B(1,0).与y轴交于点C,顶点为D.(1)求顶点D的坐标.(用含a的代数式表示);(2)若△ACD的面积为3.①求抛物线的解析式;②将抛物线向右平移,使得平移后的抛物线与原抛物线交于点P,且∠PAB=∠DAC,求平移后抛物线的解析式.2017年河南省中考数学仿真试卷(1)参考答案与试题解析一、选择题(每小题3分,共24分)1.一个数的绝对值等于3,这个数是()A.3 B.﹣3 C.±3 D.【考点】绝对值.【分析】根据绝对值的定义即可求解.【解答】解:因为|3|=3,|﹣3|=3,∴绝对值等于3的数是±3.故选C.2.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.35°【考点】平行线的性质.【分析】首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,即可求得答案∠4的度数,又由△ABC是含有45°角的三角板,即可求得∠3的度数,继而求得∠2的度数.【解答】解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1=25°,∵∠ABC=45°,∴∠3=∠ABC﹣∠4=45°﹣25°=20°,∴∠2=∠3=20°.故选A.3.下列运算正确的是()A.a3•a2=a6 B.(ab3)2=a2b6C.(a﹣b)2=a2﹣b2 D.5a﹣3a=2【考点】完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用同底数幂、积的乘方与幂的乘方的性质,完全平方公式以及合并同类项的知识,即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、a3•a2=a5,故本选项错误;B、(ab3)2=a2b6,故本选项正确;C、(a﹣b)2=a2﹣2ab+b2,故本选项错误;D、5a﹣3a=2a,故本选项错误.故选B.4.某校九年级(一)班学生在男子50米跑测试中,第一小组8名同学的测试成绩如下(单位:秒):7.0,7.2,7.5,7.0,7.4,7.5,7.0,7.8,则下列说法正确的是()A.这组数据的中位数是7.4 B.这组数据的众数是7.5C.这组数据的平均数是7.3 D.这组数据极差的是0.5【考点】极差;算术平均数;中位数;众数.【分析】平均数只要求出数据之和再除以总个数即可;对于中位数,按从小到大的顺序排列,只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数是出现频数最大的数据.【解答】解:A、中位数是7.3,故A错误;B、众数是7.0,故B错误;C、平均数是7.3,故C正确;D、极差是0.8,故D错误.故选C.5.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A.B.C.D.【考点】简单几何体的三视图.【分析】看哪个几何体的三视图中有长方形,圆,及三角形即可.【解答】解:A、三视图分别为正方形,三角形,圆,故A选项符合题意;B、三视图分别为三角形,三角形,圆及圆心,故B选项不符合题意;C、三视图分别为正方形,正方形,正方形,故C选项不符合题意;D、三视图分别为三角形,三角形,矩形及对角线,故D选项不符合题意;故选:A.6.等腰Rt△ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于F,若BF=12,则△FBC的面积为()A.40 B.46 C.48 D.50【考点】全等三角形的判定与性质;三角形的面积;等腰直角三角形.【分析】求出∠ABD=∠ACF,根据ASA证△ABD≌△ACF,推出AD=AF,得出AB=AC=2AD=2AF,求出AF长,求出AB、AC长,根据三角形的面积公式得出△FBC的面积等于BF×AC,代入求出即可.【解答】解:∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,∵在△ABD和△ACF中,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴△FBC的面积是×BF×AC=×12×8=48,故选C.7.如图所示,在平面直角坐标系中,直线OM是正比例函数y=﹣x的图象,点A的坐标为(1,0),在直线OM上找点N,使△ONA是等腰三角形,符合条件的点N的个数是()A.2个 B.3个 C.4个 D.5个【考点】一次函数综合题.【分析】本题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,AN=OA=1,共有2个,AO=ON=1时,有一个点,若OA是底边时,N是OA的中垂线与x轴的交点,有1个,再利用直线OM是正比例函数y=﹣x的图象,得出∠AON2=60°,即可得出答案.【解答】解:∵直线OM是正比例函数y=﹣x的图象,∴图形经过(1,﹣),∴tan∠AON2=.