高中物理动量定理解题技巧讲解及练习题(含答案)
高中物理动量定理及其解题技巧及练习题(含答案)含解析
高中物理动量定理及其解题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。
车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。
【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。
(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图甲所示,物块A 、B 的质量分别是m A =4.0kg 和m B =3.0kg 。
用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙壁相接触。
另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,C 的v -t 图象如图乙所示。
求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I;(3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。
【答案】(1)2kg ;(2)27J,36N·S;(3)9J【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg。
高考物理动量定理解题技巧及经典题型及练习题(含答案)
⾼考物理动量定理解题技巧及经典题型及练习题(含答案)⾼考物理动量定理解题技巧及经典题型及练习题(含答案)⼀、⾼考物理精讲专题动量定理1.图甲为光滑⾦属导轨制成的斜⾯,导轨的间距为1m l =,左侧斜⾯的倾⾓37θ=?,右侧斜⾯的中间⽤阻值为2R =Ω的电阻连接。
在左侧斜⾯区域存在垂直斜⾯向下的匀强磁场,磁感应强度⼤⼩为10.5T B =,右侧斜⾯轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。
在斜⾯的顶端e 、f 两点分别⽤等长的轻质柔软细导线连接导体棒ab ,另⼀导体棒cd 置于左侧斜⾯轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。
已知t =0时刻起,cd 棒在沿斜⾯向下的拉⼒作⽤下开始向下运动(cd 棒始终在左侧斜⾯上运动),⽽ab 棒在⽔平拉⼒F 作⽤下始终处于静⽌状态,F 随时间变化的关系如图⼄所⽰,ab 棒静⽌时细导线与竖直⽅向的夹⾓37θ=?。
其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定⽀架。
(1)请通过计算分析cd 棒的运动情况; (2)若t =0时刻起,求2s 内cd 受到拉⼒的冲量;(3)3 s 内电阻R 上产⽣的焦⽿热为2. 88 J ,则此过程中拉⼒对cd 棒做的功为多少? 【答案】(1)cd 棒在导轨上做匀加速度直线运动;(2)1.6N s g ;(3)43.2J 【解析】【详解】(1)设绳中总拉⼒为T ,对导体棒ab 分析,由平衡⽅程得:sin θF T BIl =+cos θT mg =解得:tan θ 1.50.5F mg BIl I =+=+由图⼄可知:1.50.2F t =+则有:0.4I t =cd 棒上的电流为:0.8cd I t =则cd 棒运动的速度随时间变化的关系:8v t =即cd 棒在导轨上做匀加速度直线运动。
(2)ab 棒上的电流为:0.4I t =则在2 s 内,平均电流为0.4 A ,通过的电荷量为0.8 C ,通过cd 棒的电荷量为1.6C 由动量定理得:sin θ0F t I mg t BlI mv +-=-解得: 1.6N s F I =g(3)3 s 内电阻R 上产⽣的的热量为 2.88J Q =,则ab 棒产⽣的热量也为Q ,cd 棒上产⽣的热量为8Q ,则整个回路中产⽣的总热量为28. 8 J ,即3 s 内克服安培⼒做功为28. 8J ⽽重⼒做功为:G sin 43.2J W mg θ==对导体棒cd ,由动能定理得:F W W'-克安2G 102W mv +=- 由运动学公式可知导体棒的速度为24 m/s 解得:43.2J F W '=2.如图所⽰,⾜够长的⽊板A 和物块C 置于同⼀光滑⽔平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B ⼀起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成⼀体,最终A 、B 、C 都静⽌,求:(i )C 与A 碰撞前的速度⼤⼩(ii )A 、C 碰撞过程中C 对A 到冲量的⼤⼩.【答案】(1)C 与A 碰撞前的速度⼤⼩是v 0;(2)A 、C 碰撞过程中C 对A 的冲量的⼤⼩是32mv 0.【解析】【分析】【详解】试题分析:①设C 与A 碰前速度⼤⼩为1v ,以A 碰前速度⽅向为正⽅向,对A 、B 、C 从碰前⾄最终都静⽌程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =.②设C 与A 碰后共同速度⼤⼩为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =-解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量⼤⼩为032mv .⽅向为负.考点:动量守恒定律【名师点睛】本题考查了求⽊板、⽊块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应⽤动量守恒定律即可正确解题;解题时要注意正⽅向的选择.3.如图所⽰,光滑⽔平⾯上有⼀轻质弹簧,弹簧左端固定在墙壁上,滑块A 以v 0=12 m/s 的⽔平速度撞上静⽌的滑块B 并粘的速度⼤⼩v ;②在整个过程中,弹簧对A 、B 系统的冲量⼤⼩I 。
高考物理动量定理解题技巧及经典题型及练习题(含答案)含解析
高考物理动量定理解题技巧及经典题型及练习题( 含答案 ) 含分析一、高考物理精讲专题动量定理1.如图甲所示,物块A、 B 的质量分别是m A=4.0kg 和 m B= 3.0kg。
用轻弹簧拴接,放在圆滑的水平川面上,物块 B 右边与竖直墙壁相接触。
还有一物块 C 从 t= 0 时以必定速度向右运动,在 t =4s 时与物块 A 相碰,并立刻与 A 粘在一同不再分开,所示。
求:C的 v- t 图象如图乙(1) C 的质量 m C;(2) t = 8s 时弹簧拥有的弹性势能E p1, 4~12s 内墙壁对物块 B 的冲量大小 I;(3) B 走开墙后的运动过程中弹簧拥有的最大弹性势能E p2。
【答案】( 1) 2kg ;( 2)27J,36N·S;( 3)9J【分析】【详解】(1)由题图乙知, C 与 A 碰前速度为 v1= 9m/s ,碰后速度大小为 v2=3m/s ,C 与 A 碰撞过程动量守恒m C v1= (m A+ m C)v2解得 C 的质量 m C=2kg。
(2) t = 8s 时弹簧拥有的弹性势能E =(m + m )v22=27Jp11AC2取水平向左为正方向,依据动量定理,4~12s 内墙壁对物块 B 的冲量大小I=(m A+ m C)v3-(m A+ m C)(-v2) =36N·S(3)由题图可知,12s 时 B 走开墙壁,此时A、C 的速度大小 v3=3m/s ,以后 A、 B、 C 及弹簧构成的系统动量和机械能守恒,且当A、 C 与 B 的速度相等时,弹簧弹性势能最大(m A+ m C)v3= (m A+ m B+ m C)v41(m A+ m C) v32=1(m A+ m B+ m C) v42+ E p222解得 B 走开墙后的运动过程中弹簧拥有的最大弹性势能E p2= 9J。
2.如下图,长为L 的轻质细绳一端固定在地高度为 H。
现将细绳拉至与水平方向成30O 点,另一端系一质量为m ,由静止开释小球,经过时间的小球, O 点离t 小球抵达最低点,细绳恰巧被拉断,小球水平抛出。
高考物理动量定理及其解题技巧及练习题(含答案)
