六年级的数学找规律练习题.doc
六年级数学找规律题型
![六年级数学找规律题型](https://img.taocdn.com/s3/m/e4b260d9763231126fdb1148.png)
一、等差型数列规律1.有一组数:7,12,17,22,27,…请观察这组数的构成规律,用你发现的规律确定 第8个数为 , 第n 个数为 . 二、等比型数列规律2. 有一组数:1,4,16,64,……,请观察这组数的构成规律,用你发现的规律确定三、含n 2型数列规律3.有一组数:2,6,12,20,30,…请观察这组数的构成规律,用你发现的规律 确定第8个数为 , 第n 个数为 .四、其它数列规律列举4.观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的 第k 个数是五、循环型数列.5. 已知221=,422=,32=8,42=16,25=32,……观察上面规律,试猜想20082 的末位数是 .6. 若1113a =-,2111a a =-,3211a a =-,… ;则2014a 的值为 . 六、算式型规律7. 已知22223322333388+=⨯+=⨯,,244441515+=⨯,……,若288a a b b+=⨯(a 、b 为正整数)则a b += .8. 研究下列算式,你会发现什么规律?1×3+1=22; 2×4+1=32; 3×5+1=42; 4×6+1=52 …………,(1) 请用含n 的式子表示你发现的规律:___________________.(2) 请你用发现的规律解决下面问题计算11111(1)(1)(1)(1)(1)132********+++++⨯⨯⨯⨯⨯的值七、数列阵型9.观察下列三行数: (课本P43页例4变式题)第一行:-1,2,-3,4,-5……第二行:1,4,9,16,25,……第三行:0,3,8,15,24,……(1)第一行数按什么规律排列?(2)第二行、第三行分别与第一行数有什么关系?(3)取每行的第10个数,计算这三个数的和.。
六年级10道找规律题
![六年级10道找规律题](https://img.taocdn.com/s3/m/7e708de8c0c708a1284ac850ad02de80d4d80607.png)
六年级10道找规律题一、1, 4, 9, 16, 25, 36, 49, 64, 81, 100这组数字中的规律是每个数字都是前一个数字的平方。
二、2, 4, 8, 16, 32, 64, 128, 256, 512, 1024这组数字中的规律是每个数字都是前一个数字乘以2得到的。
三、1, 3, 6, 10, 15, 21, 28, 36, 45, 55这组数字中的规律是每个数字都比前一个数字大1、2、3、4、5、6、7、8、9。
四、3, 6, 9, 12, 15, 18, 21, 24, 27, 30这组数字中的规律是每个数字都是前一个数字加上3。
五、1, 3, 6, 10, 15, 21, 28, 36, 45, 55这组数字中的规律是每个数字都比前一个数字大1、2、3、4、5、6、7、8、9,与第三题的规律相同。
六、2, 6, 12, 20, 30, 42, 56, 72, 90, 110这组数字中的规律是每个数字都是前一个数字加上一个等差数列的项。
七、1, 4, 9, 16, 25, 36, 49, 64, 81, 100这组数字中的规律是每个数字都是一个完全平方数。
八、1, 2, 4, 7, 11, 16, 22, 29, 37, 46这组数字中的规律是每个数字都比前一个数字大1、2、3、4、5、6、7、8、9。
九、1, 4, 9, 16, 25, 36, 49, 64, 81, 100这组数字中的规律是每个数字都是一个完全平方数,与第七题的规律相同。
十、3, 5, 8, 12, 17, 23, 30, 38, 47, 57这组数字中的规律是每个数字都比前一个数字大1、3、5、7、9、11、13、15、17。
通过以上的十道找规律题,我们可以发现数列中的规律可以有很多种。
有些规律是比较简单的,例如等差数列、等比数列、完全平方数等;而有些规律则需要我们观察更多的数字,找出其中的规律。
在解决这些题目的过程中,我们需要灵活运用数学知识,例如加减乘除等运算,同时要有一定的观察力和逻辑思维能力。
小学六年级数学复习找规律练习题
![小学六年级数学复习找规律练习题](https://img.taocdn.com/s3/m/978b3c3c336c1eb91b375d72.png)
找规律习题一、填空题1.摆一个需要4根小棒,摆需要7根小棒,摆需要10根小棒…,像这样摆n个正方形需要根小棒,当n=20时,需要根小棒.2.如图方式摆放桌子和椅子,一张桌子能坐6人,3张桌子能坐人.3.…用相同的小棒按左图方法拼组,如果拼成的图形中含有10个小正方形,需要根小棒,154根小棒拼成的图形中含有个小正方体.4.如图,每个方框中数的排列是有规律的,则F=.5.用小棒摆三角形,照这样摆下去,摆10个三角形需根小棒,摆n个三角形需根小棒.6.如图,用同样的小棒摆正方形.摆10个同样的正方形需要小棒根;现在有46根小棒可以摆个正方形.7.如图,小明用小棒搭房子,他搭3间房子用13根小棒.照这样,搭10间房子要用根小棒;搭n间房子要用根小棒(用含有n的式子表示).8.下面一组图形中的阴影变化是有规律的,请根据这个规律把第四幅图的阴影部分画出来。
9.按照下面的规律摆下去,图8应有()个三角形。
10.用3根小棒可以摆一个三角形,按下面的方式摆下趣,摆100个三角形需要()根小棒。
11.按照下面的方法拼下去(单位:厘米),第9个图的周长是()厘米,第100个图形的周长是()厘米。
12.6二、选择题(共4小题)1.按的方式摆放在桌面上.8个按这种方式摆放,有()个面露在外面.A.20 B.23 C.26 D.292.将一些小圆球如图摆放,第六幅图有()个小圆球.A.30 B.36 C.423.按下列规律印刷笑脸图案,第8幅图案有()个笑脸.A.8 B.32 C.364.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”,从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+3112.下图编号为(1),(2),(3),(4)这四幅图分别由1,4,9,16个小等边三角形拼成,它们的周长分别为3,6,9,12.按这个规律.由100个小等边三角形拼成的图形,周长为.13.对于一个多边形,定义一种“生长”操作(如图),将其中一边AB变成折线ACDEB,其中C和E是AB的三等分点,C、D、E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过四次“生长”操作得到的图形的周长是.14.如图,它是由火柴棒拼成的图案,如果在这个图案中用了51根火柴棒,可拼成个三角形.15.如图,一张方桌可以坐4人,两张方桌拼起来可以坐6人,三张方桌拼起来可以坐8人…像这样n张方桌拼起来可以坐人,坐68人需要张方桌.16.用小棒摆正方形,如图摆6个正方形用小棒根,摆n个正方形用小棒根.17.把边长为1厘米的正方形纸片,按如图的规律拼成长方形;(1)用6个正方形拼成的长方形周长是厘米;(2)用n个正方形拼成的长方形周长是厘米.18.摆1个正方形需要4根小棒,摆2个需要7根小棒,摆3个需要10根小棒,摆n 个正方形需要 根小棒.三、解答题(共12小题) 19.探索规律. 正方体个数1 2 3 4 5 6 … N …正方形个数 6 10 14 18 … 62 …20.怎样巧妙的计算连续偶数的和呢?通过下面的探索,你就会有新的发现.(1)摆两层一共有:1+2=3个 摆三层一共有1+2+3=6个 摆四层一共有 个. 摆五层一共有 个. 摆六层一共有 个. …(2)用n 表示摆的层数,你能总结出一个计算公式吗? .28.观察下图中由棱长是1厘米的小正方体摆成的立体图形,寻找规律并完成下表.摆成立体图形的序号 ① ② ③ ④ ⑤ 小正方体的总个数18 27 看不见小正方体的个数 01看得见小正方体的个数182629.探寻规律.如图 是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个2×2的正方形图案(如图‚),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图 ),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个10×10的正方形图案,则其中完整的圆共有个.30.准备(1)每个都是棱长为1厘米的正方体.(2)一个挨着一个排成一排你要研究的问题是:正方体个数与拼成的长方体表面积之间的关系.探索过程:根据你的发现填空.当正方体个数为10时,所拼成的长方体表面积是平方厘米.当正方体个数为a时,所拼成的长方体表面积是平方厘米.当拼成的长方体表面积是202平方厘米时,正方体个数是.苏教版五年级(上)小升初题单元试卷:五找规律(01)参考答案与试题解析一、选择题(共4小题)1.按的方式摆放在桌面上.8个按这种方式摆放,有()个面露在外面.A.20 B.23 C.26 D.29【分析】1个小正体有5个面露在外面,再增加一个正方体,2个小正方体有8个面露在外面;3个小正方体有11个面露在外面.每增加1个正方体漏在外面的面就增加3个即:n个正方体有5+(n﹣1)×3;由此求解.【解答】解:根据题干分析可得,n个正方体有5+(n﹣1)×3=3n+2;所以8个小正方体时,露在外部的面有:3n+2=3×8+2=26(个)故选:C.【点评】解答此题应根据题意,进行推导,得出规律:即1个小正方体露出5个面,每增加1个小正方体增加3个面;进行解答即可.2.将一些小圆球如图摆放,第六幅图有()个小圆球.A.30 B.36 C.42【分析】从第一个图形开始分析小圆圈的个数:第一个图形中有1×2=2个小圆球,第二个图形中有2×3=6个小圆球,第三个图形中有3×4=12个小圆球,第四个图形中有4×5=20个小圆球,…第n个图形有n(n+1)个小圆球,利用规律解决问题.【解答】解:观察图形可知:第一个图形中有1×2=2个小圆球,第二个图形中有2×3=6个小圆球,第三个图形中有3×4=12个小圆球,第四个图形中有4×5=20个小圆球,…所以第六幅图有6×7=42个小圆球.故选:C.【点评】此题主要考查了图形的规律,通过归纳与总结结合图形得出图形个数之间的规律是解决问题的关键.3.按下列规律印刷笑脸图案,第8幅图案有()个笑脸.A.8 B.32 C.36【分析】第一幅图有1个笑脸,第二幅图有3个笑脸,第三幅图有6个笑脸…;1=1,3=1+2,6=1+2+3,第n幅图中笑脸的数量就是1+2+3+…+n.【解答】解:1+2+3+4+5+6+7+8,=(1+8)+(2+7)+(3+6)+(4+5),=9×4,=36;答:第8副图案有36个笑脸.故选:C.【点评】解决本题关键是找出笑脸的个数变化的规律,再由此规律求解.4.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”,从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31【分析】题目中“三角形数”的规律为1、3、6、10、15、21…“正方形数”的规律为1、4、9、16、25…,根据题目已知条件:从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.可得出最后结果.【解答】解:这些三角形数的规律是1,3,6,10,15,21,28,36,45,…,且正方形数是这串数中相邻两数之和,很容易看到:恰有36=15+21.故选:C.【点评】本题考查探究、归纳的数学思想方法.本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题(共14小题)5.摆一个需要4根小棒,摆需要7根小棒,摆需要10根小棒…,像这样摆n个正方形需要3n+1根小棒,当n=20时,需要61根小棒.【分析】通过题意和观察图形可知,第一个正方形由四根火柴摆成,以后加三根就可加一个正方形,摆第两个要3×2+1=7根,摆第三个要3×3+1=10根,摆第四个要3×4+1=13根,以此类推,得出规律连着摆n个这样的正方形需3n+1根火柴,进一步代入n=20求得答案即可.