二次函数复习学案-word
二次函数复习学案

二次函数复习(一)知识点归纳:1.二次函数的定义:一般地,形如c b a c bx ax y ,,(2++=为常数,)0≠a 的函数,叫做二次函数.(其中x 是自变量,c b a ,,分别是函数表达式的二次项系数,一次项系数和常数项)2.二次函数解析式的三种形式:一般式:)0(2≠++=a c bx ax y顶点式:)0()(2≠+-=a k h x a y交点式:)0)()((21≠--=a x x x x a y3.)0(2≠++=a c bx ax y 图象的特征:(1)a 决定了抛物线的形状与大小:其中a 的正负决定其开口方向;||a 越大图象相对开口越小.(2 c b a ,,共同决定了抛物线在坐标系中的位置,其中顶点坐标为:)44,2(2ab ac a b --,对称轴为:直线ab x 2-=,图象在y 轴的截距为c .4.待定系数法求二次函数解析式:(已知函数类型时,求函数解析式的方法)(二) 例题分析例1.考查二次函数的定义:(1)若函数m m x m y --=2)1(2为二次函数,则m 的值为 .(2)函数)1(x x y -=的二项式系数为 ;一次项系数为 ;常数项为 .(3)已知以x 为自变量的二次函数y =(m -2)x 2+m 2-m -2的图像经过原点,则m 的值是 .例2.综合考查正比例、反比例、一次函数、二次函数的图像特征:(1) 在同一坐标系中一次函数y ax b =+和二次函数2例3 考查函数、方程、不等式之间的关系:(1)抛物线y=x 2+6x+8与y 轴交点坐标( )(A )(0,8) (B )(0,-8) (C )(0,6) (D )(-2,0)((2)二次函数2(0)y ax bx c a =++≠(a )写出方程20ax bx c ++=的两个根.(b )写出不等式20ax bx c ++>的解集. (c )写出y 随x 的增大而减小的自变量x的取值范围.(d )若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.(3).如图,是二次函数y 1=ax 2+bx +c 和一次函数y 2=mx +n 的图象,观察图象写出y 2≥y 1时,x 的取值范围______________.例4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的最值: (1)二次函数y=x2+x-5取最小值是,自变量x的值是(2)抛物线()y x =-+23212的顶点坐标是( )A. (2,1)B. (-21,)C. 231,⎛⎝ ⎫⎭⎪D. -⎛⎝ ⎫⎭⎪231, (3) 心理学家发现,学生对概念的接受能力y 与接受概念所用时间x (单位:min )之间满足()y x x x =-++≤≤0126430302...y 值越大,表示接受能力越强.①x 在什么范围内时,学生的接受能力逐渐增强?x 在什么范围内时,学生的接受能力逐渐降低?②第10 min 时,学生的接受能力是多少?③第几分钟时,学生的接受能力最强?例5.考查用待定系数法求二次函数的解析式:(1)已知一条抛物线经过(0,3),(4,6)两点,对称轴为x =53,求这条抛物线的解析式。
二次函数复习学案

课题:二次函数总编号:NO.20课型:复习课授课人:王德文单位:山东省高密市银鹰文昌中学一、复习要点(1)能结合实例说出二次函数的意义。
(2)能写出实际问题中的二次函数的关系式,会画出它的图象,说出它的性质。
(3)掌握二次函数的平移规律。
(4)会通过配方法确定抛物线的开口方向、对称轴和顶点坐标和最值。
(5)会用待定系数法灵活求出二次函数关系式。
(6)熟悉二次函数与一元二次方程及方程组的关系。
(7)会用二次函数的有关知识解决实际生活中的问题。
二、需要注意的问题在学习二次函数时,要注重数形结合的思想方法。
在二次函数图象的平移变化中,在用待定系数法求二次函数关系式的过程中,在利用二次函数图象求解方程与方程组时,都体现了数形结合的思想。
三、课前自我构建:完成以下复习内容:1、二次函数的定义:_____________________________________2、二次函数的图象与性质:二次函数的图象是一条__________。
以下从它们的顶点,对称轴、开口方向,增减性及最值方面记住各自的性质:(1)二次函数y=ax2的性质:顶点坐标为__________(2)二次函数y=a(x-h)2+k的性质:顶点坐标为__________(3)二次函数y=ax2+bx+c的性质:顶点坐标为__________3.对于二次函数y=a(x-x1)(x-x2),它的图象的对称轴是___________,其中的x1 x2表示的意义是______________________________________。
