3.2.1空间向量坐标运算的应用与法向量的求法-高中数学人教A版选修2-1课件(共23张PPT)

合集下载

人教A版高中数学选修2-1课件高二:3-1-1空间向量及其线性运算

人教A版高中数学选修2-1课件高二:3-1-1空间向量及其线性运算

4.理解空间向量的正交分解及其坐标的表示,掌握空间 向量的坐标运算及数量积的坐标表示,会判断两个向量平行或 垂直;掌握两个向量的夹角公式和向量长度的坐标计算公式, 并会用这些公式解决有关问题.
5.理解平面的法向量,能用向量语言表述线线、线面、 面面的垂直、平行关系.
6.能用向量方法证明有关线、面位置关系,能够用向量 方法解决线线、线面、面面的夹角及其长度问题.
向量那样,从某点
O








→ OA1

a1

→ A1A2

a2,……An-1An=an,于是以所得折线 OA1A2……的起点 O 为
起点,终点 An 为终点的向量O→An,就是 a1,a2,……,an 的和,

O→An=O→A1+A→1A2+……An-1An=a1+a2+……+an. 用折线作向量的和时,有可能折线的终点恰恰重合到起点 上,这时的和向量就为零向量. 2.向量减法满足三角形法则:“同始连终、指向被减”. 即以同一点 O 作始点,作O→A=a,O→B=b,连结终点 A,B, 则A→B=b-a,B→A=a-b.
[答案] B
[分析] 给出的命题都是对向量的有关概念及加减法的理 解,解答本题应紧扣向量及其加减运算的有关概念进行.
[解析] |a|=|b|,说明 a 与 b 模相等,但方向不确定,由 a 的相反向量 b=-a,故|a|=|b|,从而 B 正确.只定义加法具有 结合律,减法不具有结合律,一般的四边形不具有A→B+A→D= A→C,只有平行四边形才能成立.故 A、C、D 均不正确.
[解析] B→C1=B→C+B→B1=A→A1+A→D=b+c, A→C1=A→C+C→C1=A→B+A→D+C→C1=a+b+c, B→D1=A→D1-A→B=A→D+A→A1-A→B=b+c-a, C→O=C→C1+C→1O=A→A1+12C→1A1 =A→A1+12(C→1D1+C→1B1) =A→A1+12(-A→B-A→D)=c-12a-12b.

新人教A版高中数学选修2-1第三章《空间向量与立体几何》知识点汇总及解题方法总计

新人教A版高中数学选修2-1第三章《空间向量与立体几何》知识点汇总及解题方法总计

第三章 空间向量与立体几何单元小结[核心速填]1.空间向量的有关定理和推论(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共线向量定理的推论:若OA →,OB →不共线,则P ,A ,B 三点共线的充要条件是OP →=λOA →+μOB →,且λ+μ=1.(3)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在惟一的有序实数对(x ,y ),使得p =x a +y b .(4)共面向量定理的推论:已知空间任意一点O 和不共线的三点A ,B ,C ,则P ,A ,B ,C 四点共面的充要条件是OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(5)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中{a ,b ,c }叫做空间的一个基底.2.空间向量运算的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). (1)a +b =(a 1+b 1,a 2+b 2,a 3+b 3),a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3.(2)重要结论:a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ); a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.3.模、夹角和距离公式(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则①|a |=a ·a②cos 〈a ,b 〉=a ·b |a ||b |=(2)设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|4.空间向量的结论与线面位置关系的对应关系(1)设直线l 的方向向量是u =(a 1,b 1,c 1),平面α的法向量v =(a 2,b 2,c 2), 则l ∥α⇔u ⊥v ⇔u ·v =0⇔a 1a 2+b 1b 2+c 1c 2=0,l ⊥α⇔u ∥v ⇔u =k v ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)⇔a 1=ka 2,b 1=kb 2,c 1=kc 2(k ∈R ).(2)设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为u ,v ,则l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; l ⊥m ⇔a ⊥b ⇔a ·b =0; l ∥α⇔a ⊥u ⇔a ·u =0; l ⊥α⇔a ∥u ⇔a =k u ,k ∈R ;α∥β⇔u ∥v ⇔u =k v ,k ∈R ; α⊥β⇔u ⊥v ⇔u ·v =0. 5.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|.(3)求二面角的大小:(ⅰ)如图3­1①,AB ,CD 是二面角α­l ­β的两个半平面α,β内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.图3­1(ⅱ)如图3­1②③,n 1,n 2分别是二面角α­l ­β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.[体系构建][题型探究]类型一、空间向量的基本概念及运算例1、如图3­2,在四棱锥S ­ABCD 中,底面ABCD 是边长为1的正方形,S 到A 、B 、C 、D 的距离都等于2.给出以下结论:图3­2①SA →+SB →+SC →+SD →=0; ②SA →+SB →-SC →-SD →=0; ③SA →-SB →+SC →-SD →=0; ④SA →·SB →=SC →·SD →; ⑤SA →·SC →=0.其中正确结论的序号是________. 【答案】 ③④【解析】容易推出SA →-SB →+SC →-SD →=BA →+DC →=0,所以③正确;又因为底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2,所以SA →·SB →=2·2·cos∠ASB ,SC →·SD →=2·2·cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →,因此④正确,其余三个都不正确,故正确结论的序号是③④.[规律方法] 1.空间向量的线性运算包括加、减及数乘运算,选定空间不共面的三个向量作为基向量,并用它们表示出目标向量,这是用向量法解决立体几何问题的基本要求,解题时可结合已知和所求,根据图形,利用向量运算法则表示所需向量.2.空间向量的数量积(1)空间向量的数量积的定义表达式a ·b =|a |·|b |·cos 〈a ,b 〉及其变式cos 〈a ,b 〉=a ·b|a | ·|b |是两个重要公式. (2)空间向量的数量积的其他变式是解决立体几何问题的重要公式,如a 2=|a |2,a 在b 上的投影a ·b|b |=|a |·cos θ等.[跟踪训练]1.如图3­3,已知ABCD ­A ′B ′C ′D ′是平行六面体.设M 是底面ABCD 的中心,N 是侧面BCC ′B ′对角线BC ′上的34分点,设MN →=αAB →+βAD→+γAA ′→,则α+β+γ=________.图3­3【答案】32[连接BD ,则M 为BD 的中点,MN →=MB →+BN →=12DB →+34BC ′→=12(DA →+AB →)+34(BC →+CC ′→)=12(-AD →+AB →)+34(AD →+AA ′→)=12AB →+14AD →+34AA ′→.∴α=12,β=14,γ=34.∴α+β+γ=32.]类型二、空间向量的坐标运算例2、(1)已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x =( )A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)(2)已知向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),a ∥b ,b ⊥C . ①求向量a ,b ,c ;②求a +c 与b +c 所成角的余弦值.【答案】(1)B [由b =12x -2a 得x =4a +2b ,又4a +2b =4(2,3,-4)+2(-4,-3,-2)=(0,6,-20), 所以x =(0,6,-20).](2)①∵向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),且a ∥b ,b ⊥c ,∴⎩⎪⎨⎪⎧x 1=1y =2-23+y -2z =0,解得⎩⎪⎨⎪⎧x =-1,y =-1,z =1,∴向量a =(-1,1,2),b =(1,-1,-2),c =(3,1,1). ②∵a +c =(2,2,3),b +c =(4,0,-1), ∴(a +c )·(b +c )=2×4+2×0+3×(-1)=5,|a +c |=22+22+32=17,|b +c |=42+02+(-1)2=17, ∴a +c 与b +c 所成角的余弦值为(a +c )·(b +c )|a +c ||b +c |=517.[规律方法] 熟记空间向量的坐标运算公式 设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2), (1)加减运算:a ±b =(x 1±x 2,y 1±y 2,z 1±z 2). (2)数量积运算:a ·b =x 1x 2+y 1y 2+z 1z 2. (3)向量夹角:cos 〈a ,b 〉=x 1x 2+y 1y 2+z 1z 2x 21+y 21+z 21x 22+y 22+z 22. (4)向量长度:设M 1(x 1,y 1,z 1),M 2(x 2,y 2,z 2),则|M 1M 2→|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. 提醒:在利用坐标运算公式时注意先对向量式子进行化简再运算. [跟踪训练]2.在空间直角坐标系中,已知点A (1,-2,11),B (4,2,3),C (6,-1,4),则△ABC 一定是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形【答案】C [∵AB →=(3,4,-8),AC →=(5,1,-7),BC →=(2,-3,1),∴|AB →|=32+42+(-8)2=89,|AC →|=52+12+(-7)2=75,|BC →|=22+(-3)2+1=14,∴|AC →|2+|BC →|2=|AB →|2,∴△ABC 一定为直角三角形.]类型三、利用空间向量证明平行、垂直问题例3、 在四棱锥P ­ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA =AD =CD =2AB =2,M 为PC 的中点.(1)求证:BM ∥平面PAD ;(2)平面PAD 内是否存在一点N ,使MN ⊥平面PBD ?若存在,确定N 的位置;若不存在,说明理由.[思路探究] (1)证明向量BM →垂直于平面PAD 的一个法向量即可;(2)假设存在点N ,设出其坐标,利用MN →⊥BD →,MN →⊥PB →,列方程求其坐标即可. 【答案】以A 为原点,以AB ,AD ,AP 分别为x 轴、y 轴、z 轴建立空间直角坐标系如图所示,则B (1,0,0),D (0,2,0),P (0,0,2),C (2,2,0),M (1,1,1),(1)证明:∵BM →=(0,1,1),平面PAD 的一个法向量为n =(1,0,0), ∴BM →·n =0,即BM →⊥n ,又BM ⊄平面PAD ,∴BM ∥平面PAD . (2)BD →=(-1,2,0),PB →=(1,0,-2), 假设平面PAD 内存在一点N ,使MN ⊥平面PBD . 设N (0,y ,z ),则MN →=(-1,y -1,z -1), 从而MN ⊥BD ,MN ⊥PB , ∴⎩⎪⎨⎪⎧MN →·BD →=0,MN →·PB →=0,即⎩⎪⎨⎪⎧1+2(y -1)=0,-1-2(z -1)=0,∴⎩⎪⎨⎪⎧y =12,z =12,∴N ⎝ ⎛⎭⎪⎫0,12,12,∴在平面PAD 内存在一点N ⎝ ⎛⎭⎪⎫0,12,12,使MN ⊥平面PBD .[规律方法]利用空间向量证明空间中的位置关系(1)线线平行:证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直:证明两条直线垂直,只需证明两直线的方向向量垂直. (3)线面平行:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线的方向向量是共线向量;③利用共面向量定理,即证明直线的方向向量可用平面内两不共线向量线性表示.(4)线面垂直:①证明直线的方向向量与平面的法向量平行;②利用线面垂直的判定定理转化为线线垂直问题.(5)面面平行:①证明两个平面的法向量平行(即是共线向量);②转化为线面平行、线线平行问题.(6)面面垂直:①证明两个平面的法向量互相垂直;②转化为线面垂直、线线垂直问题.[跟踪训练]3.如图3­4,长方体ABCD­A1B1C1D1中,点M,N分别在BB1,DD1上,且AM⊥A1B,AN⊥A1D.图3­4(1)求证:A1C⊥平面AMN.(2)当AB=2,AD=2,A1A=3时,问在线段AA1上是否存在一点P使得C1P∥平面AMN,若存在,试确定P的位置.【答案】(1)证明:因为CB⊥平面AA1B1B,AM⊂平面AA1B1B,所以CB⊥AM,又因为AM⊥A1B,A1B∩CB=B,所以AM⊥平面A1BC,所以A1C⊥AM,同理可证A1C⊥AN,又AM∩AN=A,所以A1C⊥平面AMN.(2)以C 为原点,CD 所在直线为x 轴,CB 所在直线为y 轴,CC 1所在直线为z 轴,建立空间直角坐标系,因为AB =2,AD =2,A 1A =3,所以C (0,0,0),A 1(2,2,3),C 1(0,0,3),CA 1→=(2,2,3), 由(1)知CA 1⊥平面AMN ,故平面AMN 的一个法向量为CA 1→=(2,2,3).设线段AA 1上存在一点P (2,2,t ),使得C 1P ∥平面AMN ,则C 1P →=(2,2,t -3), 因为C 1P ∥平面AMN ,所以C 1P →·CA 1→=4+4+3t -9=0, 解得t =13.所以P ⎝⎛⎭⎪⎫2,2,13, 所以线段AA 1上存在一点P ⎝ ⎛⎭⎪⎫2,2,13,使得C 1P ∥平面AMN .类型四、利用空间向量求空间角例4、如图3­5,在等腰直角三角形ABC 中,∠A =90°,BC =6,D ,E 分别是AC ,AB 上的点,CD =BE =2,O 为BC 的中点.将△ADE 沿DE 折起,得到如图(2)所示的四棱锥A ′­BCDE ,其中A ′O = 3.(1) (2)图3­5(1)证明:A ′O ⊥平面BCDE ;(2)求二面角A ′­CD ­B 的平面角的余弦值.[思路探究] (1)利用勾股定理可证A ′O ⊥OD ,A ′O ⊥OE ,从而证得A ′O ⊥平面BCDE ;(2)用“三垂线”法作二面角的平面角后求解或用向量法求两个平面的法向量的夹角.【答案】(1)证明:由题意,得OC =3,AC =32,AD =2 2. 如图,连接OD ,OE ,在△OCD 中,由余弦定理,得OD =OC 2+CD 2-2OC ·CD cos 45°= 5.由翻折不变性,知A ′D =22,所以A ′O 2+OD 2=A ′D 2,所以A ′O ⊥OD . 同理可证A ′O ⊥OE .又因为OD ∩OE =O ,所以A ′O ⊥平面BCDE .(2)如图,过点O 作OH ⊥CD 交CD 的延长线于点H ,连接A ′H .因为A ′O ⊥平面BCDE ,OH ⊥CD , 所以A ′H ⊥CD .所以∠A ′HO 为二面角A ′­CD ­B 的平面角. 结合图(1)可知,H 为AC 的中点,故OH =322,从而A ′H =OH 2+A ′O 2=302. 所以cos ∠A ′HO =OH A ′H =155. 所以二面角A ′­CD ­B 的平面角的余弦值为155. [规律方法] 用向量法求空间角的注意点(1)异面直线所成角:两异面直线所成角的范围为0°<θ≤90°,需找到两异面直线的方向向量,借助方向向量所成角求解.(2)直线与平面所成的角:要求直线a 与平面α所成的角θ,先求这个平面α的法向量n 与直线a 的方向向量a 夹角的余弦cos 〈n ,a 〉,易知θ=〈n ,a 〉-π2或者π2-〈n ,a 〉.(3)二面角:如图3­6,有两个平面α与β,分别作这两个平面的法向量n 1与n 2,则平面α与β所成的角跟法向量n 1与n 2所成的角相等或互补,所以首先应判断二面角是锐角还是钝角.图3­6[跟踪训练]4.在如图3­7所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB是圆台的一条母线.图3­7(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC . (2)已知EF =FB =12AC =23,AB =BC ,求二面角F ­BC ­A 的余弦值.【答案】 (1)证明:设CF 的中点为I ,连接GI ,HI .在△CEF 中,因为点G ,I 分别是CE ,CF 的中点, 所以GI ∥EF .又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H ,I 分别是FB ,CF 的中点, 所以HI ∥BC .又HI ∩GI =I ,BC ∩OB =B , 所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI , 所以GH ∥平面ABC .(2)连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径, 所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系. 由题意得B (0,23,0),C (-23,0,0). 过点F 作FM ⊥OB 于点M , 所以FM =FB 2-BM 2=3, 可得F (0,3,3).11 故BC →=(-23,-23,0),BF →=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的法向量.由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0可得⎩⎨⎧ -23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝ ⎛⎭⎪⎫-1,1,33.因为平面ABC 的一个法向量n =(0,0,1), 所以cos 〈m ,n 〉=m ·n|m |·|n |=77,所以二面角F ­BC ­A 的余弦值为77.。

高中数学人教A版选修2-1课件:3.2.2 用向量方法解决垂直问题

高中数学人教A版选修2-1课件:3.2.2 用向量方法解决垂直问题
∴ ������������ ·������������1 = 0, ������������ ·������������ = 0. ∴AF⊥EA1,AF⊥ED. 又 EA1∩ED=E,∴AF⊥平面 A1ED.
3 1, , 0 2
.
题型一
题型二
题型三
证明面面垂直
【例 3】 如图,在五面体 ABCDEF 中,FA⊥平面 ABCD,AD∥BC∥ FE,AB⊥AD,M 为 EC 的中点,AF=AB=BC=FE=
题型一
题型二
题型三
解:如图所示,建立空间直角坐标系,点 A 为坐标原点,设 AB=1, 依题意,得 D(0,2,0),F(1,2,1),A1(0,0,4),������
3 1 ∴ ������������ = (1,2,1), ������������1 = -1,- ,4 , ������������ = -1, ,0 , 2 2
1 1 , 1, 2 2
, ������ (1,1,0), ������(0,2,0), ������ (0,1,1),
题型一
题型二
题型三
【变式训练3】 如图所示,在六面体ABCD-A1B1C1D1中,四边形 ABCD是边长为2的正方形,四边形A1B1C1D1是边长为1的正方 形,DD1⊥平面A1B1C1D1,DD1⊥平面ABCD,DD1=2.
反思对于坐标系易建立的空间线面垂直问题,通常用向量法,先 求出平面的法向量和直线的方向向量,证明平面法向量与直线的方 向向量平行或者直接用向量法证明直线与平面内两条相交直线垂 直,再用线面垂直判定定理即可.
题型一
题型二
题型三
【变式训练2】 在长方体ABCD-A1B1C1D1中,E,F分别是棱BC, CC1上的点,CF=AB=2CE,AB∶AD∶AA1=1∶2∶4.求证:AF⊥平面 A1ED.

