第一章时域离散信号和时域离散系统-课件

合集下载

数字信号处理-时域离散随机信号处理课件:时域离散随机信号的分析

数字信号处理-时域离散随机信号处理课件:时域离散随机信号的分析
中, 为简单起见,也用小写字母x(n)或xn表示随机序列, 只要概念清 楚, 会分清楚何时代表随机序列, 何时代表样本函数。
数字信号处理——时域离散随机信号处理
x1(tn
t
图 1.1.1 n部接收机的输出噪声
数字信号处理——时域离散随机信号处理
x1(n) x2(n) xn(n)
数字信号处理——时域离散随机信号处理
一般均方值和方差都是n的函数, 但对于平稳随机序列, 它 们与n无关, 是常数。如果随机变量Xn代表电压或电流,其均方 值表示在n时刻消耗在1 Ω电阻上的集合平均功率,方差则表示 消耗在1Ω电阻上的交变功率的集合平均。有时将σx称为标准方 差。
数字信号处理——时域离散随机信号处理
3. 随机序列的相关函数和协方差函数
我们知道, 在随机序列不同时刻的状态之间,存在着关联 性, 或者说不同时刻的状态之间互相有影响,包括随机序列 本身或者不同随机序列之间。 这一特性常用自相关函数和互 相关函数进行描述。
自相关函数定义为
rxx
(n,
m)
E[
X
* n
X
m
]
xn*
xm
pX
n
,
X
m
数字信号处理——时域离散随机信号处理
时域离散随机信号的分析
1.1 引言 1.2 时域离散随机信号的统计描述 1.3 随机序列数字特征的估计 1.4 平稳随机序列通过线性系统 1.5 时间序列信号模型
数字信号处理——时域离散随机信号处理
1.1 引 言
信号有确定性信号和随机信号之分。 所谓确定性信号,就 是信号的幅度随时间的变化有一定的规律性, 可以用一个明确 的数学关系进行描述,是可以再现的。 而随机信号随时间的变 化没有明确的变化规律,在任何时间的信号大小不能预测, 因 此不可能用一明确的数学关系进行描述,但是这类信号存在着 一定的统计分布规律,它可以用概率密度函数、概率分布函数、 数字特征等进行描述。

数字信号处理 第一章

数字信号处理 第一章

x(n + N) = Asin[ω0 (n + N) +ϕ]
k N = (2π / ω0 ) K
13
具体正弦序列有以下三种情况: (1) 当2π/ω0为整数时,k=1,正弦序列是以 2π/ω0为周期的周期序列。
2π π π 例如, sin( n) , ω 0 = , = 16 , 该正弦序列 ω0 8 8
δ ( n)
1, δ (n) = 0,
n=0 n≠0
-2 -1 0
1
1 2
n
6
时域离散信号与系统 几种常见的序列 2.单位阶跃序列 2.单位阶跃序列 u (n) u(n)
1, u(n) = 0,

n≥0 n<0
...
-1 0 1 2 3 n
δ (n) = ∇u(n) = u(n) − u(n −1)
38
时域离散信号与系统
[例]:已知两线性时不变系统级联,其单位抽样响应 已知两线性时不变系统级联, 分别为h (n)=δ(n)-δ(n-4); 分别为h1(n)=δ(n)-δ(n-4);h2(n)=an u(n), |a|<1, x(n)=u(n)时 求输出y(n) y(n)。 当输入 x(n)=u(n)时,求输出y(n)。 [解 ]: x(n) w(n)
????
33
时域离散信号与系统
二:时不变系统
若系统响应与激励加于系统的时刻无关, 若系统响应与激励加于系统的时刻无关,则为时不变 系统,又称移不变系统。 系统,又称移不变系统。
T [ x ( n )] = y ( n ) T [ x ( n − m )] = y ( n − m )
例:判断y(n)=ax(n)+b所的系统是否为时不变系统? 判断y(n)=ax(n)+b所的系统是否为时不变系统? y(n)=ax(n)+b所的系统是否为时不变系统

数字信号处理第一章离散时间信号和离散时间

数字信号处理第一章离散时间信号和离散时间

离散卷积的计算
计算它们的卷积的步骤如下: (1)折叠:先在哑变量坐标轴k上画出x(k)和h(k),将h(k)以纵坐标为对称轴折 叠成 h(-k)。 (2)移位:将h(-k)移位n,得h(n-k)。当n为正数时,右移n;当n为负数时,左 移n。 (3)相乘:将h(n-k)和x(k)的 对应取样值相乘。 (4)相加:把所有的乘积累加 起来,即得y(n)。
第一章 时域离散信号和时域离散系统
内容提要
离散时间信号和离散时间系统的基本概念 –序列的表示法和基本类型 –用卷积和表示的线性非移变系统 –讨论系统的稳定性和因果性问题 –线性常系数差分方程 –介绍描述系统的几个重要方式
离散时间信号的傅里叶变换和系统的频率响应 模拟信号的离散化
–讨论了模拟信号、取样信号和离散时间信号(数字 序列)的频谱之间的关系