4.对于二次函数y=ax2+bx+c的符号问题:a的符号看_____________;c的符号看________________;b的符号看________________,b2-4ac的符号看_________________________;a+b+c看_____________________;a-b+c看_____________________________。
二次函数复习课学案2

学校 九年级 班 科目 时间二次函数复习课学案复习目标:知识与技能目标1.理解二次函数的概念,掌握二次函数y=ax 2的图象与性质 2.能较熟练地由抛物线y=ax 2经过适当平移得到y=a(x-h)2 +k 的图象 3.用配方法求二次函数y=ax 2+bx+c 的顶点坐标、对称轴并能运用二次函数的知识解决简单问题。
过程与方法目标:提高学生应用能力和知识迁移能力 情感态度价值观目标:使学生进一步认识到数学源于生活,用于生活的辩证观点。
教学重点:把实际问题转化成二次函数问题并利用二次函数的性质来解决。
教学难点:学生转化能力的培养 教学方法:启发引导、观察、探索 学法引导:化归迁移 课 型:复习课教具准备:多媒体,几何画板 复习过程:一、交待目标,概括框架1.下列函数中,① y=ax 2 ② S= r2 ③ y=3-0.5x 2 ④ y=2x 2- ⑤ S=4t+3+2t 2 ⑥ y= x 2- x+ 是二次函数的有 (填序号即可)2.二次函数y=-2(x-1)2+8 ,它的开口_______,对称轴是直线_____,顶点坐标________,当x_______时y 随x 增大而增大;当x ______ 时,y 随x 增大而减小, 当x= 时,有最 值是 .3.将22x y =向左平移3个单位再向下平移5个单位得解析式为4. 抛物线y=ax 2+bx+c 中,它的图象如图,有以下结论: ①c>0; ②a+b+c> 0 ③a-b+c> 0 ④b 2-4ac<0 ⑤abc< 0 ; 其中正确的为( )A ①②B ①④C ①②③D ①③⑤5.若A (-134,y 1)、B (-1,y 2)、C (53,y 3)为二次函数245y x x =--+的图象上的三点,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3 6.若抛物线y=x 2-(2k+1)x+k 2+2顶点在x 轴上,则k 的值是______. 7.二次函数图像如图所示:π332(1)求它的解析 (2)根据图像说明,x 为何值时,y=0? (3)根据图像说明,x 为何值时,y<0?思考:做上面的题用到哪些知识点和数学思想方法? 二、自主练习,查漏补缺1.已知函数m m x m y ++=2)1((1)若它是二次函数,其图象开口方向向下,则m =_____,(2)若它是一次函数,则m =_____。
第18课时 二次函数(复习学案))

第18课时 二次函数一、 复习目标1、 识记二次函数的一般形式和顶点式,并能用待定系数法求它的解析式。
2、 掌握二次函数的图像和性质。
二、 重点、难点重点:⑴用待定系数法求二次函数的解析式;⑵用配方法求二次函数的最值。
难点:深入理解二次函数图像的特征。
三、 复习过程 ㈠知识梳理1、 二次函数的解析式⑴一般形式: 。
⑵顶点式: 。
2、 二次函数的图像与性质二次函数k h x a y +-=2)(的图像是 ,它的对称轴是直线 ,顶点坐标是 当0>a 时,抛物线开口 ,函数在=x 时,达到最 值 ;当0<a 时,抛物线开口 ,函数在=x 时,达到最 值 。
3、 二次函数与一元二次方程的联系 抛物线c bx ax y ++=2与x 轴是否有交点取决于一元二次方程02=++c bx ax是否有实数根。
⑴当ac b 42- 时,一元二次方程02=++c bx ax有两个不相等的实数根(21x x ≠),抛物线就与x 轴有两个不同的交点,其坐标是( )和( )。
反之亦然。
⑵当ac b 42- 时,一元二次方程02=++c bx ax有两个相等的实数根( 21x x = ),抛物线就与x 轴只有一个交点,其坐标是( ),这一点就是抛物线的顶点。
反之亦然。
⑶当ac b 42- 时,一元二次方程02=++c bx ax 没有实数根,抛物线就与x 轴没有交点。
反之亦然.㈡问题导学2、已知抛物线的顶点是(1,-4),且经过点(0,-3),则这条抛物线的解析式是 。
(第2题)3、抛物线322--=x x y 与x 轴的交点坐标是 ,与y 轴的交点坐标是 4、二次函数322-+-=x x y 的最大值是 。