人教版A版高中数学高二版选修2-1 3.1空间向量坐标运算的应用【素材】

人教版A版高中数学高二版选修2-1 3.1空间向量坐标运算的应用【素材】

空间向量坐标运算的应用空间向量是平面向量在空间中的推广,它既是一个代数研究工具同时又有几何特征,因此是解决空间问题的一个重要工具.因此空间问题可转化为代数运算,为问题的解决提供了简捷的渠道.一、求向量坐标例1、已知c b b a z c y b x a ⊥-=--==,//),,2,3(),1,,2(),1,4,(,求(1)a ,b ,c ;(2)(a +c )与(b +c )所成角的余弦值.分析:本题考查空间向量的坐标运算,首先利用两个向量平行与垂直的充要条件求出x ,y 的值,再解决其他问题.解:(1)因为b a //,所以1142-==-y x ,解得x =2,y =-4,这时a =(2,4,1), b =(-2,-4,-1),又因为c b ⊥,所以b ·c =0,即-6+8-z =0,解得z =2,于是 c =(3,-2,2).(2)由(1)得(a +c )=(5,2,3),(b +c )=(1,-6,1),因此(a +c )与(b +c )所成角的余弦值等于.19238383125cos -=⋅+-=θ 点评:要熟练掌握坐标运算条件下两个向量平行与垂直的充要条件,即若),,(321a a a a =,),,(321b b b b =,则有332211//b a b a b a b a ==⇔; 0332211=++⇔⊥b a b a b a b a ,这是高考的热点内容.此外,在坐标运算条件中,两个向量数量积的计算公式以及变形,也具有非常重要的作用,应熟练掌握.二、求三角形的面积例2、已知三角形的顶点是A (1,-1,1),B (2,1,-1),C (-1,-1,-2), 则这个三角形的面积等于_________. 解:由于αsin ||||21AC AB S ABC =∆,其中α是AB 与AC 这两条边的夹角,则α2cos 1||||21-=∆S ABC ||||21==,于是 )3,0,2()1,1,1()2,1,1(),2,2,1()1,1,1()1,1,2(--=-----=-=---=, 所以9)2(21||2222=-++=,13)3(0)2(||2222=-++-=,462)3()2(02)2(1=+-=-⋅-+⋅+-⋅=⋅AC AB ,所以.21014139212=-⨯=∆ABC S 点评:三角形中的面积公式以及夹角公式长度公式等.三、证明垂直、平行、夹角问题例3、如图,在正方体''''D C B A ABCD -中,E 、F 分别是CD BB ,'的中点.(1)证明:F D AD '⊥;(2)求AE 与F D '所成的角;(3)证明:面AED ⊥面.''F D A解:取D 为坐标原点,DA 、DC 、'DD 分别为x 轴、y 轴、z 轴,建立直角坐标系,取正方体棱长为2,则A (2,0,0)、)2,0,0('),2,0,2('D A ,E (2,2,1),F (0,1,0).(1)因为F D DA '⋅=(2,0,0)·(0,1,-2)=0,所以F D AD '⊥.(2)因为F D AE '⋅=(0,2,1)·(0,1-2)=0,所以F D AE '⊥,即AE 与F D '所成的角为直角.(3)因为F D DE '⋅=(0,2,1)·(0,1,-2)=0,所以F D DE '⊥,因为F D AE '⊥,所以⊥F D '面AED ,因为⊂F D '面.''F D A 所以面AED ⊥面.''F D A 点评:通过坐标法计算数量积去证明直线、平面间的平行、垂直关系,求直线的夹角问题,是高考的重点考查内容.解决这类问题时,一般应结合图形,建立恰当的空间直角坐标系,写出有关点的坐标,然后求出相关向量的坐标,再进行计算和证明.四、解决探索性问题例4、在正方体''''D C B A ABCD -中,已知E 为棱'CC 上的动点,(1)求证:BD E A ⊥';(2)是否存在这样的E 点,使得平面⊥BD A '平面EBD ?若存在,请找出这样的E 点;若不存在,请说明理由.分析:两个平面垂直,就是两个平面所成的二面角等于090,因此可以先求出两个平面所成的二面角的大小,再进行论证.解:如图,以DA 、DC 、'DD 所在的直线为x ,y ,z 轴,建立空间直角坐标系.(1)设正方体的棱长为a ,则易知下列各点的坐标分别为:A (a ,0,0),B (a ,a ,0),C (0,a ,0),),,0('),,0,('a a C a a A ,设E (0,a ,e ),则)0,,(),,,('a a BD a e a a E A --=--=, 00)()()('=⋅-+-⋅+-⋅-=⋅a e a a a a BD E A ,所以BD E A ⊥',所以.'BD E A ⊥(2)存在,当E 是'CC 的中点时符合题意.显然,点E 的坐标为)2,,0(aa E , 设BD 的中点为O ,则)0,2,2(a a O ,所以)2,2,2(a a a OE -=,因为)0,,(a a BD --=, 则0=⋅,⊥,而),2,2(a a a -=,则0=⋅OA ,所以OA ⊥, 所以OE A '∠为二面角E BD A --'的平面角,又0'=⋅OE OA ,则090'=∠OE A ,所以平面⊥BD A '平面EBD点评:本题我们在证明两个平面垂直时是通过两个平面所成的二面角等于090来证明的,这种通过计算来论证位置关系的方法是非常重要的,另外在证明两个平面垂直时还可以通过两个平面的法向量垂直来证明.类似地,若要证明两个平面平行,则可以通过两个平面的法向量是平行向量来证明.。

人教版数学高二数学选修2-1 3.2《空间向量》的应用空间

人教版数学高二数学选修2-1 3.2《空间向量》的应用空间

《空间向量》的应用空间湖南 高明生空间向量的应用空间:1.三种空间角的向量法计算公式:⑴异面直线,a b 所成的角θ:cos cos ,a b θ=<>;⑵直线a 与平面α(法向量n )所成的角θ:sin cos ,a n θ=<>; ⑶锐二面角θ:cos cos ,m n θ=<>,其中,m n 为两个面的法向量。

2.用向量法求距离的公式:⑴异面直线,a b 之间的距离:||AB n d n ⋅=,其中,,,n a n b A a B b ⊥⊥∈∈。

⑵直线a 与平面α之间的距离:||AB n d n ⋅=,其中,A a B α∈∈。

n 是平面α的法向量。

⑶两平行平面,αβ之间的距离:||AB n d n ⋅=,其中,A B αβ∈∈。

n 是平面α的法向量。

⑷点A 到平面α的距离:||AB n d n ⋅=,其中B α∈,n 是平面α的法向量。

⑸点A 到直线a 的距离:2|||AB d AB a ⎛=- ⎪⎭,其中B a ∈,a 是直线a 的方向向量。

⑹两平行直线,a b 之间的距离:2|||AB d AB a ⎛=- ⎪⎭,其中,A a B b ∈∈,a 是a 的方向向量。

3.用向量法证明 例题讲解:类型一:利用空间向量求异面直线所成的角例1. 如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( ) A .515arccosB .4πC .510arccosD .2π解:以D 为原点建立坐标系)1,1,1(),1,0,1(1-=--=GF E A 01=⋅GF E A异面直线A 1E 与GF 所成的角是2π 类型二:利用空间向量求直线与平面 (法向量n )所成的角例2 在正四面体ABCD 中,E 为AD 的中点,求直线CE 与平面BCD 成的角.解:如图建立以三角形BCD 的中心O 为原点,,OD,OA 依次为y 轴,z 轴X 轴平行于BC设正四面体ABCD 的棱长为a , 则336,,,23a a a a OF FC OD OA ==== ∴ 336(,,0),(0,,0),(0,0,),2a a a a C D A -∵E 为AD 的中点,∴36(0,,)a aE ∴ 36(,,)236a a aCE =-又因为平面BCD 的法向量为(0,0,1)n =, ∴即CE 与平面BCD 成的角θ满足: 2sin cos ,3||||CE n CE n CE n θ⋅=<>==类型三:利用空间向量求锐二面角例3 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BC =BB 1=1,E 为D 1C 1的中点,求二面角E —BD —C 的正切值.解:如图,建立坐标系,则D(0,0,0),B(1,2,0),E(0,1,1)设平面DBE 的方程为:0Ax By Cz ++=(过原点D=0)则202,0A B A B C B B C +=⎧⇒=-=-⎨+=⎩ ABCDEF HoxzyABCDA 1B 1C 1D 1EFMzy∴平面DBE 的一个法向量为(2,1,1)n =- 又因为平面BCD 的一个法向量为(0,0,1)m = 二面角E —BD —C 的余弦值为:6cos cos ,6m n θ=<>=∴tan θ=类型四:利用空间向量求异面直线之间的距离例4 已知正方体ABCD-A 1B 1C 1D 1的棱长为1,求异面直线BD 与B 1C 的距离解:建立空间直角坐标系(如图),则B (0,0,0),C (1,0,0),D (1,1,0) B 1(0,0,1),则111(1,1,0),(1,0,1),(0,0,1)BD BC BB ==-= 设与1,BD B C 都垂直的向量为(,,)n x y z =, 则由0BD n x y ⋅=+= 和10,BC n x z ⋅=-=1,x =令得1,1y z =-=,(1,1,1)n ∴=- ∴异面直线BD 与B 1C 的距离:111|||cos ,|33BB n d BB BB n n ⋅=<>=== 类型五:利用空间向量求点到平面的距离例5 设A (2,3,1),B (4,1,2),C (6,3,7),D (-5,-4,8),求D 到平面ABC的距离解法一:∵A (2,3,1),B (4,1,2),C (6,3,7),D (-5,-4,8),∴(7,7,7)AD =--设平面ABC 的法向量n =(x ,y ,z ), 则n ·AB =0,n ·AC =0,∴⎩⎨⎧=⋅=-⋅,0)6,0,4(),,(,0)1,2,2(),,(z y x z y x即⎪⎩⎪⎨⎧-=-=⇒⎩⎨⎧=+=+-.,23064022z y z x z x z y x令z =-2,则n =(3,2,-2)∴由点到平面的距离公式:GFEABCDA 1B 1C 1D 1||AD n d n ⋅===1749∴点D 到平面ABC解法二:设平面ABC 的方程为:Ax By Cz D +++=将A (2,3,1),B (4,1,2),C (6,3,7)的坐标代入,得3230242063705A B A B C D A B C D C B A B C D D B ⎧=⎪+++=⎧⎪⎪+++=⇒=-⎨⎨⎪⎪+++==-⎩⎪⎩, 取B =2,则平面ABC 的法向量n =(A,B,C)=(3,2,-2)又因为 (7,7,7)AD =-- ∴由点到平面的距离公式:||AD n dn ⋅===1749∴点D到平面ABC 类型六:用向量法证明例6 在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为BB 1、D 1B 1的中点,求证:EF ⊥平面B 1AC分析一:选基底,利用向量的计算来证明证明:设AB =a ,AD =b ,1AA =c ,则1111111111()()()222EF EB B F BB B D AA BD AA AD AB =+=+=+=+-=(-a +b +c)/211AB AB AA =+=a +b1EF AB ∴⋅=(-a +b +c)/2•(a +b)=(b 2-a 2+c •a +c •b)/2=(|b|2-|a|2+0+0)/2=0,1EF AB ∴⊥,即EF ⊥AB 1,同理EF ⊥B 1C ,又AB 1∩B 1C =B 1,∴EF ⊥平面B 1AC分析二:建立空间直角坐标系,利用向量,且将向量的运算转化为实数(坐标)的运算,以达到证明的目的证明:设正方体的棱长为2,建立如图所示的直角坐标系, 则A(2,0,0),C(0,2,0),B 1(2,2,2),E(2,2,1),F(1,1,2),EF ∴=(1,1,2)-(2,2,1)=(―1,―1,1),1AB =(2,2,2)-(2,0,0)=(0,2,2)AC =(0,2,0)-(2,0,0)=(-2,2,0)1EF AB ∴⋅=(―1,―1,1)• (0,2,2)=0EF AC ⋅=(―1,―1,1)• (-2,2,0)=0∴EF ⊥AB 1, EF ⊥AC ,又AB 1∩B 1C =B 1,∴EF ⊥平面B 1AC例7 已知空间四边形OABC 中,BC OA ⊥,AC OB ⊥.求证:AB OC ⊥证明:·OC AB =·()OC OB OA - =·OC OB -·OC OA ∵BC OA ⊥,AC OB ⊥,∴·0OA BC =,·0OB AC =, ·()0OA OC OB -=,·()0OB OC OA -= ∴··OA OC OA OB =,··OB OC OB OA = ∴·OC OB =·OC OA ,·OC AB =0 ∴AB OC ⊥。