∴∠AON2=60°,若AO作为腰时,有两种情况,当A是顶角顶点时,N是以A为圆心,以OA为半径的圆与OM的交点,共有1个,当O是顶角顶点时,N是以O为圆心,以OA为半径的圆与MO的交点,有2个;此时2个点重合,若OA是底边时,N是OA的中垂线与直线MO的交点有1个.以上4个交点有2个点重合.故符合条件的点有2个.故选:A.8.已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF.则下列结论不正确的是()A.CP平分∠BCDB.四边形ABED为平行四边形C.CQ将直角梯形分为面积相等的两部分D.△ABF为等腰三角形【考点】直角梯形;全等三角形的判定与性质;平行四边形的判定与性质.【分析】本题可用排除法证明,即证明A、B、D正确,C不正确;易证△BCF≌△DCE(SAS),得∠FBC=∠EDC,∴△BPE≌△DPF,∴BP=DP;∴△BPC≌△DPC,∴∠BCP=∠DCP,∴A正确;∵AD=BE且AB∥BE,所以,四边形ABED为平行四边形,B正确;∵BF=ED,AB=ED,∴AB=BF,即D正确;【解答】解:易证△BCF≌△DCE(SAS),∴∠FBC=∠EDC,BF=ED;∴△BPE≌△DPF(AAS),∴BP=DP,∴△BPC≌△DPC(SSS),∴∠BCP=∠DCP,即A正确;又∵AD=BE且AD∥BE,∴四边形ABED为平行四边形,B正确;∵BF=ED,AB=ED,∴AB=BF,即D正确;综上,选项A、B、D正确.故选:C.二、填空题(每小题3分,共21分)9.分解因式:x2﹣4=(x+2)(x﹣2).【考点】因式分解﹣运用公式法.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).10.若圆锥的底面半径为2cm,母线长为5cm,则此圆锥的表面积为14πcm2.【考点】圆锥的计算.【分析】先求得圆锥的底面周长,再根据圆锥的侧面积等于lr,l表示圆锥的底面周长,r表示圆锥的母线长或侧面展开扇形的半径.【解答】解:圆锥的底面周长=4πcm,圆锥的侧面积=lr=×4π×5=10πcm2,底面积为4πcm2,表面积为10π+4π=14πcm2,故答案为:14πcm2.11.如果m是从0,1,2,3四个数中任取的一个数,n是从0,1,2三个数中任取的一个数,那么关于x的一元二次方程x2﹣2mx+n2=0有实数根的概率为.【考点】概率公式;根的判别式.【分析】从0,1,2,3四个数中任取的一个数,从0,1,2三个数中任取的一个数则共有12种结果,且每种结果出现的机会相同,关于x的一元二次方程x2﹣2mx+n2=0有实数根的条件是:4(m2﹣n2)≥0,在上面得到的数对中共有9个满足.【解答】解:从0,1,2,3四个数中任取的一个数,从0,1,2三个数中任取的一个数则共有:4×3=12种结果,∵满足关于x的一元二次方程x2﹣2mx+n2=0有实数根,则△=(﹣2m)2﹣4n2=4(m2﹣n2)≥0,符合的有9个,∴关于x的一元二次方程x2﹣2mx+n2=0有实数根的概率为.12.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式为y=﹣1.5x2+60x,该型号飞机着陆后滑行600m才能停下来.【考点】二次函数的应用.【分析】根据题意可知,要求飞机着陆后滑行的最远距离就是求y=﹣1.5x2+60x的最大函数值,将函数解析式化为顶点式即可解答本题.【解答】解:∵y=﹣1.5x2+60x=﹣1.5(x﹣20)2+600,∴x=20时,y取得最大值,此时y=600,即该型号飞机着陆后滑行600m才能停下来,故答案为:600.13.如图,直线y=6﹣x交x轴、y轴于A、B两点,P是反比例函数图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=8.【考点】反比例函数综合题.【分析】首先作辅助线:过点E作EC⊥OB于C,过点F作FD⊥OA于D,然后由直线y=6﹣x交x轴、y轴于A、B两点,求得点A与B的坐标,则可得OA=OB,即可得△AOB,△BCE,△ADF是等腰直角三角形,则可得AF•BE=CE•DF=2CE•DF,又由四边形CEPN与MDFP是矩形,可得CE=PN,DF=PM,根据反比例函数的性质即可求得答案.【解答】解:过点E作EC⊥OB于C,过点F作FD⊥OA于D,∵直线y=6﹣x交x轴、y轴于A、B两点,∴A(6,0),B(0,6),∴OA=OB,∴∠ABO=∠BAO=45°,∴BC=CE,AD=DF,∵PM⊥OA,PN⊥OB,∴四边形CEPN与MDFP是矩形,∴CE=PN,DF=PM,∵P是反比例函数y=(x>0)图象上的一点,∴PN•PM=4,∴CE•DF=4,在Rt△BCE中,BE==CE,在Rt△ADF中,AF==DF,则AF•BE=CE•DF=2CE•DF=8.故答案为:8.14.