高考物理动量定理及其解题技巧及练习题(含答案)一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t + (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.蹦床运动是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。
一个质量为60kg 的运动员,从离水平网面3.2m 高处自由下落,着网后沿竖直方向蹦回离水平网面5.0m 高处。
已知运动员与网接触的时间为1.2s ,若把这段时间内网对运动员的作用力当作恒力来处理,求此力的大小和方向。
(g 取10m/s 2) 【答案】1.5×103N ;方向向上 【解析】 【详解】设运动员从h 1处下落,刚触网的速度为1128m /s v gh =运动员反弹到达高度h 2,,网时速度为22210m /s v gh ==在接触网的过程中,运动员受到向上的弹力F 和向下的重力mg ,设向上方向为正,由动量定理有()21()F mg t mv mv -=--得F =1.5×103N方向向上3.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.4.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F0时,安全气囊爆开.某次试验中,质量m1=1 600 kg的试验车以速度v1 = 36 km/h正面撞击固定试验台,经时间t1 = 0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I0的大小及F0的大小;(2)若试验车以速度v1撞击正前方另一质量m2 =1 600 kg、速度v2 =18 km/h同向行驶的汽车,经时间t2 =0.16 s两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)I0 = 1.6×104 N·s ,1.6×105 N;(2)见解析【解析】【详解】(1)v1 = 36 km/h = 10 m/s,取速度v1 的方向为正方向,由动量定理有-I0 =0-m1v1 ①将已知数据代入①式得I0 = 1.6×104 N·s ②由冲量定义有I0 = F0t1 ③将已知数据代入③式得F0 = 1.6×105 N ④(2)设试验车和汽车碰撞后获得共同速度v,由动量守恒定律有m1v1+ m2v2 = (m1+ m2)v⑤对试验车,由动量定理有-Ft2 = m1v-m1v1 ⑥将已知数据代入⑤⑥式得F= 2.5×104 N ⑦可见F<F0,故试验车的安全气囊不会爆开⑧5.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不分开,C的v-t图象如图乙所示.求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1(3)4—12s内墙壁对物块B的冲量大小I【答案】(1) 2kg (2) 27J (3) 36N s×【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg.(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J(3)取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·s6.如图所示,用0.5kg的铁睡把钉子钉进木头里去,打击时铁锤的速度v=4.0m/s,如果打击后铁锤的速度变为0,打击的作用时间是0.01s(取g=10m/s2),那么:(1)不计铁锤受的重力,铁锤钉钉子的平均作用力多大?(2)考虑铁锤的重力,铁锤钉钉子的平均作用力又是多大?【答案】(1)200N,方向竖直向下;(2)205N,方向竖直向下【解析】【详解】(1)不计铁锤受的重力时,设铁锤受到钉子竖直向上的平均作用力为1F,取铁锤的速度v的方向为正方向,以铁锤为研究对象,由动量定理得10F t mv-=-则10.5 4.0N200N0.01mvFt ⨯===由牛顿第三定律可知,铁锤钉钉子的平均作用力1F'的大小也为200N,方向竖直向下。
高考物理动量定理及其解题技巧及练习题(含答案)含解析
高考物理动量定理及其解题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。
已知sin37º=0.60,cos37º=0.80,重力加速度g 取10m/s 2,不计空气阻力。
求: (1)物体沿斜面向上运动的加速度大小;(2)物体在沿斜面运动的过程中,物体克服重力所做功的最大值; (3)物体在沿斜面向上运动至返回到斜面底端的过程中,重力的冲量。
【答案】(1)6.0m/s 2(2)18J (3)20N·s ,方向竖直向下。
【解析】 【详解】(1)设物体运动的加速度为a ,物体所受合力等于重力沿斜面向下的分力为:F=mg sin θ根据牛顿第二定律有:F=ma ;解得:a =6.0m/s 2(2)物体沿斜面上滑到最高点时,克服重力做功达到最大值,设最大值为v m ;对于物体沿斜面上滑过程,根据动能定理有:2120m W mv -=-解得W =18J ;(3)物体沿斜面上滑和下滑的总时间为:02262s 6v t a ⨯=== 重力的冲量:20N s G I mgt ==⋅方向竖直向下。
高考物理动量定理解题技巧及经典题型及练习题(含答案)及解析
高考物理动量定理解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。
车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。
【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。
(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与横坐标x 的关系如图2所示,图线是双曲线(坐标是渐近线);顶角θ=53°的光滑金属长导轨MON 固定在水平面内,ON 与x 轴重合,一根与ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终保持与导轨良好接触,已知t =0时,导体棒位于顶角O 处;导体棒的质量为m =4kg ;OM 、ON 接触处O 点的接触电阻为R =0.5Ω,其余电阻不计,回路电动势E 与时间t 的关系如图3所示,图线是过原点的直线,求:(1)t =2s 时流过导体棒的电流强度的大小; (2)在1~2s 时间内导体棒所受安培力的冲量大小;(3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式. 【答案】(1)8A (2)8N s ⋅(3)32639F x =+【解析】 【分析】 【详解】(1)根据E-t 图象中的图线是过原点的直线特点,可得到t =2s 时金属棒产生的感应电动势为4V E =由欧姆定律得24A 8A 0.5E I R === (2)由图2可知,1(T m)x B =⋅ 由图3可知,E 与时间成正比,有E =2t (V )4EI t R== 因θ=53°,可知任意t 时刻回路中导体棒有效切割长度43x L = 又由F BIL =安所以163F t 安=即安培力跟时间成正比所以在1~2s 时间内导体棒所受安培力的平均值163233N 8N2F +==故8N s I F t =∆=⋅安(3)因为43vE BLv Bx ==⋅所以1.5(m/s)v t =可知导体棒的运动时匀加速直线运动,加速度21.5m/s a =又212x at =,联立解得 32639F x =+【名师点睛】本题的关键首先要正确理解两个图象的数学意义,运用数学知识写出电流与时间的关系,要掌握牛顿运动定律、闭合电路殴姆定律,安培力公式、感应电动势公式.3.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。
高中物理动量定理解题技巧讲解及练习题(含答案)及解析