高中数学 第三章第1节空间向量及其运算知识精讲 理 新人教版A版选修2-1

高中数学 第三章第1节空间向量及其运算知识精讲 理 新人教版A版选修2-1

高二数学选修2-1第三章第1节空间向量及其运算人教新课标A 版(理)一、学习目标:1. 理解空间向量的概念,了解共线或平行向量的概念,掌握其表示方法;会用图形说明空间向量的加法、减法、数乘向量及它们的运算律;能用空间向量的运算意义及运算律解决简单的立体几何中的问题.2. 理解共线向量的定理及其推论.3. 掌握空间向量的夹角和模的概念及其表示方法;掌握两个向量数量积的概念、性质和计算方法及运算律;掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题.4. 掌握空间向量的正交分解,空间向量的基本定理及其坐标表示;掌握空间向量的坐标运算的规律;会根据向量的坐标,判断两个向量共线或垂直.二、重点、难点:重点:空间向量的加减与数乘运算及运算律,空间直线、平面的向量参数方程及线段中点的向量公式,点在已知平面内的充要条件,两个向量的数量积的计算方法及其应用,空间向量的基本定理、向量的坐标运算.难点:由平面向量类比学习空间向量,对点在已知平面内的充要条件的理解与运用,向量运算在几何证明与计算中的应用,理解空间向量的基本定理.三、考点分析:本讲知识主要为由平面向量类比学习空间向量的概念及其基本运算,涉及到空间向量中的共线向量和共面向量,以及空间向量的基本定理和空间向量的坐标运算.数量积的运用,是我们学习的重点.一、空间向量的概念:模(或长度)为0的向量称为零向量;模为1的向量称为单位向量.与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -.方向相同且模相等的向量称为相等向量.二、空间向量的加法和减法、数乘运算1. 求两个向量和的运算称为向量的加法,它遵循平行四边形法则.2. 求两个向量差的运算称为向量的减法,它遵循三角形法则.3. 实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.三、共线向量与共面向量1. 向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.2. 向量共面定理:平行与同一平面的向量是共面向量.四、向量的数量积1. 已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈.2. 对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.3. 已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0.五、空间向量的坐标表示和运算设()111,,a x y z =,()222,,b x y z =,则 1. ()121212,,a b x x y y z z +=+++. 2. ()121212,,a b x x y y z z -=---. 3. ()111,,a x y z λλλλ=. 4. 121212a b x x y y z z ⋅=++.5. 若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=.6. 若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===.7. 222111a a a x y z =⋅=++.8. 121212222222111222cos ,a b a b a bx y z x y z⋅〈〉==++⋅++.9. ()111,,x y z A ,()222,,x y z B ,则()()()222212121d x x y y z z AB =AB =-+-+-知识点一 空间向量的概念的运用例1、与向量(1,3,2)a =-平行的一个向量的坐标是( )A .(31,1,1) B .(-1,-3,2) C .(-21,23,-1)D .(2,-3,-22)思路分析:1)题意分析:本题主要考查共线向量的概念的运用.2)解题思路:利用共线向量的概念,如果b a b a b λ=⇔≠//,0,那么说向量→→b a ,共线.也可观察坐标的系数是不是成比例.解答过程:解析:向量的共线和平行是一样的,可利用空间向量共线定理写成数乘的形式. 即b a b a b λ=⇔≠//,0,因为(1,3,2)a =-=-2(-21,23,-1),故答案为C . 解题后的思考:对于空间共线向量的判定,要么利用坐标对应成比例,要么利用向量的线性关系来判定.例2、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11B A =a ,11D A =b ,A A 1=c ,则下列向量中与MB 1相等的向量是( )A .++-2121B .++2121 C .c b a +-2121D .c b a +--2121思路分析:1)题意分析:本题考查的是基本的向量相等与向量的加法,考查学生的空间想象能力. 2)解题思路:把未知向量表示为已知向量,可利用三角形或平行四边形法则解决.用向量的方法处理立体几何问题,使复杂的线面空间关系代数化.解答过程:解析:)(21111BC BA A A BM B B MB ++=+==+21(-+)=-21+21+.故选A . 解题后的思考:对于空间向量的线性表示,我们本着把所求的向量与已知向量尽量放在一个封闭图形中的原则,再结合向量的加法得到.例3、在下列条件中,使M 与A 、B 、C 一定共面的是 ( )A .OM --=2B .213151++=C .=++MC MB MA 0D .=+++OC OB OA OM 0 思路分析:1)题意分析:本题主要考查共面向量的概念的运用.2)解题思路:空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 即可,或者AC y AB x AP +=.解答过程:由于空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 即可,首先判定A ,B ,D 项都不符合题意,由排除法可知只有选C .利用向量的加法和减法我们可以把+-+-=++)()(OM OB OM OA MC MB MA03)()(=-++=-OM OC OB OA OM OC ,)(31++=,显然满足题意. 解题后的思考:对空间向量的共面问题,我们只需利用课本中的两个结论判定即可.,z y x ++=且1=++z y x 或,y x +=都可判定P ,A ,B ,C 共面.例4、①如果向量,a b 与任何向量都不能构成空间向量的一组基底,那么,a b 的关系是不共线;②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定共面;③已知向量,,a b c 是空间的一个基底,则向量,,a b a b c +-也是空间的一个基底. 其中正确的命题是( )A .①②B .①③C .②③D .①②③ 思路分析:1)题意分析:本题考查空间向量的基底.2)解题思路:结合空间向量基底的概念,我们逐一的判定.解答过程:命题①中,由于,a b 与任何向量都共面,说明,a b 是共线向量.因此①是错误的.命题②中,由四点确定的、共起点的三个向量不能构成基底,说明了这四点是共面的,因此②是正确的.命题③中,要判定三个向量是否可构成基底,关键是看这三个向量是不是不共面,共面与是共面的,,→→→→→→-+b a b a b a ,因此③是正确的.选C .解题后的思考:理解空间向量的基底是由不共面的四点,或者说不共面的三个向量构成的.知识点二 空间向量的坐标运算的运用例5、在ΔABC 中,已知)0,4,2(=AB ,)0,3,1(-=BC ,则∠ABC =___.思路分析:1)题意分析:本题考查用向量数量积求夹角.2)解题思路:首先要注意夹角的概念,是共起点,因此在求角的时候,要注意向量的方向,否则容易出错.解答过程:(2,4,0),(1,3,0),BA BC =--=-2cos ,2||||2510BA BC BA BC BA BC ⋅∴===-⋅ ∴∠ABC =145°解题后的思考:向量夹角的求解是高考中的常考题型,因此,同学们要注意准确运用.例6、已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5). ⑴求以向量AC AB ,为一组邻边的平行四边形的面积S ;⑵若向量a 分别与向量AC AB ,垂直,且|a |=3,求向量a 的坐标思路分析:1)题意分析:本题综合运用向量的数量积来判定垂直,求解夹角.2)解题思路:首先分析平行四边形的面积实际上是三角形面积的2倍,于是可转化为求三角形的面积,需先结合数量积求出夹角的余弦值,然后得到夹角的正弦值,再求面积;求向量的坐标,一般是先设出其坐标,然后结合已知条件,列出关系式,进而求解.解答过程:⑴21||||cos ),2,3,1(),3,1,2(==∠∴-=--=AC AB AC AB BAC AC AB . ∴∠BAC =60°,3760sin ||||==∴ AC AB S . ⑵设a =(x ,y ,z ),则,032=+--⇒⊥z y x AB a33||,023222=++⇒==+-⇒⊥z y x a z y x AC a解得x =y =z =1或x =y =z =-1,∴a =(1,1,1)或a =(-1,-1,-1).解题后的思考:向量的数量积是高考中的一个热点话题,出题形式较灵活,只要同学们抓住数量积解决的问题一般是有关夹角、距离的问题这个本质即可.例7、如图所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求的长;(2)求cos<11,CB BA >的值; (3)求证:M C B A 11⊥思路分析:1)题意分析:本题主要考查空间向量的概念及其运算的基本知识.考查空间两向量垂直的充要条件.2)解题思路:先建立空间直角坐标系,然后写出坐标,利用坐标的运算进行求解. 解答过程:如图,建立空间直角坐标系O -xyz .(1)解:依题意得B (0,1,0)、N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)解:依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2) ∴1BA ={1,-1,2},1CB ={0,1,2},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB >=30101||||1111=⋅⋅CB BA CB BA .(3)证明:依题意,得C 1(0,0,2)、M (21,21,2),B A 1={-1,1,-2},MC 1={21,21,0}.∴B A 1·M C 1=-2121++0=0,∴B A 1⊥M C 1.解题后的思考:对于空间中的角和垂直的判定,如果不能直接利用定义,我们可以运用代数的方法,结合坐标运算进行.例8、已知正方体''''ABCD A B C D -的棱长为a ,M 为'BD 的中点,点N 在'A C '上,且|'|3|'|A N NC =,试求MN 的长.思路分析:1)题意分析:本题考查向量的概念及向量的坐标运算,求解有关距离的问题.2)解题思路:对于空间向量的距离的求解,可借助于向量的数量积的性质来解,也可利用坐标运算进行求解.解答过程: 以D 为原点,建立如图所示的空间直角坐标系.因为正方体棱长为a ,所以B (a ,a ,0),A'(a ,0,a ),'C (0,a ,a ),'D (0,0,a ).由于M 为'BD 的中点,取''A C 的中点O',所以M (2a ,2a ,2a ),O'(2a ,2a,a ).因为|'|3|'|A N NC =,所以N 为''A C 的四等分点,从而N 为''O C 的中点,故N (4a ,34a ,a ).根据空间两点间的距离公式,可得22236||()()()242424a a a a a MN a a =-+-+-=.解题后的思考:本题是求解空间几何体中距离的问题,我们一般利用坐标的运算进行求解.解题关键是能把坐标准确地表示出来.小结:通过以上的典型例题,同学们应熟练掌握以下基本概念:共线向量与共面向量,空间向量的基底,以及运用向量的坐标运算解决有关的距离和夹角问题.注意处理以上问题的两个方法:向量法与坐标法.空间向量及其运算是解决立体几何的一种重要工具,同学们要理解基本概念,并能对比平面向量进行加、减运算和数乘运算及数量积的运算和应用.数量积问题是向量问题中经常考查的知识点,要能灵活解决有关的夹角和距离问题,从而为后面的学习打下坚实的基础.一、预习新知本讲学习了空间向量的概念及其基本运算,那么能否利用向量解决空间中有关角与距离的问题呢?二、预习点拨探究与反思:探究任务一:用空间向量解决立体几何中有关角的问题 【反思】(1)如何用向量表示线面角、二面角及异面直线所成的角 (2)具体的求角的公式应如何怎么表示?探究任务二:用空间向量解决立体几何中有关距离的问题 【反思】(1)如何用空间向量表示空间的点线的距离、异面直线的距离、线面的距离、面面的距离?(2)求解距离的具体的计算公式是什么?(答题时间:50分钟)一、选择题1.下列命题正确的是( )A .若a 与b 共线,b 与c 共线,则a 与c 共线B .向量,,a b c 共面就是它们所在的直线共面C .零向量没有确定的方向D .若//a b ,则存在唯一的实数λ使得a b λ=2. 已知A (-1,-2,6),B (1,2,-6),O 为坐标原点,则向量OA OB 与的夹角是( )A .0B .2πC .πD .32π 3. 已知空间四边形ABCO 中,c OC ,b OB ,a OA ===,点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN =( )A .c b a 213221+- B .c b a 212132++- C .c b a 212121-+ D .c b a 213232-+4. 设A 、B 、C 、D 是空间不共面的四点,且满足000=⋅=⋅=⋅AD AB ,AD AC ,AC AB ,则△BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定5. 空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =60°,则cos BC ,OA =( ) A .21B .22C .-21D .06. 已知A (1,1,1)、B (2,2,2)、C (3,2,4),则△ABC 的面积为( ) A .3B .32C .6D .267. 已知),,2(),,1,1(t t b t t t a =--=,则||b a -的最小值为( ) A .55 B .555 C .553 D .511二、填空题8.若)1,3,2(-=a ,)3,1,2(-=b ,则以b a ,为邻边的平行四边形的面积为 . 9.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G 在线段MN 上,且GN MG 2=,现用基组{}OC OB OA ,,表示向量OG ,有OG =x OC z OB y OA ++,则x 、y 、z 的值分别为 .10.已知点A (1,-2,11)、B (4,2,3),C (6,-1,4),则△ABC 的形状是 . 11.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成120°的角,则k = .三、解答题12.如图,在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是(21,23,0),点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°.(1)求向量OD 的坐标;(2)设向量AD 和BC 的夹角为θ,求cos θ的值13.四棱锥P -ABCD 中,底面ABCD 是一个平行四边形,AB =(2,-1,-4),AD =(4,2,0),AP =(-1,2,-1). (1)求证:PA ⊥底面ABCD ; (2)求四棱锥P -ABCD 的体积;(3)对于向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),c =(x 3,y 3,z 3),定义一种运算:(a ×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ×AD )·AP 的绝对值的值;说明其与四棱锥P -ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )·AP 的绝对值的几何意义.14.若四面体对应棱的中点间的距离都相等,证明这个四面体的对棱两两垂直.1.C ;解析:由于选项A 中当b =→0时,就不符合题意,因此A 错误.选项B ,向量共面,但向量所在的直线不一定共面,可以是平行.选项D ,应说明b ≠→0. 2.C ;解析:||||cos b a ⋅=θ,计算结果为-1.3.B ;解析:显然OA OC OB OM ON MN 32)(21-+=-=. 4.B ;解析:过点A 的棱两两垂直,通过设棱长、应用余弦定理可得△BCD 为锐角三角形. 5.D ;解析:先建立一组基向量OC OB OA ,,,再处理⋅的值. 6.D ;解析:应用向量的运算,显然><⇒>=<AC AB AC AB ,sin ,cos ,从而得><=S ,sin ||||21. 7.C ;解析:利用向量数量积的性质求解模的平方的最小值,然后再开方即可得到. 8.56;解析:72||||,cos -=>=<b a ,得753,sin >=<b a ,从而可得结果.9.313161、、; 解析:OM ON OA MN OA MG OM OG 313161]21)(21[3221)(32213221++=-++=-+=+=+= 10.直角三角形;解析:利用空间两点间的距离公式得:222||||||AC BC AB +=.11.39-;解析:219132,cos 2-=+=>=<k k b a ,得39±=k . 12.解:(1)过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD =3,∴DE =CD ·sin30°=23. OE =OB -BE =OB -BD ·cos60°=1-2121=. ∴D 点坐标为(0,-23,21),即向量的坐标为(0,-23,21). (2)依题意:)()()(0,1,0,0,1,0,0,21,23=-==, 所以)()(0,2,0,23,1,23=-=--=-=OB OC BC OA OD AD .设向量和BC 的夹角为θ,则cos θ222222020)23()1()23(0232)1(023||||++⋅+-+-⨯+⨯-+⨯-=⋅BC AD BC AD 1051-=. 13.(1)证明:∵AB AP ⋅=-2-2+4=0,∴AP ⊥AB . 又∵AD AP ⋅=-4+4+0=0,∴AP ⊥AD .∵AB 、AD 是底面ABCD 上的两条相交直线,∴PA ⊥底面ABCD . (2)解:设AB 与AD 的夹角为θ,则 cos θ1053416161428||||=+⋅++-=⋅AD AB AD ABABCD P V -=31|AB |·|AD |·sin θ·|AP |=161411059110532=++⋅-⋅ (3)解:|(AB ×AD )·AP |=|-4-32-4-8|=48,它是四棱锥P -ABCD 体积的3倍.猜测:|(AB ×AD )·AP |在几何上可表示以AB 、AD 、AP 为棱的平行六面体的体积(或以AB 、AD 、AP 为棱的直四棱柱的体积). 14.证明:如图,设321,,r SC r SB r SA ===,则SN SM SH SG SF SE ,,,,,分别为121r ,)(2132r r +,)(2121r r +,321r ,)(2131r r +,221r ,由条件EF =GH =MN 得: 223123212132)2()2()2(r r r r r r r r r -+=-+=-+展开得313221r r r r r r ⋅=⋅=⋅∴0)(231=-⋅r r r ,∵1r ≠,23r r -≠, ∴1r ⊥(23r r -),即SA ⊥BC .同理可证SB ⊥AC ,SC ⊥AB .。

( 人教A版)2-1:3.2立体几何中的向量方法第1课时空间向量与平行关系课件 (共31张PPT)

( 人教A版)2-1:3.2立体几何中的向量方法第1课时空间向量与平行关系课件 (共31张PPT)

解析:(1)∵a=(1,-3,-1),b=(8,2,2) ∴a·b=8-6-2=0,∴a⊥b,∴l1⊥l2. (2)∵u=(1,3,0),v=(-3,-9,0), ∴v=-3u,∴u∥v,∴α∥β. (3)∵a=(1,-4,-3),u=(2,0,3), ∴a与u既不共线,也不垂直, ∴l与平面α斜交.
[证明] 如图所示建立空间直角坐标系D-xyz,则有D(0,0,0), A(2,0,0),C(0,2,0),C1(0,2,2),E(2,2,1),F(0,0,1), B1(2,2,2), 所以F→C1=(0,2,1),D→A=(2,0,0),A→E=(0,2,1).
(1)设n1=(x1,y1,z1)是平面ADE的法向量, 则n1⊥D→A,n1⊥A→E, 即nn11··DA→→EA==22yx11+=z01,=0,
设平面SCD的法向量为n=(1,y,z), 则n·D→C=(1,y,z)·(1,2,0)=1+2y=0, ∴y=-12. 又n·D→S=(1,y,z)·(-1,0,2)=-1+2z=0, ∴z=12. ∴n=1,-12,12即为平面SCD的一个法向量.
探究三 利用空间向量证明平行关系 [典例3] 已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中 点,求证: (1)FC1∥平面ADE; (2)平面ADE∥平面B1C1F.
G→En=(x,y,z)是平面EFG的法向量,
n·G→E=0, 则n·G→F=0.
∴--2xx-+y+y+2zz==00,.
∴xy==zz., ∴n=(z,z,z),令z=1,此时n=(1,1,1), 所以平面EFG的一个法向量为(1,1,1).
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性格会影响人生!习惯不加以抑 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你到哪里去。当你在埋头工作的 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去方向,就永远不会失去自己! 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移山之术,惟一能移山的方法就 是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!亿万财富不是存在银行里,而是产生在人的思想里。你没找到路,不等于没有路,你想知道将来要得到 什么,你必须知道现在应该先放弃什么!命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机人人都有两个门:一个是家门,成长的地方; 一个是心门,成功的地方。能赶走门中的小人,就会唤醒心中的巨人!要想事情改变,首先自己改变,只有自己改变,才可改变世界。人最大的敌人不是别人,而是自己,只有战胜自己,才能战胜困难! 1、烦恼的时候,想一想到底为什么烦恼,你会发现其实都不是很大的事,计较了,就烦恼。我们要知道,所有发生的一切都是该发生的,都是因缘。顺利的就感恩,不顺利的就忏悔,然后放下。“雁 渡寒潭,雁过而潭不留影;风吹疏竹,风过而竹不留声。”修行者的心境,就是“过而不留”。忍得住孤独;耐得住寂寞;挺得住痛苦;顶得住压力;挡得住诱惑;经得起折腾;受得起打击;丢得起面 子;担得起责任;1提得起精神。闲时多读书,博览凝才气;众前慎言行,低调养清气;交友重情义,慷慨有人气;困中善负重,忍辱蓄志气;处事宜平易,不争添和气;对已讲原则,坚持守底气;淡 泊且致远,修身立正气;居低少卑怯,坦然见骨气;卓而能合群,品高养浩气淡然于心,自在于世间。云淡得悠闲,水淡育万物。世间之事,纷纷扰扰,对错得失,难求完美。若一心想要事事求顺意, 反而深陷于计较的泥潭,不能自拔。若凡事但求无愧于心,得失荣辱不介怀,自然落得清闲自在。人活一世,心态比什么都重要。财富名利毕竟如云烟,心情快乐才是人生的至宝。我们的梦想在哪里? 在路上,在脚踏实地的道路上;我们的期待在哪里?在路上,在勤劳勇敢的心路上;我们的快乐在哪里?在路上,在健康阳光的大道上;我们的朋友在哪里?在心里,在真诚友谊的宽道上!珍惜每一分 钟,对自己负责;善于发现看问题的角度;不满足于现状,别自我设限;勇于承认错误;不断反省自己,向周围的成功者学习;不轻言放弃。做事要有恒心;珍惜你所拥有的,不要感叹你失去或未得到; 学会赞美;不找任何借口。与贤人相近,则可重用;与小人为伍,则要当心;只满足私欲,贪图享乐者,则不可用;处显赫之位,任人唯贤,秉公办事者,是有为之人;身处困境之人,不做苟且之事, 则可重任;贫困潦倒时,不取不义之财者,品行高洁;见钱眼开者,则不可用。人最大的魅力,是有一颗阳光的心态。韶华易逝,容颜易老,浮华终是云烟。拥抱一颗阳光的心态,得失了无忧,来去都 随缘。心无所求,便不受万象牵绊;心无牵绊,坐也从容,行也从容,故生优雅。一个优雅的人,养眼又养心,才是魅力十足的人。容貌乃天成,浮华在身外,心里满是阳光,才是永恒的美。意逐白云 飞,心随流水宁。心无牵挂起,开阔空净明。幸福并不复杂,饿时,饭是幸福,够饱即可;渴时,水是幸福,够饮即可;裸时,衣是幸福,够穿即可;穷时,钱是幸福,够用即可;累时,闲是幸福,够 畅即可;困时,眠是幸福,够时即可。爱时,牵挂是幸福,离时,回忆是幸福。人生,由我不由天,幸福,由心不由境。心是一个人的翅膀,心有多大,世界就有多大。很多时候限制我们的,不是周遭 的环境,也不是他人的言行,而是我们自己。人心如江河,窄处水花四溅,宽时水波不兴。世间太大,一颗心承载不起。生活的最高境界,一是痛而不言,二是笑而不语。无论有多少委屈,一笑而泯之。 人生的幸福在于祥和,生命的祥和在于宁静,宁静的心境在于少欲。无意于得,就无所谓失去,无所谓失去,得失皆安谧。闹市间虽见繁华,却有名利争抢;田园间无争,却有柴米之忧烦;世外桃源祥 和升平,最终不过梦一场。心静,则万象皆静。知足者常在静中邂逅幸福。顺利人生,善于处理关系;普通人生,只会使用关系;不顺人生,只会弄僵关系。为人要心底坦荡,不为虚名所累;做事要头 脑清醒,不为假象所惑。智者,以别人惨痛的教训警示自己;愚者,用自己沉重的代价唤醒别人。对人多一份宽容,多一份爱心;对事多一份认真,多一份责任;对己多一点要求,多一点警醒。傲不可 长,志不可满,乐不可极,警醒自己。静能生慧。让心静下来,你才能看淡一切。静中,你才会反观自己,知道哪些行为还需要修正,哪些地方还需要精进,在静中让生命得到升华洗礼,在自观中走向 觉悟。让心静下来,你才能学会放下。你放下了,你的心也就静了。心不静,是你没有放下。静,通一切境界。人与人的差距,表面上看是财富的差距,实际上是福报的差距;表面上看是人脉的差距, 实际上是人品的差距;表面上看是气质的差距,实际上是涵养的差距;表面上看是容貌的差距,实际上是心地的差距;表面上看是人与人都差不多,内心境界却大不相同,心态决定命运。知恩感恩,是 很重要的一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实没什么道理,但他 这样一想、一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开始;寒冷到了极致, 太阳就要光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。知恩感恩,是很重要的一 件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实没什么道理,但他这样一想、 一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开始;寒冷到了极致,太阳就要 光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。以平常心观不平常事,则事事平常。 在危险面前,平常心就是勇敢;在利诱面前,平常心就是纯洁;在复杂的环境面前,平常心就是保持清醒智慧。平常心不是消极遁世,而是一种境界,一种积极的人生。不仅要为成功而努力,更要为做 一个有价值的人而努力。命运不是机遇,而是选择;命运不靠等待,全靠争取。成熟就是学会在逆境中保持坚强,在顺境时保持清醒。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。只有在我们不需 要外来的赞许时,心灵才会真的自由。你没那么多观众,别那么累。温和对人对事。不要随意发脾气,谁都不欠你的。现在很痛苦,等过阵子回头看看,会发现其实那都不算事。和对自己有恶意的人绝 交。人有绝交,才有至交学会宽容伤害自己的人,因为他们很可怜,各人都有自己的难处,大家都不容易。学会放弃,拽的越紧,痛苦的是自己。低调,取舍间,必有得失。不要试图给自己找任何借口, 错误面前没人爱听那些借口。慎言,独立,学会妥协的同时,也要坚持自己最基本的原则。付出并不一定有结果。坚持可能会导致失去更多过去的事情可以不忘记,但一定要放下。活得轻松,任何事都 作一个最好的打算和最坏的打算。做一个简单的人,踏实而务实。不沉溺幻想。不庸人自扰。不说谎话,因为总有被拆穿的一天。别人光鲜的背后或者有�

高中数学 3-2-1 空间向量与平行关系课件 新人教A版选修2-1

高中数学 3-2-1 空间向量与平行关系课件 新人教A版选修2-1

(3)①∵u=(2,2,-1),a=(-3,4,2), ∴u·a=-6+8-2=0, ∴u⊥a,∴l⊂α 或 l∥α. ②∵u=(0,2,-3),a=(0,-8,12),u=-14a, ∴u∥a,∴l⊥α. ③∵u=(4,1,5),a=(2,-1,0),∴u 与 a 不共 线,也不垂直,∴l 与 α 斜交.
图2
证明:方法一:以D为原点,DA,DC,DD1所在 直线分别为x,y,z轴建立如图2所示的空间直角坐标 系.
设正方体的棱长为2, 则A(2,0,0),D1(0,0,2),C(0,2,0), B(2,2,0),O1(1,1,2),
∴A→D1= (- 2, 0,2),C→D1 =(0,- 2,2), B→O1= (- 1,- 1,2), ∴B→O1=12A→D1+12C→D1, ∴B→O1与A→D1、C→D1共面, ∴B→O1∥平面 ACD1.又 BO1⊄平面 ACD1, ∴BO1∥平面 ACD1.
[点评] 用向量法证明线面平行常用三种方法:一 是证明直线上某个向量与平面内某一向量共线;二是 证明直线上的某个向量与平面内的两个不共线向量共 面,且不在平面内;三是证明直线上某个向量与平面 的法向量垂直.
迁移体验3 如图6,在长方体OAEB-O1A1E1B1中, OA=3,OB=4,OO1=2,点P在棱AA1上,且AP= 2PA1,点S在棱BB1上,且SB1=2BS,点Q、R分别是 O1B1、AE的中点,求证:PQ∥RS.
图3
解析:∵AD、AB、AS 是两两垂直的线段, ∴以 A 为原点,以射线 AD、AB、AS 所在直 线为 x 轴、y 轴、z 轴的正方向建立坐标系, 则 A(0,0,0)、D(12,0,0)、C(1,1,0),S(0,0,1), A→D=(12,0,0)是平面 SAB 的法向量,

高中数学 3-2-1空间向量的应用直线的方向向量与平面的法向量课件 苏教版选修2-1

高中数学 3-2-1空间向量的应用直线的方向向量与平面的法向量课件 苏教版选修2-1

【变式2】 在正方体ABCD-A1B1C1D1中,E,F分别为CC1,
DD1的中点,试求平面ABEF的一个法向量. 解 建立如图所示的空间直角坐标系,
设正方体的棱长为 1,则 A(1,0,0), 1 1 B(1,1,0),E(0, 1, ) , F(0, 0 , ), 2 2 → → 1 所以AB= (0,1,0),AF= (- 1,0, ),设平面 ABEF 的一个 2
【例3】 (14 分)在正方体 ABCD-A1B1C1D1 中,E,F 分别是 BB1,
CD 的中点.求证:D1F是平面 ADE 的法向量.
审题指导 根据法向量的定义,只要证明D1F与平面ADE
垂直,即证D1F与平面ADE中两条相交直线垂直.
[规范解答] 如图,以D为坐标原点, DA,DC,DD1分别为x,y,z轴,建立 空间直角坐标系, 设正方体的棱长为1,则
[思路探索] 先设向量a的坐标,再用待定系数法求解.
解 → (1)设向量 a=(x,y,z),由题意知 a· AB=0,a· AC=0,

又AB=(-2,-1,3),AC=(1,-3,2),|a|= 3,


- 2x- y+ 3z= 0, x= 1, x=- 1, 所以有x- 3y+ 2z= 0, 解得y= 1, 或y=- 1, x2+ y2+ z2= 3, z= 1 z=- 1, 即向量 a 的坐标为 (1, 1, 1)或(- 1,- 1,- 1). (2)由题意知AM= (x, y- 2, z- 3),所以 a· AM= 0. 不妨设向量 a 的坐标为 (1, 1, 1),则 x+ y- 2+ z- 3= 0, 即 x+ y+ z- 5= 0.



2. 平面的法向量的求法 若要求出一个平面的法向量的坐标,一般要建立空间直角

高二数学选修2-1 空间向量的运算及空间向量的基本定理(精品)知识精讲

高二数学选修2-1 空间向量的运算及空间向量的基本定理(精品)知识精讲

高二数学选修2-1 空间向量的运算及空间向量的基本定理 北师大版(理) 【本讲教育信息】 一、教学内容:选修2-1 空间向量的运算及空间向量的基本定理二、教学目标:1. 理解并掌握空间两个向量的夹角、直线的方向向量、平面的法向量、共面向量等基本概念。

2. 熟练地掌握空间向量的加减运算、数乘运算、空间向量坐标运算的运算法则、运算律及空间向量的数量积的几何意义及性质。

3. 熟练地掌握共线向量定理、空间向量的基本定理,并能利用它们讨论证明空间的线面关系。

4. 体会用类比的数学思想、方程的数学思想、等价转化的数学思想解决问题。

三、知识要点分析:(一)平面向量与空间向量的相同点:1. 向量夹角:过空间一点O 作AOB ,OB b ,OA a ∠==则是向量a 与向量b 的夹角。

X 围:[0,]π2. 加减运算:加减运算法则:向量的平行四边形法则(三角形法则) 运算律:结合律:)()(c b a c b a ++=++,交换律:a b b a +=+3. 数乘运算法则:向量a 与实数λ的乘积是一个向量,记作:a λ,满足(i )||||λλ=a ||a ,(ii )当0>λ时,a λ与a 方向相同,反之,相反。

0a 0=λ=λ时,。

运算律:(i )).(,R a a ∈=λλλ(ii ))R ,(,a a a )(,b a )b a (∈μλμ+λ=μ+λλ+λ=+λ.(iii )),(),()(R a a ∈=μλμλλμ4. 空间向量的数量积:θ⋅=⋅cos |b ||a |b a 。

θ>=<b a ,。

运算律:交换律:a b b a ⋅=⋅分配律:c a b a )c b (a ⋅+⋅=+⋅,(λ)b a ⋅=b )a (⋅λ)b (a λ⋅=性质:(1)a a |a |⋅,(2)0b a b a =⋅⇔⊥,(3)|b ||a ||b a |⋅≤⋅注:向量的数量积运算不满足乘法的结合律。

人教A版高中数学选修2-1课件:3-2立体几何中的向量方法 第4课时 空间向量的平行、垂直关系

人教A版高中数学选修2-1课件:3-2立体几何中的向量方法 第4课时 空间向量的平行、垂直关系

探究 1:求平面的法向量 【例 1】
如图,已知四边形 ABCD 是直角梯形,∠ABC=90°,SA⊥平面 ABCD,SA=AB=BC=1,AD= ,试建立适当的坐标系,求: (1)平面 ABCD 与平面 SAB 的一个法向量; (2)平面 SCD 的一个法向量.
1 2
【方法指导】一般情况下,使用待定系数法求平面的法向量 的步骤:①设出平面的法向量为 n=(x,y,z);②找出(求出)平面内 的两个不共线的向量 a=(a1,b1,c1),b=(a2,b2,c2);③根据法向量的 定义建立关于 x,y,z 的方程组 一个解,即得法向量. n·a = 0, n·b = 0; ④解方程组,取其中的
【解析】不妨设正方体的边长为 a,建立空间直角坐标系 Dxyz(如图),则 E(a,2,0),F(2,a,0),G(a,0,2). 设平面 EFG 的法向量为 n=(x,y,z), GE=(0,2,-2),
a a FE=( ,- ,0), 2 2 1 1 a a a a a
n ⊥ GE,⇒ 1 1 n ⊥ FE n·FE = x- y = 0,
2
2
2
2
(法二)以CD,CB,CE为正交基底,建立空间直角坐标系,则 E(0,0,1),D( 2,0,0),B(0, 2,0),A( 2, 2,0),M( , ,1),DE= (- 2,0,1),BE=(0,- 2,1),AM=(- 2 ,- 2 ,1). 设平面 BDE 的法向量为 n=(a,b,c),∴n⊥DE,n⊥BE, n·DE = 0, - 2a + c = 0, ∴ ∴ n·BE = 0, - 2b + c = 0, 令 c=1,则 a= 2 ,b= 2 ,n=( 2 , 2 ,1),∴n·AM=0.