【解答】解:第一个正方形由四根火柴摆成,以后加三根就可加一个正方形,摆n个正方形需要3n+1根小棒,当n=20时,需要3×20+1=61根小棒.故答案为:3n+1,61.【点评】本题是一道找规律的题目,首先应找出哪些部分发生了变化,是按照什么规律变化的,从而找出规律,然后利用规律解题.6.如图方式摆放桌子和椅子,一张桌子能坐6人,3张桌子能坐14人.【分析】第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.据此即可得解.【解答】解:有1张桌子时有6把椅子,有2张桌子时有10把椅子,10=6+4×1,有3张桌子时有14把椅子,14=6+4×2,答:3张桌子可以坐14人.故答案为:14.【点评】本题考查了图形的变化类问题,注意结合图形进行观察,即可得到规律.7.…用相同的小棒按左图方法拼组,如果拼成的图形中含有10个小正方形,需要31根小棒,154根小棒拼成的图形中含有51个小正方体.【分析】根据题干中的已知图形,推理得出这组图形的一般规律特点,即可解答.【解答】解:搭一个小正方形,需要1+1×3根小棒;搭2个小正方形,需要1+2×3根小棒;搭3个小正方形,需要1+3×3根小棒…;所以搭5个小正方形,需要小棒:1+5×3=1+15=16(根);则搭n个小正方形,需要小棒:1+3n根.当n=10时,需要1+3×10=31(根)当1+3n=154时,n=51答:如果拼成的图形中含有10个小正方形,需要31根小棒,154根小棒拼成的图形中含有51个小正方体.故答案为:31;51.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.8.如图,每个方框中数的排列是有规律的,则F=120.【分析】观察题干可知,左上方的数字=(左下方的数字+右上方的数字)×右下方的数字,且下方的数字排列依次为:3、4、5、6、7、8…,则最后一个正方形下方的数字分别是9、10,那么左上方的数字就是(9+3)×10=120,据此即可解答问题.【解答】解:根据题干分析可得,左上方的数字=(左下方的数字+右上方的数字)×右下方的数字,且下方的数字排列依次为:3、4、5、6、7、8…,则最后一个正方形下方的数字分别是9、10,则F=(9+3)×10=120答:F=120.故答案为:120.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.9.用小棒摆三角形,照这样摆下去,摆10个三角形需21根小棒,摆n个三角形需2n+1根小棒.【分析】摆一个三角形需3根小棒;摆二个三角形需5根小棒;摆三个三角形时需要7根小棒;摆四个三角形时需要9根小棒;…第一个三角形需要3根小棒,以后每增加1个三角形就需要增加2根小棒;当有n个三角形时小棒的数量就是3+2(n﹣1),然后化简,找出小棒的根数与与三角形个数直接的关系,进而求出摆10个三角形需多少根小棒.【解答】解:当有n个三角形时小棒的数量就是:3+2(n﹣1)=3+2n﹣2=2n+1摆10个三角形需:2n+1=2×10+1=20+1=21(根)故答案为:21,2n+1.【点评】解决本题关键是找出小棒的数量随三角形的数量变化的规律,写出通项公式,进而求解.10.如图,用同样的小棒摆正方形.摆10个同样的正方形需要小棒31根;现在有46根小棒可以摆15个正方形.【分析】根据小棒的摆设规律可知,多摆一个正方形就需要加三根小棒.【解答】解:第一个正方体需要4根火柴棒;第二个正方体需要4+3×1=7根火柴棒;第三个正方体需要4+3×2=10根火柴棒;…摆n个正方形需4+3×(n﹣1)=3n+1根火柴棒.当n=10时,3n+1=3×10+1=31,当3n+1=46时,3n=45,n=15,答:摆10个同样的正方形需要小棒31根;现在有46根小棒可以摆15个正方形.故答案为:31;15.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.11.如图,小明用小棒搭房子,他搭3间房子用13根小棒.照这样,搭10间房子要用41根小棒;搭n间房子要用1+4n根小棒(用含有n的式子表示).【分析】据图分析可得:每多搭一间房子就多4根小棒;搭3间房子用13根小棒,即1+3×4;搭4间用17根小棒,即1+4×4根;搭5间要用21根小棒,即1+5×4根,由此得出搭n间房子要用1+4n根小棒;据此解答即可.【解答】解:(1)每多搭一间房子就多4根小棒;搭3间房子用13根小棒,即1+3×4;搭4间用17根小棒,即1+4×4根;依此类推得:搭10间房子用:1+10×4=41(根)(2)搭n间房子用:1+4n(根)答:搭10间房子用41根小棒.照上面那样搭n个房子用1+4n根火柴棍.故答案为:41;1+4n.【点评】主要考查了通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.12.下图编号为(1),(2),(3),(4)这四幅图分别由1,4,9,16个小等边三角形拼成,它们的周长分别为3,6,9,12.按这个规律.由100个小等边三角形拼成的图形,周长为30.【分析】编号为(1),(2),(3),(4)这四幅图分别由1,4,9,16个小等边三角形拼成,它们的周长分别为3,6,9,12,得出规律为:小等边三角形的个数为编号的平方,周长是编号的3倍,据此解答即可.【解答】解:因为:100=102所以由100个小等边三角形拼成的图形编号为(10),所以周长为:3×10=30.故答案为:30.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.13.对于一个多边形,定义一种“生长”操作(如图),将其中一边AB变成折线ACDEB,其中C和E是AB的三等分点,C、D、E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过四次“生长”操作得到的图形的周长是85.【分析】根据“一边AB变成折线ACDEB,其中C和E是AB的三等分点,C、D、E三点可构成等边三角形”得到CD=DE=CE=AC=EB=AB,则AC+CD+DE+EB=AB×4,按照次规律,每次“生长”,都变成原来的,即为一个以为等比的等比数列.【解答】解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过四次“生长”操作得到的图形的周长是85.故答案为:85.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.14.如图,它是由火柴棒拼成的图案,如果在这个图案中用了51根火柴棒,可拼成25个三角形.【分析】第一个三角形有1+2=3根火柴棒组成,以后每多一个三角形就多用2根火柴棒,由此可以推理出一般规律.【解答】解:第一个三角形有1+2=3根火柴棒组成,以后每多一个三角形就多用2根火柴棒,所以组成n个三角形就需要1+2n根火柴棒;当1+2n=51时2n=50n=25答:可拼成25个三角形.故答案为:25.【点评】根据题干,从图中特殊的例子推理得出一般的规律是解决此类问题的关键.15.如图,一张方桌可以坐4人,两张方桌拼起来可以坐6人,三张方桌拼起来可以坐8人…像这样n张方桌拼起来可以坐2n+2人,坐68人需要33张方桌.【分析】观察摆放的桌子,不难发现:在1张桌子坐4人的基础上,多1张桌子,多2人.则有n张桌子时,有4+2(n﹣1)=2n+2人;由此即可计算当2n+2=68人时,求得桌子张数n的值.【解答】解:第一张桌子可以坐4人;拼2张桌子可以坐4+2×1=6人;拼3张桌子可以坐4+2×2=8人;故n张桌子拼在一起可以坐4+2(n﹣1)=2n+2.当2n+2=68时,n=33,答:像这样n张方桌拼起来可以坐2n+2人,坐68人需要33张方桌.故答案为:2n+2,33.【点评】此题考查了平面图形的规律变化,要求学生观察图形,分析、归纳并发现其中的规律,并应用规律解决问题.16.用小棒摆正方形,如图摆6个正方形用小棒19根,摆n个正方形用小棒3n+1根.【分析】根据小棒的摆设规律可知,多摆一个正方形就需要加三根火柴棒,由此推理出一般规律即可解答问题.【解答】解:第一个正方体需要4根小棒;第二个正方体需要4+3×1=7根小棒;第三个正方体需要4+3×2=10根小棒;摆n个正方形需4+3×(n﹣1)=3n+1根小棒.当n=6时,需要小棒:3×6+1,=18+1,=19(根);答:摆6个同样的正方形需要小棒18根,摆n个正方形需要小棒3n+1根.故答案为:19;3n+1.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.17.把边长为1厘米的正方形纸片,按如图的规律拼成长方形;(1)用6个正方形拼成的长方形周长是14厘米;(2)用n个正方形拼成的长方形周长是2n+2厘米.【分析】由图示得出规律:四个图形周长分别为4厘米、6厘米、8厘米,10厘米所以每增加一个正方形,周长增加2厘米,那么n个正方形拼成的长方形的周长是:4+(n﹣1)×2=2n+2(厘米),据此解答即可.【解答】解:根据题干分析可得:n个正方形拼成的长方形的周长是:4+(n﹣1)×2=2n+2(厘米),当n=6时,2n+2=2×6+2=14(厘米)答:用6个正方形拼成的长方形周长是14厘米;用n个正方形拼成的长方形周长是2n+2厘米.故答案为:14;2n+2.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.18.摆1个正方形需要4根小棒,摆2个需要7根小棒,摆3个需要10根小棒,摆n个正方形需要1+3n根小棒.【分析】观察图形可知:1个小正方形需要1+1×3根小棒,2个小正方形需要1+2×3根小棒,3个小正方形需要1+3×3根小棒…,由此找出规律解答即可.【解答】解:1个小正方形需要1+1×3根小棒,2个小正方形需要1+2×3根小棒,3个小正方形需要1+3×3根小棒…,所以n个小正方形需要1+3n根小棒,故答案为:1+3n.【点评】根据题干中特殊的例子,推理得出这组图形的一般规律,是解决此类问题的关键.三、解答题(共12小题)19.探索规律.123456…N …正方体个数61014 18…62…正方形个数【分析】通过分析可知:每增加一个正方体,正方形的个数增加4个,10=6+4,14=6+2×4,18=6+3×4,所以N个正方体的正方形的个数是6+(N﹣1)×4,据此解答即可.【解答】解:根据分析:第五个正方体:6+(5﹣1)×4=22第六个正方体:6+(6﹣1)×4=26有62个正方形时:6+(N﹣1)×4=624N=62﹣2N=15第N个正方体:6+(N﹣1)×4如图:探索规律.正方体个数123456…15N …正方形个数61014 182226…626+(N﹣1)×4…【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.20.怎样巧妙的计算连续偶数的和呢?通过下面的探索,你就会有新的发现.(1)计算:口算下列各题.2+4=62+4+6=122+4+6+8=202+4+6+8+10=(2)探索:观察上面的算式和如图,你一定会发现其中的规律.请你根据你发现的规律把下面的算式补充完整.2+4+6+8+10+12=6×72+4+6+8+10+12+14=7×82+4+6+8+…+98+100=50×51.【分析】(1)因为2+4=6=2×3,2+4+6=12=3×4,所以连续偶数的和等于加数的个数乘比它多1的数,这个乘积就是该算式的和;(3)连续偶数的和等于这些偶数的个数乘比它多1的数.【解答】解:(1)因为2+4=6=2×3,2+4+6=12=3×4所以:2+4+6+8=4×5=202+4+6+8+10=5×6=30;(2)2+4+6+8+10+12=6×72+4+6+8+10+12+14=7×82+4+6+8+…+98+100=50×51.故答案为:20,30;6,7;7,8;50,51.【点评】此题考查数于形结合的规律,找出数字的运算规律是解决问题的关键.21.摆放易拉罐,(如图)看图回答问题.(1)摆两层一共有:1+2=3个摆三层一共有1+2+3=6个摆四层一共有1+2+3+4=10个.摆五层一共有1+2+3+4+5=15个.摆六层一共有1+2+3+4+5+6=21个.