如图,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的F点,若△FDE的周长为8 cm,△FCB的周长为20cm,则FC的长为6cm.【考点】翻折变换(折叠问题);平行四边形的性质.【分析】根据折叠的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【解答】解:AE=EF,AB=BF;△FDE的周长为DE+FE+DF=AD+DF=8cm,△FCB的周长为FC+AD+AB=20 cm,分析可得:FC= [FC+AD+AB﹣(AD+DF)]=(2FC)=(△FCB的周长﹣△FDE的周长)=(20﹣8)=6cm.故答案为6.15.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于.【考点】二次函数综合题.【分析】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE=,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,=,代入求出BF和CM,相加即可求出答案.【解答】解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM,∵OD=AD=3,DE⊥OA,∴OE=EA=OA=2,由勾股定理得:DE==,设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴=,=,∵AM=PM=(OA﹣OP)=(4﹣2x)=2﹣x,即=,=,解得:BF=x,CM=﹣x,∴BF+CM=.故答案为:三、解答题(本大题共8小题,满分75分)16.先化简,再求值:,其中x=2sin60°﹣()﹣2.【考点】分式的化简求值;负整数指数幂;特殊角的三角函数值.【分析】将原式第二项中被除式的分子利用完全平方公式分解因式,除式的分子利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后再利用同分母分式的减法运算计算,得到最简结果,接着利用特殊角的三角函数值及负指数公式化简,求出x的值,将x的值代入化简后的式子中计算,即可得到原式的值.【解答】解:﹣÷=﹣÷=﹣•=﹣=﹣,当x=2sin60°﹣()﹣2=2×﹣4=﹣4时,原式=﹣=﹣.17.某校积极开展每天锻炼1小时活动,老师对本校八年级学生进行一分钟跳绳测试,并对跳绳次数进行统计,绘制了八(1)班一分钟跳绳次数的频数分布直方图和八年级其余班级一分钟跳绳次数的扇形统计图.已知在图1中,组中值为190次一组的频率为0.12.(说明:组中值为190次的组别为180≤次数<200)请结合统计图完成下列问题:(1)八(1)班的人数是50,组中值为110次一组的频率为0.16;(2)请把频数分布直方图补充完整;(3)如果一分钟跳绳次数不低于120次的同学视为达标,八年级同学一分钟跳绳的达标率不低于90%,那么八年级同学至少有多少人?【考点】频数(率)分布直方图;一元一次不等式的应用;扇形统计图.【分析】(1)用频数除以所占的频率可得八(1)班的人数,由频数分布直方图知,组中值为110次一组的频数是8,再由频率=频数÷数据总和计算;(2)先计算组中值为130次一组的频数为50﹣8﹣10﹣14﹣6=12人,再补充完整频数分布直方图即可;(3)根据八年级同学一分钟跳绳的达标率不低于90%,列不等式求解.【解答】解:(1)八(1)班的人数是6÷0.12=50人,由频数分布直方图知,组中值为110次一组的频数是8,所以它对应的频率是8÷50=0.16;(2)组中值为130次一组的频数为12人,(3)设八年级同学人数有x人,达标的人数为12+10+14+6=42,根据一分钟跳绳次数不低于120次的同学视为达标,达标所占比例为:1﹣9%=91%=0.91,则可得不等式:42+0.91(x﹣50)≥0.9x,解得:x≥350,答:八年级同学人数至少有350人.18.如图,在梯形ABCD中,AD∥BC,E是BC上的一点,且CE=8,BC=12,CD=4,∠C=30°,∠B=60°.点P是线段BC边上一动点(包括B、C两点),设PB的长是x.(1)当x为何值时,以点P、A、D、E为顶点的四边形为直角梯形.(2)当x为何值时,以点P、A、D、E为顶点的四边形为平行四边形.(3)P在BC上运动时,以点P、A、D、E为顶点的四边形能否为菱形.【考点】梯形;平行四边形的性质;菱形的性质;直角梯形.【分析】(1)如图,分别过A、D作BC的垂线,垂足分别为F、G,容易得到AF=DG,AD=FG,而CD=4,∠C=30°,由此可以求出CG=6,DG=AF=2,又∠B=60°,BF=2,若点P、A、D、E 为顶点的四边形为直角梯形,则∠APC=90°或∠DPC=90°,那么P与F重合或P与G重合,根据前面求出的长度即可求出此时的x的值;(2)若以点P、A、D、E为顶点的四边形为平行四边形,由于AD=BE=4,且AD∥BE,有两种情况:①当点P与B重合时,利用已知条件可以求出BP的长度;②当点P在CE中点时,利用已知条件也可求出BP的长度;(3)以点P、A、D、E为顶点的四边形能构成菱形.