5、将抛物线22(1)3y x =+-向右平移1个单位,再向上平移3个单位后得到的抛物线的解析式为 . ㈢合作探究例1 求满足下列条件的二次函数的解析式 ⑴图像经过A (-1,3)、B (1,3)、C (2,6)三点; ⑵图像经过A (-1,0)、B (3,0),函数有最大值8; ⑶图像顶点坐标是(-1,9),与x 轴两交点的距离是6.㈣达标检测1.抛物线()412--=x y 的顶点坐标是( )A .(1,4)B .(1.-4)C .(-1,4)D .(-1,-4)2、抛物线c bx x y ++-=2的部分图象如图所示,当0>y 时,x 的取值范围是( ) A .14<<-x B .4-<x 或1>x C .13<<-x D .3-<x 或1>x3、抛物线的对称轴是直线2=x ,与x 轴的两个交点的 距离是8,则这两个交点的坐标是 。
二次函数复习教案.doc

二次函数基础知识复习课(教案)一、复习目标1、理解二次函数的概念;2、会把二次函数的一般式转化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象。
3、会用平移二次函数“启(心o)图象得到二次函数y =心_ /疔+ £的图象,了解特殊到一般相互联系和转化的思想。
4、利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与X轴的交点坐标和函数的最值。
二、复习重难点:二次函数的图象和特征;二次函数图象及其性质的应用。
三、复习过程:(1)重温二次函数的定义,判断二次函数的方法,并且加以训练。
1、若y =(加—是二次函数,则m二。
2、对于任意实数m,是二次函数。
Ay二(m-1) 2x2B> y二(m+1) x2、Cy= (m2+l) x2D^ y= (m2-l) x2、3、下列函数中,哪些是二次函数?是二次函数,说出它的二次项系数、一次项系数和常数项(1 ) y = S 厂—39 1(2)------------------------------------------- y = — " + 3x函数y = a x 2+ b x c (其中a>b、C为常数)当3、b、C满足什么条件时,(1)它是二次函数;当。
工0时,是二次函数;(2)它是一次函数;当d = o;/?HO 时,是一次函数;(3)它是正比例函数;当° = 0;方工0;(? = 0时,是正比例函数(2)通过几何画板演示,再次总结归纳二次函数各类图象的性质特征。
分别说出特殊的二次函数①y=ax2(2工0)(2)y=ax2 +c (aHO,c 丰 0)③y二a(x-h)2(2工0)④y=a(x-h)2+k (aHO)图象的开口方向、对称轴、顶点坐标、函数的增减性及最值。
(3)通过几何画板体会和理解二次函数图象之间的平移,增进对图形的理解,加以训练。
(4) 训练二次函数一般式转化为顶点式,计算二次函数的对称 轴,顶点坐标,以及与坐标轴的交点坐标。
《二次函数》复习导学案教学设计

《二次函数》复习导学案教学设计学习目标:知识与技能目标:理解二次函数和抛物线的有关概念,从整体上掌握二次函数的图象和性质,并应用图象和性质解决一些简单的问题,提高学生对知识的整合能力和分析能力。
识的整合能力和分析能力。
过程与方法目标:过程与方法目标:经历本节课的复习的过程,经历本节课的复习的过程,经历本节课的复习的过程,形成比较完整的知识体系,形成比较完整的知识体系,形成比较完整的知识体系,进一步进一步感受数形结合这一重要数学思想方法的应用。
感受数形结合这一重要数学思想方法的应用。
情感态度价值观目标:情感态度价值观目标:通过对一些基础题型的练习,通过对一些基础题型的练习,通过对一些基础题型的练习,增加学生的成就感,增加学生的成就感,增加学生的成就感,培养学培养学生自信心,逐步消除学生对数学科的畏难情绪。
并在教学中培养学生同他人合作完成任务,以及及时反思、总结的良好学习习惯。
同他人合作完成任务,以及及时反思、总结的良好学习习惯。
学习重点:二次函数图象及其性质的灵活运用:二次函数图象及其性质的灵活运用学习难点:利用数形结合的思想解决二次函数的有关问题。
:利用数形结合的思想解决二次函数的有关问题。
情景引入【设计意图】PPT 辅助展示,动画展示篮球运动等生活实例,提高同学们学习的兴奋点和积极性,使学生感受数学来源于生活,服务于生活。
【课前复习学案】下列函数中,哪些是二次函数?下列函数中,哪些是二次函数? (1)32y=2x-8x +3 (2)21y= -x(3)2y=mx-x-1(4)y=x(1-x)【课内探究学案】【自主复习】一、一、 如果你是二次函数223y x x =--,请你做下自我介绍,比一比谁介绍的最全面!(提示:可以从图像、性质和特点等入手)(提示:可以从图像、性质和特点等入手)【设计意图】抛弃枯燥的习题复习课模式,采用“角色扮演”的方式,假如你是二次函数如何来进行自我介绍?极大带动了学生的学习兴趣。
(完整版)二次函数复习课教案.docx