高中物理动量定理解题技巧讲解及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与横坐标x 的关系如图2所示,图线是双曲线(坐标是渐近线);顶角=53°的光滑金属长导轨MON 固定在水平面内,ON 与x 轴重合,一根与ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终保持与导轨良好接触,已知t=0时,导体棒位于顶角O 处;导体棒的质量为m=4kg ;OM 、ON 接触处O 点的接触电阻为R=0.5Ω,其余电阻不计,回路电动势E 与时间t 的关系如图3所示,图线是过原点的直线,求:(1)t =2s 时流过导体棒的电流强度的大小;(2)在1~2s 时间内导体棒所受安培力的冲量大小;(3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式.【答案】(1)8A (2)8N s (3)32639Fx【解析】【分析】【详解】(1)根据E-t 图象中的图线是过原点的直线特点,可得到t =2s 时金属棒产生的感应电动势为4VE由欧姆定律得24A 8A0.5E I R(2)由图2可知,1(T m)xB 由图3可知,E 与时间成正比,有E=2t (V )4E ItR因=53°,可知任意t 时刻回路中导体棒有效切割长度43x L又由F BIL安所以163F t安即安培力跟时间成正比所以在1~2s 时间内导体棒所受安培力的平均值163233N8N2F故8N sI F t 安(3)因为43v EBLv Bx所以1.5(m/s)vt 可知导体棒的运动时匀加速直线运动,加速度21.5m/sa又212xat ,联立解得32639Fx【名师点睛】本题的关键首先要正确理解两个图象的数学意义,运用数学知识写出电流与时间的关系,要掌握牛顿运动定律、闭合电路殴姆定律,安培力公式、感应电动势公式.2.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R=0.1 m ,半圆形轨道的底端放置一个质量为m=0.1 kg 的小球B ,水平面上有一个质量为M=0.3 kg 的小球A 以初速度v 0=4.0 m/ s 开始向着木块B 滑动,经过时间t=0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度;(2)球碰撞后B,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s(2)v A =1m/s ,v B =3m/s (3)4N ,方向竖直向上【解析】【分析】【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得:–μMg t =M v –M v 0解得:v =2m/s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:AB Mv Mv mv 222111222ABMvMvmv解得:v A =1m/sv B =3m/s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222BCmvmvmg R在最高点C 对小球B 受力分析,由牛顿第二定律有:2CNvmgF m R解得:F N =4N 由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.3.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A 以v 0=12 m/s的水平速度撞上静止的滑块B 并粘在一起向左运动,与弹簧作用后原速率弹回,已知A 、B的质量分别为m 1=0.5 kg 、m 2=1.5 kg 。
高中物理动量定理答题技巧及练习题(含答案)含解析
高中物理动量定理答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,长为L 的轻质细绳一端固定在O 点,另一端系一质量为m 的小球,O 点离地高度为H 。
现将细绳拉至与水平方向成30︒,由静止释放小球,经过时间t 小球到达最低点,细绳刚好被拉断,小球水平抛出。
若忽略空气阻力,重力加速度为g 。
(1)求细绳的最大承受力;(2)求从小球释放到最低点的过程中,细绳对小球的冲量大小;(3)小明同学认为细绳的长度越长,小球抛的越远;小刚同学则认为细绳的长度越短,小球抛的越远。
请通过计算,说明你的观点。
【答案】(1)F =2mg ;(2)()22F I mgt m gL =+;(3)当2HL =时小球抛的最远 【解析】 【分析】 【详解】(1)小球从释放到最低点的过程中,由动能定理得201sin 302mgL mv ︒=小球在最低点时,由牛顿第二定律和向心力公式得20mv F mg L-= 解得:F =2mg(2)小球从释放到最低点的过程中,重力的冲量I G =mgt动量变化量0p mv ∆=由三角形定则得,绳对小球的冲量()22F I mgt m gL =+(3)平抛的水平位移0x v t =,竖直位移212HL gt -=解得2()x L H L =-当2HL =时小球抛的最远2.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A 以v 0=12 m/s 的水平速度撞上静止的滑块B 并粘在一起向左运动,与弹簧作用后原速率弹回,已知A 、B 的质量分别为m 1=0.5 kg 、m 2=1.5 kg 。
求: ①A 与B 撞击结束时的速度大小v ;②在整个过程中,弹簧对A 、B 系统的冲量大小I 。
【答案】①3m/s ; ②12N •s 【解析】 【详解】①A 、B 碰撞过程系统动量守恒,以向左为正方向 由动量守恒定律得m 1v 0=(m 1+m 2)v代入数据解得v =3m/s②以向左为正方向,A 、B 与弹簧作用过程 由动量定理得I =(m 1+m 2)(-v )-(m 1+m 2)v代入数据解得I =-12N •s负号表示冲量方向向右。
高考物理动量定理解题技巧和训练方法及练习题(含答案)及解析
高考物理动量定理解题技巧和训练方法及练习题(含答案)及解析一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t + (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在动量定理中的平均力F 1是指合力对时间的平均值,动能定理中的平均力F 2是合力指对位移的平均值.(1)质量为1.0kg 的物块,受变力作用下由静止开始沿直线运动,在2.0s 的时间内运动了2.5m 的位移,速度达到了2.0m/s .分别应用动量定理和动能定理求出平均力F 1和F 2的值.(2)如图1所示,质量为m 的物块,在外力作用下沿直线运动,速度由v 0变化到v 时,经历的时间为t ,发生的位移为x .分析说明物体的平均速度v 与v 0、v 满足什么条件时,F 1和F 2是相等的.(3)质量为m 的物块,在如图2所示的合力作用下,以某一初速度沿x 轴运动,当由位置x =0运动至x =A 处时,速度恰好为0,此过程中经历的时间为2mt kπ=所受合力对时间t 的平均值.【答案】(1)F 1=1.0N ,F 2=0.8N ;(2)当02v v x v t +==时,F 1=F 2;(3)2kA F π=. 【解析】 【详解】解:(1)物块在加速运动过程中,应用动量定理有:1t F t mv =g解得:1 1.0 2.0N 1.0N 2.0t mv F t ⨯=== 物块在加速运动过程中,应用动能定理有:2212t F x mv =g 解得:222 1.0 2.0N 0.8N 22 2.5t mv F x ⨯===⨯(2)物块在运动过程中,应用动量定理有:10Ft mv mv =- 解得:01()m v v F t-=物块在运动过程中,应用动能定理有:22201122F x mv mv =- 解得:2202()2m v v F x-=当12F F =时,由上两式得:02v v x v t +== (3)由图2可求得物块由0x =运动至x A =过程中,外力所做的功为:21122W kA A kA =-=-g设物块的初速度为0v ',由动能定理得:20102W mv '=-解得:0kv A m'= 设在t 时间内物块所受平均力的大小为F ,由动量定理得:00Ft mv -=-' 由题已知条件:2m t kπ= 解得:2kAF π=3.