由(1)(2)知,当BP=0或8时,以点P、A、D、E为顶点的四边形是平行四边形,根据已知条件分别计算一组邻边证明它们相等即可证明它是菱形.【解答】解:(1)分别过点A、D作BC的垂线,垂足分别为F、G.∵∠C=30°,且CD=,∴DG=2,CG=6,∴DG=AF=2,∵∠B=60°,∴BF=2.∵BC=12,∴FG=AD=4,显然,当P点与F或点G重合时,以点P、A、D、E为顶点的四边形为直角梯形.所以x=2或x=6;(2)∵AD=BE=4,且AD∥BE,∴当点P与B重合时,即x=0时.点P、A、D、E为顶点的四边形为平行四边形,又∵当点P在CE中点时,EP=AD=4,且EP∥AD,∴x=8时,点P、A、D、E为顶点的四边形为平行四边形;(3)由(1)(2)知,∵∠BAF=30°,∴AB=2BF=4,∴x=0时,且PA=AD,即以点P、A、D、E为顶点的四边形为菱形.∵AB=BE,且∠B=60°,∴△ABE为正三角形.∴AE=AD=4.即当x=8时,即以点P、A、D、E为顶点的四边形为菱形,∴当BP=0或8时,以点P、A、D、E为顶点的四边形是菱形.19.如图,在平面直角坐标系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴正方向平移,在第一象限内B,C两点的对应点B′,C′恰好落在某反比例函数图象上,求该反比例函数的解析式;(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值范围.【考点】反比例函数综合题.【分析】(1)作CN⊥x轴于点N,根据HL证明Rt△CAN≌Rt△AOB,求出NO的长度,进而求出d;(2)设△ABC沿x轴的正方向平移c个单位,用c表示出C′和B′,根据两点都在反比例函数图象上,求出k的值,进而求出c的值,即可求出反比例函数和直线B′C′的解析式;(3)直接从图象上找出y1<y2时,x的取值范围.【解答】解:(1)作CN⊥x轴于点N,∵A(﹣2,0)B(0,1).∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵,∴Rt△CAN≌Rt△AOB(HL),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵点C在第二象限,∴C(﹣3,2);(2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1)又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=,得﹣6+2c=c,解得c=6,即反比例函数解析式为y1=,(3)此时C′(3,2),B′(6,1),设直线B′C′的解析式y2=mx+n,∵,∴,∴直线C′B′的解析式为y2=﹣x+3;由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(6,1),∴若y1<y2时,则3<x<6.20.如图所示,某幼儿园为加强安全管理,决定将园内滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上.(1)改善后滑滑板会加长多少米?(2)若滑滑板的正前方有3米长的空地就能保证安全,已知原滑滑板的前方有5米长的空地,则这样改造是否可行?请说明理由.(参考数据:≈1.414,≈1.732,≈2.449,以上结果均保留到小数点后两位)【考点】二次根式的应用.【分析】(1)先在Rt△ABC中利用45°的正切计算出AC=2,再在Rt△ADC中利用含30度的直角三角形三边的关系得到AD≈5.656(m),然后计算AD﹣AB即可;(2)利用等腰直角三角形的性质得到BC=AC=2,再在Rt△ADC中利用30度的正切计算出CD=2,则BD≈2.060,所以5﹣2.060=2.940<3,由于滑滑板的正前方有3米长的空地就能保证安全,则可判定这样改造不可行.【解答】解:(1)在Rt△ABC中,∵tan∠ABC=,∴AC=4tan45°=2,在Rt△ADC中,∵∠D=30°,∴AD=2AC=4≈5.656(m),∵AD﹣AB=5.656﹣4≈1.66(m),∴改善后滑滑板会加长1.66米;(2)不可行,理由如下:∵△ABC为等腰直角三角形,∴BC=AC=2,在Rt△ADC中,∵tanD=,∴CD===2,∴BD=CD﹣BC=2﹣2≈2.060,而5﹣2.060=2.940<3,∴这样改造不可行.21.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米左右,缴纳房款为y万元,且57<y≤60 时,求m的取值范围该.