…(2)用n表示摆的层数,你能总结出一个计算公式吗?n(n+1).【分析】观察所给出的图形知道,从第二个数起,每一个数分别是它前面的数加2、3、4、5、6…等自然数所得,由此得出答案.【解答】解:(1)摆两层一共有:1+2=3个摆三层一共有1+2+3=6个摆四层一共有1+2+3+4=10个.摆五层一共有1+2+3+4+5=15个.摆六层一共有1+2+3+4+5+6=21个(2)用n表示摆的层数:n(n+1)故答案为:1+2+3+4=10;1+2+3+4+5=15;1+2+3+4+5+6=21;n(n+1).【点评】根据题干得出图形或数字的排列规律是解决此类问题的关键.22.如图是边长为1cm的正方形ABCD,沿水平方向翻滚4次后的位置图形,此时A翻滚后所在的位置与A点开始位置之间的距离为4厘米.请你根据图形,完成下表:(此题只加分不扣分)翻滚次数415164n﹣14n与A点开始位置之间(厘米)4【分析】由题意得:每滚动3次就回到原处,这段距离是3个边长的长度之和,翻滚多少次就是多少厘米,据此计算即可.【解答】解:翻滚次数4 15 16 4n ﹣1 4n 与A 点开始位置之间(厘米)415164n ﹣14n【点评】解决本题的关键是根据操作得出规律,再解答.23.平面内6个点最多可以连成多少条线段?8个点呢?学着下面的图画一画,数一数,你一定能发现其中的规律.6个点最多可以连成 15 条线段,8个点最多可以连成 28 条线段. 点数增加条数﹣﹣ 2 3 4 总13610【分析】2个点连成线段的条数:1(条), 3个点连成线段的条数:1+2=3(条), 4个点连成线段的条数:1+2+3=6(条), 5个点连成线段的条数:1+2+3+4=10(条), …;由此得出规律:n 个点的线段数是:1+2+3+4…+n ﹣1条线段;据此规律解答即可. 【解答】解:1+2+3+4+5=15(条); 1+2+3+4+5+6+7=28(条)答:6个点,一共可以连15条线段;8个点,一共可以连28条线段. 故答案为:15,28.【点评】此题属于探索规律的题目,先在草纸上找几个点进行连线,然后得出规律,然后根据规律进行解答.24.观察图形找规律:(1)按照图形变化规律填表:正方形个数12345…048…直角三角形个数(2)如果画8个正方形能得到28个直角三角形,画n个正方形能得到4n ﹣4个直角三角形.【分析】1个正方形有0个直角三角形,可以写成(1﹣1)×4个;2个正方形有4个直角三角形,可以写成(2﹣1)×4个;3个正方形有8个直角三角形,可以写成(3﹣1)×4个;4个正方形有12个直角三角形,可以写成(4﹣1)×4个;每增加一个正方形就增加4个直角三角形;由此填表,并得出通项公式,进行求解.【解答】解:(1)根据已知图形可将上表补充完整如下所示:正方形个数12345…04812 16…直角三角形个数(2)(3)根据上表中的数据可得:1个正方形有0个直角三角形,可以写成(1﹣1)×4个;2个正方形有4个直角三角形,可以写成(2﹣1)×4个;3个正方形有8个直角三角形,可以写成(3﹣1)×4个;4个正方形有12个直角三角形,可以写成(4﹣1)×4个;所以当正方形的个数为n时,三角形的个数可以写成:(n﹣1)×4=4n﹣4个;所以当n=8时,直角三角形个数是:4×8﹣4=28;答:如果画8个正方形,能得到28个直角三角形;如果画n个正方形,能得到4n﹣4个直角三角形.故答案为:28;4n﹣4.【点评】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.25.仔细观察下面的点子图,根据每个图中点子的排列规律,想一想,可以怎样计算每个图中点子的总个数?请你把下表填写完整.序号1 2 34… 表示点子数的算式 1 1+4… 点子的总个数1…观察表中数据,如果用A 表示第n 个图形中点子的个数,A 和n 之间的关系可以表示成: A= 4n ﹣3 .【分析】通过观察可知:第一个图的点子数是1个,第二个图的点子数是1+4=5个,第三个图的点子数是1+2×4=9个,第4个图的点子数是1+3×4=13个,由此可知:A 表示第n 个图形中点子的个数,A 和n 之间的关系可以表示成A=4n ﹣3,据此解答即可.【解答】解:由分析可得:A=1+4(n ﹣1)=4n ﹣3 如图:序号1 2 3 4 … 表示点子数的算式 1 1+4 1+2×4 1+3×4 … 点子的总个数 15913…故答案为:4n ﹣3.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.26.分析推理找规律点数增加条数 ﹣﹣ 2 3 4 总条数13610根据上表的规律,20个点能连成190条线段,n个点能连成条线段.【分析】观察图形我们会发现,每增加一个点,该点与之前每个点之间都会增加一条线段,所以n个点连成的总线段条数是1~n﹣1这n﹣1个自然数之和,所以n个点能连成1+2+3+…+(n﹣1)=条线段;当n=20时,能连成==190条线段!【解答】解:2个点连成1条线段,3个点连成1+2=3条线段,4个点连成1+2+3=6条线段,5个点连成1+2+3+4=10条线段,…n个点连成1+2+3+4+…+(n﹣1)=条线段,当n=20时,能连成==190条线段;故答案为:190,.【点评】认真观察图形,发现每增加一个点,该点与之前每个点之间都会增加一条线段,即增加n﹣1条线段是解决此题的关键.27.仔细研究图1表示数的方法.(1)根据图1表示数的方法,把图2答案写在括号里.(2)在格子图3里画点表示50.。
六年级数学总复习--找规律练习题
![六年级数学总复习--找规律练习题](https://img.taocdn.com/s3/m/c0573d259e314332396893fc.png)
六年级数学总复习--找规律练习题1.如图.摆1个三角形需要3根小棒.摆2个三角形需要5根小棒.摆3个三角形需要7根小棒….像这样连续摆10个三角形需要()根小棒.摆n个三角形需要()根小棒;有37根小棒可以摆个这样的三角形.2.如上图所示.用同样的火柴棒摆正方形.摆1个正方形需要()根火柴棒.摆2个正方形需要()根火柴棒…….如果摆100个正方形需要()根火柴棒.摆n个正方形需要()根小棒·3.用同样长的小棍摆成如图所示的图形.照这样继续摆.第⑥个图形用()根小棍.第n个图形用()根小棍·4.像如图这样摆下去.n个六边形需要()小木棒.当n=20时.共用了()根小木棒·5、摆六边形(如图).(1)摆1个六边形需要()根小棒.摆2个六边形需要()根小棒.摆3个六边形需要()根小棒·(2)照这样下去.摆n个六边形需要()根小棒(用含有字母n的式子表示).101根可以摆()个六边形·5.用小棒按照如下方式摆图形.(1)摆1个八边形需要8根小棒.摆2个八边形需要()根小棒.摆10个八边形需要()根小棒·(2)如果想摆n个八边形.需要()根小棒·(3)有2010根小棒.可以摆()个这样的八边形·6.用小棒可摆成小鱼.摆要8根.摆要14根.摆要20根…像这样.当摆成10条小鱼连在一起的时.需要()根小棒·7.如下图.用同样大小的黑色棋子按图所示的方式摆图案.按照这样的规律摆下去.第10个图案需棋子()枚.第n个图案需棋子()枚·8.用长度相等的小木棒按照下图的方式搭塔式三角形.按照这样的规律搭下去.搭第5个图形需要()根小木棒.搭第m个图形需要()根小木棒·9.猜猜用火柴棒摆出大小不同的长方形(如下图).第1个长方形需要()根火柴棒.第 2个长方形需要()根小棒.如果按这样的规律摆下去.第10个长方形共需要()根火柴棒·8、如图所示:用黑白两种颜色的正五边形地砖按下图所示的规律.拼成若干个蝴蝶图案.则第7幅蝴蝶图案中白色地砖有()块.9、用黑白两种颜色的正六边形地面砖按如图所示的规律.拼成若干个图案.则第2012个图案中有白色地面砖()块·10、用同样规格的黑白两种颜色的正方形.按如图方式拼图.如果继续铺下去.那么第n个图形要用()块黑色正方形·。
小学六年级数学复习找规律练习题
![小学六年级数学复习找规律练习题](https://img.taocdn.com/s3/m/a39dcdfcf9c75fbfc77da26925c52cc58bd690c5.png)
小学六年级数学复习找规律练习题一、填空题1.摆一个需要4根小棒,摆需要7根小棒,摆需要10根小棒…,像这样摆n个正方形需要根小棒,当n=20时,需要根小棒.2.如图示方式摆放桌子和椅子,一张桌子能坐6人,3张桌子能坐人.3.…用相同的小棒按左图方法拼组,如拼成的图形中含有10个小正方形,需要根小棒,154根小棒拼成的图形中含有个小正方体.4.如图所示,每个方框中数的排列是有规律的,则F=.5.用小棒摆三角形,照这样摆下去,摆10个三角形需根小棒,摆n个三角形需根小棒.6.如图,用同样的小棒摆正方形.摆10个同样的正方形需要小棒根;现在有46根小棒可以摆个正方形.7.如图,小明用小棒搭房子,他搭3间房子用13根小棒.照这样,搭10间房子要用根小棒;搭n间房子要用根小棒(用含有n的式子表示).8.下面一组图形中的阴影变化是有规律的,请根据这个规律把第四幅图的阴影部分画出来。
9.按下面的规律摆下去,图8应有()个三角形。
10.用3根小棒可摆一个三角形,按下面的方式摆下趣,摆100个三角形需要()根小棒。
11.按下面的方法拼下去(单位:厘米),第9个图的周长是()厘米,第100个图形的周长是()厘米。
12.二、选择题(共4小题)1.按的方式摆放在桌面上.8个按这种方式摆放,有()个面露在外面. A .20 B .23 C .26 D .292.将一些小圆球如图摆放,第六幅图有( )个小圆球.A .30B .36C .423.按下列规律印刷笑脸图案,第8幅图案有( )个笑脸.A .8B .32C .364.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”,从图中可以发现,任何一个大于1的“正方形数”都可看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+3112.下图编号为(1),(2),(3),(4)这四幅图分别由1,4,9,16个小等边三角形拼成,它们的周长分别为3,6,9,12.按这个规律.由100个小等边三角形拼成的图形,周长为.13.对于一个多边形,定义一种“生长”操作(如图),将其中一边AB变成折线ACDEB,其中C和E是AB的三等分点,C、D、E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过四次“生长”操作得到的图形的周长是.14.如图所示,它是由火柴棒拼成的图案,如在这个图案中用了51根火柴棒,可拼成个三角形.15.如图所示,一张方桌可以坐4人,两张方桌拼起来可以坐6人,三张方桌拼起来可坐8人…像这样n张方桌拼起来可以坐人,坐68人需要张方桌.16.用小棒摆正方形,如图摆6个正方形用小棒根,摆n个正方形用小棒 根.17.把边长为1厘米的正方形纸片,按如图的规律拼成长方形;(1)用6个正方形拼成的长方形周长是 厘米; (2)用n 个正方形拼成的长方形周长是 厘米.18.摆1个正方形需要4根小棒,摆2个需要7根小棒,摆3个需要10根小棒,摆n 个正方形需要 根小棒.三、解答题(共12小题) 19.探索规律. 正方体个数1 2 3 4 5 6 … N …正方形个数 6 10 1418… 62 …20.怎样巧妙的计算连续偶数的和呢?通过下面的探索,你就会有新的发现.(1)摆两层一共有:1+2=3个 摆三层一共有1+2+3=6个 摆四层一共有 个. 摆五层一共有 个. 摆六层一共有 个. …(2)用n 表示摆的层数,你能总结出一个计算公式吗? .28.观察下图中由棱长是1厘米的小正方体摆成的立体图形,寻找规律并完成下表.摆成立体图形的序号①②③④⑤小正方体的总个数1827看不见小正方体的个数001看得见小正方体的个数182629.探寻规律.如图所示是一块瓷砖的图案,用这种瓷砖来铺设地面.如铺成一个2×2的正方形图案(如图所示),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图所示),其中完整的圆共有13个,如铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个10×10的正方形图案,则其中完整的圆共有个.30.