高中数学 第3章 空间向量与立体几何 3.2 空间向量的坐标讲义(含解析)湘教版选修2-1-湘教版高

高中数学 第3章 空间向量与立体几何 3.2 空间向量的坐标讲义(含解析)湘教版选修2-1-湘教版高

3.2空间向量的坐标[读教材·填要点]1.定理1设e1,e2,e3是空间中三个两两垂直的单位向量,则(1)空间中任意一个向量v可以写成这三个向量的线性组合:v=xe1+ye2+ze3.(2)上述表达式中的系数x,y,z由v唯一决定,即:如果v=xe1+ye2+ze3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.2.定理2(空间向量基本定理)设e1,e2,e3是空间中三个不共面的单位向量,则(1)空间中任意一个向量v可以写成这三个向量的线性组合:v=xe1+ye2+ze3.(2)上述表达式中的系数x,y,z由v唯一决定,即:如果v=xe1+ye2+ze3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.3.空间向量运算的坐标公式(1) 向量的加减法:(x1,y1,z1)+(x2,y2,z2)=(x1+x2,y1+y2,z1+z2),(x1,y1,z1)-(x2,y2,z2)=(x1-x2,y1-y2,z1-z2).(2)向量与实数的乘法:a(x,y,z) =(ax,ay,az).(3)向量的数量积:(x1,y1,z1)·(x2,y2,z2)=x1x2+y1y2+z1z2.(4)向量v=(x,y,z)的模的公式:|v|=x2+y2+z2.(5)向量(x1,y1,z1),(x2,y2,z2)所成的角α的公式:cos α=x1x2+y1y2+z1z2x21+y21+z21x22+y22+z22.4.点的坐标与向量坐标(1)一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.(2)两点A (x 1,y 1,z 1),B (x 2,y 2,z 2)的距离d AB 为:d AB =x 2-x 12+y 2-y 12+z 2-z 12.(3)线段的中点坐标,等于线段两端点坐标的平均值.[小问题·大思维]1.空间向量的基是唯一的吗?提示:由空间向量基本定理可知,任意三个不共面向量都可以组成空间的一组基,所以空间的基有无数个,因此不唯一.2.命题p :{a ,b ,c }为空间的一个基底;命题q :a ,b ,c 是三个非零向量,则命题p 是q 的什么条件?提示:p ⇒q ,但qp ,即p 是q 的充分不必要条件.3.空间向量的坐标运算与坐标原点的位置是否有关系?提示:空间向量的坐标运算与坐标原点的位置选取无关,因为一个确定的几何体,其线线、线面、面面的位置关系是固定的,坐标系的不同,只会影响其计算的繁简.4.平面向量的坐标运算与空间向量的坐标运算有什么联系与区别?提示:平面向量与空间向量的坐标运算均有加减运算,数乘运算,数量积运算,其算理是相同的.但空间向量要比平面向量多一竖坐标,竖坐标的处理方式与横、纵坐标是一样的.空间向量基本定理的应用空间四边形OABC 中,G ,H 分别是△ABC ,△OBC 的重心,设OA ―→=a ,OB ―→=b ,OC ―→=c ,试用向量a ,b ,c 表示向量OG ―→和GH ―→.[自主解答] ∵OG ―→=OA ―→+AG ―→, 而AG ―→=23AD ―→,AD ―→=OD ―→-OA ―→.∵D 为BC 的中点, ∴OD ―→=12(OB ―→+OC ―→)∴OG ―→=OA ―→+23AD ―→=OA ―→+23(OD ―→-OA ―→)=OA ―→+23·12(OB ―→+OC ―→)-23OA ―→=13(OA ―→+OB ―→+OC ―→)=13(a +b +c ). 而GH ―→=OH ―→-OG ―→,又∵OH ―→=23OD ―→=23·12(OB ―→+OC ―→)=13(b +c )∴GH ―→=13(b +c )-13(a +b +c )=-13a .∴OG ―→=13(a +b +c );GH ―→=-13a .本例条件不变,若E 为OA 的中点,试用a ,b ,c 表示DE ―→和EG ―→. 解:如图,DE ―→=OE ―→-OD ―→=12OA ―→-12(OB ―→+OC ―→) =12a -12b -12c . EG ―→=OG ―→-OE ―→=13(OA ―→+OB ―→+OC ―→)-12OA ―→ =-16OA ―→+13OB ―→+13OC ―→=-16a +13b +13c .用基表示向量时:(1)若基确定,要充分利用向量加法、减法的三角形法则和平行四边形法则,以及数乘向量的运算律进行.(2)若没给定基时,首先选择基,选择时,要尽量使所选的基向量能方便地表示其他向量,再就是看基向量的模及其夹角已知或易求.1.如图所示,已知平行六面体ABCD ­A 1B 1C 1D 1,设AB ―→=a ,AD ―→=b ,AA 1―→=c ,P 是CA 1的中点,M 是CD 1的中点.用基底{a ,b ,c }表示以下向量:(1)AP ―→;(2)AM ―→. 解:连接AC ,AD 1, (1)AP ―→=12(AC ―→+AA 1―→)=12(AB ―→+AD ―→+AA 1―→) =12(a +b +c ). (2)AM ―→=12(AC ―→+AD 1―→)=12(AB ―→+2AD ―→+AA 1―→) =12a +b +12c . 空间向量的坐标运算已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB ―→,b =AC ―→.(1)设|c |=3,c ∥BC ―→,求c .(2)若ka +b 与ka -2b 互相垂直,求k .[自主解答] (1)∵BC ―→=(-2,-1,2)且c ∥BC ―→, ∴设c =λBC ―→=(-2λ,-λ,2λ). ∴|c |=-2λ2+-λ2+2λ2=3|λ|=3.解得λ=±1,∴c =(-2,-1,2)或c =(2,1,-2). (2)∵a =AB ―→=(1,1,0),b =AC ―→=(-1,0,2), ∴ka +b =(k -1,k,2),ka -2b =(k +2,k ,-4). ∵(ka +b )⊥(ka -2b ),∴(ka +b )·(ka -2b )=0.即(k -1,k,2)·(k +2,k ,-4)=2k 2+k -10=0. 解得k =2或k =-52.本例条件不变,若将(2)中“互相垂直”改为“互相平行”,k 为何值? 解:∵ka +b =(k -1,k,2),ka -2b =(k +2,k ,-4),设ka +b =λ(ka -2b ),则⎩⎪⎨⎪⎧k -1=λk +2,k =λk ,2=-4λ,∴k =0.已知两个向量垂直(或平行)时,利用坐标满足的条件可得到方程(组)进而求出参数的值.这是解决已知两向量垂直(或平行)求参数的值的一般方法.在求解过程中一定注意合理应用坐标形式下的向量运算法则,以免出现计算错误.2.若a =(1,5,-1),b =(-2,3,5).分别求满足下列条件的实数k 的值: (1)(ka +b )∥(a -3b ); (2)(ka +b )⊥(a -3b ).解:ka +b =(k -2,5k +3,-k +5),a -3b =(1+3×2,5-3×3,-1-3×5)=(7,-4,-16). (1)若(ka +b )∥(a -3b ), 则k -27=5k +3-4=-k +5-16,解得k =-13.(2)若(ka +b )⊥(a -3b ),则(k -2)×7+(5k +3)×(-4)+(-k +5)×(-16)=0, 解得k =1063.点的坐标与向量坐标在直三棱柱ABO ­A 1B 1O 1中,∠AOB =π2,AO =4,BO =2,AA 1=4,D 为A 1B 1的中点,在如图所示的空间直角坐标系中,求DO ―→,A 1B ―→的坐标.[自主解答] (1)∵DO ―→=-OD ―→=-(OO 1―→+O 1D ―→) =-⎣⎢⎡⎦⎥⎤OO 1―→+12(OA ―→+OB ―→)=-OO 1―→-12OA ―→-12OB ―→.又|OO 1―→|=4,|OA ―→|=4,|OB ―→|=2, ∴DO ―→=(-2,-1,-4).(2)∵A 1B ―→=OB ―→-OA 1―→=OB ―→-(OA ―→+AA 1―→) =OB ―→-OA ―→-AA 1―→.又|OB ―→|=2,|OA ―→|=4,|AA 1―→|=4, ∴A 1B ―→=(-4,2,-4).用坐标表示空间向量的方法步骤为:3.如图所示,PA 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点,并且PA =AB =1.试建立适当的空间直角坐标系,求向量MN ―→的坐标.解:∵PA =AB =AD =1,PA ⊥平面ABCD ,AB ⊥AD , ∴AB ―→,AD ―→,AP ―→是两两垂直的单位向量.设AB ―→=e 1,AD ―→=e 2,AP ―→=e 3,以{e 1,e 2,e 3}为基底建立空间直角坐标系Axyz .法一:∵MN ―→=MA ―→+AP ―→+PN ―→=-12AB ―→+AP ―→+12PC ―→=-12AB ―→+AP ―→+12(PA ―→+AC ―→)=-12AB ―→+AP ―→+12(PA ―→+AB ―→+AD ―→)=12AD ―→+12AP ―→=12e 2+12e 3, ∴MN ―→=⎝ ⎛⎭⎪⎫0,12,12.法二:如图所示,连接AC ,BD 交于点O . 则O 为AC ,BD 的中点,连接MO ,ON , ∴MO ―→=12BC ―→=12AD ―→,ON ―→=12AP ―→,∴MN ―→=MO ―→+ON ―→ =12AD ―→+12AP ―→ =12e 2+12e 3. ∴MN ―→=⎝ ⎛⎭⎪⎫0,12,12.解题高手多解题条条大路通罗马,换一个思路试一试已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M ,N 分别为PC ,PD 上的点,且PM ―→=2MC ―→,N 为PD 的中点,求满足MN ―→=x AB ―→+y AD ―→+z AP ―→的实数x ,y ,z 的值.[解] 法一:如图所示,取PC 的中点E ,连接NE ,则MN ―→=EN ―→-EM ―→.∵EN ―→=12CD ―→=12BA ―→=-12AB ―→,EM ―→=PM ―→-PE ―→=23PC ―→-12PC ―→=16PC ―→,连接AC ,则PC ―→=AC ―→-AP ―→=AB ―→+AD ―→-AP ―→, ∴MN ―→=-12AB ―→-16(AB ―→+AD ―→-AP ―→)=-23AB ―→-16AD ―→+16AP ―→,∴x =-23,y =-16,z =16.法二:如图所示,在PD 上取一点F ,使PF ―→=2FD ―→,连接MF , 则MN ―→=MF ―→+FN ―→, 而MF ―→=23CD ―→=-23AB ―→,FN ―→=DN ―→-DF ―→=12DP ―→-13DP ―→=16DP ―→=16(AP ―→-AD ―→), ∴MN ―→=-23AB ―→-16AD ―→+16AP ―→.∴x =-23,y =-16,z =16.法三:MN ―→=PN ―→-PM ―→=12PD ―→-23PC ―→=12(PA ―→+AD ―→)-23(PA ―→+AC ―→) =-12AP ―→+12AD ―→-23(-AP ―→+AB ―→+AD ―→)=-23AB ―→-16AD ―→+16AP ―→,∴x =-23,y =-16,z =16.[点评] 利用基向量表示空间中某一向量的方法步骤为: ①找到含有空间向量的线段为一边的一个封闭图形;②结合平行四边形法则或三角形法则,用基向量表示封闭图形的各边所对应的向量; ③写出结论.1.已知空间四边形OABC ,其对角线为AC ,OB ,M ,N 分别是OA ,BC 的中点,点G 是MN 的中点,则OG ―→等于( )A.16OA ―→+13OB ―→+13OC ―→B.14(OA ―→+OB ―→+OC ―→)C.13(OA ―→+OB ―→+OC ―→)D.16OB ―→+13OA ―→+13OC ―→ 解析:如图,OG ―→=12(OM ―→+ON ―→)=12OM ―→+12×12(OB ―→+OC ―→) =14OA ―→+14OB ―→+14OC ―→ =14(OA ―→+OB ―→+OC ―→). 答案:B2.已知a =(1,-2,1),a +b =(-1,2,-1),则b 等于( ) A .(2,-4,2) B .(-2,4,-2) C .(-2,0,-2) D .(2,1,-3)解析:b =(a +b )-a=(-1,2,-1)-(1,-2,1)=(-2,4,-2). 答案:B3.a =(2x,1,3),b =(1,-2y,9),如果a 与b 为共线向量,则( ) A .x =1,y =1 B .x =12,y =-12C .x =16,y =-32D .x =-16,y =32解析:∵a =(2x,1,3)与b =(1,-2y,9)共线,故有2x 1=1-2y =39,∴x =16,y =-32.答案:C4.已知点A (-1,3,1),B (-1,3,4),D (1,1,1),若AP ―→=2PB ―→,则|PD ―→|的值是________. 解析:设点P (x ,y ,z ),则由AP ―→=2PB ―→, 得(x +1,y -3,z -1)=2(-1-x,3-y,4-z ),则⎩⎪⎨⎪⎧x +1=-2-2x ,y -3=6-2y ,z -1=8-2z ,解得⎩⎪⎨⎪⎧x =-1,y =3,z =3,即P (-1,3,3), 则|PD ―→|=-1-12+3-12+3-12=12=2 3. 答案:2 35.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB ―→与CA ―→的夹角θ的大小是________.解析:AB ―→=(-2,-1,3),CA ―→=(-1,3,-2),cos 〈AB ―→,CA ―→〉=-2×-1+-1×3+3×-214·14=-714=-12, ∴θ=〈AB ―→,CA ―→〉=120°. 答案:120°6.已知PA 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的三等分点且|PN ―→|=2|NC ―→|,|AM ―→|=2|MB ―→|,PA =AB =1,求MN ―→的坐标.解:法一:∵PA =AB =AD =1,且PA 垂直于平面ABCD ,AD ⊥AB ,∴可设DA ―→=i ,AB ―→=j ,AP ―→=k ,以i ,j ,k为单位正交基底建立如图所示的空间直角坐标系.∵MN ―→=MA ―→+AP ―→+PN ―→ =-23AB ―→+AP ―→+23PC ―→=-23AB ―→+AP ―→+23(-AP ―→+AD ―→+AB ―→)=13AP ―→+23AD ―→=13k +23(-DA ―→) =-23i +13k ,∴MN ―→=⎝ ⎛⎭⎪⎫-23,0,13.法二:设DA ―→=i ,AB ―→=j ,AP ―→=k ,以i ,j ,k 为单位正交基底建立如图所示的空间直角坐标系,过M 作AD 的平行线交CD 于点E ,连接EN .∵MN ―→=ME ―→+EN ―→=AD ―→+13DP ―→=-DA ―→+13(DA ―→+AP ―→)=-i +13(i +k )=-23i +13k ,∴MN ―→=⎝ ⎛⎭⎪⎫-23,0,13.一、选择题1.已知a ,b ,c 是不共面的三个向量,则能构成空间的一个基的一组向量是( ) A .3a ,a -b ,a +2b B .2b ,b -2a ,b +2a C .a,2b ,b -cD .c ,a +c ,a -c解析:对于A ,有3a =2(a -b )+a +2b ,则3a ,a -b ,a +2b 共面,不能作为基;同理可判断B 、D 错误.答案:C2.以正方体ABCD ­A 1B 1C 1D 1的顶点D 为坐标原点,如图建立空间直角坐标系,则与DB 1―→共线的向量的坐标可以是( )A .(1,2,2)B .(1,1,2)C .(2,2,2)D .(2,2,1)解析:设正方体的棱长为1,则由图可知D (0,0,0),B 1(1,1,1), ∴DB 1―→=(1,1,1),∴与DB 1―→共线的向量的坐标可以是(2,2,2). 答案:C3.空间四边形OABC 中,OA ―→=a ,OB ―→=b ,OC ―→=c ,点M 在OA 上,且OM ―→=2MA ―→,N 为BC 中点,则MN ―→为( )A.12a -23b +12c B .-23a +12b +12cC.12a +12b -23c D.23a +23b -12c 解析:MN ―→=MA ―→+AB ―→+BN ―→ =13OA ―→+OB ―→-OA ―→+12(OC ―→-OB ―→) =-23OA ―→+12OB ―→+12OC ―→=-23a +12b +12c .答案:B4.若a =(1,λ,2),b =(2,-1,2),且a 与b 的夹角的余弦值为89,则λ=( )A .2B .-2C .-2或255D .2或-255解析:因为a ·b =1×2+λ×(-1)+2×2=6-λ,又因为a ·b =|a ||b |·cos〈a ,b 〉=5+λ2·9·89=835+λ2,所以835+λ2=6-λ.解得λ=-2或255.答案:C 二、填空题5.已知a =(2,-1,3),b =(-4,2,x ),c =(1,-x,2),若(a +b )⊥c ,则x =________. 解析:∵a +b =(-2,1,x +3), ∴(a +b )·c =-2-x +2(x +3)=x +4. 又∵(a +b )⊥c , ∴x +4=0,即x =-4. 答案:-46.已知向量a =(2,-1,3),b =(-1,4,-2),c =(7,0,λ),若a ,b ,c 三个向量共面,则实数λ=________.解析:由a ,b ,c 共面可得c =xa +yb , ∴⎩⎪⎨⎪⎧7=2x -y ,0=-x +4y ,λ=3x -2y ,解得λ=10.答案:107.若a =(x,2,2),b =(2,-3,5)的夹角为钝角,则实数x 的取值X 围是________. 解析:a ·b =2x -2×3+2×5=2x +4,设a ,b 的夹角为θ,因为θ为钝角,所以cosθ=a ·b|a ||b |<0,又|a |>0,|b |>0,所以a ·b <0,即2x +4<0,所以x <-2,所以实数x 的取值X 围是(-∞,2).答案:(-∞,-2)8.已知M 1(2,5,-3),M 2(3,-2,-5),设在线段M 1M 2上的一点M 满足M 1M 2―→=4MM 2―→,则向量OM ―→的坐标为________.解析:设M (x ,y ,z ),则M 1M 2―→=(1,-7,-2),MM 2―→=(3-x ,-2-y ,-5-z ).又∵M 1M 2―→=4MM 2―→,∴⎩⎪⎨⎪⎧1=43-x ,-7=4-2-y ,-2=4-5-z ,∴⎩⎪⎨⎪⎧x =114,y =-14,z =-92.答案:⎝⎛⎭⎪⎫114,-14,-92三、解答题9.已知△ABC 三个顶点的坐标分别为A (1,2,3),B (2,-1,5),C (3,2,-5). (1)求△ABC 的面积; (2)求△ABC 中AB 边上的高.解:(1)由已知得AB ―→=(1,-3,2),AC ―→=(2,0,-8), ∴|AB ―→|= 1+9+4=14, |AC ―→|=4+0+64=217,AB ―→·AC ―→=1×2+(-3)×0+2×(-8)=-14,cos 〈AB ―→,AC ―→〉=AB ―→·AC ―→|AB ―→|·|AC ―→|=-1414×217=-14217,sin 〈AB ―→,AC ―→〉=1-1468=2734. ∴S △ABC =12|AB ―→|·|AC ―→|·sin〈AB ―→,AC ―→〉=12×14×217×2734=321. (2)设AB 边上的高为CD , 则|CD ―→|=2S △ABC |AB ―→|=3 6.10.如图,在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是⎝⎛⎭⎪⎫32,12,0,点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°.(1)求向量OD ―→的坐标;(2)设向量AD ―→和BC ―→的夹角为θ,求cos θ的值.解:(1)如图所示,过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD = 3.∴DE =CD ·sin 30°=32. OE =OB -BD ·cos 60°=1-12=12,∴D 点坐标为⎝ ⎛⎭⎪⎫0,-12,32,即向量OD ―→的坐标为⎝ ⎛⎭⎪⎫0,-12,32.(2)依题意:OA ―→=⎝ ⎛⎭⎪⎫32,12,0,OB ―→=(0,-1,0),OC ―→=(0,1,0). 所以AD ―→=OD ―→-OA ―→=⎝ ⎛⎭⎪⎫-32,-1,32,BC ―→=OC ―→-OB ―→=(0,2,0). 设向量AD ―→和BC ―→的夹角为θ,则 cos θ=AD ―→·BC―→|AD ―→|·|BC ―→|=⎝ ⎛⎭⎪⎫-32×0+-1×2+32×0⎝ ⎛⎭⎪⎫-322+-12+⎝ ⎛⎭⎪⎫322·02+22+02=-210=-105.∴cos θ=-105.。

高中数学第三章空间向量与立体几何3.2.1空间向量与平行关系课件新人教A版选修21

高中数学第三章空间向量与立体几何3.2.1空间向量与平行关系课件新人教A版选修21

(1)设 n1=(x1,y1,z1)是平面 ADE 的法向量,则 n1⊥D→A,n1⊥A→E, 即nn11· ·AD→→EA==22yx11+=z01,=0,得xz11==-0,2y1, 令 z1=2,则 y1=-1,所以 n1=(0,-1,2). 因为F→C1·n1=-2+2=0,所以F→C1⊥n1. 又因为 FC1⊄平面 ADE,所以 FC1∥平面 ADE.
(2)D→B=(2,2,0),D→E=(1,0,2). 设平面 BDEF 的一个法向量为 n=(x,y,z). ∴nn··DD→→BE==00,, ∴2x+x+22z=y=0,0,∴yz==--12x, x. 令 x=2,得 y=-2,z=-1. ∴n=(2,-2,-1)即为平面 BDEF 的一个法向量.
【自主解答】 以点 A 为原点,AD、AB、AS 所在的直线分别为 x 轴、 y 轴、z 轴,建立如图所示的坐标系,则 A(0,0,0),B(0,1,0),C(1,1, 0),D12,0,0,S(0,0,1).
(1)∵SA⊥平面 ABCD, ∴A→S=(0,0,1)是平面 ABCD 的一个法向量.
第九页,共47页。
图322
【解】 设正方体 ABCD-A1B1C1D1 的棱长为 2,则 D(0,0,0),B(2, 2,0),A(2,0,0),C(0,2,0),E(1,0,2).
(1)连接 AC,因为 AC⊥平面 BDD1B1,所以A→C=(-2,2,0)为平面 BDD1B1 的一个法向量.
第十五页,共47页。
-x1+4z1=0, 即32y1+4z1=0. 令 x1=1,得 z1=14,y1=-23.
第二十八页,共47页。
nn22· ·DD→→EF==00,,即32x2y+2+34y2z+2=40z2,=0, 令 y2=-1,得 z2=38,x2=32. ∴n1=1,-23,14,n2=32,-1,38, ∴n1=23n2,即 n1∥n2, ∴平面 AMN∥平面 EFBD.