【考点】一次函数的应用.【分析】(1)根据房款=房屋单价×购房面积就可以表示出应缴房款;(2)由分段函数当0≤x≤30,当30<x≤m时,当x>m时,分别求出y与x之间的表达式即可;(3)当50≤m≤60和当45≤m<50时,分别讨论建立不等式组就可以求出结论.【解答】解:(1)由题意,得三口之家应缴购房款为:0.3×90+0.5×30=42(万元).(2)由题意,得①当0≤x≤30时,y=0.3×3x=0.9x;②当30<x≤m时,y=0.3×3×30+0.5×3×(x﹣30)=1.5x﹣18;③当x>m时,y=0.3×3×30+0.5×3(m﹣30)+0.7×3×(x﹣m)=2.1x﹣0.6m﹣18.∴y=;(3)由题意,得①当50≤m≤60时,y=1.5×50﹣18=57(舍);②当45≤m<50时,y=2.1×50﹣0.6m﹣18=87﹣0.6m.∵57<y≤60,∴57<87﹣0.6m≤60,∴45≤m<50.综合①②得45≤m<50.22.如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.【考点】四边形综合题.【分析】(1)延长CB到Q,使BQ=DF,连接AQ,根据四边形ABCD是正方形求出AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°,证△ADF≌△ABQ,推出AQ=AF,∠QAB=∠DAF,求出∠EAQ=∠EAF,证△EAQ≌△EAF,推出EF=BQ即可;(2)根据△EAQ≌△EAF,EF=BQ得出×BQ×AB=×FE×AM,求出即可;(3)延长CB到Q,使BQ=DF,连接AQ,根据折叠和已知得出AD=AB,∠D=∠ABE=90°,∠BAC=∠DAC=∠BAD,证△ADF≌△ABQ,推出AQ=AF,∠QAB=∠DAF,求出∠EAQ=∠FAE,证△EAQ ≌△EAF,推出EF=EQ即可.【解答】(1)EF=BE+DF,证明:如答图1,延长CB到Q,使BQ=DF,连接AQ,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°,在△ADF和△ABQ中,∴△ADF≌△ABQ(SAS),∴AQ=AF,∠QAB=∠DAF,∵∠DAB=90°,∠FAE=45°,∴∠DAF+∠BAE=45°,∴∠BAE+∠BAQ=45°,即∠EAQ=∠FAE,在△EAQ和△EAF中∴△EAQ≌△EAF,∴EF=EQ=BE+BQ=BE+DF.(2)解:AM=AB,理由是:∵△EAQ≌△EAF,EF=EQ,∴×EQ×AB=×FE×AM,∴AM=AB.(3)AM=AB,证明:如答图2,延长CB到Q,使BQ=DF,连接AQ,∵折叠后B和D重合,∴AD=AB,∠D=∠ABE=90°,∠BAC=∠DAC=∠BAD,在△ADF和△ABQ中,∴△ADF≌△ABQ(SAS),∴AQ=AF,∠QAB=∠DAF,∵∠FAE=∠BAD,∴∠DAF+∠BAE=∠BAE+∠BAQ=∠EAQ=∠BAD,即∠EAQ=∠FAE,在△EAQ和△EAF中,,∴△EAQ≌△EAF(SAS),∴EF=EQ,∵△EAQ≌△EAF,EF=EQ,∴×EQ×AB=×FE×AM,∴AM=AB.23.如图,抛物线y=ax2+bx+c的开口向下,与x轴交于点A(﹣3,0)和点B(1,0).与y轴交于点C,顶点为D.(1)求顶点D的坐标.(用含a的代数式表示);(2)若△ACD的面积为3.①求抛物线的解析式;②将抛物线向右平移,使得平移后的抛物线与原抛物线交于点P,且∠PAB=∠DAC,求平移后抛物线的解析式.【考点】二次函数综合题.【分析】(1)已知抛物线与x轴的两交点的横坐标分别是﹣3和1,设抛物线解析式的交点式y=a (x+3)(x﹣1),再配方为顶点式,可确定顶点坐标;(2)①设AC与抛物线对称轴的交点为E,先运用待定系数法求出直线AC的解析式,求出点E=×DE×OA列出方程,解方程求出a的值,即可确的坐标,即可得到DE的长,然后由S△ACD定抛物线的解析式;②先运用勾股定理的逆定理判断出在△ACD中∠ACD=90°,利用三角函数求出tan∠DAC=.设y=﹣x2﹣2x+3=﹣(x+1)2+4向右平移后的抛物线解析式为y=﹣(x+m)2+4,两条抛物线交于点P,直线AP与y轴交于点F.根据正切函数的定义求出OF=1.分两种情况进行讨论:(Ⅰ)如图2①,F点的坐标为(0,1),(Ⅱ)如图2②,F点的坐标为(0,﹣1).针对这两种情况,都可以先求出点P的坐标,再得出m的值,进而求出平移后抛物线的解析式.【解答】解:(1)∵抛物线y=ax2+bx+c与x轴交于点A(﹣3,0)和点B(1,0),∴抛物线解析式为y=a(x+3)(x﹣1)=ax2+2ax﹣3a,∵y=a(x+3)(x﹣1)=a(x2+2x﹣3)=a(x+1)2﹣4a,∴顶点D的坐标为(﹣1,﹣4a);(2)如图1,①设AC与抛物线对称轴的交点为E.∵抛物线y=ax2+2ax﹣3a与y轴交于点C,∴C点坐标为(0,﹣3a).