准备(1)每个都是棱长为1厘米的正方体.(2)一个挨着一个排成一排你要研究的问题是:正方体个数与拼成的长方体表面积之间的关系.探索过程:根据你的发现填空.当正方体个数为10时,所拼成的长方体表面积是平方厘米.当正方体个数为a时,所拼成的长方体表面积是平方厘米.当拼成的长方体表面积是202平方厘米时,正方体个数是.苏教版五年级(上)小升初题单元试卷:五找规律(01)参考答案与试题解析一、选择题(共4小题)1.按的方式摆放在桌面上.8个按这种方式摆放,有()个面露在外面.A.20 B.23 C.26 D.29【分析】1个小正体有5个面露在外面,再增加一个正方体,2个小正方体有8个面露在外面;3个小正方体有11个面露在外面.每增加1个正方体漏在外面的面就增加3个即:n个正方体有5+(n﹣1)×3;由此求解.【解答】解:根据题干分析可得,n个正方体有5+(n﹣1)×3=3n+2;所以8个小正方体时,露在外部的面有:3n+2=3×8+2=26(个)故选:C.【点评】解答此题应根据题意,进行推导,得出规律:即1个小正方体露出5个面,每增加1个小正方体增加3个面;进行解答即可.2.将一些小圆球如图摆放,第六幅图有()个小圆球.A.30 B.36 C.42【分析】从第一个图形开始分析小圆圈的个数:第一个图形中有1×2=2个小圆球,第二个图形中有2×3=6个小圆球,第三个图形中有3×4=12个小圆球,第四个图形中有4×5=20个小圆球,…第n个图形有n(n+1)个小圆球,利用规律解决问题.【解答】解:观察图形可知:第一个图形中有1×2=2个小圆球,第二个图形中有2×3=6个小圆球,第三个图形中有3×4=12个小圆球,第四个图形中有4×5=20个小圆球,…所以第六幅图有6×7=42个小圆球.故选:C.【点评】此题主要考查了图形的规律,通过归纳与总结结合图形得出图形个数之间的规律是解决问题的关键.3.按下列规律印刷笑脸图案,第8幅图案有()个笑脸.A.8 B.32 C.36【分析】第一幅图有1个笑脸,第二幅图有3个笑脸,第三幅图有6个笑脸…;1=1,3=1+2,6=1+2+3,第n幅图中笑脸的数量就是1+2+3+…+n.【解答】解:1+2+3+4+5+6+7+8,=(1+8)+(2+7)+(3+6)+(4+5),=9×4,=36;答:第8副图案有36个笑脸.故选:C.【点评】解决本题关键是找出笑脸的个数变化的规律,再由此规律求解.4.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”,从图中可发现,任何一个大于1的“正方形数”都可看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31【分析】题目中“三角形数”的规律为1、3、6、10、15、21…“正方形数”的规律为1、4、9、16、25…,根据题目已知条件:从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.可得出最后结果.【解答】解:这些三角形数的规律是1,3,6,10,15,21,28,36,45,…,且正方形数是这串数中相邻两数之和,很容易看到:恰有36=15+21.故选:C.【点评】本题考查探究、归纳的数学思想方法.本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题(共14小题)5.摆一个需要4根小棒,摆需要7根小棒,摆需要10根小棒…,像这样摆n个正方形需要3n+1根小棒,当n=20时,需要61根小棒.【分析】通过题意和观察图形可知,第一个正方形由四根火柴摆成,以后加三根就可加一个正方形,摆第两个要3×2+1=7根,摆第三个要3×3+1=10根,摆第四个要3×4+1=13根,以此类推,得出规律连着摆n个这样的正方形需3n+1根火柴,进一步代入n=20求得答案即可.【解答】解:第一个正方形由四根火柴摆成,以后加三根就可加一个正方形,摆n个正方形需要3n+1根小棒,当n=20时,需要3×20+1=61根小棒.故答案为:3n+1,61.【点评】本题是一道找规律的题目,首先应找出哪些部分发生了变化,是按照什么规律变化的,从而找出规律,然后利用规律解题.6.如图方式摆放桌子和椅子,一张桌子能坐6人,3张桌子能坐14人.【分析】第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.据此即可得解.【解答】解:有1张桌子时有6把椅子,有2张桌子时有10把椅子,10=6+4×1,有3张桌子时有14把椅子,14=6+4×2,答:3张桌子可以坐14人.故答案为:14.【点评】本题考查了图形的变化类问题,注意结合图形进行观察,即可得到规律.7.…用相同的小棒按左图方法拼组,如果拼成的图形中含有10个小正方形,需要31根小棒,154根小棒拼成的图形中含有51个小正方体.【分析】根据题干中的已知图形,推理得出这组图形的一般规律特点,即可解答.【解答】解:搭一个小正方形,需要1+1×3根小棒;搭2个小正方形,需要1+2×3根小棒;搭3个小正方形,需要1+3×3根小棒…;所以搭5个小正方形,需要小棒:1+5×3=1+15=16(根);则搭n个小正方形,需要小棒:1+3n根.当n=10时,需要1+3×10=31(根)当1+3n=154时,n=51答:如果拼成的图形中含有10个小正方形,需要31根小棒,154根小棒拼成的图形中含有51个小正方体.故答案为:31;51.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.8.如图,每个方框中数的排列是有规律的,则F=120.【分析】观察题干可知,左上方的数字=(左下方的数字+右上方的数字)×右下方的数字,且下方的数字排列依次为:3、4、5、6、7、8…,则最后一个正方形下方的数字分别是9、10,那么左上方的数字就是(9+3)×10=120,据此即可解答问题.【解答】解:根据题干分析可得,左上方的数字=(左下方的数字+右上方的数字)×右下方的数字,且下方的数字排列依次为:3、4、5、6、7、8…,则最后一个正方形下方的数字分别是9、10,则F=(9+3)×10=120答:F=120.故答案为:120.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.9.用小棒摆三角形,照这样摆下去,摆10个三角形需21根小棒,摆n个三角形需2n+1根小棒.【分析】摆一个三角形需3根小棒;摆二个三角形需5根小棒;摆三个三角形时需要7根小棒;摆四个三角形时需要9根小棒;…第一个三角形需要3根小棒,以后每增加1个三角形就需要增加2根小棒;当有n个三角形时小棒的数量就是3+2(n﹣1),然后化简,找出小棒的根数与与三角形个数直接的关系,进而求出摆10个三角形需多少根小棒.【解答】解:当有n个三角形时小棒的数量就是:3+2(n﹣1)=3+2n﹣2=2n+1摆10个三角形需:2n+1=2×10+1=20+1=21(根)故答案为:21,2n+1.【点评】解决本题关键是找出小棒的数量随三角形的数量变化的规律,写出通项公式,进而求解.10.如图,用同样的小棒摆正方形.摆10个同样的正方形需要小棒31根;现在有46根小棒可以摆15个正方形.【分析】根据小棒的摆设规律可知,多摆一个正方形就需要加三根小棒.【解答】解:第一个正方体需要4根火柴棒;第二个正方体需要4+3×1=7根火柴棒;第三个正方体需要4+3×2=10根火柴棒;…摆n个正方形需4+3×(n﹣1)=3n+1根火柴棒.当n=10时,3n+1=3×10+1=31,当3n+1=46时,3n=45,n=15,答:摆10个同样的正方形需要小棒31根;现在有46根小棒可以摆15个正方形.故答案为:31;15.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.11.如图,小明用小棒搭房子,他搭3间房子用13根小棒.照这样,搭10间房子要用41根小棒;搭n间房子要用1+4n根小棒(用含有n的式子表示).【分析】据图分析可得:每多搭一间房子就多4根小棒;搭3间房子用13根小棒,即1+3×4;搭4间用17根小棒,即1+4×4根;搭5间要用21根小棒,即1+5×4根,由此得出搭n间房子要用1+4n根小棒;据此解答即可.【解答】解:(1)每多搭一间房子就多4根小棒;搭3间房子用13根小棒,即1+3×4;搭4间用17根小棒,即1+4×4根;依此类推得:搭10间房子用:1+10×4=41(根)(2)搭n间房子用:1+4n(根)答:搭10间房子用41根小棒.照上面那样搭n个房子用1+4n根火柴棍.故答案为:41;1+4n.【点评】主要考查了通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.12.下图编号为(1),(2),(3),(4)这四幅图分别由1,4,9,16个小等边三角形拼成,它们的周长分别为3,6,9,12.按这个规律.由100个小等边三角形拼成的图形,周长为30.【分析】编号为(1),(2),(3),(4)这四幅图分别由1,4,9,16个小等边三角形拼成,它们的周长分别为3,6,9,12,得出规律为:小等边三角形的个数为编号的平方,周长是编号的3倍,据此解答即可.【解答】解:因为:100=102所以由100个小等边三角形拼成的图形编号为(10),所以周长为:3×10=30.故答案为:30.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.13.对于一个多边形,定义一种“生长”操作(如图所示),将其中一边AB变成折线ACDEB,其中C和E是AB的三等分点,C、D、E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过四次“生长”操作得到的图形的周长是85.【分析】根据“一边AB变成折线ACDEB,其中C和E是AB的三等分点,C、D、E三点可构成等边三角形”得到CD=DE=CE=AC=EB=AB,则AC+CD+DE+EB=AB×4,按照次规律,每次“生长”,都变成原来的,即为一个以为等比的等比数列.【解答】解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过四次“生长”操作得到的图形的周长是85.故答案为:85.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.14.如图,它是由火柴棒拼成的图案,如果在这个图案中用了51根火柴棒,可拼成25个三角形.【分析】第一个三角形有1+2=3根火柴棒组成,以后每多一个三角形就多用2根火柴棒,由此可以推理出一般规律.【解答】解:第一个三角形有1+2=3根火柴棒组成,以后每多一个三角形就多用2根火柴棒,所以组成n个三角形就需要1+2n根火柴棒;当1+2n=51时2n=50n=25答:可拼成25个三角形.故答案为:25.【点评】根据题干,从图中特殊的例子推理得出一般的规律是解决此类问题的关键.15.如图,一张方桌可以坐4人,两张方桌拼起来可以坐6人,三张方桌拼起来可以坐8人…像这样n张方桌拼起来可以坐2n+2人,坐68人需要33张方桌.【分析】观察摆放的桌子,不难发现:在1张桌子坐4人的基础上,多1张桌子,多2人.则有n张桌子时,有4+2(n﹣1)=2n+2人;由此即可计算当2n+2=68人时,求得桌子张数n的值.【解答】解:第一张桌子可以坐4人;拼2张桌子可以坐4+2×1=6人;拼3张桌子可以坐4+2×2=8人;故n张桌子拼在一起可以坐4+2(n﹣1)=2n+2.当2n+2=68时,n=33,答:像这样n张方桌拼起来可以坐2n+2人,坐68人需要33张方桌.故答案为:2n+2,33.【点评】此题考查了平面图形的规律变化,要求学生观察图形,分析、归纳并发现其中的规律,并应用规律解决问题.16.用小棒摆正方形,如图摆6个正方形用小棒19根,摆n个正方形用小棒3n+1根.【分析】根据小棒的摆设规律可知,多摆一个正方形就需要加三根火柴棒,由此推理出一般规律即可解答问题.【解答】解:第一个正方体需要4根小棒;第二个正方体需要4+3×1=7根小棒;第三个正方体需要4+3×2=10根小棒;摆n个正方形需4+3×(n﹣1)=3n+1根小棒.当n=6时,需要小棒:3×6+1,=18+1,=19(根);答:摆6个同样的正方形需要小棒18根,摆n个正方形需要小棒3n+1根.