二次函数复习2016.06二次函数复习课题二次函数课型复习课掌握二次函数的图象及其性质,能灵活运用抛物线的知识解一些实际问题.通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.教学目标学生亲自经历巩固二次函数相关知识点的过程,体会解决问题策略的多样性.经历探索二次函数相关题目的过程,体会数形结合思想、化归思想在数学中的广泛应用,同时感受数学知识来源于实际生活,反之,又服务于实际生活.教学重点二次函数图象及其性质,应用二次函数分析和解决简单的实际问题.教学难点二次函数性质的灵活运用,能把相关应用问题转化为数学问题.课前准备(教具、活制作课件动准备等)教学过程教学步骤基础知识之自我构建基础知识之基础演练师生活动设计意图通过一个具体二次函数,请学生说出尽可能多的结论,x2主要让学生回忆二次函数有让学生思考函数 y4x 3 并写出相关关基础知识.同学们之间可以结论相互补充,体现团结协作精神.同时发展了学生的探究意识,培养了学生思维的广阔性.教者让学生思考 1-4题,然后让学生回答,第 1 题主要考查二次函其他同学可以补充.数图像平移知识点,二次函数1、求将二次函数y x22x 图像向右平移1图像平实质上就是点的平移.第 2,3,4 题都是开放性个单位,再向上平移 2 个单位后得到图像的函数题,答案不唯一,只要正确即表达式.可,让学生很大发挥空间,其2、请写出一个二次函数解析式,使其图像的中涉及二次函数解析式的求对称轴为 x=1,并且开口向下.法.3、请写出一个二次函数解析式,使其图象与第 5,6 题涉及二次函数x 轴的交点坐标为( 2,0)、(- 1, 0).图象性质,根据图象,正确表4、请写出一个二次函数解析式,使其图象与示解析式中字母的取值范y 轴的交点坐标为( 0, 2),且图象的对称轴在 y围.教者也可以在原图形基础轴的右侧.改变形状,让学生经历和体验教者让学生口答第5、 6 题.图形的变化过程,引导学生感悟知识的生成、发展和变化.情感态度解决问题知识技能数学思考5、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y①a0;②b0;③c0;x④ b24ac0;6、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y① abc0;② 2a-b0;?x③ a+b+c0; 1 0 1④ a-b+c0.1、二次函数y ax2bx c 的图象如下图,则方程 ax2bx c0 的解为当 x 为时, ax2bx c当 x 为时, ax2bx cy数形结合思想是一种重要的数学思想,第 1 题看似复杂,其实对照图象,很容易找;出题目答案.第 2 题考查学生二次函0 ;数与一元二次方程关系,具体为:一元二次方程无实根说明0 .相应二次函数图象与 x 轴无交点,再根据隐含条件对称轴为直线 x1,可见顶点在第301x2一象限.第 3题考查学生从图表基础知识之提炼信息的能力.灵活运用x n0 无实数根,2、关于 x 的一元二次方程x2则抛物线 y x2x n 的顶点在()A .第一象限 B.第二象限C. 第三象限D.第四象限3、根据下列表格的对应值:x 3.23 3.24 3.25 3.26y ax2 bx c-0.06-0.020.030.09不解方程,试判断方程 ax2bx c0(a0,a,b,c 为常数)一个解 x 的范围是()A 、 3 x 3.23B、 3.23x 3.24C、 3.24x 3.25D、 3.25x 3.26难点突破之思维激活1、已知抛物线y ax2bx c 的对称轴为x=2,第 1,2 题考查抛物线轴对称性.且经过点(3,0),则 a+b+c 的值为.第 3 题考查二次函数图像2、已知抛物线y ax2bx c 经过点A(-2,7),及其性质的相关知识.本部分 3 道题目不能呆板B(6,7), C(3,- 8),则该抛物线上纵坐标为地应用二次函数的基础知识,-8 的另一点坐标是 ___________.而要综合相关知识,以达到能3、下图是抛物线y ax2bx c 的一部分,且经力提升之目的.过点(- 2 , 0),则下列结论中正确的个数有()①a <0;②b<0;③c>0;④抛物线与 x 轴的另一个交点坐标可能是(1,0);⑤抛物线与 x 轴的另一个交点坐标可能是( 4,0).A.2 个B.3 个C.4 个D.5 个y20x难点突破之聚焦中考教者出示一道函数类应用题,让学生思考,本题首先读懂题意,正确教者点拨.求出二次函数解析式.二次函例题:某商场销售一批名牌衬衫,平均每天可售数的最值是体现二次函数实出 20 件,进价是每件 80 元,售价是每件 120 元,际应用价值的一种常见题型,为了扩大销售,增加盈利,减少库存,商场决定它在优选方案、减小投入、增采取适当的降价措施,经调查发现,如果每件衬大收益中意义非凡.