根据线性系统的叠加性质 y(n) x(m)T[ (n m)] m
根据时不变性质:T[ (n m)] h(n m)

y(n) x(m)h(n m) x(n) h(n) m=-
(1.3.7)
通常把式(1.3.7)称为离散卷积或线性卷积。这一关系常用符 号“*”表示,即:
y(n n0 ) T[kx(n n0 )], 是移不变系统 (2) y(n) nx(n), 即y(n n0 ) (n n0 )x(n n0 ) 而T[x(n n0 )] nx(n n0 ) y(n n0 ),不是移不变系统
1.3.3 线性时不变系统及输入与输出的关系 既满足叠加原理,又满足非移变条件的系统,被称为线性 非移变系统。这类系统的一个重要特性,是它的输入与输 出序列之间存在着线性卷积关系。
§1. 2 时域离散信号

信号处理(PDF)

信号处理(PDF)

时域离散信号:§例:已知模拟信号是一个正弦波,将它转换成时域离散信号和数字信号。

} {,0,0.9sin 50,0.9sin100,0.9sin150T T ππ时域离散信号n 只能取整数总结:时域离散信号可以通过对模拟信号得到,如果将它的每一个序列值经过有限位的,得到一个用二进制编码表示的序列,该序列就数字信号。

序列值一般有无限位小数。

如果用四位二进制数表示的幅度,二进制数第一位表示符号位,该二进制编码形成的信号数字信号数字信号编码、量化号之间是有差别的。

总结:随着二进制编码位数增加,数字信号和时域离散信号之间的差别越来越小。

[x n 换算成十进制,则x(n 位数有关,如果用换算成十进制,则时域离散信号的来源有两类:¾¾例:每天上午压均正常,收缩压不正常,仅记录收缩压并用时域离散信号号也称为时域离散信号表示方法(((x(n)……¾,如果将它的每一个序列值经过有限位的,得到一个用二进制编码表示的序列,该序列就是字信号¾号之间的差别越来越小。

110()00n n n δ=⎧=⎨≠⎩δδ()t δ10 ()00nu nn≥⎧=⎨<⎩101()0n N n N R n ≤≤−⎧=⎨⎩其它4、实指数序列()()nx n a u n =a 为实数5、复指数序列00()()j n j n nx n e e eσωωσ+==⋅00cos()sin()n ne n je n σσωω=+0ω为数字域频率j n n 3x(n)=0.9e π例:6、正弦序列0()sin()x n A n ωφ=+()()sin()a t nTx n x t A nT φ===Ω+0/sT f ω=Ω=Ω0ω:数字域频率Ω:模拟域频率T :采样周期s f :采样频率()sin()a x t A t φ=Ω+模拟正弦信号:数字域频率是模拟域频率对采样频率的归一化频率弧度弧度/秒(x n8x 要使表示成取(3)任何整数例:判断解:如果一个正弦型序列是由一个连续信号采样而得到的,那么,时间间隔得到的采样序列是周期序列呢?设连续正弦信号信号的周期为ω频率乘以频率。

数字信号处理ppt课件

数字信号处理ppt课件
23
三.自相关函数与 自协方差函数的性质
24
性质1 :相关函数与协方差函数的关系
Cxx m rxx m mx 2
Cxy m rxy m m*xmy
当 mx 0
Cxx m rxx m Cxy m rxy m
25
性质2:均方值、方差与相关函数和协方差函数
rxx
0
E
xn
2
Cxx 0 rxx 0 mx 2
五、功率谱密度
44
维纳——辛钦定理
1. 复频域
rxx
(m)
1
2
j
c Sxx (z)zm1dz,
Sxx
(z)
m
rxx
(m)z
m
C (Rx , Rx )
45
2. 频域
{ rxx(m)
1
2
Pxx (e j )e jm d
2
Pxx (e j ) rxx (m)e jm
m
46
3.性质
实平稳随机信号 rxx m rxx m
rxx m E x x n1 n1m
x1x2 p x1 , x2 ; m dx1dx2
18
自协方差函数
Cxx (m) E (xn1 mx )*(xn2 mx ) E (xn1 mx )*(xn1m mx )
rxx m mx 2
19
对于均值为零的随机过程 rxx m Cxx m
①偶函数
Pxx e j Pxx e j
②实函数
Pxx e j Pxx e j
③极点互为倒数出现
Sxx
z
Sxx
1 z
47
④功率谱在单位圆上的积分等于平均功率
E
x2