故答案为:19;3n+1.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.17.把边长为1厘米的正方形纸片,按如图的规律拼成长方形;(1)用6个正方形拼成的长方形周长是14厘米;(2)用n个正方形拼成的长方形周长是2n+2厘米.【分析】由图示得出规律:四个图形周长分别为4厘米、6厘米、8厘米,10厘米所以每增加一个正方形,周长增加2厘米,那么n个正方形拼成的长方形的周长是:4+(n﹣1)×2=2n+2(厘米),据此解答即可.【解答】解:根据题干分析可得:n个正方形拼成的长方形的周长是:4+(n﹣1)×2=2n+2(厘米),当n=6时,2n+2=2×6+2=14(厘米)答:用6个正方形拼成的长方形周长是14厘米;用n个正方形拼成的长方形周长是2n+2厘米.故答案为:14;2n+2.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.18.摆1个正方形需要4根小棒,摆2个需要7根小棒,摆3个需要10根小棒,摆n个正方形需要1+3n根小棒.【分析】观察图形可知:1个小正方形需要1+1×3根小棒,2个小正方形需要1+2×3根小棒,3个小正方形需要1+3×3根小棒…,由此找出规律解答即可.【解答】解:1个小正方形需要1+1×3根小棒,2个小正方形需要1+2×3根小棒,3个小正方形需要1+3×3根小棒…,所以n个小正方形需要1+3n根小棒,故答案为:1+3n.【点评】根据题干中特殊的例子,推理得出这组图形的一般规律,是解决此类问题的关键.三、解答题(共12小题)19.探索规律.123456…N …正方体个数正方形个数61014 18…62…【分析】通过分析可知:每增加一个正方体,正方形的个数增加4个,10=6+4,14=6+2×4,18=6+3×4,所以N个正方体的正方形的个数是6+(N﹣1)×4,据此解答即可.【解答】解:根据分析:第五个正方体:6+(5﹣1)×4=22第六个正方体:6+(6﹣1)×4=26有62个正方形时:6+(N﹣1)×4=624N=62﹣2N=15第N个正方体:6+(N﹣1)×4如图:探索规律.正方体个数123456…15N …正方形个数61014 182226…626+(N﹣1)×4…【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.20.怎样巧妙的计算连续偶数的和呢?通过下面的探索,你就会有新的发现.(1)计算:口算下列各题.2+4=62+4+6=122+4+6+8=202+4+6+8+10=(2)探索:观察上面的算式和如图,你一定会发现其中的规律.请你根据你发现的规律把下面的算式补充完整.2+4+6+8+10+12=6×72+4+6+8+10+12+14=7×82+4+6+8+…+98+100=50×51.【分析】(1)因为2+4=6=2×3,2+4+6=12=3×4,所以连续偶数的和等于加数的个数乘比它多1的数,这个乘积就是该算式的和;(3)连续偶数的和等于这些偶数的个数乘比它多1的数.【解答】解:(1)因为2+4=6=2×3,2+4+6=12=3×4所以:2+4+6+8=4×5=202+4+6+8+10=5×6=30;(2)2+4+6+8+10+12=6×72+4+6+8+10+12+14=7×82+4+6+8+…+98+100=50×51.故答案为:20,30;6,7;7,8;50,51.【点评】此题考查数于形结合的规律,找出数字的运算规律是解决问题的关键.21.摆放易拉罐,(如图)看图回答问题.(1)摆两层一共有:1+2=3个摆三层一共有1+2+3=6个摆四层一共有1+2+3+4=10个.摆五层一共有1+2+3+4+5=15个.摆六层一共有1+2+3+4+5+6=21个.…(2)用n表示摆的层数,你能总结出一个计算公式吗?n(n+1).【分析】观察所给出的图形知道,从第二个数起,每一个数分别是它前面的数加2、3、4、5、6…等自然数所得,由此得出答案.【解答】解:(1)摆两层一共有:1+2=3个摆三层一共有1+2+3=6个摆四层一共有1+2+3+4=10个.摆五层一共有1+2+3+4+5=15个.摆六层一共有1+2+3+4+5+6=21个(2)用n表示摆的层数:n(n+1)故答案为:1+2+3+4=10;1+2+3+4+5=15;1+2+3+4+5+6=21;n(n+1).【点评】根据题干得出图形或数字的排列规律是解决此类问题的关键.22.如图是边长为1cm的正方形ABCD,沿水平方向翻滚4次后的位置图形,此时A翻滚后所在的位置与A点开始位置之间的距离为4厘米.请你根据图形,完成下表:(此题只加分不扣分)翻滚次数415164n﹣14n与A点开始位置之间(厘米)4【分析】由题意得:每滚动3次就回到原处,这段距离是3个边长的长度之和,翻滚多少次就是多少厘米,据此计算即可.【解答】解:翻滚次数4 15 16 4n ﹣1 4n 与A 点开始位置之间(厘米)415164n ﹣14n【点评】解决本题的关键是根据操作得出规律,再解答.23.平面内6个点最多可以连成多少条线段?8个点呢?学着下面的图画一画,数一数,你一定能发现其中的规律.6个点最多可以连成 15 条线段,8个点最多可以连成 28 条线段. 点数增加条数﹣﹣ 2 3 4 总13610【分析】2个点连成线段的条数:1(条), 3个点连成线段的条数:1+2=3(条), 4个点连成线段的条数:1+2+3=6(条), 5个点连成线段的条数:1+2+3+4=10(条), …;由此得出规律:n 个点的线段数是:1+2+3+4…+n ﹣1条线段;据此规律解答即可. 【解答】解:1+2+3+4+5=15(条); 1+2+3+4+5+6+7=28(条)答:6个点,一共可以连15条线段;8个点,一共可以连28条线段. 故答案为:15,28.【点评】此题属于探索规律的题目,先在草纸上找几个点进行连线,然后得出规律,然后根据规律进行解答.24.观察图形找规律:(1)按图形变化规律填表:正方形个数12345…048…直角三角形个数(2)如画8个正方形能得到28个直角三角形,画n个正方形能得到4n﹣4个直角三角形.【分析】1个正方形有0个直角三角形,可以写成(1﹣1)×4个;2个正方形有4个直角三角形,可以写成(2﹣1)×4个;3个正方形有8个直角三角形,可以写成(3﹣1)×4个;4个正方形有12个直角三角形,可以写成(4﹣1)×4个;每增加一个正方形就增加4个直角三角形;由此填表,并得出通项公式,进行求解.【解答】解:(1)根据已知图形可将上表补充完整如下所示:正方形个数12345…04812 16…直角三角形个数(2)(3)根据上表中的数据可得:1个正方形有0个直角三角形,可以写成(1﹣1)×4个;2个正方形有4个直角三角形,可以写成(2﹣1)×4个;3个正方形有8个直角三角形,可以写成(3﹣1)×4个;4个正方形有12个直角三角形,可以写成(4﹣1)×4个;所以当正方形的个数为n时,三角形的个数可以写成:(n﹣1)×4=4n﹣4个;所以当n=8时,直角三角形个数是:4×8﹣4=28;答:如果画8个正方形,能得到28个直角三角形;如果画n个正方形,能得到4n﹣4个直角三角形.故答案为:28;4n﹣4.【点评】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.25.仔细观察下面的点子图,根据每个图中点子的排列规律,想一想,可以怎样计算每个图中点子的总个数?请你把下表填写完整.序号1234…表示点子数的算式11+4…点子的总个数1…观察表中数据,如果用A表示第n个图形中点子的个数,A和n之间的关系可以表示成:A=4n﹣3.【分析】通过观察可知:第一个图的点子数是1个,第二个图的点子数是1+4=5个,第三个图的点子数是1+2×4=9个,第4个图的点子数是1+3×4=13个,由此可知:A表示第n个图形中点子的个数,A和n之间的关系可以表示成A=4n ﹣3,据此解答即可.【解答】解:由分析可得:A=1+4(n﹣1)=4n﹣3如图:序号1234…表示点子数的算式11+41+2×41+3×4…点子的总个数15913…故答案为:4n﹣3.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.26.分析推理找规律点数增加条数﹣﹣234总条数13610根据上表的规律,20个点能连成190条线段,n个点能连成条线段.【分析】观察图形我们会发现,每增加一个点,该点与之前每个点之间都会增加一条线段,所以n个点连成的总线段条数是1~n﹣1这n﹣1个自然数之和,所以n个点能连成1+2+3+…+(n﹣1)=条线段;当n=20时,能连成==190条线段!【解答】解:2个点连成1条线段,3个点连成1+2=3条线段,4个点连成1+2+3=6条线段,5个点连成1+2+3+4=10条线段,…n个点连成1+2+3+4+…+(n﹣1)=条线段,当n=20时,能连成==190条线段;故答案为:190,.【点评】认真观察图形,发现每增加一个点,该点与之前每个点之间都会增加一条线段,即增加n﹣1条线段是解决此题的关键.27.仔细研究图1表示数的方法.(1)根据图1表示数的方法,把图2答案写在括号里.(2)在格子图3里画点表示50.。
六年级数学找规律练习
![六年级数学找规律练习](https://img.taocdn.com/s3/m/4dd16ef50b4c2e3f56276397.png)
1、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+仁25, •- 根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+ • • +99+100+99+…+3+2+1 = 2、已知下列等式:3 .2=1 ;3 3 2+ 2 = 3 ;2 + 2 +3 =6 ;2+ 2 + 3 + 4 = 10 ;由此规律知,第⑤个等式是3、如图是用火柴棍摆成边长分别是1、2、3根火柴棍时的正方形,4、如图是五角星灯连续旋转闪烁所成的三个图形。
照此规律闪烁,下一个呈现出来的图形是班级姓名等级摆出的正方形所用的火柴棍的根数为S,则S= (用含n的代数式表示,n为正整数).①②③④当边长为n根火柴棍时,若☆ ☆ ☆6、如图,在图1中,互不重叠的三角形共有 4个,在图2中,互不重叠的三角形共有 7个,在图3中,互不重叠的三角形共有 10个, ,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。
8、在计算机程序中,二杈树是一种表示数据结构的方法。
如图,一层二杈树的结点总数是 二层二杈树的结点总数是 3,三层二杈树的结点总数是 7,四层二杈树的结点总数是15……照此规律七层二杈树的结点总数是▲ A一层二杈树二层二杈树三层二杈树☆ ☆ ☆7、小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第 n 个图案需要用白色棋子----------------- (oooc ooooooo 0*0 oooo ooooooon 的代数式表示)ooooo^ r1 ・rr J1,”需要火柴根。
12、如图,将第一个图(图①)所示的正三角形连结各边中点进行分割, 得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图 ③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中, 共有 个正三角形。
小学六年级数学逻辑题
![小学六年级数学逻辑题](https://img.taocdn.com/s3/m/6d6f7b7a366baf1ffc4ffe4733687e21af45ffb7.png)
小学六年级数学逻辑题
题目一:找规律
1. 请推理下一个数列的数:1, 3, 6, 10, 15, ...
2. 如果2个苹果的重量是5千克,那么4个苹果的重量是多少千克?
3. 兰兰有8张照片,她把其中的4张放在相册里,其余的放在信封里。
请问相册里有几张照片?
题目二:运算与计算
1. 计算:18 + 5 - 9 = ?
2. 甲有25支铅笔,乙比甲多3支铅笔,丙比乙多5支铅笔。
请问
丙有多少支铅笔?
3. 小华和小明同时从同一个地方出发,小华每分钟走2米,小明每
分钟走3米。
如果他们同时走了10分钟,他们离出发地点有多远?