设直线AC的解析式为:y=kx+t,则:,解得:,∴直线AC的解析式为:y=﹣ax﹣3a,∴点E的坐标为:(﹣1,﹣2a),∴DE=﹣4a﹣(﹣2a)=﹣2a,=S△CDE+S△ADE=×DE×OA=×(﹣2a)×3=﹣3a,∴S△ACD∴﹣3a=3,解得a=﹣1,∴抛物线的解析式为y=﹣x2﹣2x+3;②∵y=﹣x2﹣2x+3,∴顶点D的坐标为(﹣1,4),C(0,3),∵A(﹣3,0),∴AD2=(﹣1+3)2+(4﹣0)2=20,CD2=(﹣1﹣0)2+(4﹣3)2=2,AC2=(0+3)2+(3﹣0)2=18,∴AD2=CD2+AC2,∴∠ACD=90°,∴tan∠DAC===,∵∠PAB=∠DAC,∴tan∠PAB=tan∠DAC=.如图2,设y=﹣x2﹣2x+3=﹣(x+1)2+4向右平移后的抛物线解析式为y=﹣(x+m)2+4,两条抛物线交于点P,直线AP与y轴交于点F.∵tan∠PAB===,∴OF=1,则F点的坐标为(0,1)或(0,﹣1).分两种情况:(Ⅰ)如图2①,当F点的坐标为(0,1)时,易求直线AF的解析式为y=x+1,由,解得,(舍去),∴P点坐标为(,),将P点坐标(,)代入y=﹣(x+m)2+4,得=﹣(+m)2+4,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2019年中招考试数学试卷模拟及答案(新人教版)(总分120分 考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.31-的相反数是 ( ) A .31 B . -31C . 3D . -32. 下列运算正确的是( )A .523x x x =⋅B .336()x x = C .5510x x x +=D .336x x x =-3. 下列图形中,是中心对称图形的是 ( )A .B .C .D . 4、下图能说明∠1>∠2的是( )5、根据下图所示程序计算函数值,若输入的A .32B .25C .425D .2546.将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(2,3) B .(2,-1)C .(4,1)D. (0,1)7. 小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是6πcm ,那么这个的圆锥的高是( )A . 4cmB . 6cmC . 8cmD . 2cmO1 2 ) A.8.若43=x ,79=y,则y x 23-的值为( )A .74B .47C .3-D .729. 方程0411)1(2=+---x k x k 有两个实数根,则k 的取值范围是( ). A . k ≥1 B . k ≤1 C . k >1 D . k <110. 小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线x y 6=上的概率为( )A .118 B .112 C .19D .1611. 如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的14,那么点B ′的坐标是( ) A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)12. 如图,一次函数3+=x y 的图象与x 轴,y 轴交于A ,B 两点,与反比例函数x y 4=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①△CEF 与△DEF 的面积相等;②△AOB ∽△FOE ;③△DCE ≌△CDF ;其中正确的结论是( )A .①②B . ①②③C .①②③④D . ②③④ABCO xy -46(第11题图)yxDCA BOF E第Ⅱ卷(非选择题 共84分)二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13、南海是我国固有领海,她的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法可表示为 . 14.分解因式:x x 93- = . 15. 某校篮球班21名同学的身高如下表:身高/cm 180 185 187 190 201 人数/名46542则该校篮球班21名同学身高的中位数是______________cm .16. 某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD 垂直平分BC ,AD=BC=48cm ,则圆柱形饮水桶的底面半径的最大值是 cm .17. 在平面直角坐标系xOy 中,点1A ,2A ,3A ,…和1B ,2B ,3B ,…分别在直线y kx b =+和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果A 1(1,1), A 2(23,27),那么点n A 的纵坐标是_ _____.