解题时通衫降低 1 元,商场平均每天可多售出 2 件,但每常借助顶点坐标来求,但有时件最低价不得低于108 元.由于实际问题实际意义的限⑴若每件衬衫降低x 元( x 取整数),商场平制,需结合自变量的取值范围均每天盈利 y 元,试写出 y 与 x 之间的函数关系进行调整.本题由图象可知,式,并写出自变量x 的取值范围.抛物线顶点(15,1250)不在⑵每件衬衫降低多少元时,商场每天(平均)本题图象上,它不是最高点,盈利最多?最高点应该是(12,1232)或者这样理解:顶点横坐标是反思与提高1、本节课你印象最深的是什么?2、通过本节课的函数学习,你认为自己还有哪些地方是需要提高的?3、在下面的函数学习中,我们还需要注意15,不满足 0 x 12 ,因此不能理解为:当 x 15 时, y 取最大值为 1250 元.让学生自己总结一节课的得失,教者进行适当的点评.真正体现出学生是学习的主体.为今后自主学习奠定基哪些问题?础,由此达到数学教学的新境教者归纳本章知识网络图示界——提升思维品质,形成数学素养.实际问题二次函数y ax2bx c目标实际问题利用二次函数的图的答案象和性质求解。
二次函数的复习教案

二次函数的复习教案教案标题:二次函数的复习教案教案目标:1. 复习学生对二次函数的基本概念和性质的理解。
2. 强化学生对二次函数图像、顶点、轴对称性和零点的掌握。
3. 提高学生解决与二次函数相关的实际问题的能力。
教学时长:2个课时教学步骤:第一课时:1. 导入(5分钟)- 通过提问引起学生对二次函数的兴趣,例如:你知道什么是二次函数吗?它有哪些特点?2. 复习基本概念(15分钟)- 提醒学生二次函数的一般形式为f(x) = ax^2 + bx + c,并解释a、b、c的含义。
- 回顾二次函数的图像特点,如开口方向、顶点位置等。
- 强调二次函数的轴对称性和零点的概念。
3. 图像练习(20分钟)- 展示几个不同形态的二次函数图像,要求学生根据图像特点判断函数的开口方向、顶点和轴对称性。
- 给学生一些简单的二次函数,要求他们画出对应的图像,并标出顶点和轴对称线。
4. 零点练习(15分钟)- 提供一些二次函数的方程,要求学生解方程求出零点。
- 引导学生思考零点与图像的关系,例如:零点在图像上对应什么位置?第二课时:1. 复习顶点和轴对称线(10分钟)- 提醒学生顶点是二次函数图像的最高点或最低点,轴对称线通过顶点并将图像分为两部分。
2. 实际问题解决(20分钟)- 提供一些与实际问题相关的二次函数,要求学生解决问题。
- 引导学生将问题转化为二次函数的方程,并解方程求出答案。
3. 总结(10分钟)- 回顾本节课所学内容,强调二次函数的重要性和应用。
- 鼓励学生通过做更多的练习来巩固所学知识。
教学方法和教学资源:1. 教学方法:- 提问法:通过提问引导学生思考和回忆所学知识。
- 演示法:展示二次函数图像和实际问题,帮助学生理解和解决问题。
2. 教学资源:- PowerPoint幻灯片或白板,用于展示图像和问题。
- 二次函数练习题,包括图像练习和实际问题练习。
评估方法:1. 课堂表现评估:- 观察学生在课堂上的参与度和回答问题的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数复习学案
以下是查字典数学网为您推荐的二次函数复习学案,希望本篇文章对您学习有所帮助。
二次函数复习学案
一、导学提纲
1.根据下列表格的对应值,判断方程ax2+bx+c=0(a0)一个解x的取值范围 ( )
x 3.23 3.24 3.25 3.26
y=ax2+bx+c -0.06 -0.02 0.03 0.09
A. 3
2.函数图象y=ax2+(a-3)x+1与x轴只有一个交点,则a的值为( )
A.0,1
B.0,9
C.1,9
D.0,1,9
3.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的函数关系式是 ( )
A.y=2(x+2)2-2
B.y=2(x-2)2+2
C.y=2(x-2)2-2
D.y=2(x+2)2 +2
4.已知二次函数 ( )的图象如图所示,有下列结论:
其中,正确结论的个数是( )
A.1
B.2
C.3
D.4
5. 如图,用一段长为30米的篱笆围成一个一边靠墙(墙的
长度不限)的矩形菜园ABCD,设AB边长为x米,则菜园的面积y(米2)与x(米)的关系式为
6.某涵洞是抛物线形,它的截面如图所示,现测得水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在抛物线的函数表达式是
7.某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件,调查表明:单价每上涨1元,该商品每月的销量就减少10件.