题目三:逻辑推理
1. 亮亮的生日在9月15日,请问下一个星期天的日期是几号?
2. 父亲的儿子是白痴,请问父亲的儿子还是白痴吗?
3. 小明家有3块蛋糕,他想分给4个朋友,每人一块,他应该怎么办?
题目四:图形与空间思维
1. 请观察下面的图形,问:图中有几个三角形?
*
* *
* *
*******
2. 在正方形的周边连接出一个边长等于它的四个小正方形,如图,请问大正方形的面积是多少?
********
* *
* *
********
3. 小红手上有一个纸盒,它的形状是一个长方体,其中一条边长为5厘米,另外两条边长为2厘米和3厘米,请问这个纸盒的体积是多少立方厘米?
以上是小学六年级数学逻辑题的部分练习题,希望对你有帮助。
请根据每个小节的题目要求,进行相应的解答和计算。
六年级数学找规律练习题
![六年级数学找规律练习题](https://img.taocdn.com/s3/m/1e3bb01c192e45361066f55e.png)
六年级数学找规律练习题班级 姓名 等级例1 假设a#b=(a+b )+(a —b );求13#5和13#(5#4)练习一1、将新运算定义为a *b=(a+b )×(a —b );求27*92、设a *b=a 2+2b ;求10*6和5*(2*8)3、设a *b=3a —b ×21;求(15*24)*(10*12)例2 设p 、q 是两个数;规定:p # q=4×q —(p +q )÷2;求3 #(4# 6)练习二1、设p 、q 是两个数;规定:p # q=4×q —(p +q )÷2;求5#(6# 4)2、设p 、q 是两个数;规定:p # q=p 2+(p —q )×2;求30#(5# 3)3、设M 、N 是两个数;规定:M # N=N M +MN ;求10#20—41例3如果1&5=1+11+111+1111+11111;2&4=2+22+222+2222;3&3=3+33+333;4&2=4+44;那么7&4= ;210&2= 。
练习三1、如果1&5=1+11+111+1111+11111;2&2=2+22;3&3=3+33+333……那么4&4= 。
2、规定a&b=a+aa+aaa+aaaa+a ……a (b 个a );那么8&5= 。
3、如果2&1=21;3&2=331;4&3=4441;那么(6&3)÷(2&6)= 。
例4 设a@b=4a —2b+21ab ;求x@(4@1)=34中的未知数x练习四1、设a@b=3a —2b ;已知x@(4@1)=7;求x2、对两个整数a 和b 定义新运算“&”;a&b=()()b a b a ba -⨯+-2;求6&4+9&83、对任意两个整数x 和y 定义新运算“#”:x#y=ymx xy34+(其中m 是一个确定的整数)。
六年级找规律公式练习题
![六年级找规律公式练习题](https://img.taocdn.com/s3/m/c2faf030f342336c1eb91a37f111f18582d00c47.png)
六年级找规律公式练习题【六年级找规律公式练习题】一、数列的规律数列是由一系列按照一定规律排列的数字所组成的序列。
我们可以通过观察数列中的数字,找出它们之间的规律和公式。
1. 数列:2, 4, 6, 8, 10, ...规律:每个数字比前一个数字大2。
公式:aₙ = a₁ + 2(n - 1)2. 数列:1, 4, 9, 16, 25, ...规律:每个数字是其序号的平方。
公式:aₙ = n²3. 数列:3, 6, 12, 24, 48, ...规律:每个数字是前一个数字的两倍。
公式:aₙ = 3 × 2^(n - 1)4. 数列:1, 3, 6, 10, 15, ...规律:每个数字是前一个数字加上序号。
公式:aₙ = (n(n + 1))/2二、找规律填空根据给出的数列及其部分数字,填入下划线处的数字。
1. 数列:2, 5, 8, 11, ___答案:14规律:每个数字比前一个数字大3。
2. 数列:1, 4, 9, ___, 25答案:16规律:每个数字是其序号的平方。
3. 数列:4, 10, ___, 22, 31答案:16规律:每个数字比前一个数字增加6。
4. 数列:3, 8, ___, 18, 30答案:13规律:每个数字比前一个数字增加5。
三、找规律写公式根据给出的数列,写出数列的规律和公式。
1. 数列:1, 3, 6, 10, ...规律:每个数字是前一个数字加上序号。
公式:aₙ = (n(n + 1))/22. 数列:1, 4, 9, 16, ...规律:每个数字是其序号的平方。
公式:aₙ = n²3. 数列:2, 6, 12, 20, ...规律:每个数字是前一个数字加上偶数。
公式:aₙ = n(n + 1)4. 数列:1, 4, 9, 16, ...规律:每个数字是其序号的平方。
公式:aₙ = n²综上所述,通过观察数列中的数字,我们可以找出它们之间的规律并表示为公式。
(完整版)六年级数学经典找规律专题
![(完整版)六年级数学经典找规律专题](https://img.taocdn.com/s3/m/f3e963f448d7c1c709a14525.png)
找规律专题一.解答题(共30小题)1.(2015•深圳)在生活中,经常把一些同样大小的圆柱管如图捆扎起来,下面我们来探索捆扎时绳子的长度,图中,每个圆的直径都是8厘米,当圆柱管放置放式是“单层平放”时,捆扎后的横截面积如图所示:那么,当圆柱管有100个时需要绳子厘米(π取3)2.(2015•龙泉驿区校级三模)摆一个六边形需要六根小棒,摆2个六边形需要11根小棒,3个需要16根小棒…问:摆10个六边形需要根小棒,摆100个六边形需要根小棒,摆n个六边形需要根小棒.3.(2015春•淮安校级期中)用计算器计算,再根据规律编写一道算式并直接写出得数.(24+25)×5=;(872+873)×5=;(2830+2831)×5=;(+)×=.4.(2015春•射阳县校级期中)根据规律填数.9×9+9=90 9876×9+6=8889098×9+8=890 98765×9+5=987×9+7=8890 987654×9+4=.5.(2015春•成都校级期中)如图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请回答:(1)五层的“宝塔”最下层包含多少个小三角形?六层呢?七层呢?n层呢?(2)整个五层“宝塔”一共包含多少个小三角形?六层呢?七层呢?n层呢?6.(2015春•西安校级期中)仔细观察,根据发现的规律把表格填完整.第几幅图 1 2 3 5 …n共几个面在外面…7.(2015春•盐城校级期中)用小棒如图的方式搭正方形.搭1个正方形要4根小棒,搭2个正方形要7根小棒.(1)搭3个正方形要根小棒;(2)搭8个正方形要根小棒;8.(2015春•团风县期中)一串珠子按照3颗黑珠,2颗白珠,3颗红珠,2颗蓝珠的顺序排列.(1)第14颗珠子是珠子.(2)第998颗珠子是颜色珠子.9.(2015春•射阳县校级期中)想一想,填一填.用上面的图形在左边表里框出5个数,先算出这5个数的和,再想想算出的和与中间一个数有什么关系?如果5个数的和为795,请在上面图形里写出这5个数.10.(2015春•威宁县校级期中)表中一共有50个奇数,黑线框出的5个数之和是115;仔细观察后回答问题.(1)你能发现每次框出的5个数的和与中间数有什么关系吗?(2)如果框出5个数的和要是375,应该怎么框?(先在图中框一框,并在下面用文字说明)(3)能框出和是295的5个数吗?为什么?(4)一共可以框出多少个大小不同的和?11.(2015春•株洲校级月考)不计算,运用规律在横线上填上合适的数.7×9=6377×9=693777×9=69937777×9=69993…777777777×9=1÷7=0.142857142857…2÷7=0.285714285714…3÷7=0.428571428571…4÷7=0.575÷7=0.76÷7=7÷7=12.(2014•涟水县模拟)观察与计算.计算:1+2+3+…+99+100+99+98+…+3+2+1=13.(2014•金寨县校级模拟)找规律,填表.序号①②③④⑤…⑩数列A 1 3 5 7 9 …数列B 0 1 4 9 (81)14.(2014•宝安区校级模拟)观察下面3题的规律,然后算出(1)(2)两小题的结果.1+2+1=2×2=41+2+3+2+1=3×3=91+2+3+4+3+2+1=16(1)1+2+3+…+99+100+99+…+3+2+1=(2)+++…+++1+++…+++=15.(2014•绍兴)有些题目可以通过观察找出规律,知道答案.按照下图算式的规律不变,如果商是123456,括号中的“减数”应该是.(3﹣3)÷27=0(33﹣6)÷27=1(333﹣9)÷27=12(3333﹣12)÷27÷=123.16.(2014•武平县)观察图形找规律:(1)按照图形变化规律填表:1 2 3 4 5 …正方形个数直角三角0 4 8 …形个数(2)如果画8个正方形能得到个直角三角形,画n个正方形能得到个直角三角形.17.(2014•东莞)探寻规律.如图 是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个2×2的正方形图案(如图‚),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图ƒ),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个10×10的正方形图案,则其中完整的圆共有个.18.(2014•东台市)准备(1)每个都是棱长为1厘米的正方体.(2)一个挨着一个排成一排你要研究的问题是:正方体个数与拼成的长方体表面积之间的关系.探索过程:根据你的发现填空.当正方体个数为10时,所拼成的长方体表面积是平方厘米.当正方体个数为a时,所拼成的长方体表面积是平方厘米.当拼成的长方体表面积是202平方厘米时,正方体个数是.19.(2014•长沙)在如图所示的数表中,第100行左边的第一个数是.20.(2014•成都)有甲、乙两个同样的杯子,甲杯装满水,乙杯是空的.第一次将甲杯里的倒入乙杯,第二次将乙杯中水的倒回甲杯,第三次将甲杯中的倒回乙杯,第四次将乙杯中的倒回甲杯,…,这样反复倒2015 次后,甲杯中的水是原来的几分之几?21.(2014•陕西校级模拟)有一列数2,9,8,2,6,…从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9×8=72的个位数字2.问这一列数第1997个数是几?22.(2014•江油市校级模拟)有一串数,,,,,,,,,,…则是第个分数.23.(2014•临夏县模拟)找规律填数.1,4,9,16,,,49,,81.24.(2014•湖南模拟)分析推理找规律①1+2+1=4②1+2+3+2+1=9③1+2+3+4+3+2+1=16④1+2+…+49+50+49+…+2+1=⑤1+2+…+(n﹣1)+n+(n﹣1)+…+2+1=(n为自然数)25.(2014•江油市校级模拟)1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,…1+3+5+…+(2n ﹣1)=20132,则n=.26.(2014•宁远县校级模拟)如图,第6个图形一共由个小三角形组成,第n 个图形,一共由个小角形组成.27.(2014•广州模拟)为了美化城市,某商场在门前的空地上用花盆按如图所示的方式搭正方形.(1)填写下表正方形的层数 1 2 3 4 5该层所需花盆的个数 4 12(2)按这种规律搭下去,搭第n(n为正整数)层正方形,需要盆花.28.(2014•台湾模拟)如图所示,按一定规律用棉花棒摆放图案:第一组的图案用棉花棒2枝,第二组用棉花棒7枝,第三组用棉花棒15枝,如此类推,问第二十组的图案用棉花棒多少枝﹖29.(2014•成都校级模拟)下面的小点按如图所示的规律摆放:第1个图形有6个小点,第2个图形有10个小点,第3个图形有16个小点,第4个图形有24个点…,依次规律,第10个图形中点的个数是30.(2014•海安县模拟)用小棒按照如下的方式摆图形.摆1个八边形需要8根小棒,摆2个八边形需要15根小棒,…摆50个八边形需要根小棒;如果摆这样的八边形用了771根小棒,你知道摆了个八边形.。