质量0.2kg 的球,从5.0m 高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g 取10m/s 2.求小球对钢板的作用力. 【答案】78N 【解析】 【详解】自由落体过程 v 12=2gh 1,得v 1=10m/s ; v 1=gt 1 得t 1=1s小球弹起后达到最大高度过程0− v 22=−2gh 2,得v 2=9m/s 0-v 2=-gt 2 得t 2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft ′-mg t ′=mv 2-(-mv 1) 其中t ′=t -t 1-t 2=0.05s 得F =78N由牛顿第三定律得F ′=-F ,所以小球对钢板的作用力大小为78N ,方向竖直向下;4.如图所示,长为1m 的长木板静止在粗糙的水平面上,板的右端固定一个竖直的挡板,长木板与挡板的总质量为M =lkg ,板的上表面光滑,一个质量为m= 0.5kg 的物块以大小为 t 0=4m/s 的初速度从长木板的左端滑上长木板,与挡板碰撞后最终从板的左端滑离,挡板对物 块的冲量大小为2. 5N • s ,已知板与水平面间的动摩擦因数为μ= 0.5,重力加速度为g=10m/s 2,不计物块与挡板碰撞的时间,不计物块的大小。
高考物理动量定理解题技巧讲解及练习题(含答案)及解析
高考物理动量定理解题技巧讲解及练习题(含答案)及解析一、高考物理精讲专题动量定理1.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。
在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。
在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab ,另一导体棒cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。
已知t =0时刻起,cd 棒在沿斜面向下的拉力作用下开始向下运动(cd 棒始终在左侧斜面上运动),而ab 棒在水平拉力F 作用下始终处于静止状态,F 随时间变化的关系如图乙所示,ab 棒静止时细导线与竖直方向的夹角37θ=︒。
其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定支架。
(1)请通过计算分析cd 棒的运动情况; (2)若t =0时刻起,求2s 内cd 受到拉力的冲量;(3)3 s 内电阻R 上产生的焦耳热为2. 88 J ,则此过程中拉力对cd 棒做的功为多少? 【答案】(1)cd 棒在导轨上做匀加速度直线运动;(2)1.6N s g ;(3)43.2J 【解析】 【详解】(1)设绳中总拉力为T ,对导体棒ab 分析,由平衡方程得:sin θF T BIl =+cos θT mg =解得:tan θ 1.50.5F mg BIl I =+=+由图乙可知:1.50.2F t =+则有:0.4I t =cd 棒上的电流为:0.8cd I t =则cd 棒运动的速度随时间变化的关系:8v t =即cd 棒在导轨上做匀加速度直线运动。
(2)ab 棒上的电流为:0.4I t =则在2 s 内,平均电流为0.4 A ,通过的电荷量为0.8 C ,通过cd 棒的电荷量为1.6C 由动量定理得:sin θ0F t I mg t BlI mv +-=-解得: 1.6N s F I =g(3)3 s 内电阻R 上产生的的热量为 2.88J Q =,则ab 棒产生的热量也为Q ,cd 棒上产生的热量为8Q ,则整个回路中产生的总热量为28. 8 J ,即3 s 内克服安培力做功为28. 8J 而重力做功为:G sin 43.2J W mg θ==对导体棒cd ,由动能定理得:F W W'-克安2G 102W mv +=- 由运动学公式可知导体棒的速度为24 m/s 解得:43.2J F W '=2.如图所示,质量M =1.0kg 的木板静止在光滑水平面上,质量m =0.495kg 的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。
高考物理动量定理答题技巧及练习题(含答案)含解析
高考物理动量定理答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,固定在竖直平面内的4光滑圆弧轨道AB与粗糙水平地面BC相切于B点。
质量m=0.1kg的滑块甲从最高点A由静止释放后沿轨道AB运动,最终停在水平地面上的C 点。
现将质量m=0.3kg的滑块乙静置于B点,仍将滑块甲从A点由静止释放结果甲在B点与乙碰撞后粘合在一起,最终停在D点。
已知B、C两点间的距离x=2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s,两滑块均视为质点。
求:(1)圆弧轨道AB的半径R;(2)甲与乙碰撞后运动到D点的时间t【答案】(1) (2)【解析】【详解】(1)甲从B点运动到C点的过程中做匀速直线运动,有:v B2=2a1x1;根据牛顿第二定律可得:对甲从A点运动到B点的过程,根据机械能守恒:解得v B=4m/s;R=0.8m;(2)对甲乙碰撞过程,由动量守恒定律:;若甲与乙碰撞后运动到D点,由动量定理:解得t=0.4s2.在某次短道速滑接力赛中,质量为50kg的运动员甲以6m/s的速度在前面滑行,质量为60kg的乙以7m/s的速度从后面追上,并迅速将甲向前推出,完成接力过程.设推后乙的速度变为4m/s,方向向前,若甲、乙接力前后在同一直线上运动,不计阻力,求:⑴接力后甲的速度大小;⑵若甲乙运动员的接触时间为0.5s,乙对甲平均作用力的大小.【答案】(1)9.6m/s;(2)360N;【解析】【分析】 【详解】(1)由动量守恒定律得+=+m v m v m v m v ''甲甲乙乙甲甲乙乙 =9.6/v m s '甲; (2)对甲应用动量定理得-Ft m v m v '=甲甲甲甲 =360F N3.如图,A 、B 、C 三个木块的质量均为m ,置于光滑的水平面上,B 、C 之间有一轻质弹簧,弹簧的两端分别与木块B 、C 相连,弹簧处于原长状态.现A 以初速v 0沿B 、C 的连线方向朝B 运动,与B 相碰并粘合在一起,碰撞时间极短、大小为t .(1)A 、B 碰撞过程中,求A 对B 的平均作用力大小F . (2)在以后的运动过程中,求弹簧具有的最大弹性势能E p . 【答案】(1)02mv F t = (2)2P 0112E mv =【解析】 【详解】(1)设A 、B 碰撞后瞬间的速度为1v ,碰撞过程A 、B 系统动量守恒,取向右为正方向,由动量守恒定律有:012mv mv = 解得1012v v =设A 、B 碰撞时的平均作用力大小为F ,对B 有10Ft mv =- 解得02mv F t=(2)当A 、B 、C 具有共同速度v 时,弹簧具有最大弹性势能,设弹簧的最大弹性势能为p E ,碰后至A 、B 、C 速度相同的过程中,系统动量守恒,有03mv mv =根据碰后系统的机械能守恒得221p 112322mv mv E ⋅=⋅+ 解得:2p 0112E mv =4.如图所示,木块A 和四分之一光滑圆轨道B 静置于光滑水平面上,A 、B 质量m A =m B =2.0kg 。
高中物理动量定理解题技巧及经典题型及练习题(含答案)及解析.docx
高中物理动量定理解题技巧及经典题型及练习题( 含答案 ) 及解析一、高考物理精讲专题动量定理1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。
某型“礼花”底座仅0.2s 的发射时间,就能将质量为 m=5kg 的礼花弹竖直抛上 180m 的高空。