(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)件的函数关系式;
(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?
二、展示交流
1.如图是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图建立平面直角坐标系,求抛物线对应的关系式.
2. 如图,小明在一次高尔夫球争霸赛中,从山坡下O点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米.已知山坡OA与水平方向OC的夹角为30,O、A两点相距8 米.
(1)求出点A的坐标及直线OA的关系式;
(2)求出球的飞行路线所在抛物线的关系式;
(3)判断小明这一杆能否把高尔夫球从O点直接打入球洞A 点?
3. 2019年长江中下游地区发生了特大早情.为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备投资的金额与政府补的额度存在下表所示的函数对应关系.
型号Ⅰ型Ⅱ型
投资金额x(万元) x 5 x 2 4
补贴金额y(万元)
2
2.4
3.2
(1)分别求y1和y2的函数关系式;
(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.
三、反馈练习
1. 对抛物线:y=-x2+2x-3而言,下列结论正确的是 ( )
A. 与x轴有两个交点
B. 开口向上
C. 与y轴的交点坐标是(0,3)
D. 顶点坐标是(1,-2)
2. 若二次函数y=x2-6x+c的图象过A(-1,y1),B(2,y2),C(3+ ,y3),则y1,y2,y3的大小关系是 ( )
A . y1y3
B . y1y2
C . y2y3
D . y3y2
3.已知二次函数中,其函数与自变量之间的部分对应值如下表所示:
0 1 2 3
5 2 1 2
点A( , )、B( , )在函数的图象上,则当,时,与的大小关系正确的是( )
A. B.
C. D.
4.在边长为6 cm的正方形中间剪去一个边长为x cm(x6)的小正方形,剩下的四方框形的面积为y,y与x之间的函数关系是 .
5.有一个抛物线形拱桥,其最大高度为16米,跨度为40米,现把它的示意图放在如图所示的平面直角坐标系中,则此抛物线的关系式为 .
6.如图,已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN在同一直线上,开始时点A与点N 重合,让△ABC以每秒2厘米的速度向左运动,最终点A与点M重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为
7.一名男生推铅球,铅球行进高度y(单位:m)与水平距离
x(单位:m)之间的关系是 y= ,铅球运行路线如图.
(1)求铅球推出的水平距离;
(2)通过计算说明铅球行进高度能否达到4m.
8.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0
(1)用含x的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为
_________元.
(2)求今年这种玩具的每件利润y元与x之间的函数关系式.
(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元? 注:年销售利润=(每件玩具的出厂价-每件玩具的成本)年销售量.
9. 如图,在Rt△ABC中,ACB=90,AC、BC的长为方程
x2-14x+a=0的两根,且AC-BC=2,D为AB的中点.
(1)求a的值.
(2)动点P从点A出发,以每秒2个单位的速度,沿ADC的路线向点C运动;动点Q从点B出发,以每秒3个单位的速
度,沿BC的路线向点C运动,且点Q每运动1秒,就停止2秒,然后再运动1秒若点P、Q同时出发,当其中有一点到达终点时整个运动随之结束.设运动时间为t秒.
①在整个运动过程中,设△PCQ的面积为S,试求S与t之间的函数关系式;并指出自变量t的取值范围;
②是否存在这样的t,使得△PCQ为直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
查字典数学网。