清华大学数字信号处理课件--第一章1离散时间信号与系统PPT演示文稿

清华大学数字信号处理课件--第一章1离散时间信号与系统PPT演示文稿
2
本章作业练习
P42:
2(2)(3)(4) 3 4(1) 6(2) 7 8(3)(4)(5)(6)(7) 10 12 14(1)(2)
3
第一章 离散时间信号与系统
一、离散时间信号—序列
序列:对模拟信号x a ( t ) 进行等间隔采样,采样间隔为T,
得到
xa(t)t n Txa(n T ) n
第一章
离散时间信号与系统
1
第一章学习目标
掌握序列的概念及其几种典型序列的定义,掌握序列的基本 运算,并会判断序列的周期性。
掌握线性/移不变/因果/稳定的离散时间系统的概念并会判 断,掌握线性移不变系统及其因果性/稳定性判断的充要条件。
理解常系数线性差分方程及其用迭代法求解单位抽样响应。 了解对连续时间信号的时域抽样,掌握奈奎斯特抽样定理, 了解抽样的恢复过程。
2)移位: h(m ) h(nm )
3)相乘: x (m )h (n m ) m n
4)相加: x(m)h(nm) m 14
举说明卷积过程
n-2, y(n)=0
15
n=-1
n=0
n=1
y(-1)=8
y(0)=6+4=10 y(1)= 4+ 3+ 6= 13
16
n=5
n=6
N 1
R N ( n ) ( n m ) ( n ) ( n 1 ) ... [ n ( N 1 ) ] m 0
22
4)实指数序列 x(n)anu(n)
a 为实数
23
5)复指数序列 x (n ) e ( j 0 )n e n e j 0 n
e n c o s (0 n ) j e n s i n (0 n )

数字信号处理 (1)

数字信号处理 (1)
【解】
用2e-jw乘以分子和分母,得

[1+2.2e-jw+e-2jw]Y(ejw)=2X(ejw)
利用性质,求得差分方程为
y(n)+2.2y(n-1)+y(n-2)=2x(n)
3.系统单位采样响应h(n)=&(n)-a&(n-1),a是实数,求系统的幅值、相位和群时延。
【解】H(ejw)=1-ae-jw=1-acosw +jasin w
②|z|>2时,右边序列
x(n)=[3×( )n+2×2n]u(n)
③0.5<|z|<2时,双边序列
x(n)=3×( )nu(n)-2×2nu(-n-1)
2.一个线性时不变系统具有频率响应H(e)= ,求表示输入输出关系的系统方程。
【分析】为把H(e)变换为一个差分方程,首先将H(ejw)表示为复数的形式,然后利用性质求解。
【分析】①有限长序列收敛域为
0<|z|<∞,n1≤n≤n2
特殊情况:
当n1≥0,n2>0时,ROC:0<|z|≤∞
当n1<0,n2≤0时,ROC:0≤|z|<∞
当n1<0,n2>0时,ROC:0<|z|<∞
②右边序列:
n≥n1≥0,ROC:Rx-<|z|≤∞
当n1<0时,ROC:Rx-<|z|<∞
左边序列:
所以,幅值平方是
|H(ejw)|2=H(ejw)H*(ejw)=(1-aejw)(1-ae-jw)=1+a2-2acosw
相位: ψk(w)=arctan
群时延 τ(w)=
3.一个离散线性时不变系统的差分方程y(n)=0.5y(n-1)+bx(n),求出b使得|H(e)jw|在w=0时等于1,并求出半功率点(即|H(ejw)|2等于其峰值一半时的频率,这个峰值出现在w=0)。

第1章时域离散信号和离散系统

第1章时域离散信号和离散系统

1 x 10
-5
0 n
5
x(n)
x(t)
0 n
5
1.1 时域离散信号(2)
(5)几种常用的离散时间信号(6+1个) 冲击序列(单位抽样序列): 抽样性质: x(n) (n k ) x(k )
( n)
1, n 0 0, n 0
m
任意序列:可用冲击序列的移位加权和表示: x(n) x(m) (n m) 阶跃序列: 矩形序列:
z-1
1.3 线性非时变系统(LTI)(1)
(1)系统的线性(Linearity):满足叠加原理(superposition)的系统。 数学表示:
设y1 (n) T [ x1 (k )], y 2 (n) T [ x2 (k )] 若y(n) T [ax1 (n) bx2 (n)] ay1 (n) by2 (n) 则系统称为线性系统。
n
| h( n) |
例如不稳定系统: h(n) sin n
h( n) u ( n )
1.4 线性差分方程描述的LTI系统(1)
(1)N阶线性差分方程
ak y(n k ) bk x(n k ) , ak 1,ak、bk为常数
k 0 k 0
N
第一章 时域离散信号和离散系统
1.1 时域离散信号 1.2 时域离散系统 1.3 线性非时变系统(LTI)
1.4 离散系统的输入输出描ቤተ መጻሕፍቲ ባይዱ法-线性常系数差分方程
1.5 结束语
1.1 时域离散信号(1)
(a)正 弦 信 号
(1)时间信号 信号:传递信息的函数。自变量有多种形式。一维和多维。 时间信号:自变量为时间的信号。声压p(t)。一维信号。