(忽略发射底座高度,不计空气阻力, g 取 10m/s 2)(1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力)(2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1: 4,且炸裂时有大小为E=9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少?【答案】 (1)1550N; (2)900m【解析】【分析】【详解】(1)设发射时燃烧的火药对礼花弹的平均作用力为F,设礼花弹上升时间为t,则:h 1gt 2 2解得t 6s对礼花弹从发射到抛到最高点,由动量定理Ft 0mg(t t0 )0其中t00.2s解得F 1550N(2)设在最高点爆炸后两块质量分别为m1、 m2,对应的水平速度大小分别为v1、 v2,则:在最高点爆炸,由动量守恒定律得m1v1m2 v2由能量守恒定律得E 1m1v121m2v22 22其中m11m24 m m1m2联立解得v1120m/sv230m/s 之后两物块做平抛运动,则竖直方向有h 1gt 2 2水平方向有s v1t v2t由以上各式联立解得s=900m2.质量为 m 的小球,从沙坑上方自由下落,经过时间t1到达沙坑表面,又经过时间t2停在沙坑里.求:⑴沙对小球的平均阻力F;⑵小球在沙坑里下落过程所受的总冲量I.mg(t1t 2 )【答案】 (1)(2) mgt1t2【解析】试题分析:设刚开始下落的位置为A,刚好接触沙的位置为B,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t1 +t2,而阻力作用时间仅为t2,以竖直向下为正方向,有:mg(t 1+t2)-Ft2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t1时间内只有重力的冲量,在t2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:mgt 1-I=0,∴I=mgt1方向竖直向上考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.3.如图所示,足够长的木板端, A、 B、C 的质量分别为A 和物块m、2m 和C置于同一光滑水平轨道上,物块 B 置于 A 的左3m,已知 A、 B 一起以 v0的速度向右运动,滑块C向左运动,A、C 碰后连成一体,最终A、B、 C 都静止,求:(i) C 与 A 碰撞前的速度大小(i i )A、 C 碰撞过程中 C 对 A 到冲量的大小.【答案】( 1) C 与 A 碰撞前的速度大小是v0;(2) A、 C 碰撞过程中 C 对 A 的冲量的大小是3mv0.2【解析】【分析】【详解】试题分析:①设 C 与 A 碰前速度大小为v1,以A碰前速度方向为正方向,对A、 B、 C 从碰前至最终都静止程由动量守恒定律得:(m 2m) v0-3mv1 ?0解得: v1v0.②设 C 与 A 碰后共同速度大小为v2,对A、C在碰撞过程由动量守恒定律得:mv0-3mv1( m 3m)v2在 A、 C 碰撞过程中对 A 由动量定理得:I CA mv2- mv0解得: I CA 3mv0 2即A、 C 碰过程中 C 对 A 的冲量大小为3mv0.方向为负.2考点:动量守恒定律【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.4.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m=1.0kg、可视为质点的物体,以 v0=6.0m/s 的初速度沿斜面上滑。
高中物理动量定理解题技巧讲解及练习题(含答案)
高中物理动量定理解题技巧讲解及练习题(含答案)一、高考物理精讲专题动量定理1.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.2.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A 以v 0=12 m/s 的水平速度撞上静止的滑块B 并粘在一起向左运动,与弹簧作用后原速率弹回,已知A 、B 的质量分别为m 1=0.5 kg 、m 2=1.5 kg 。
求:①A 与B 撞击结束时的速度大小v ;②在整个过程中,弹簧对A 、B 系统的冲量大小I 。
【答案】①3m/s ; ②12N •s 【解析】 【详解】①A 、B 碰撞过程系统动量守恒,以向左为正方向 由动量守恒定律得m 1v 0=(m 1+m 2)v代入数据解得v =3m/s②以向左为正方向,A 、B 与弹簧作用过程 由动量定理得I =(m 1+m 2)(-v )-(m 1+m 2)v代入数据解得I =-12N •s负号表示冲量方向向右。
高中物理动量定理解题技巧及经典题型及练习题(含答案)含解析
高中物理动量定理解题技巧及经典题型及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度;(2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上【解析】【分析】【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得:–μ Mg t =M v – M v 0解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.2.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小.【答案】(1)C 与A 碰撞前的速度大小是v 0;(2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】【分析】【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =- 即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负. 考点:动量守恒定律【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.3.质量0.2kg 的球,从5.0m 高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g 取10m/s 2.求小球对钢板的作用力.【答案】78N【解析】【详解】自由落体过程 v 12=2gh 1,得v 1=10m/s ;v 1=gt 1 得t 1=1s小球弹起后达到最大高度过程0− v 22=−2gh 2,得v 2=9m/s0-v2=-gt2得t2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t′=mv2-(-mv1)其中t′=t-t1-t2=0.05s得F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作用力大小为78N,方向竖直向下;4.如图,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,某时刻物体A获得一大小为的水平初速度开始向右运动。
高考物理动量定理答题技巧及练习题(含答案)含解析
高考物理动量定理答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图甲所示,物块A 、B 的质量分别是m A =4.0kg 和m B =3.0kg 。
用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙壁相接触。
另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,C 的v -t 图象如图乙所示。
求:(1)C 的质量m C ;(2)t =8s 时弹簧具有的弹性势能E p1,4~12s 内墙壁对物块B 的冲量大小I ; (3)B 离开墙后的运动过程中弹簧具有的最大弹性势能E p2。