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:()122160tan 33101+-+︒-⎪⎭⎫⎝⎛--; (2)先化简,再求代数式212312+-÷⎪⎭⎫ ⎝⎛+-x x x 的值,其中x 是不等式组⎩⎨⎧<+>-812,02x x 的整数解.19. (本题满分9分)得 分评 卷 人座号BDCA(第16题图2) (第16题图1)yxy=kx+bO B 3B 2 B 1A 3A 2A 1(第17题图)得 分 评 卷 人 得 分评 卷 人某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A 、B 两组捐款人数的比为1 : 5.,本次调查样本的容量是 ; 1”;1名学生进行调查,恰好是捐款数不少于309分)如图,AB 是⊙O 的直径,AM 和BN DE 切⊙O 于点E ,交AM 于点D ,交BN 于点C ,(1)求证:OD ∥BE ;(2)如果OD =6cm ,OC =8cm ,求CD 的长.捐款人数分组统计图1捐款人数分组统计图2(第20题图)A DNEBC OM21.(本题满分9分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?22.(本题满分9分)如图某天上午9时,向阳号轮船位于A处,观测到某港口城市P位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到城市P位于该船的南偏西36.9°方向,求此时轮船所处位置B与城市P的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)(第22题图)APCB36.9°67.5°23.(本题满分10分)(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE .求证:CE =CF ;(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果∠GCE =45°,请你利用(1)的结论证明:GE =BE +GD . (3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC ,E 是AB 上一点,且∠DCE =45°,BE =4,DE =10, 求直角梯形ABCD 的面积.24.=y A (2(1)求b 的值,求出点P (2)如图,在直线 y=3x 求出点D 的坐标;若不存在,请说明理由;(3)在x 轴下方的抛物线上是否存在点M ,使△AMP ≌△AMB ?如果存在,试举例验证二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.3.6×106; 14.x (x +3)(x -3); 15. 187; 16. 30; 17.123-⎪⎭⎫ ⎝⎛n三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分7分,第⑴题3分,第⑵题4分)(1)解:原式=-3-33+1+23…………………………2分 =-2-3…………………………3分 (2)原式=122(1)(1)x x x x x -+·++-11x =+, ………………1分得 分 评 卷 人(第23题图1) (第23题BA DE(第23题图2)(第24题图)解不等式组⎩⎨⎧<+>-812,02x x 得722x <<,………………………2分因为x 是整数,所以3x =,……………………3分 当3x =时,原式=14.……………………4分 19. 解:(1)20,500;…………………………2分 (2)500×40%=200,C 组的人数为200. … 4分补图见图. …………………………5分 (3)∵D 、E 两组的人数和为:500×(28%+8%)=180,………………7分 ∴捐款数不少于30元的概率是:1800.36.500=……………………………… 9分20.(1)证明:连接OE ,∵AM 、DE 是⊙O 的切线,OA 、OE 是⊙O 的半径,∴∠ADO=∠EDO , ∠DAO=∠DEO =90°, ……………………2分∴∠AOD=∠EOD=12∠AOE , ∵∠ABE=12∠AOE ∴∠AOD=∠ABE ,∴OD ∥BE …………………5分(2)由(1)得:∠AOD=∠EOD=12∠AOE , 同理,有:∠BOC=∠EOC=12∠BOE∴∠AOD +∠EOD +∠BOC +∠EOC=180°∴∠EOD +∠EOC =90°,∴△DOC 是直角三角形,…………………………7分∴ CD=cm)(10643622=+=+OC OD ……………………9分21.解:(1)设工厂从A 地购买了x 吨原料,制成运往B 地的产品y 吨.