分数找规律的数学题六年级
![分数找规律的数学题六年级](https://img.taocdn.com/s3/m/484fb71a30b765ce0508763231126edb6f1a7690.png)
分数找规律的数学题六年级一、分数找规律题目。
1. 观察下面的分数序列:(1)/(2),(2)/(3),(3)/(4),(4)/(5),(),(6)/(7)。
- 解析:观察这些分数,发现分子依次是1、2、3、4……,分母依次是2、3、4、5……,所以括号里的分数分子应该是5,分母应该是6,答案是(5)/(6)。
2. 按规律填数:(1)/(3),(3)/(6),(5)/(9),(7)/(12),()。
- 解析:分子的规律是依次加2,1,3,5,7……,分母的规律是依次加3,3,6,9,12……,所以下一个分数的分子是7 + 2=9,分母是12+ 3 = 15,答案是(9)/(15)。
3. 找出规律,填写分数:(2)/(5),(4)/(10),(8)/(20),(16)/(40),()。
- 解析:分子依次是2,2×2 = 4,4×2=8,8×2 = 16,后一个分子是前一个分子的2倍;分母依次是5,5×2 = 10,10×2 = 20,20×2=40,后一个分母是前一个分母的2倍。
所以下一个分数分子是16×2=32,分母是40×2 = 80,答案是(32)/(80)。
4. 观察分数列:(1)/(4),(3)/(8),(5)/(12),(7)/(16),()。
- 解析:分子是连续的奇数,1,3,5,7……,下一个奇数是9;分母是依次加4,4,8,12,16……,下一个分母是16 + 4=20,答案是(9)/(20)。
5. 按规律填空:(3)/(7),(6)/(14),(9)/(21),(12)/(28),()。
- 解析:分子依次是3的倍数,3×1 = 3,3×2 = 6,3×3=9,3×4 = 12,下一个分子是3×5 = 15;分母依次是7的倍数,7×1=7,7×2 = 14,7×3 = 21,7×4=28,下一个分母是7×5 = 35,答案是(15)/(35)。
数学六年级找规律练习题
![数学六年级找规律练习题](https://img.taocdn.com/s3/m/d3e7609e185f312b3169a45177232f60dccce715.png)
数学六年级找规律练习题在数学学习的过程中,找规律是一个重要的能力培养方面。
让学生通过观察数列中的数字,找到其中的规律,进而预测未来的数字,不仅能锻炼学生的逻辑思维能力,也有助于提高他们解决问题的能力。
下面就让我们来一起解答一些六年级的数学找规律练习题。
1. 找规律填空(1)2,5,8,11,__,__,__,__,__,__(2)1,10,19,__,__,__,__,__,__,__(3)0,-1,-2,__,__,__,__,__,__,__(4)11,8,__,__,__,__,__,__,__,__(5)10,9,__,__,__,__,__,__,__,__这些题目中,我们需要找到数列中每个数字之间的规律,然后根据这个规律填写空缺的数字。
(1)这个数列中,每一项都比前一项大3,因此可以填写为14,17,20,23,26。
(2)这个数列中,每一项都比前一项大9,因此可以填写为28,37,46,55,64。
(3)这个数列中,每一项都比前一项减1,因此可以填写为-3,-4,-5,-6,-7。
(4)这个数列中,每一项都比前一项减3,因此可以填写为5,2,-1,-4,-7。
(5)这个数列中,每一项都比前一项减1,因此可以填写为8,7,6,5,4。
这些题目可以让学生分析数字之间的关系,通过观察找出规律,进而预测未来的数字。
这种能力对于日常生活中的问题解决也是很有帮助的。
2. 找规律继续下一项(1)2,4,6,8,__(2)3,6,9,12,__(3)1,4,7,10,__(4)100,90,80,70,__(5)8,6,4,2,__这些题目中,我们需要找到数列中每个数字之间的规律,并推测下一个数字是多少。
(1)这个数列中,每一项都比前一项大2,因此下一个数字是10。
(2)这个数列中,每一项都比前一项大3,因此下一个数字是15。
(3)这个数列中,每一项都比前一项大3,因此下一个数字是13。
(4)这个数列中,每一项都比前一项减10,因此下一个数字是60。
六年级找规律练习题
![六年级找规律练习题](https://img.taocdn.com/s3/m/56a92380a48da0116c175f0e7cd184254b351bb1.png)
六年级找规律练习题
1. 选择题:下列数列中,哪一个是按照“等差数列”规律排列的?
A. 2, 4, 6, 8, 10
B. 2, 4, 8, 16, 32
C. 1, 3, 6, 10, 15
D. 5, 7, 9, 11, 13
(答案:D)
2. 填空题:在数列 2, 4, 6, 8, __ 中,下一个数字应该是多少?
(答案:10)
3. 计算题:观察数列 3, 6, 9, 12, ...,求第10项的值。
(答案:57)
4. 选择题:下列图形序列中,哪一个是按照“等比数列”规律排列的?
A. △, △△, △△△, △△△△, ...
B. □, □□, □□□, □□□□, ...
C. ○○, ○○○, ○○○○, ○○○○○, ...
D. ☆, ☆☆☆, ☆☆☆☆☆, ☆☆☆☆☆☆, ...
(答案:B)
5. 填空题:在图形序列□□□, □□□□, □□□□□,
□□□□□□, ... 中,第5个图形序列应该有多少个□?
(答案:10)
6. 计算题:已知一个图形序列,第一个图形是圆形,第二个图形是正
方形,第三个图形是五边形,以此类推。
求第6个图形有多少边?
(答案:11)
7. 选择题:下列数列中,哪一个是按照“奇数递增”规律排列的?
A. 1, 3, 5, 7, 9
B. 1, 4, 7, 10, 13
C. 2, 5, 8, 11, 14
D. 3, 6, 9, 12, 15
(答案:A)
8. 填空题:在数列 1, 3, 5, 7, __ 中,下一个数字应该是多少?
(答案:9)。
最新小学六年级数学找规律练习题
![最新小学六年级数学找规律练习题](https://img.taocdn.com/s3/m/6fbb5cc577232f60dccca162.png)
最新小学六年级数学找规律练习题小学六年级数学找规律练习题11、一座拱形桥的两根望柱间隔1米,每侧各有15根望柱,这座拱形桥长几米?2、四年级一班有60人,排成两队,每两个同学相隔1米,队伍前后长几米?3、公园圆形草坪四周有10个小喷水池,每两个喷水池中间有2把休息椅。
你知道一共有几把休息椅吗?4、张强家住在6楼,从1楼到3楼需要走34级台阶。
如果各层楼台阶数相同,张强到家需要走多少级台阶?5、在一条路的两边装路灯,每隔15米装一盏。
如果路的两端都要装,一共需要装162盏。
这条路全长多少米?6、在一条公路的两侧栽树,每隔5米栽一棵,公路的两端都有树,公路长400米,公路每侧要植几棵树?两侧一共要植几棵树?7、张老师要沿200米圆形跑道每隔5米插一面彩旗,一共需要几面彩旗?8、在一张边长为3米的方桌周围摆水果,每个角上都要摆一盘。
如果每隔1米摆一盘,这张方桌上能摆几盘水果?每条边上有几盘?9、学校林荫路长54米,路的一边从一端到另一端一共栽了19棵树,每两棵树之间相距几米?10、为美化环境,园林公司在草坪的一侧每隔2米摆了一盆花,两端都摆共摆了56盆花,现在全部换成木桩做成护拦,这一侧共用了111根木桩,相邻两根木桩间相距几米?11、某人到高层建筑的10层去,他从1层到5层用了100秒,如果用同样的速度走到10层,还需要多少秒?12、科学家进行一项实验,每隔5小时做一次记录。
做第12次记录时,挂钟的时针正好指向9,问做第一次记录时,时针指向几?13、两棵树相隔115米,中间以相等距离增加22棵后,第16棵与第1棵之间相隔几米?14、有一条植着等距离树的路,哥哥和弟弟同时出发,从第一棵数到最后一棵树方向走去,哥哥每分钟走84米,弟弟每分钟走36米。
哥哥走到第22棵树时,弟弟走到第几棵树?15、一列火车共20节,每节长5米,每两节之间相距1米,这列火车以每分钟20米的速度通过81米长的隧道,需要几分钟?16、请你把9棵树平均栽成8行,每行栽3棵,你能否做到?如果能请画出栽树的示意图。
完整六年级数学经典找规律专题
![完整六年级数学经典找规律专题](https://img.taocdn.com/s3/m/5e40eb5af61fb7360a4c6532.png)
找规律专题小题)30一.解答题(共深圳)在生活中,经常把一些同样大小的圆柱管如图捆扎起来,下面我们来探索?1.(2015时,”捆扎时绳子的长度,图中,每个圆的直径都是8厘米,当圆柱管放置放式是“单层平放那么,当圆柱管有捆扎后的横截面积如图所示:3取厘米(100个时需要绳子)π根小棒,112015?龙泉驿区校级三模)摆一个六边形需要六根小棒,摆2个六边形需要(2.个六边形需要问:摆10个六边形需要根小棒,摆1003个需要16根小棒…根小棒.根小棒,摆n个六边形需要(2015春?淮安校级期中)用计算器计算,再根据规律编写一道算式并直接写出得数.3.;(24+25)×5=;(872+873)×5=;(2830+2831)×5=+)×(=.4.(2015春?射阳县校级期中)根据规律填数.9×9+9=90 9876×9+6=8889098×9+8=890 98765×9+5=987×9+7=8890 987654×9+4=.5.(2015春?成都校级期中)如图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请回答:(1)五层的“宝塔”最下层包含多少个小三角形?六层呢?七层呢?n层呢?(2)整个五层“宝塔”一共包含多少个小三角形?六层呢?七层呢?n层呢?6.(2015春?西安校级期中)仔细观察,根据发现的规律把表格填完整.…n 2 3 5 第几幅图 1…共几个面在外面7.(2015春?盐城校级期中)用小棒如图的方式搭正方形.搭1个正方形要4根小棒,搭2个正方形要7根小棒.(1)搭3个正方形要根小棒;(2)搭8个正方形要根小棒;(3)搭n个正方形要根小棒.(4)现有2014根小棒,可以搭个正方形.第1页(共6页)颗蓝珠的顺序排2颗白珠,3颗红珠,28.(2015春?团风县期中)一串珠子按照3颗黑珠,列.(1)第14珠子.颗珠子是(2)第998颗珠子是颜色珠子.9.(2015春?射阳县校级期中)想一想,填一填.用上面的图形在左边表里框出5个数,先算出这5个数的和,再想想算出的和与中间一个数有什么关系?如果5个数的和为795,请在上面图形里写出这5个数.10.(2015春?威宁县校级期中)表中一共有50个奇数,黑线框出的5个数之和是115;仔细观察后回答问题.(1)你能发现每次框出的5个数的和与中间数有什么关系吗?(2)如果框出5个数的和要是375,应该怎么框?(先在图中框一框,并在下面用文字说明)(3)能框出和是295的5个数吗?为什么?(4)一共可以框出多少个大小不同的和?11.(2015春?株洲校级月考)不计算,运用规律在横线上填上合适的数.7×9=6377×9=693777×9=69937777×9=69993…777777777×9=1÷7=0.142857142857…2÷7=0.285714285714…3÷7=0.428571428571…4÷7=0.575÷7=0.76÷7=7÷7=第2页(共6页)(2014涟水县模拟)观察与计算.?12.