【答案】(1)2kg ;(2)27J ,36N·S ;(3)9J 【解析】 【详解】(1)由题图乙知,C 与A 碰前速度为v 1=9m/s ,碰后速度大小为v 2=3m/s ,C 与A 碰撞过程动量守恒m C v 1=(m A +m C )v 2解得C 的质量m C =2kg 。
(2)t =8s 时弹簧具有的弹性势能E p1=12(m A +m C )v 22=27J 取水平向左为正方向,根据动量定理,4~12s 内墙壁对物块B 的冲量大小I =(m A +m C )v 3-(m A +m C )(-v 2)=36N·S(3)由题图可知,12s 时B 离开墙壁,此时A 、C 的速度大小v 3=3m/s ,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大(m A +m C )v 3=(m A +m B +m C )v 412(m A +m C )23v =12(m A +m B +m C )24v +E p2 解得B 离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J 。
2.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。
高考物理动量定理答题技巧及练习题(含答案)及解析
高考物理动量定理答题技巧及练习题(含答案)及解析一、高考物理精讲专题动量定理1.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。
在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。
在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab ,另一导体棒cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。
已知t =0时刻起,cd 棒在沿斜面向下的拉力作用下开始向下运动(cd 棒始终在左侧斜面上运动),而ab 棒在水平拉力F 作用下始终处于静止状态,F 随时间变化的关系如图乙所示,ab 棒静止时细导线与竖直方向的夹角37θ=︒。
其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定支架。
(1)请通过计算分析cd 棒的运动情况; (2)若t =0时刻起,求2s 内cd 受到拉力的冲量;(3)3 s 内电阻R 上产生的焦耳热为2. 88 J ,则此过程中拉力对cd 棒做的功为多少? 【答案】(1)cd 棒在导轨上做匀加速度直线运动;(2)1.6N s g ;(3)43.2J 【解析】 【详解】(1)设绳中总拉力为T ,对导体棒ab 分析,由平衡方程得:sin θF T BIl =+cos θT mg =解得:tan θ 1.50.5F mg BIl I =+=+由图乙可知:1.50.2F t =+则有:0.4I t =cd 棒上的电流为:0.8cd I t =则cd 棒运动的速度随时间变化的关系:8v t =即cd 棒在导轨上做匀加速度直线运动。
(2)ab 棒上的电流为:0.4I t =则在2 s 内,平均电流为0.4 A ,通过的电荷量为0.8 C ,通过cd 棒的电荷量为1.6C 由动量定理得:sin θ0F t I mg t BlI mv +-=-解得: 1.6N s F I =g(3)3 s 内电阻R 上产生的的热量为 2.88J Q =,则ab 棒产生的热量也为Q ,cd 棒上产生的热量为8Q ,则整个回路中产生的总热量为28. 8 J ,即3 s 内克服安培力做功为28. 8J 而重力做功为:G sin 43.2J W mg θ==对导体棒cd ,由动能定理得:F W W'-克安2G 102W mv +=- 由运动学公式可知导体棒的速度为24 m/s 解得:43.2J F W '=2.如图所示,质量M =1.0kg 的木板静止在光滑水平面上,质量m =0.495kg 的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。
高中物理高考物理动量定理及其解题技巧及练习题(含答案)
高中物理高考物理动量定理及其解题技巧及练习题(含答案)一、高考物理精讲专题动量定理1.如图所示,固定在竖直平面内的4光滑圆弧轨道AB与粗糙水平地面BC相切于B点。
质量m=0.1kg的滑块甲从最高点A由静止释放后沿轨道AB运动,最终停在水平地面上的C 点。
现将质量m=0.3kg的滑块乙静置于B点,仍将滑块甲从A点由静止释放结果甲在B点与乙碰撞后粘合在一起,最终停在D点。
已知B、C两点间的距离x=2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s,两滑块均视为质点。
求:(1)圆弧轨道AB的半径R;(2)甲与乙碰撞后运动到D点的时间t【答案】(1) (2)【解析】【详解】(1)甲从B点运动到C点的过程中做匀速直线运动,有:v B2=2a1x1;根据牛顿第二定律可得:对甲从A点运动到B点的过程,根据机械能守恒:解得v B=4m/s;R=0.8m;(2)对甲乙碰撞过程,由动量守恒定律:;若甲与乙碰撞后运动到D点,由动量定理:解得t=0.4s2.如图,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,某时刻物体A获得一大小为的水平初速度开始向右运动。
已知物体A的质量为m,物体B的质量为2m,求:(1)弹簧压缩到最短时物体B的速度大小;(2)弹簧压缩到最短时的弹性势能;(3)从A开始运动到弹簧压缩到最短的过程中,弹簧对A的冲量大小。
【答案】(1)(2)(3)【解析】【详解】(1)弹簧压缩到最短时,A和B共速,设速度大小为v,由动量守恒定律有①得②(2)对A、B和弹簧组成的系统,由功能关系有③得④(3)对A由动量定理得⑤得⑥3.如图所示,用0.5kg的铁睡把钉子钉进木头里去,打击时铁锤的速度v=4.0m/s,如果打击后铁锤的速度变为0,打击的作用时间是0.01s(取g=10m/s2),那么:(1)不计铁锤受的重力,铁锤钉钉子的平均作用力多大?(2)考虑铁锤的重力,铁锤钉钉子的平均作用力又是多大?【答案】(1)200N,方向竖直向下;(2)205N,方向竖直向下【解析】【详解】(1)不计铁锤受的重力时,设铁锤受到钉子竖直向上的平均作用力为1F,取铁锤的速度v的方向为正方向,以铁锤为研究对象,由动量定理得10F t mv-=-则10.5 4.0N200N0.01mvFt ⨯===由牛顿第三定律可知,铁锤钉钉子的平均作用力1F'的大小也为200N,方向竖直向下。
高中物理动量定理解题技巧(超强)及练习题(含答案)及解析
(3)木块在木板滑行的时间t
【答案】(1)v1= 6m/s (2)v2=2m/s (3)t=1s
【解析】
【详解】
(1)子弹打入木块过程,由动量守恒定律可得:
m0v0=(m0+m)v1
解得:
v1= 6m/s
(2)木块在木板上滑动过程,由动量守恒定律可得:
(m0+m)v1=(m0+m+M)v2
联立以上各式解得
代入数据得 =8.15m/s =1.85m/s
【名师点睛】
两杆同向运动,回路中的总电动势等于它们产生的感应电动势之差,即与它们速度之差有关,对甲杆由牛顿第二定律列式,对两杆分别运用动量定理列式,即可求解.
7.如图所示,木块A和四分之一光滑圆轨道B静置于光滑水平面上,A、B质量mA=mB=2.0kg。现让A以v0=4m/s的速度水平向右运动,之后与墙壁发生弹性碰撞(碰撞过程中无机械能损失),碰撞时间为t=0.2s。取重力加速度g=10m/s2.求:
解得:
v2=2m/s
(3)对子弹木块整体,由动量定理得:
﹣μ(m0+m)gt=(m0+m)(v2﹣v1)
解得:物块相对于木板滑行的时间
4.在距地面20m高处,某人以20m/s的速度水平抛出一质量为1kg的物体,不计空气阻力(g取10m/s2)。求
(1)物体从抛出到落到地面过程重力的冲量;
(2)落地时物体的动量。
(1)小球与地面碰撞前后的动量变化?
(2)小球受到地面的平均作用力是多大?
【答案】(1)2kg•m/s,方向竖直向上;(2)12N.