3.2立体几何中的向量方法第3课时 空间向量与空间角 教案(人教A版选修2-1)

3.2立体几何中的向量方法第3课时 空间向量与空间角 教案(人教A版选修2-1)

第3课时空间向量与空间角●三维目标1.知识与技能(1)理解直线与平面所成角的概念.(2)能够利用向量方法解决线线、线面、面面的夹角求法问题.(3)体会空间向量解决立体几何问题的三步曲.2.过程与方法经历规律方法的形成推导过程、解题的思维过程,体验向量的指导作用.3.情感、态度与价值观通过学习向量及其运算由平面向空间推广的过程,逐步认识向量的科学价值、应用价值和文化价值,提高学习数学的兴趣,树立学好数学的信心.●重点难点重点:向量法求解线线、线面、面面的夹角.难点:线线、线面、面面的夹角与向量夹角的关系.(教师用书独具)●教学建议按照传统方法解立体几何题,需要有较强的空间想象能力、演绎推理能力以及作图能力,学生往往由于这些能力的不足造成解题困难.用向量法处理立体几何问题,实现了几何问题代数化,把对空间图形的研究从“定性推理”转化为“定量计算”,即将复杂的几何论证转化为代数运算,从而避免了几何作图,减少了逻辑推理,降低了难度,学生易于操作,容易接受.本节课宜采取的教学方法:(1)诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.(2)分组讨论法:有利于学生进行交流,及时发现问题,解决问题,培养学生的互相合作精神.(3)讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.学法方面,自主探索、观察发现、类比猜想、合作交流.建构主义学习理论认为,学习是学生积极主动的建构知识的过程,学习应该与学生熟悉的背景相联系.在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、归纳、思考、探索、交流、反思、参与学习,认识和理解数学知识、学会学习,发展能力.●教学流程创设问题情境,提出空间中两条异面直线的夹角、直线与平面的夹角、二面角的取值范围各是多少?⇒通过引导学生回答问题,分析空间角大小与向量夹角的关系,并进一步得出用向量求空间角的方法.⇒通过例1及其变式训练,使学生掌握利用向量求异面直线所成角的方法及注意事项.⇒通过例2及其变式训练,使学生掌握利用向量求直线与平面所成的角.⇒通过例3及其变式训练,解决利用向量求二面角问题.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.课标解读1.理解直线与平面所成角的概念.(重点)2.会用向量法求线线、线面、面面夹角.(重点、难点)3.正确区分向量夹角与所求线线角、面面角的关系.(易错点)空间角的向量求法【问题导思】1.空间中两条异面直线所成角的范围是多少?【提示】(0,π2].2.直线与平面的夹角是怎样定义的?夹角的范围是多少?【提示】 平面外一条斜线与它在该平面内的射影所成的角叫斜线与平面所成的角,其取值范围为[0,π2].3.怎样作出二面角α-l -β的平面角?其平面角的取值范围是多少?【提示】 在二面角α-l -β的棱l 上任取一点O ,在两半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 就是二面角α-l -β的平面角.它的取值范围是[0,π].角的分类向量求法范围 两异面直线l 1与l 2所成的角θ设l 1与l 2的方向向量为a ,b ,则cos θ=|cos a ,b|=|a·b ||a ||b |(0,π2]直线l 与平面α所成的角θ设l 的方向向量为a ,平面α的法向量为n ,则sin θ=|cos a ,n|=|a·n ||a ||n |[0,π2]二面角α-l -β的平面角θ设平面α,β的法向量为n 1,n 2,则|cos θ|=|cos n 1,n 2|=|n 1·n 2||n 1|·|n 2|[0,π]求异面直线所成的角图3-2-17如图3-2-17,在三棱锥V -ABC 中,顶点C 在空间直角坐标系的原点处,顶点A ,B ,V 分别在x 轴、y 轴、z 轴上,D 是线段AB 的中点,且AC =BC =2,∠VDC =θ.当θ=π3时,求异面直线AC 与VD 所成角的余弦值.【自主解答】 由于AC =BC =2,D 是AB 的中点, 所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0)当θ=π3时,在Rt △VCD 中,CD =2,∴V (0,0,6),∴AC →=(-2,0,0),VD →=(1,1,-6), ∴cos 〈AC →,VD →〉=AC →·VD →|AC →||VD →|=-22×22=-24.∴异面直线AC 与VD 所成角的余弦值为24.1.几何法求异面直线的夹角时,需要通过作平行线将异面直线的夹角转化为平面角,再解三角形来求解,过程相当复杂;用向量法求异面直线的夹角,可以避免复杂的几何作图和论证过程只需对相应向量运算即可.2.由于两异面直线夹角θ的范围是(0,π2],而两向量夹角α的范围是[0,π],故应有cosθ=|cos α|,求解时要特别注意.在长方体ABCD -A 1B 1C 1D 1中,已知DA =DC =4,DD 1=3,求异面直线A 1B 与B 1C 所成角的余弦值.【解】 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系,如图,则A 1(4,0,3),B (4,4,0),B 1(4,4,3),C (0,4,0),得A 1B →=(0,4,-3),B 1C →=(-4,0,-3).设A 1B →与B 1C →的夹角为θ,则cos θ=A 1B →·B 1C →|A 1B →||B 1C →|=925,故A 1B →与B 1C →的夹角的余弦值为925,即异面直线A 1B 与B 1C 所成角的余弦值为925.求线面角图3-2-18(2013·泰安高二检测)如图3-2-18所示,三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,P A =AC =12AB ,N 为AB 上一点,AB =4AN ,M ,S 分别为PB ,BC 的中点.(1)证明:CM ⊥SN ;(2)求SN 与平面CMN 所成角的大小. 【思路探究】 (1)怎样建立坐标系?(2)向量CM →与SN →满足什么关系时有CM ⊥SN 成立? (3)SN →的坐标是多少?平面CMN 的一个法向量怎么求?SN →与平面CMN 的法向量的夹角就是SN 与平面CMN 所成的角吗?【自主解答】 设P A =1,以A 为原点,射线AB ,AC ,AP 分别为x ,y ,z 轴正向建立空间直角坐标系(如图).则P (0,0,1),C (0,1,0),B (2,0,0),又AN =14AB ,M 、S 分别为PB 、BC 的中点,∴N (12,0,0),M (1,0,12),S (1,12,0),(1)CM →=(1,-1,12),SN →=(-12,-12,0),∴CM →·SN →=(1,-1,12)·(-12,-12,0)=0,因此CM ⊥SN .(2)NC →=(-12,1,0),设a =(x ,y ,z )为平面CMN 的一个法向量,∴CM →·a =0,NC →·a =0.则⎩⎨⎧x -y +12z =0,-12x +y =0.∴⎩⎪⎨⎪⎧x =2y ,z =-2y . 取y =1,则得a =(2,1,-2). 因为cos a ,SN →=-1-123×22=-22.∴〈a ,SN →〉=34π.所以SN 与平面CMN 所成角为34π-π2=π4.1.本题中直线的方向向量SN →与平面的法向量a 的夹角并不是所求线面角θ,它们的关系是sin θ=|cos 〈SN →,a 〉|.2.若直线l 与平面α的夹角为θ,利用法向量计算θ的步骤如下:如图3-2-19,正方体ABCD -A 1B 1C 1D 1中,E 是C 1C 的中点,求BE 与平面B 1BDD 1所成角的余弦值.图3-2-19【解】 如图,建立空间直角坐标系,设正方体的棱长为2,则B (2,2,0),B 1(2,2,2),E (0,2,1),BD →=(-2,-2,0),BB 1→=(0,0,2),BE →=(-2,0,1).AC →=(-2,2,0)即平面B 1BDD 1的一个法向量,设n =(-1,1,0). cos 〈n ,BE →〉=n ·BE →|n ||BE →|=105.设BE 与平面B 1BD 所成角为θ,cos θ=sin 〈n ,BE →〉=155,即BE 与平面B 1BD 所成角的余弦值为155.求二面角图3-2-20如图3-2-20,若正方形ACDE所在的平面与平面ABC垂直,M是CE和AD 的交点,AC⊥BC,且AC=BC,求二面角A-EB-C的大小.【思路探究】(1)根据已知条件,你能建立空间直角坐标系吗?A、B、C、E、M的坐标分别为多少?(2)怎样用法向量法求二面角A-EB-C的大小?【自主解答】∵四边形ACDE是正方形,∴EA⊥AC.又∵平面ACDE⊥平面ABC,∴EA⊥平面ABC.以点A为坐标原点,以过A点平行于BC的直线为x轴,分别以直线AC,AE为y轴、z轴,建立如图所示的空间直角坐标系Axyz.设EA=AC=BC=2,则A(0,0,0),B(2,2,0),C(0,2,0),E(0,0,2).∵M是正方形ACDE的对角线的交点,∴M(0,1,1).设平面EAB的法向量为n=(x,y,z),则n⊥AE→且n⊥AB→,从而有n·AE→=0且n·AB→=0.又∵AE →=(0,0,2),AB →=(2,2,0),∴⎩⎪⎨⎪⎧ (x ,y ,z )·(0,0,2)=0,(x ,y ,z )·(2,2,0)=0,即⎩⎪⎨⎪⎧z =0,x +y =0.取y =-1,则x =1,则n =(1,-1,0). 又∵AM →为平面EBC 的一个法向量, 且AM →=(0,1,1),∴cos 〈n ,AM →〉=n ·AM →|n ||AM →|=-12.设二面角A -EB -C 的平面角为θ,则cos θ=12,即θ=60°.故二面角A -EB -C 为60°.用向量法求二面角的大小,可以避免作出二面角的平面角这一难点,转化为计算两半平面法向量的夹角问题,具体求解步骤如下:(1)建立空间直角坐标系;(2)分别求出二面角的两个半平面所在平面的法向量; (3)求两个法向量的夹角;(4)判断所求二面角的平面角是锐角还是钝角; (5)确定二面角的大小.图3-2-21已知正三棱柱ABC -A 1B 1C 1的各条棱长均为a ,D 是侧棱CC 1的中点,求平面AB 1D 与平面ABC 所成二面角(锐角)的大小.【解】 以B 为原点,过点B 与BC 垂直的直线为x 轴,BC 所在的直线为y 轴,BB 1所在直线为z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),C (0,a,0),B 1(0,0,a ),C 1(0,a ,a ),A (-32a ,a 2,0),A 1(-32a ,a2,a ),D (0,a ,a2).故AB 1→=(32a ,-a 2,a ),B 1D →=(0,a ,-a 2).设平面AB 1D 的法向量为n =(x ,y ,z ), 则n ·AB 1→=0,n ·B 1D →=0, 即⎩⎨⎧32ax -a 2y +az =0,ay -a2z =0.得x =-3y ,z =2y .取y =1,则n =(-3,1,2). ∵平面ABC 的法向量是AA 1→=(0,0,a ), ∴二面角θ的余弦值为 cos θ=AA 1→·n |AA 1→||n |=22.∴θ=π4.∴平面AB 1D 与平面ABC 所成二面角(锐角)的大小为π4.对所求角与向量夹角的关系不理解致误正方体ABCD —A 1B 1C 1D 1中,求二面角A -BD 1-C 的大小.【错解】 以D 为坐标原点建立如图所示的空间直角坐标系,设正方体的棱长为1, 则D (0,0,0),A 1(1,0,1),C 1(0,1,1).由题意知DA 1→是平面ABD 1的一个法向量,DA 1→=(1,0,1), DC 1→是平面BCD 1的一个法向量,DC 1→=(0,1,1), 所以cos 〈DA 1→,DC 1→〉=DC 1→·DA 1→|DC 1→|·|DA 1→|=12.所以〈DA 1→,DC 1→〉=60°.即二面角A -BD 1-C 的大小为60°.【错因分析】 用法向量的夹角判断二面角的大小时出现错误,根据法向量的方向可知,二面角为钝角,而不是锐角.【防范措施】 利用法向量求二面角时,要注意法向量的夹角与二面角的大小关系是相等或互补,在求出两向量的夹角后,一定要观察图形或判断法向量的方向来确定所求二面角与其相等还是互补.【正解】 以D 为坐标原点建立如图所示的空间直角坐标系, 设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),C 1(0,1,1).由题意知DA 1→=(1,0,1)是平面ABD 1的一个法向量, DC 1→=(0,1,1)是平面BCD 1的一个法向量.所以cos 〈DA 1→,DC 1→〉=DC 1→·DA 1→|DC 1→|·|DA 1→|=12,所以〈DA 1→,DC 1→〉=60°.所以二面角A -BD 1-C 的大小为120°.利用空间向量求空间角的基本思路是把空间角转化为两个向量夹角的关系,解决方法一般有两种,即坐标法和基向量法,当题目中有明显的线面垂直关系时,尽量建立空间直角坐标系,用坐标法解决.需要注意的是要理清所求角与向量夹角之间的关系,以防求错结果.1.若异面直线l 1的方向向量与l 2的方向向量的夹角为150°,则l 1与l 2所成的角为( ) A .30° B .150° C .30°或150° D .以上均不对【解析】 l 1与l 2所成的角与其方向向量的夹角相等或互补,且异面直线所成角的范围为(0,π2].应选A.【答案】 A2.已知向量m ,n 分别是直线l 与平面α的方向向量、法向量,若cos 〈m ,n 〉=-32,则l 与α所成的角为( )A .30°B .60°C .150°D .120°【解析】 设l 与α所成的角为θ,则sin θ=|cos 〈m ,n 〉|=32, ∴θ=60°,应选B. 【答案】 B3.已知平面α的法向量u =(1,0,-1),平面β的法向量v =(0,-1,1),则平面α与β所成的二面角的大小为________.【解析】 cos 〈u ,v 〉=-12·2=-12,∴〈u ,v 〉=23π,而所成的二面角可锐可钝,故也可以是π3.【答案】 π3或23π图3-2-224.如图3-2-22直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AC =BC =1,CC 1=2,求直线A 1B 与平面BB 1C 1C 所成角的正弦值.【解】 以CA ,CB ,CC 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则B (0,1,0),C 1(0,0,2),A 1(1,0,2).则A 1B →=(-1,1,-2),平面BB 1C 1C 的法向量n =(1,0,0). 设直线A 1B 与平面BB 1C 1C 所成角为θ,A 1B →与n 的夹角为φ, 则cos φ=A 1B →·n |A 1B →||n |=-66,∴sin θ=|cos φ|=66.∴直线A 1B 与平面BB 1C 1C 所成角的正弦值为66.一、选择题1.(2013·济南高二检测)已知A (0,1,1),B (2,-1,0),C (3,5,7),D (1,2,4),则直线AB 与直线CD 所成角的余弦值为( )A.52266 B .-52266 C.52222 D .-52222【解析】 AB →=(2,-2,-1),CD →=(-2,-3,-3), ∴cos 〈AB →,CD →〉=AB →·CD →|AB →||CD →|=53×22=52266,∴直线AB 、CD 所成角的余弦值为52266.【答案】 A2.已知A ∈α,P ∉α,P A →=(-32,12,2),平面α的一个法向量n =(0,-12,-2),则直线P A 与平面α所成的角为( )A .30°B .45°C .60°D .150°【解析】 设直线P A 与平面α所成的角为θ,则sin θ=|cos 〈P A →,n 〉|=|0×(-32)-12×12-2×2|(-32)2+(12)2+(2)2·(-12)2+(-2)2=32.∴θ=60°. 【答案】 C3.正方形ABCD 所在平面外一点P ,P A ⊥平面ABCD ,若P A =AB ,则平面P AB 与平面PCD 的夹角为( )A .30°B .45°C .60°D .90°【解】 如图所示,建立空间直角坐标系,设P A =AB =1.则A (0,0,0),D (0,1,0),P (0,0,1).于是AD→=(0,1,0).取PD中点为E,则E(0,12,1 2),∴AE→=(0,12,1 2),易知AD→是平面P AB的法向量,AE→是平面PCD的法向量,∴cos AD→,AE→=22,∴平面P AB与平面PCD的夹角为45°.【答案】 B4.(2013·西安高二检测)一个二面角的两个面分别垂直于另一个二面角的两个面,那么这两个二面角()A.相等B.互补C.相等或互补 D.无法确定【解析】举例说明,如图所示两个二面角的半平面分别垂直,则半平面γ绕轴l旋转时,总有γ⊥β,故两个二面角大小无法确定关系.【答案】 D5.已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为()A.60°B.90°C.45°D.以上都不对【解析】以点D为原点,分别以DA,DC,DD1所在直线为x轴、y轴、z轴,建立空间直角坐标系,如图.由题意知,A 1(1,0,2),E (1,1,1),D 1(0,0,2),A (1,0,0),所以A 1E →=(0,1,-1),D 1E →=(1,1,-1),EA →=(0,-1,-1).设平面A 1ED 1的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1E →=0,n ·D 1E →=0⇒⎩⎪⎨⎪⎧y -z =0,x +y -z =0.令z =1,得y =1,x =0,所以n =(0,1,1), cos 〈n ,EA →〉=n ·EA →|n ||EA →|=-22·2=-1.所以〈n ,EA →〉=180°.所以直线AE 与平面A 1ED 1所成的角为90°. 【答案】 B 二、填空题6.(2013·荆州高二检测)棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为A 1B 1、BB 1的中点,则异面直线AM 与CN 所成角的余弦值是________.【解析】 依题意,建立如图所示的坐标系,则A (1,0,0),M (1,12,1),C (0,1,0),N (1,1,12), ∴AM →=(0,12,1),CN →=(1,0,12),∴cos 〈AM →,CN →〉=1252·52=25,故异面直线AM 与CN 所成角的余弦值为25.【答案】 25图3-2-237.如图3-2-23,在三棱锥O -ABC 中,OA =OB =OC =1,∠AOB =90°,OC ⊥平面AOB ,D 为AB 的中点,则OD 与平面OBC 的夹角为________.【解析】 ∵OA ⊥平面OBC , ∴OA →是平面OBC 的一个法向量. 而D 为AB 的中点,OA =OB , ∴∠AOD =〈OD →,OA →〉=45°.∴OD 与平面OBC 所成的角θ=90°-45°=45°. 【答案】 45°8.在空间中,已知平面α过(3,0,0)和(0,4,0)及z 轴上一点(0,0,a )(a >0),如果平面α与平面xOy 的夹角为45°,则a =________.【解析】 平面xOy 的法向量为n =(0,0,1),设平面α的法向量为u =(x ,y ,z ),则⎩⎪⎨⎪⎧-3x +4y =0,-3x +az =0, 即3x =4y =az ,取z =1,则u =(a 3,a4,1).而cos 〈n ,u 〉=1a 29+a 216+1=22, 又∵a >0,∴a =125.【答案】125三、解答题图3-2-249.如图3-2-24所示,在四面体ABCD 中,O ,E 分别是BD ,BC 的中点,CA =CB =CD =BD =2,AB =AD = 2.(1)求证AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值.【解】 (1)证明 连结OC ,由题意知BO =DO ,AB =AD ,∴AO ⊥BD . 又BO =DO ,BC =CD ,∴CO ⊥BD .在△AOC 中,由已知可得AO =1,CO =3, 又AC =2,∴AO 2+CO 2=AC 2, ∴∠AOC =90°,即AO ⊥OC . ∵BD ∩OC =O ,∴AO ⊥平面BCD . (2)以O 为坐标原点建立空间直角坐标系, 则B (1,0,0),D (-1,0,0),C (0,3,0),A (0,0,1), E (12,32,0), ∴BA →=(-1,0,1),CD →=(-1,-3,0), ∴cos 〈BA →,CD →〉=BA →·CD →|BA →|·|CD →|=24.∴异面直线AB 与CD 所成角的余弦值为24. 10.四棱锥P —ABCD 的底面是正方形,PD ⊥底面ABCD ,点E 在棱PB 上.(1)求证:平面AEC ⊥平面PDB ;(2)当PD =2AB 且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.【解】 如图,以D 为原点建立空间直角坐标系Dxyz ,设AB =a ,PD =h ,则 A (a,0,0),B (a ,a,0),C (0,a,0),D (0,0,0),P (0,0,h ), (1)∵AC →=(-a ,a,0),DP →=(0,0,h ),DB →=(a ,a,0), ∴AC →·DP →=0,AC →·DB →=0,∴AC ⊥DP ,AC ⊥DB ,又DP ∩DB =D ,∴AC ⊥平面PDB , 又AC ⊂平面AEC ,∴平面AEC ⊥平面PDB .(2)当PD =2AB 且E 为PB 的中点时,P (0,0,2a ),E (12a ,12a ,22a ),设AC ∩BD =O ,O (a 2,a2,0)连结OE ,由(1)知AC ⊥平面PDB 于O ,∴∠AEO 为AE 与平面PDB 所成的角,∵EA →=(12a ,-12a ,-22a ),EO →=(0,0,-22a ),∴cos ∠AEO =EA →·EO →|EA →|·|EO →|=22,∴∠AEO =45°,即AE 与平面PDB 所成的角的大小为45°.图3-2-2511.如图3-2-25,在长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱BC ,CC 1上的点,CF =AB =2CE ,AB ∶AD ∶AA 1=1∶2∶4.(1)求异面直线EF 与A 1D 所成角的余弦值; (2)证明:AF ⊥平面A 1ED ; (3)求二面角A 1-ED -F 的正弦值.【解】 如图所示,建立空间直角坐标系,点A 为坐标原点,设AB =1,依题意得D (0,2,0),F (1,2,1,)A 1(0,0,4),E (1,32,0).(1)易得EF →=(0,12,1),A 1D →=(0,2,-4).于是cos 〈EF →,A 1D →〉=EF →·A 1D →|EF →||A 1D →|=-35.所以异面直线EF 与A 1D 所成角的余弦值为35.(2)已知AF →=(1,2,1),EA 1→=(-1,-32,4),ED →=(-1,12,0).于是AF →·EA 1→=0,AF →·ED →=0,因此,AF ⊥EA 1,AF ⊥ED ,又EA 1∩ED =E . 所以AF ⊥平面A 1ED .(3)设平面EFD 的法向量u =(x ,y ,z ),则⎩⎪⎨⎪⎧ u ·EF →=0u ·ED →=0,即⎩⎨⎧ 12y +z =0-x +12y =0.不妨令x =1,可得u =(1,2,-1).由(2)可知,AF →为平面A 1ED 的一个法向量.于是cos 〈u ,AF →〉=u ·AF →|u ||AF →|=23, 从而sin 〈u ,AF →〉=53. 所以二面角A 1-ED -F 的正弦值为53.三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)求证AP ⊥BC . (2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由.【自主解答】 (1)由AB =AC ,D 是BC 的中点得AD ⊥BC ,因为PO ⊥平面ABC , 又BC ⊂平面ABC ,所以PO ⊥BC ,又PO ∩AD =O ,所以BC ⊥平面P AO ,又AP ⊂平面P AO ,所以BC ⊥AP .(2)存在.以O 为坐标原点,以OD ,OP 所在直线分别为y 轴、z 轴,以过O 点且垂直于面POD 的直线为x 轴,建立如图所示的空间直角坐标系,则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4),所以AP →=(0,3,4),BP →=(-4,-2,4),设PM →=λP A →(λ≠1),则PM →=λ(0,-3,-4),所以BM →=BP →+PM →=BP →+λP A →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0),BC →=(-8,0,0),设平面BMC 的一个法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0, 即⎩⎪⎨⎪⎧ -4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0, 令y 1=4-4λ,得⎩⎪⎨⎪⎧ x 1=0,z 1=2+3λ,可取n 1=(0,4-4λ,2+3λ),由题意知平面AMC 与平面APC 是一个平面,∴设平面APC 的一个法向量为n 2=(x 2,y 2,z 2)则⎩⎪⎨⎪⎧AP →·n 1=0AC →·n 2=0即⎩⎪⎨⎪⎧ 3y 2+4z 2=0-4x 2+5y 2=0. 所以⎩⎨⎧ x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由题意得n 1·n 2=0,即4(4-4λ)-3(2+3λ)=0,解得λ=25,故AM =3. 综上所述,存在点M 符合题意,AM =3.。