+3+2+1= ……+99+100+99+98+计算:1+2+3+金寨县校级模拟)找规律,填表.2014?13.(⑩⑤③④…①②序号…9 A 数列1 3 5 7 (81)4 91 数列B 0)两小题的结果.3宝安区校级模拟)观察下面题的规律,然后算出(1)(214.(2014?2=4 ×1+2+1=23=9×1+2+3+2+1=31+2+3+4+3+2+1=16+3+2+1= …(1)1+2+3+…+99+100+99+=+++1++++2(+)…+…+++绍兴)有些题目可以通过观察找出规律,知道答案.按照下图算式的规律不变,.(2014?15 .,括号中的“减数”应该是如果商是12345627=0 ÷3﹣3)(27=1 ÷﹣6)(3327=12÷﹣9)(333 ÷=123.3333﹣12)÷27(?武平县)观察图形找规律:.16(20141)按照图形变化规律填表:(…正方形个1 2 3 4 5数…直角三角0 4 8形个数(2)如果画8个正方形能得到个直角三角形,画n个正方形能得到个直角三角形.第3页(共6页)17.(2014?东莞)探寻规律.(如图的正方形图案2×2如图??是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个其中完整的圆共有?),3如果铺成一个×3的正方形图案(如图?),其中完整的圆共有5个,个.若这样铺成25)×4的正方形图案(如图④,其中完整的圆共有13个,如果铺成一个4的正方形图案,则其中完整的圆共有个.一个10×1018.(2014?东台市)准备(1)每个都是棱长为1厘米的正方体.(2)一个挨着一个排成一排你要研究的问题是:正方体个数与拼成的长方体表面积之间的关系.探索过程:根据你的发现填空.当正方体个数为10时,所拼成的长方体表面积是平方厘米.当正方体个数为a时,所拼成的长方体表面积是平方厘米.当拼成的长方体表面积是202平方厘米时,正方体个数是.19.(2014?长沙)在如图所示的数表中,第100行左边的第一个数是.20.(2014?成都)有甲、乙两个同样的杯子,甲杯装满水,乙杯是空的.第一次将甲杯里的倒入乙杯,第二次将乙杯中水的倒回甲杯,第三次将甲杯中的倒回乙杯,第四次将乙杯中的倒回甲杯,…,这样反复倒2015 次后,甲杯中的水是原来的几分之几?第4页(共6页)个数起,每个数都是前面两…,6,从第39(2014?陕西校级模拟)有一列数2,,8,221..问这9×8=722的个位数字个数乘积的个位数字.例如第四个数就是第二、第三两数乘积个数是几?一列数第1997,…22.(2014?是第江油市校级模拟)有一串数,,则,,,,,,,个分数.23.(2014?临夏县模拟)找规律填数.1,4,9,16,,,49,,81.24.(2014?湖南模拟)分析推理找规律①1+2+1=4②1+2+3+2+1=9③1+2+3+4+3+2+1=16④1+2+…+49+50+49+…+2+1=⑤1+2+…+(n﹣1)+n+(n﹣1)+…+2+1=(n为自然数)222,…1+3+5+…+(?江油市校级模拟)1+3=4=21+3+5=9=3,2n,1+3+5+7=16=4.25(20142,则n=﹣1)=2013.26.(2014?宁远县校级模拟)如图,第6个图形一共由个小三角形组成,第n个图形,一共由个小角形组成.27.(2014?广州模拟)为了美化城市,某商场在门前的空地上用花盆按如图所示的方式搭正方形.(1)填写下表正方形的层数 1 2 3 4 5该层所需花盆的个数 4 12(2)按这种规律搭下去,搭第n(n为正整数)层正方形,需要盆花.28.(2014?台湾模拟)如图所示,按一定规律用棉花棒摆放图案:第一组的图案用棉花棒2枝,第二组用棉花棒7枝,第三组用棉花棒15枝,如此类推,问第二十组的图案用棉花棒多少枝﹖第5页(共6页)个小点,第62014?成都校级模拟)下面的小点按如图所示的规律摆放:第1个图形有29.(,依次规律,第个图形有24个点…162个图形有10个小点,第3个图形有个小点,第4 10个图形中点的个数是2014?海安县模拟)用小棒按照如下的方式摆图形.30.(根小棒,根小棒,摆1个八边形需要82个八边形需要15…50摆个八边形需要摆根小棒,你知道摆了个八边形.根小棒;如果摆这样的八边形用了771第6页(共6页)。
六年级找规律数学题
![六年级找规律数学题](https://img.taocdn.com/s3/m/7a0c51cddbef5ef7ba0d4a7302768e9950e76e0c.png)
六年级找规律数学题一、数字规律1. 按规律填数:1,3,6,10,15,(),28。
- 解析:观察这组数字,1到3增加了2,3到6增加了3,6到10增加了4,10到15增加了5。
可以发现相邻两个数的差值在依次递增1。
那么15后面的数应该比15大6,即15 + 6 = 21。
验证一下,21到28增加了7,符合规律。
所以括号里应填21。
2. 数列:2,4,8,16,32,()。
- 解析:这组数列中,2×2 = 4,4×2 = 8,8×2 = 16,16×2 = 32。
可以得出规律是后一个数是前一个数的2倍。
所以括号里的数应该是32×2 = 64。
二、图形规律1. 用小棒按照如下方式摆三角形:摆1个三角形需要3根小棒;摆2个三角形需要5根小棒;摆3个三角形需要7根小棒……(1)摆10个三角形需要多少根小棒?- 解析:观察可得,摆1个三角形用3根小棒(3 = 2×1+1);摆2个三角形用5根小棒(5 = 2×2 + 1);摆3个三角形用7根小棒(7 = 2×3+1)。
可以总结出规律,摆n个三角形需要2n + 1根小棒。
当n = 10时,2×10+1 = 21根小棒。
(2)有21根小棒,可以摆多少个三角形?- 解析:根据前面总结的规律2n+1。
设可以摆n个三角形,则2n + 1 = 21,2n = 20,解得n = 10。
所以21根小棒可以摆10个三角形。
2. 下列图形是由同样大小的小圆圈按照一定规律所组成的,其中第1个图形中一共有6个小圆圈,第2个图形中一共有9个小圆圈,第3个图形中一共有12个小圆圈……(1)第5个图形中有多少个小圆圈?- 解析:观察图形,第1个图形有6 = 3×1+3个小圆圈;第2个图形有9 = 3×2 + 3个小圆圈;第3个图形有12 = 3×3+3个小圆圈。
可以得出规律,第n个图形有3n+3个小圆圈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学找规律练习题
班级 姓名
等级
例 1 假设 a#b=( a+b ) +(a —b );求 13#5 和 13#(5#4) 练习一
1、将新运算定义为 a *b=(a+b )×(a —b );求 27*9
2、设 a *b=a 2 +2b ;求 10* 6 和 5*( 2*8)
3、设 a *b=3a —b ×1
;求 (15* 24)*( 10 *12)
2
例 2 设 p 、q 是两个数;规定: p # q=4×q —( p +q )÷2;求 3 #( 4# 6) 练习二
1、设 p 、q 是两个数;规定: p # q=4×q —( p +q )÷2;求 5#( 6# 4)
2、设 p 、q 是两个数;规定: p # q=p 2 +(p —q ) ×2;求 30#(5# 3)
、设 M 、 N 是两个数;规定:
M
N ;求 10#20—
1
3
M # N=
+
4
N M
例 3 如果 1&5=1+11+111+1111+11111;2&4=2+22+222+2222;3&3=3+33+333 ;4&2=4+44 ; 那么 7&4= ;210&2= 。
练习三
1、如果 1&5=1+11+111+1111+11111; 2&2=2+22 ;3&3=3+33+333 ⋯⋯ 那么 4&4= 。
2、规定 a&b=a+aa+aaa+aaaa+a ⋯⋯ a ( b 个 a );那么 8&5= 。
、如果
1 ;3&2= 1 ; 4&3=
1
;那么( 6&3 )÷(2&6 )= 。
33 444
2
例 4 设 a@b=4a —2b+ 1
ab ;求 x@(4@1) =34 中的未知数 x
2
练习四
1、设 a@b=3a —2b ;已知 x@(4@1)=7;求 x
、对两个整数 a 和 b 定义新运算“ & ”;
a&b= 2a b ;求 6&4+9&8
2
b
a b
a
4xy
x 和 y 定义新运算“ #”: x#y= (其中 m 是一个确定的整数) 。
如 mx 3y
果 1#2=1;那么 3#12=。
实战演练:
1、我们学过 +、—、×、÷这四种运算;现在规定“※”是一种新的运算。
设 a 、b 是两个数;
规定 a ※ b=a ×b+2a ;例如: 2※ 3=2×3+2× 2=10;那么 10※2=。
( 2011年 2 题)
2、我们学过 +、—、×、 ÷这四种运算;现在规定“ #”是一种新的运算。
设 a 、b 是两个数; 规定 a#b= (a —b )×(a+b );那么 8#( 4#3)= 。
( 2012 年 4 题)
找规律练习题
班级姓名等级
1、四张卡片内的数是有规律的;你能找出它们的规律吗?
请写出 A=
2
3、
4、信号灯的秘密:把 5 个灯泡并排安在台子上;用点亮的电灯和关掉的电灯表示一定的数值;如下图所示:
( 1)按照下图的规律;表示的数是。
( 2)这五盏灯所能表示的最大的数是。
( 3)请你画图表示 28。
( 4)若将题中的用符号“ 1”表示;符号“ 0”来表示;则“000001”=1;“ 000010”=2;“000011”=3;“ 000100” =4;“000101”=5。
那么“ 11011” =。
5、埃及是一个非常古老的国家;埃及人在很久以前;就创造了光辉灿烂的文化。
下面两张图中;左面的是古埃及人使用的数字;请你猜一猜:右面的图形代表的数是、。
6、观察左下图:它是由上面的小纸板各若干块拼成的;请你把拼成左下图的各小纸板按其编
号写在右边方格的对应位置。
7、
8、下表粗线框中三个数的和是9。
在表中移动这个框;一共可以得到()个不同的和。
2 3 4 5 6 7 8 9 10 11 12 13 14 1516
9、摆一个正方形需要 4 根小棒;摆 2 个需要 7 根;摆 3 个需要 10 根;摆 n 个需要()根小棒。
⋯⋯
10、如右图是小朋友用火柴棒搭的 1 条、2 条、
3 条“金鱼”⋯⋯;则搭8 条“金鱼”需要
火柴棒()根。
11、将连续的偶数排成右图;将图中的十字框上下左右移动;可以框住
其中五个数;若框出的五个数的和是640;那么这五个数中最大的数是多少?
12、一串数按 1;1;2;2;3;3;4;4;5;5;⋯⋯从左面第一个数起;第 35 个数是();前 35 个数中共有()个奇数。
13、用小木棒搭三角。
12 3
搭第 1 个图形用了 3 根小棒;搭第9 个图形用几根小棒?用87 根小棒可以搭几个三角形?14、观察表一;寻找规律;表二、表三、表四分别是从表一中截取的一部分;则表格中的
a= ;b= ;c= .
1 2 3 4 ⋯⋯12 8
2 4 6 8 ⋯⋯
20 24 c
15
25 b 20
3 6 9 12 ⋯⋯
a
4 8 12 16 ⋯⋯
表二表三表四
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
表一
15、把从 1 到 100 的自然数如下表排列;在这个数表里;若用如图形状的图形去围数;这六
个数的和是 84;若用这个图形围得的数的和是 432;则围得的最大的数是多少?
1 2 3 4 5 67
89 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
99100
16、观察下列图形的排列规律:
⋯⋯
左起第 20 个是;前72个图形中共有个。
17、在“智力闯关”游戏中;王林已经根据密码提示;成功打开了前三把锁(如下图)。
按
照这样的规律;打开第27 把锁的密码应该是。
( 1;2;4)(2;4;16)(3;6;36)。