【解析】
(1)取竖直向上为正方向,碰撞地面前小球的动量
碰撞地面后小球的动量
高考物理动量定理答题技巧及练习题(含答案)含解析
高考物理动量定理答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。
在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。
在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab ,另一导体棒cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。
已知t =0时刻起,cd 棒在沿斜面向下的拉力作用下开始向下运动(cd 棒始终在左侧斜面上运动),而ab 棒在水平拉力F 作用下始终处于静止状态,F 随时间变化的关系如图乙所示,ab 棒静止时细导线与竖直方向的夹角37θ=︒。
其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定支架。
(1)请通过计算分析cd 棒的运动情况; (2)若t =0时刻起,求2s 内cd 受到拉力的冲量;(3)3 s 内电阻R 上产生的焦耳热为2. 88 J ,则此过程中拉力对cd 棒做的功为多少? 【答案】(1)cd 棒在导轨上做匀加速度直线运动;(2)1.6N s g ;(3)43.2J 【解析】 【详解】(1)设绳中总拉力为T ,对导体棒ab 分析,由平衡方程得:sin θF T BIl =+cos θT mg =解得:tan θ 1.50.5F mg BIl I =+=+由图乙可知:1.50.2F t =+则有:0.4I t =cd 棒上的电流为:0.8cd I t =则cd 棒运动的速度随时间变化的关系:8v t =即cd 棒在导轨上做匀加速度直线运动。
(2)ab 棒上的电流为:0.4I t =则在2 s 内,平均电流为0.4 A ,通过的电荷量为0.8 C ,通过cd 棒的电荷量为1.6C 由动量定理得:sin θ0F t I mg t BlI mv +-=-解得: 1.6N s F I =g(3)3 s 内电阻R 上产生的的热量为 2.88J Q =,则ab 棒产生的热量也为Q ,cd 棒上产生的热量为8Q ,则整个回路中产生的总热量为28. 8 J ,即3 s 内克服安培力做功为28. 8J 而重力做功为:G sin 43.2J W mg θ==对导体棒cd ,由动能定理得:F W W'-克安2G 102W mv +=- 由运动学公式可知导体棒的速度为24 m/s 解得:43.2J F W '=2.蹦床运动是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。
高考物理动量定理解题技巧讲解及练习题(含答案)含解析
高考物理动量定理解题技巧讲解及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,固定在竖直平面内的4光滑圆弧轨道AB与粗糙水平地面BC相切于B点。
质量m=0.1kg的滑块甲从最高点A由静止释放后沿轨道AB运动,最终停在水平地面上的C 点。
现将质量m=0.3kg的滑块乙静置于B点,仍将滑块甲从A点由静止释放结果甲在B点与乙碰撞后粘合在一起,最终停在D点。
已知B、C两点间的距离x=2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s,两滑块均视为质点。
求:(1)圆弧轨道AB的半径R;(2)甲与乙碰撞后运动到D点的时间t【答案】(1) (2)【解析】【详解】(1)甲从B点运动到C点的过程中做匀速直线运动,有:v B2=2a1x1;根据牛顿第二定律可得:对甲从A点运动到B点的过程,根据机械能守恒:解得v B=4m/s;R=0.8m;(2)对甲乙碰撞过程,由动量守恒定律:;若甲与乙碰撞后运动到D点,由动量定理:解得t=0.4s2.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m的位置B处是一面墙,如图所示,物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.μ=(2)F=130N【答案】(1)0.32【解析】试题分析:(1)对A到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=m v′﹣mv , 代入数据解得:F=130N .3.在距地面20m 高处,某人以20m/s 的速度水平抛出一质量为1kg 的物体,不计空气阻力(g 取10m /s 2)。
求(1)物体从抛出到落到地面过程重力的冲量; (2)落地时物体的动量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p Ft ②
由①②式可得:
F=420N
6.如图,有一个光滑轨道,其水平部分 MN 段和圆形部分 NPQ 平滑连接,圆形轨道的半 径 R=0.5m;质量为 m1=5kg 的 A 球以 v0=6m/s 的速度沿轨道向右运动,与静止在水平轨道 上质量为 m2=4kg 的 B 球发生碰撞,两小球碰撞过程相互作用的时为 t0=0.02s,碰撞后 B 小 球恰好越过圆形轨道最高点。两球可视为质点,g=10m/s2。求:
高中物理动量定理解题技巧讲解及练习题(含答案)
一、高考物理精讲专题动量定理
1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅 0.2s 的发射时间,就能将质量为 m=5kg 的礼花弹竖直抛上 180m 的高空。(忽略发射底座高 度,不计空气阻力,g 取 10m/s2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于 礼花弹自身重力)
积为 S 的器壁发生碰撞的分子进行分析,结合第(1)(2)两问的结论,推导出气体分子
对器壁的压强 p 与 m、n 和 v 的关系式.
【答案】(1) I 2mv (2) N 1 n.Svt (3) 1 nmv2
6
3
【解析】
(1)以气体分子为研究对象,以分子碰撞器壁时的速度方向为正方向
根据动量定理 I mv mv 2mv
则小物块动量的变化量为:
p mv mg sint mg sin 1 2h m 2gh ,方向沿斜面向下. sin g
点睛:本题需要注意冲量以及动量变化量的矢量性的问题,同时需要掌握牛顿第二定律以 及运动学公式的运用.
9.一垒球手水平挥动球棒,迎面打击一以速度 水平飞来的垒球,垒球随后在离打击 点水平距离为 的垒球场上落地。设垒球质量为 0.81kg,打击点离地面高度为 2.2m,球
(1)人对足球做的功和冲量大小; (2)足球与球框发生第一次碰撞后,足球的速度大小; (3)球框在台面上通过的位移大小。
碰后 A 速度 v1 2m / s
(2)A、B 碰撞过程,对 B 球: Ft0 m2v2
得碰撞过程两小球间的平均作用力大小 F 1000N
7.用动量定理处理二维问题时,可以在相互垂直的 x、y 两个方向上分别进行研究。如图 所示,质量为 m 的小球斜射到木板上,入射的角度是 θ,碰撞后弹出的角度也是 θ,碰撞 前后的速度大小都是 v。碰撞过程中忽略小球所受重力。若小球与木板的碰撞时间为t, 求木板对小球的平均作用力的大小和方向。
所以 F= p +mg= 2 N+0.2×10N=12N,方向竖直向上.