2021秋高中数学人教A版选修2-1学案3.1.1空间向量及其加减运算 3.1.2空间向量的数乘运算

2021秋高中数学人教A版选修2-1学案3.1.1空间向量及其加减运算 3.1.2空间向量的数乘运算

第三章空间向量与立体几何向量是一种重要的数学工具,它不仅在解决几何问题中有着广泛的应用,而且在物理学、工程科学等方面也有着广泛的应用,如鸟巢体育场的钢结构、北斗卫星定位系统示意图等.本章是在必修2中学习了立体几何初步以及必修4中学习了平面向量的基础上,学习空间向量及其运算,把平面向量推广到空间向量,并利用空间向量的运算解决有关的立体几何问题.由于空间向量具有代数形式与几何形式的“双重身份”,使之成为中学数学知识的一个交汇点.学习目标1.空间向量及其运算(1)了解空间向量的概念、空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示.(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.2.空间向量的应用(1)理解直线的方向向量与平面的法向量.(2)能用向量语言表述线线、线面、面面的垂直、平行关系.(3)能用向量方法证明有关线面位置关系的一些定理(包括三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角计算问题,了解向量方法在研究立体几何问题中的应用.本章重点空间向量的基本概念和基本运算;以空间向量为工具判断或证明立体几何中的线面位置关系;求空间角和空间的距离.本章难点用空间向量表示点、直线、平面的位置;用空间向量的运算表示空间直线与平面间的平行、垂直关系以及夹角的大小等;用空间向量解决立体几何问题.3.1空间向量及其运算3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算自主预习·探新知情景引入1987年11月台湾开放台胞来大陆探亲,开始时要从香港绕道,比如从台北到上海的路径是:台北→香港→上海.2008年7月开始两岸直航后,从台北到上海的路径是:台北→上海.如果把台北→香港的位移记为向量a,香港→上海的位移记为向量b,台北→上海的位移记为向量c,那么a+b与c有怎样的关系呢?新知导学1.空间向量(1)定义:在空间,具有__大小__和__方向__的量叫做空间向量.(2)长度或模:向量的__大小__.(3)表示方法:①几何表示法:空间向量用__有向线段__表示;②字母表示法:用字母a,b,c,…表示;若向量的起点是A,终点是B,也可记作:____,其模记为__|a|__或__||__.2.几类常见的空间向量名称方向模记法零向量__任意____0____0__单位向量任意__1__相反向量__相反__相等a的相反向量:__-a__ 的相反向量:____相等向量相同__相等__a=b(1)加法:=__+__=a+b.(2)减法:=__-__=a-b.(3)加法运算律:①交换律:a+b=__b+a__;②结合律:(a+b)+c=__a+(b+c)__.4.空间向量的数乘运算(1)定义:实数λ与空间向量a的乘积λa仍然是一个__向量__,称为向量的数乘运算.(2)向量a与λa的关系:λ的范围方向关系模的关系λ>0方向__相同__λa的模是a的模的__|λ|__倍λ=0λa=__0__其方向是任意的λ<0方向__相反__①分配律:λ(a+b)=__λa+λb__;②结合律:λ(μa)=__(λμ)a__5.平行(共线)向量与共面向量平行(共线)向量共面向量定义位置关系表示空间向量的有向线段所在的直线的位置关系:__互相平行或重合__ 平行于同一个__平面__的向量特征方向__相同或相反__特例零向量与__任意向量__共线充要条件对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使__a=λb__向量p与不共线向量a,b共面的充要条件是存在__唯一__的有序实数对(x,y)使__p=x a+y b__推论对空间任意一点O,点P在直线l上的充要条件是存在实数t满足等式__=+t a__,向量a为直线l的__方向向量__或在直线l上取向量=a,则=__+t__点P位于平面ABC内的充要条件是存在有序实数对(x,y),使=__x+y__或对空间任意一点O,有=__+x+y__预习自测1.下列命题中,假命题的是(D)A.向量与的长度相等B.两个相等的向量,若起点相同,则终点也相同C.只有零向量的模等于0D.在同一条直线上的单位向量都相等[解析]在同一条直线上的单位向量方向可能相同,也可能相反.2.下列命题中正确的是(C)A.若a与b共线,b与c共线,则a与c共线B.向量a、b、c共面即它们所在的直线共面C.零向量没有确定的方向D.若a∥b,则存在唯一的实数λ,使a=λb[解析]由零向量定义知选C.而A中b=0,则a与c不一定共线;D中要求b≠0;B中a,b,c所在的直线可能异面.3.化简下列各式:(1)++;(2)-+;(3)++-.结果为零向量的个数是(D)A.0个B.1个C.2个D.3个[解析]对于(1),++=+=0;对于(2),-+=+=0;对于(3),++-=(+)+(-)=+=0.4.(内蒙古赤峰市宁城县2019-2020学年高二期末)在平行六面体ABCD-A1B1C1D1中,点M为AC与BD的交点,=a,=b,=c则下列向量中与相等的是(A) A.-a+b+cB.a+b+cC.a-b+cD.-a-b+c[解析]因为利用向量的运算法则:三角形法则、平行四边形法则表示出=+=c+(-)=c-a+b,选A.5.已知A、B、C三点不共线,O是平面ABC外任一点,若由=++λ确定的一点P 与A、B、C三点共面,则λ=____.[解析]由P与A、B、C三点共面,∴++λ=1,解得λ=.互动探究·攻重难互动探究解疑命题方向❶空间向量的有关概念典例1(1)给出下列命题:①单位向量没有确定的方向;②空间向量是不能平行移动的;③有向线段可用来表示空间向量,有向线段长度越长,其所表示的向量的模就越大;④如果两个向量不相同,那么它们的长度也不相等.其中正确的是(C)A.①②B.②③C.①③D.①③④(2)如图,在以长、宽、高分别为AB=4,AD=2,AA1=1的长方体ABCD-A1B1C1D1中的八个顶点的两点为起点和终点的向量中,单位向量共有__8__个,模为的所有向量为__,,,,,,,__.[思路分析](1)依据空间向量的基本概念逐一进行分析;(2)单位向量的模为1,根据长方体的左右两侧的对角线长均为写出相应向量.[规范解答](1)①正确,单位向量的方向是任意的.②错误,空间向量可以平行移动.③正确,向量的模可以比较大小,有向线段长度越长,其所表示的向量的模就越大.④错误,如果两个向量不相同,它们的长度可以相等.(2)由于长方体的高为1,所以长方体的4条高所对应的向量,,,,,,,共8个单位向量.而其余向量模均不为1,故单位向量共8个.长方体的左、右两侧面的对角线长均为,故模为的向量有,,,,,,,.『规律总结』处理向量概念问题需注意两点①向量:判断与向量有关的命题时,要抓住向量的大小与方向,两者缺一不可.②单位向量:方向虽然不一定相同,但长度一定为1.┃┃跟踪练习1__■如图所示,以长方体ABCD-A1B1C1D1的八个顶点的两点为始点和终点的向量中.(1)试写出与相等的所有向量;(2)试写出的相反向量;(3)若AB=AD=2,AA1=1,求向量的模.[解析](1)与向量相等的所有向量(除它自身之外)有,及共3个.(2)向量的相反向量为,,,.(3)||=|++|∴||2=2+2+2=9∴||=3.命题方向❷空间向量的加减运算典例2如图,已知长方体ABCD—A′B′C′D′,化简下列向量表达式,并在图中标出化简结果的向量.(1)-;(2)++.[思路分析](1)分析题意,将等价转化为,转化为-,平行四边形法则得出结论.(2)应用平行四边形法则先求+,再应用三角形法则求+.[规范解答](1)-=-=+=.(2)++=(+)+=+=.向量、如图所示.『规律总结』化简向量表达式主要是利用平行四边形法则或三角形法则进行化简,在化简过程中遇到减法时可灵活应用相反向量转化成加法,也可按减法法则进行运算,加减法之间可相互转化.┃┃跟踪练习2__■(山东潍坊2018-2019学年高二期末)已知四棱锥P-ABCD的底面ABCD是平行四边形,设=a,=b,=c,则=(B)A.a+b+c B.a-b+cC.a+b-c D.-a+b+c[解析]如图所示,四棱锥P-ABCD的底面ABCD是平行四边形,=a,=b,=c,则=+=+=+(-)=-+=a-b+c.故选B.命题方向❸空间向量的数乘运算典例3已知四边形ABCD为正方形,P是ABCD所在平面外一点,P在平面ABCD上的射影恰好是正方形ABCD的中心O.Q是CD的中点,求下列各式中x、y的值:(1)=+x+y;(2)=x+y+.[思路分析]由题目可以获取以下主要信息:①四边形ABCD是正方形,O为中心,PO⊥平面ABCD,Q为CD中点;②用已知向量表示指定向量.解答本题需先画图,利用三角形法则或平行四边形法则表示出指定向量,再根据对应向量的系数相等,求出x、y即可.[规范解答]如图,(1)∵=-=-(+)=--,∴x=y=-.(2)∵+=2,∴=2-.又∵+=2,∴=2-.从而有=2-(2-)=2-2+.∴x=2,y=-2.『规律总结』 1.用已知向量表示未知向量是一项重要的基本功,直接关系到本章学习的成败,应认真体会,并通过训练掌握向量线性运算法则和运算律.2.空间向量的数乘运算定义,运算律与平面向量一致.┃┃跟踪练习3__■如图所示,在平行六面体ABCD-A1B1C1D1中,设=a,=b,=c,M、N、P分别是AA1、BC、C1D1的中点,试用a、b、c表示以下各向量:(1);(2);(3)+.[解析](1)∵P是C1D1的中点,∴=++=a++=a+c+=a+c+b.(2)∵N是BC的中点,∴=++=-a+b+=-a+b+=-a+b+c.(3)∵M是AA1的中点,∴=+=+=-a+(a+c+b)=a+b+c.又=+=+=+=c+a,∴+=(a+b+c)+(a+c)=a+b+c.命题方向❹共线向量典例4如图所示,ABCD-ABEF都是平行四边形,且不共面,M、N分别是AC、BF的中点,判断与是否共线?[思路分析]要判断与是否共线,由共线向量定理就是判定是否存在实数λ,使=λ.若存在,则与共线,否则与不共线.[规范解答]M、N分别是AC、BF的中点,而四边形ABCD、ABEF都是平行四边形,∴=++=++.又∵=+++=-+--,∴++=-+--.∴=+2+=2(++).∴=2,∴∥,即与共线.『规律总结』 1.判断向量共线的策略(1)熟记共线向量充要条件:①a∥b,b≠0,则存在唯一实数λ使a=λb;②若存在唯一实数λ,使a=λb,b≠0,则a∥b.(2)判断向量共线的关键是找到实数λ.2.证明空间三点共线的三种思路对于空间三点P、A、B可通过证明下列结论来证明三点共线.(1)存在实数λ,使=λ成立.(2)对空间任一点O,有=+t(t∈R).(3)对空间任一点O,有=x+y(x+y=1).┃┃跟踪练习4__■e1,e2为不共线的非零向量,如果a=4e1-e2,b=e1-e2,试判断a,b是否共线.[解析]∵a=4e1-e2,b=e1-e2,∴a=4(e1-e2)=4b,∴a,b为共线向量.命题方向❺共面问题典例5正方体ABCD-A1B1C1D1中,M、N、P、Q分别为A1D1、D1C1、AA1、CC1的中点,用向量方法证明M、N、P、Q四点共面.[思路分析]要证M、N、P、Q四点共面,只需证明、、共面,即寻求实数λ、μ、k,使得λ+μ+k=0.为此,令=a,=b,=c,将、、都用a、b、c线性表示,再寻求它们系数之间关系或者令=λ+μ,建立λ、μ的方程组解之.[规范解答]令=a,=b,=c,∵M、N、P、Q均为棱的中点,∴=b-a,=+=a+c,=++=-a+b+c.令=λ+μ,则-a+b+c=(μ-λ)a+λb+μc,∴,∴.∴=2+,因此向量、、共面,∴四点M、N、P、Q共面.『规律总结』 1.证明点P在平面ABC内,可以用=x+y,也可以用=+x+y,若用=x+y+z,则必须满足x+y+z=1.2.判定三个向量共面一般用p=x a+y b,证明点线共面常用=x+y,证明四点共面常用=x+y+z(其中x+y+z=1).┃┃跟踪练习5__■如图,已知E、F、G、H分别为空间四边形ABCD的边AB、BC、CD、DA的中点,用向量法证明E、F、G、H四点共面.[思路分析]要证E、F、G、H四点共面,根据共面向量定理,只需探求存在实数x,y,使=x+y成立.[解析]如图,连接BG、EG,则=,=,=(+),所以=+=+(+)=++=+.由共面向量定理的推论知E、F、G、H四点共面.学科核心素养空间向量的线性运算在立体几何中的应用(1)立体几何中的线线平行可转化为两向量的平行,即证明两向量具有数乘关系即可.证明线面平行、面面平行均可转化为证明线线平行,然后根据空间向量的共线定理进行证明.特别地,线面平行可转化为该直线的方向向量能用平面内的两个不共线向量表示.(2)在学习空间向量后,求解立体几何问题又增加了新的思路和方法.利用向量证明平行的关键是构造向量之间的线性关系.(3)解题时,应结合已知和所求,观察图形,联想相关的运算法则和公式,就近表示所需向量,再对照条件,将不符合要求的向量用新形式表示,如此反复,直到所有向量都符合目标要求为止.典例6如图所示,已知矩形ABCD和矩形ADEF所在平面互相垂直,点M,N分别在对角线BD,AE上,且BM=BD,AN=AE.求证:MN∥平面CDE.[思路分析]根据共面向量定理,证明向量平面CDE内两个不共线的向量共面即说明MN∥平面CDE.[规范解答]∵点M在BD上,且BM=BD,∴==+.同理,=+.∴=++=++=+=+.由于与不共线,根据向量共面的充要条件可知,,共面.因为MN不在平面CDE内,所以MN∥平面CDE.『规律总结』解答本题要注意向量共面与直线平行于平面的联系与区别,如果没有充分理解定义、定理的实质,本题容易漏掉MN不在平面CDE内而致错.┃┃跟踪练习6__■已知AB,CD是异面直线,CD⊂α,AB∥α,M,N分别是AC,BD的中点.求证MN∥α.[思路分析]运用共面向量定理先证出与平面α内两个不共线的向量共面,进而说明MN∥α.[证明]因为CD⊂α,AB∥α,且AB,CD是异面直线,所以在平面α内存在向量a,b,使得=a,=b,且两个向量不共线.由M,N分别是AC,BD的中点,得=(+++++)=(+)=(a+b).所以,a,b共面,所以MN∥α或MN⊂α.若MN⊂α,则AB,CD必在平面α内,这与已知AB,CD是异面直线矛盾.故MN∥α.易混易错警示典例7如图所示,已知空间四边形OABC,其对角线为OB,AC,M,N分别为OA,BC的中点,点G在线段MN上,且=2,若=x+y+z,则x,y,z的值分别为__,,__.[错解]因为M为OA的中点,所以=,因为=2,所以=,所以=OM+=+=+(-)=+=×+(+)=++所以x,y,z的值分别为,,.[辨析]错误的根本原因是空间向量的数乘运算与加法运算的几何意义综合应用不当.实际上,本题中由N是BC的中点知=(+).[正解]∵M为OA中点,∴=,∵=,∴=∴=+=+M=+=·+·(+)=++∴x,y,z的值为,,.。