则依题意,得:⎩⎨⎧=+=+.97200)120110(2.1,15000)1020(5.1x y x y …………………………4分 解这个方程组,得:⎩⎨⎧==.300,400y x∴工厂从A 地购买了400吨原料,制成运往B 地的产品300吨. ………7分(第20题答案图)A DNEBC OM(2)依题意,得:300×8000-400×1000-15000-97200=1887800∴批产品的销售款比原料费与运输费的和多1887800元. ………………9分 22.解:过点P 作PC ⊥AB ,垂足为C ,设PC =x 海里.在Rt △APC 中,∵tan ∠A =PC AC ,∴AC =5tan 67.512PC x=︒.…………3分 在Rt △PCB 中,∵tan ∠B =PC BC ,∴BC =4tan 36.93x x=︒.…………5分 ∵AC +BC =AB =21×5,∴54215123x x+=⨯,解得60x =.∵sin PC B PB ∠=,∴60560100sin sin 36.93PC PB B ===⨯=∠︒(海里). ∴向阳号轮船所处位置B 与城市P 的距离为100海里.………………9分23. 解答:(1)证明:在正方形ABCD 中, ∵BC =CD ,∠B =∠CDF ,BE =DF , ∴△CBE ≌△CDF .∴CE =CF . …………………………2分(2)证明: 如图2,延长AD 至F ,使DF =BE .连接CF . 由(1)知△CBE ≌△CDF ,∴∠BCE =∠DCF .∴∠BCE +∠ECD =∠DCF +∠ECD 即∠ECF =∠BCD =90°,又∠GCE =45°,∴∠GCF =∠GCE =45°.∵CE =CF ,∠GCE =∠GCF ,GC =GC ,∴△ECG ≌△FCG .…………………………5分 ∴GE =GF∴GE =DF +GD =BE +GD . ……………6分(3)解:如图3,过C 作CG ⊥AD ,交AD 延长线于G .在直角梯形ABCD 中, ∵AD ∥BC ,∴∠A =∠B =90°,又∠CGA =90°,AB =BC ,∴四边形ABCD 为正方形.∴AG =BC .…………………………7分 已知∠DCE =45°,根据(1)(2)可知,ED =BE +DG .……8分所以10=4+DG ,即DG =6.设AB =x ,则AE =x -4,AD =x -6在Rt △AED 中, ∵222AE AD DE +=,即()()2224610-+-=x x . 解这个方程,得:x =12,或x =-2(舍去).…………………………9分 ∴AB =12.所以梯形ABCD 的面积为S=.10812)126(21)(21=⨯+=+AB BC AD 答:梯形ABCD 的面积为108. …………………………10分(第23题答案图1)C D F(第23题答案图2)A EC D G F B C A D E G (第23题答案图3)24.解:(1)由于抛物线36232++=bx x y 经过A (2,0), 所以3624230++⨯=b , 解得34-=b .…………………………1分 所以抛物线的解析式为3634232+-=x x y . (*) 将(*)配方,得()324232--=x y , 所以顶点P 的坐标为(4,-23)…………………………2分令y =0,得()0324232=--x , 解得6,221==x x . 所以点B 的坐标是(6,0). ………………3分(2)在直线 y=3x 上存在点D ,使四边形OPBD 为平行四边形. ……4分理由如下:设直线PB 的解析式为kx y =+b ,把B (6,0),P (4,-23)分别代入,得⎪⎩⎪⎨⎧-=+=+.324,06b k b k 解得⎪⎩⎪⎨⎧-==.36,3b k 所以直线PB 的解析式为363-=x y .…………………………5分 又直线OD 的解析式为x y 3=所以直线P B ∥OD . …………………………6分 设设直线OP 的解析式为mx y =,把P (4,-23)代入,得324-=m解得23-=m .如果OP ∥BD ,那么四边形OPBD 为平行四边形.…………7分设直线BD 的解析式为n x y +-=23,将B (6,0)代入,得0=n +-33,所以33=n 所以直线BD 的解析式为n x y +-=23, 解方程组⎪⎩⎪⎨⎧+-==.3323,3x y x y 得⎪⎩⎪⎨⎧==.32,2y x所以D点的坐标为(2,23)…………………8分(3)符合条件的点M存在.验证如下:过点P作x轴的垂线,垂足为为C,则PC=23,AC=2,由勾股定理,可得AP=4,PB=4,又AB=4,所以△APB是等边三角形,只要作∠P AB的平分线交抛物线于M点,连接PM,BM,由于AM=AM, ∠P AM=∠BAM,AB=AP,可得△AMP≌△AMB.因此即存在这样的点M,使△AMP≌△AMB.…………………………11分第 11 页。