t
0.2
4.如图所示,质量
的小车 A 静止在光滑水平地面上,其上表面光滑,左端有一
固定挡板。可视为质点的小物块 B 置于 A 的最右端,B 的质量
。现对小车 A 施加
一个水平向右的恒力 F=20N,作用 0.5s 后撤去外力,随后固定挡板与小物块 B 发生碰撞。
假设碰撞时间极短,碰后 A、B 粘在一起,继续运动。求:
(1)碰撞前小车 A 的速度;
(2)碰撞过程中小车 A 损失的机械能。
【答案】(1)1m/s(2)25/9J
【解析】
【详解】
(1)A 上表面光滑,在外力作用下,A 运动,B 静止,
对 A,由动量定理得:
,
代入数据解得:
m/s;
(2)A、B 碰撞过程系统动量守恒,以向右为正方向,
由动量守恒定律得:
,
代入数据解得:
,
碰撞过程,A 损失的机械能:
,
代入数据解得:
;
5.冬奥会短道速滑接力比赛中,在光滑的冰面上甲运动员静止,以 10m/s 运动的乙运动 员从后去推甲运动员,甲运动员以 6m/s 向前滑行,已知甲、乙运动员相互作用时间为 1s,甲运动员质量 m1=70kg、乙运动员质量 m2=60kg,求:
【答案】(1)20N∙s,方向竖直向下(2) 20 2kg m/s , 与水平方向的夹角为 45°
【解析】
【详解】
(1)物体做平抛运动,则有:
解得:
h 1 gt2 2
t=2s 则物体从抛出到落到地面过程重力的冲量
方向竖直向下。
I=mgt=1×10×2=20N•s
(2)在竖直方向,根据动量定理得 可得,物体落地时竖直方向的分动量
向都与器壁垂直,且速率不变.
(1)求一个气体分子与器壁碰撞一次给器壁的冲量 I 的大小;
(2)每个分子与器壁各面碰撞的机会均等,则正方体的每个面有六分之一的几率.请计算
在 Δt 时间内,与面积为 S 的器壁发生碰撞的分子个数 N;
(3)大量气体分子对容器壁持续频繁地撞击就形成了气体的压强.对在 Δt 时间内,与面
棒与垒球的作用时间为 0.010s,重力加速度为 小。 【答案】900N 【解析】 【详解】
,求球棒对垒球的平均作用力的大
由题意可知,垒球被击后做平抛运动,竖直方向:h= gt2
所以: 水平方向:x=vt
所以球被击后的速度: 选取球被击出后的速度方向为正方向,则:v0=-5m/s 设平均作用力为 F,则:Ft0=mv-mv0 代入数据得:F=900N 【点睛】 此题主要考查平抛运动与动量定理的应用,其中正确判断出垒球被击后做平抛运动是解答 的关键;应用动量定理解题时注意正方向.
I=py-0。
物体落地时水平方向的分动量
py=20kg•m/s
故落地时物体的动量
px=mv0=1×20=20kg•m/s
p px2 py2 20 2kg m/s
设地时动量与水平方向的夹角为 θ,则
tan py 1 px
θ=45°
3.质量为 0.2kg 的小球竖直向下以 6m/s 的速度落至水平地面,再以 4m/s 的速度反向弹
(2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略 不计),测得前后两块质量之比为 1:4,且炸裂时有大小为 E=9000J 的化学能全部转化为 了动能,则两块落地点间的距离是多少?
【答案】(1)1550N;(2)900m 【解析】
【分析】 【详解】 (1)设发射时燃烧的火药对礼花弹的平均作用力为 F,设礼花弹上升时间为 t,则:
【解析】
(1)小物块沿斜面下滑,根据牛顿第二定律可知: mg sin ma ,则: a g sin
根据位移与时间关系可以得到: h 1 g sint2 ,则: t 1 2h
sin 2
sin g
则电场的冲量为: I Eqt Eq 2h ,方向垂直于斜面向下 sin g
(2)根据速度与时间的关系,小物块到达斜面底端的速度为: v at g sin t
(1)碰撞后 A 小球的速度大小。 (2)碰撞过程两小球间的平均作用力大小。 【答案】(1)2m/s (2)1000N 【解析】 【详解】
(1)B
小球刚好能运动到圆形轨道的最高点:
m2 g
m2
v2 R
设
B
球碰后速度为
v2
,由机械能守恒可知:
1 2
m2v22
2m2 gR
1 2
m2v2
A、B 碰撞过程系统动量守恒: m1v0 m1v1 m2v2
由牛顿第三定律可知,分子受到的冲量与分子给器壁的冲量大小相等方向相反
所以,一个分子与器壁碰撞一次给器壁的冲量为 I 2mv ;
(2)如图所示,以器壁的面积 S 为底,以 vΔt 为高构成柱体,由题设条件可知,柱体内 的分子在 Δt 时间内有 1/6 与器壁 S 发生碰撞,碰撞分子总数为
N 1 n Svt 6
2 解得:v1= 2gh 2102.45 7 m/s,
同理,回弹过程的速度为 5m/s,方向竖直向上, 设向下为正,则对碰撞过程由动量定理可知: mgt-Ft=-mv′-mv 代入数据解得:F=35N 由牛顿第三定律小球对地面的平均作用力大小为 35N,方向竖直向下.
12.一位足球爱好者,做了一个有趣的实验:如图所示,将一个质量为 m、半径为 R 的质 量分布均匀的塑料弹性球框静止放在粗糙的足够大的水平台面上,质量为 M(M>m)的 足球(可视为质点)以某一水平速度 v0 通过球框上的框口,正对球框中心射入框内,不计 足球运动中的一切阻力。结果发现,当足球与球框发生第一次碰撞后到第二次碰撞前足球 恰好不会从右端框口穿出。假设足球与球框内壁的碰撞为弹性碰撞,只考虑球框与台面之 间的摩擦,求:
10.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联
系,从而更加深刻地理解其物理本质.在正方体密闭容器中有大量某种气体的分子,每个
分子质量为 m,单位体积内分子数量 n 为恒量.为简化问题,我们假定:分子大小可以忽
略;分子速率均为 v,且与器壁各面碰撞的机会均等;分子与器壁碰撞前后瞬间,速度方
⑴乙运动员的速度大小;
⑵甲、乙运动员间平均作用力的大小。
【答案】(1)3m/s (2)F=420N
【解析】
【详解】
(1)甲乙运动员的动量守恒,由动量守恒定律公式
得:
m1v1 m2v2 m1v1' m2v2'
(2)甲运动员的动量变化:
v2' 3m/s
对甲运动员利用动量定理:
p m1v1' -m1v1 ①
11.质量为 0.5kg 的小球从 h=2.45m 的高空自由下落至水平地面,与地面作用 0.2s 后,再 以 5m/s 的速度反向弹回,求小球与地面的碰撞过程中对地面的平均作用力.(不计空气阻 力,g=10m/s2) 【答案】35N 【解析】 小球自由下落过程中,由机械能守恒定律可知: mgh= 1 mv12;
h 1 gt2 2
解得
t 6s
对礼花弹从发射到抛到最高点,由动量定理
Ft0 mg(t t0 ) 0