人教A版高中数学选修2-1课件-空间向量运算的坐标表示

人教A版高中数学选修2-1课件-空间向量运算的坐标表示

=12a2-12a2cos
60°+a2cos
60°-12a2cos
60°
=12a2-a42+a22-a42=a22.
又∵|A→N|=|M→C|= 23a,
∴A→N·M→C=|A→N||M→C|cos θ= 23a× 23a×cos θ=a22.
∴cos θ=23.
∴向量
A→N
②设P(x,y,z),则A→P=(x-2,y+1,z-2).
x-2=3, ∵A→P=12(A→B-A→C)=3,32,-2,∴y+1=32,
z-2=-2,
解得x=5,y=21,z=0,则点P的坐标为5,12,0.
1.一个向量的坐标等于表示这个向量的有向线段的终点坐标减 去起点坐标.
2.在确定了向量的坐标后,使用空间向量的加减、数乘、数量 积的坐标运算公式进行计算就可以了,但要熟练应用下列有关乘法 公式:(1)(a+b)2=a2+2a·b+b2;(2)(a+b)·(a-b)=a2-b2.
m+1=3λ,
∴n-2=-λ, -2=λ,
解得λ=-2,m=-7,n=4.
∴m+n=-3.]
4.已知a=(- 2,2, 3),b=(3 2,6,0),则|a|=________, a与b夹角的余弦值等于________.
3
6 9
[|a|= - 22+22+ 32= 9=3,
cos〈a,b〉=|aa|·|bb|=3× -36+2122+62= 96.]
(4)∵2a=(4,-2,-4), ∴2a·(-b)=(4,-2,-4)·(0,1,-4) =4×0+(-2)×1+(-4)×(-4)=14. (5)(a+b)·(a-b)=a2-b2=4+1+4-(0+1+16)=-8.
利用向量的坐标运算解决平行、垂直问题

高中数学人教A版选修2-1课件3.1.4空间向量的正交分解及其坐标运算(系列三)

高中数学人教A版选修2-1课件3.1.4空间向量的正交分解及其坐标运算(系列三)

∴O→E=12(O→A+O→B), C→G=2C→E=2(O→E-O→C)
33 ∴O→G=O→C+C→G= O→C+2(O→E-O→C)=
3 13(O→A+O→B+O→C) ∴λ=3.
答案:3
5.如图 2,四棱锥 P—OABC 的底面为一矩形, 设O→A=a,O→C=b,O→P=c,E、F 分别是 PC 和 PB 的中点,用 a,b,c 表示B→F、B→E、A→E、E→F.
D.既不充分也不必要条件
解析:当非零向量a,b,c不共面时,{a,b,c}可以当基底, 否则不能当基底,当{a,b,c}为基底时,一定有a,b,c为 非零向量.
答案:B
2.已知{a,b,c}是空间的一个基底,则可以和向量p=a+b, q=a-b构成基底的向量是( )
A.a
B.b
C.a+2b
有序实数组{x,y,z},使得p=xa+yb+zc.
2.基底的概念
如果三个向量a、b、c不共面,那么空间所有向量组成的集合 就是{p|p=xa+yb+zc,x、y、z∈R}这个集合可以看作是由 向 量 a 、 b 、 c 生 成 的 , 我 们 把 {a , b , c} 叫 做 空 间 的 一 个 基 底.a、b、c叫做基向量.空间任何三个不共面的向量都可构 成空间的一个基底.
人教版 选修2-1
第三章 空间向量与立体几何
3.1空间向量及其运算
空间向量的正交分解及其坐标 表示
学习目标
1.了解空间向量的正交分解的含义. 2.掌握空间向量的基本定理,并能用空间向量基本定理
解决一些简单问题. 3.掌握空间向量的坐标表示,能在适当的坐标系中写出
向量的坐标.
新知导入
1.空间向量基本定理 如果三个向量a,b,c不共面,那么对空间任一向量p,存在
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a1 b1,a2 b2 ( R); a1 b1,a2 b2,a3 b3( R);
a b ab 0
a b ab 0
a1b1 a2b2 0
a1b1 a2b2 a3b3 0
【新知探A究(x】1 , y1 , z1)
B(x2 空, y2间, z2两) 点间的距离公式
在空间直角坐标系中,已知
的大小。
P
F
E
D
C
A B
法1: 建立空间直角坐标系,设DC=1.
已知PB EF,由(2)可知PB DF,故EFD是
二面角C PB D的平面角。
设点F的坐标为(x, y, z),则PF (x, y, z 1)
因为PF k PB 所以( x, y, z 1) k(1,1, 1)
Z
P
(k,k,k)
FD ( 1 , 1 , 2) 333
因为cosEFD FE • FD FE FD
(
1, 3
1 , 6
1) • ( 1 , 63
6• 6 63
1 , 3
2) 3
1
6 1
3
1 2
所以EFD 60 ,即二面角 C PB D的大小为 60 .
例3 如图,在四棱锥P-ABCD中,底面ABCD是
2y 5y
z0 3z 0
,
取z
1,得
x
1 2
y 1
n (1 , 1,1), | n | 3
2
2
求平面ABC的单位法向量为 (1,- 2,2)
3 33
例3 如图,在四棱锥P-ABCD中,底面ABCD是
正方形,侧棱PD⊥底面ABCD,PD=DC, E是PC的
中点,作EF⊥PB交PB于点F. (3)求二面角C-PB-D
即x k, y k, z 1 k
F
E
因为PB • DF 0
所以(1,1,1) • (k, k,1 k)
k k 1 k 3k 1 0A 所以k 1 F(1,1,2) X
3 333
D
C Y
B
点F的坐标为(1,1,2) 又点E的坐标为(0, 1 , 1)
333
22
所以FE ( 1 , 1 , 1) 36 6
A
于是
1 2
y
1 2
0
n
1,
x y 0
1,
1 X
E
C Y
B
例2:已知AB (2, 2,1), AC (4,5,3),求平面ABC的 单位法向量。
解:设平面的法向量为n (x,y,z),
则n AB,n AC (x,y,z)(2, 2,1) 0,(x,y,z)(4,5,3) 0,
即24xx
练习1.棱长为1的正方体ABCD—A1B1C1D1中,E1、F1分别是A1B1、
C1D1的一个四等分点,求:B,
E1
,D,
F1
的坐标,以及
z
BE1, DF1坐标
解: 建立直角坐标系
D1
F1
C1
B(1,
1,
0),
E1
1,
3 4
,
1
,
A1
E1 B1
D(0,
0,
0),
F1
0,
14,1
DO
A
BE1
0) 2)
0 0

3 x 3 x
4y 2z
0 0
取 x 4,则 n (4, 3, 6)

y z
3 4 3 2
x x
∴ n (4, 3, 6) 是平面 ABC 的一个法向量.
练习 如图,在四棱锥P-ABCD中,底面ABCD是
正方形,侧棱PD⊥底面ABCD,PD=DC=1 ,E是PC
三、方向向量与法向量
1.直线的方向向量
如图, l 为经过已知点 A 且平行于非零向量 a 的直线,那么非零向量 a 叫做直线 l 的方向向量。
换句话说,直线上的非零向量叫做直线的 方向向量
•l
A•
P
a
直线l的向量式方程 AP t a
2 平面的法向量:如果表示向量n 的有向线段所在
直线垂直于平面 ,则称这个向量垂直于平
的中点, 求平面EDB的一个法向量.
解:如图所示建立空间直角坐标系.
Z
依题意得D(0, 0, 0), P(0, 0,1),
P
E(0, 1 , 1 ) B(1,1,0)
22
DE (0, 1 , 1 ) DB =(1,1,0)
22
设平面EDB的法向量为 n (x, y,1)
D
则n DE, n DB
正方形,侧棱PD⊥底面ABCD,PD=DC, E是PC的
中点,作EF⊥PB交PB于点F. (3)求二面角C-PB-D
的大小。
Z
法2: 如图所示建立 P
空间直角坐标系,设DC=1.
平面PBC的一个法向量为
DE (0, 1 , 1) 22
平面PBD的一个法向量为
CG (1 , 1 , 0) A 22
0,
1 4
,1,求
cos
BE1
,DF1Βιβλιοθήκη 解:BE1DF1
0
0
1 4
1 4
11
15 16
,
| BE1 |
17 4
, | DF1 |
17 . 4
cos
BE1
,
DF1
|
BE1 BE1 |
DF1 | DF1
|
15 16 15 . 17 17 17 44
【应用举例】
例2.正方体ABCD—A1B1C1D1中,E1、F1分别是A1B1、
A
F
E
D
C
B
小结:
用空间向量解决立体几何问题的“三步曲”。
(1)建立立体图形与空间向量的联系,用空间 向量表示问题中涉及的点、直线、平面,把立体几 何问题转化为向量问题; (化为向量问题)
(2)通过向量运算,研究点、直线、平面之间的 位置关系以及它们之间距离和夹角等问题;
(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。
1
,
3 4
, 1
(1 , 1
,
0)
0
,
1 4
,
1
,
x
Cy
B
DF1
0
,
1 4
,1
(0
,
0
,
0)
0
,
1 4
,1 .
【新知探究】
平面向量运算的坐标表示: 空间向量运算的坐标表示:
设a
a
(a1
,
a2
), b
a
a
(b1
,
b2
)则
设a (a1,a2,a3),b (b1,b2,b3)则
a aa
a12 a22
cos DE1,GC 1/ 2 X
F
E
D
G B
CY
cos 1/ 2, 60
例3 如图,在四棱锥P-ABCD中,底面ABCD是
正方形,侧棱PD⊥底面ABCD,PD=DC, E是PC的
中点,作EF⊥PB交PB于点F. (3)求二面角C-PB-D
的大小。
P
法3: 设DC=1.
已知PB EF, 由(2) 可知PB DF,故EFD是二 面角C PB D的平面角。
;类

a12 a22 a32;
ab
ab
cos a,b a b
a1b1 a2b2
推 广
cos
a,b
ab
a1b1 a2b2 a3b3
a12 a22 b12 b22; a12 a22 a32 b12 b22 b32;
a // b a b( R) a // b a b( R)
F1
0,
14,1
BE1
1
,
3 4
, 1
(1
,
1
,
0)
0
,
1 4
,
1
,
D
O
Cy
DF1
(03, )14对,向1量 (0计, 0算, 0或)证 0明, 14。,1
.
A
x
B
BE1
DF1
0
0
1 4
1 4
1
1
15 , 1615
|
BE1
|
17 4
, | DF1 |
17 . 4
cos
BE1
,
DF1
|

,则
AB ( x2 x1 , y2 y1 , z2 z1)
| AB | AB AB (x2 x1)2 ( y2 y1)2 (z2 z1)2
d AB | AB | ( x2 x1)2 ( y2 y1)2 (z2 z1)2
练习2.已知
BE1
0,
1 4
,1 ,
DF1
C(0,0, 2) ,试求平面 ABC 的一个法向量. n (4, 3, 6)
解:设平面 ABC 的一个法向量为 n ( x, y, z)
则 n AB ,n AC .∵ AB (3, 4, 0) , AC (3, 0, 2)

( (
x, x,
y, y,
z) z)
(3, (3,
4, 0,
3.2.1 空间向量的坐标运算 及法向量的计算
【新知探究】
平面向量运算的坐标表示: 空间向量运算的坐标表示:
设a (a1,a2),b (b1,b2)则 设a (a1,a2,a3),b (b1,b2,b3)则
a
b
(a 1 b1 , a2
相关文档
最新文档