数字信号处理程佩青第三版课件(全套课件)

数字信号处理程佩青第三版课件(全套课件)

j0n
M 0, 1, 2
表明复指数序列具有以2为周期的周期性,在 以后的研究中,频率域只考虑一个周期就够了。
7. 周期序列
如果对所有n存在一个最小的正整数N,使下面等
式成立: x(n) x(n N)
则称x(n)为周期序列,最小周期为N。
例:
x(n) sin( n)
4
x(n) sin[ (n 8)],
4
N 8
一般正弦序列的周期性
设 x(n) Asin( 0n )
式中,A为幅度,ω0为数字域频率,为初相。
那么 x(n N ) Asin[ 0 (n N ) ] Asin( 0n 0N )
如果 x(n) x(n N)
则 Asin( 0n ) Asin[ 0 (n N) ]
N (2 /0 )k N,k均取整数
xa(t) 0
xa(nT)
t
2T
0
t
T
这里 n 取整数。对于不同的 n 值,xa(nT) 是 一个有序的数字序列,该数字序列就是离散时间信 号。注意,这里的n取整数,非整数时无定义,另 外,在数值上它等于信号的采样值,即
x(n) xa (nT ), n
离散时间信号的表示方法:公式表示法、图形 表示法、集合符号表示法,如
线性卷积的计算
y(n) x(m)h(n m) x(n) h(n) m
计算它们的卷积的步骤如下: (1)折叠:先在哑变量坐标轴k上画出x(k)和
h(k),将h(k)以纵坐标为对称轴折叠成 h(-k)。 (2)移位:将h(-k)移位n,得h(n-k)。当n为
正数时,右移n;当n为负数时,左移n。 (3)相乘:将h(n-k)和x(k)的对应取样值相乘。 (4)相加:把所有的乘积累加起来,即得y(n)。

数字信号处理第四版(高西全)第1章

数字信号处理第四版(高西全)第1章
1第1章时域离散信号和时域离散系统第第11章章时域离散信号和时域离散系统时域离散信号和时域离散系统11引言引言12时域离散信号13时域离散系统14时域离散系统的输入输出描述法线性常系数差分方程15模拟信号数字处理方法习题与上机题第1章时域离散信号和时域离散系统11引言引言信号通常是一个自变量或几个自变量的函数
本章作为全书的基础,主要学习时域离散信号的表示 方法和典型信号、时域离散线性时不变系统的时域分析方
第1章 时域离散信号和时域离散系统
1.2 时域离散信号
实际中遇到的信号一般是模拟信号,对它进行等间
假设模拟信号为xa (t),以采样间隔T对它进行等间隔 采样,得到:
x(n) xa (t) tnT=xa (nT ) - n (1.2.1)
x(n) x(m) (n m) m
(1.2.12)
这种任意序列的表示方法,在信号分析中是一个很有用的
第1章 时域离散信号和时域离散系统
例如, x(n)={-0.0000 ,-0.5878 ,-0.9511,
-0.9511,-0.5878,0.0000,0.5878, 0.9511,0.9511,
0.5878,0.0000},相应的 n=-5, -4, -3,
序列x(n)的MATLAB表示如下:
in (π 8
n)
0
π 8
第1章 时域离散信号和时域离散系统
(2) 2π/ω0不是整数,是一个有理数时,设 2π/ω0=P/Q,式中P、Q是互为素数的整数,取k=Q,那么 N=P,则该正弦序列是以P为周期的周期序列。例如, sin(4πn/5), 2π/ω0=5/2, k=2, 该正弦序列是以5为周期的周
axis([-5, 6, -1.2, 1.2]); xlabel('n'); ylabel('x(n)')

信号与系统-吴大正PPT课件

信号与系统-吴大正PPT课件
■ 第 17 页
§1.2 信号的描述和分类
信号的描述 信号的分类 几种典型确定性信号
■ 第 18 页
一、信号的描述
信号是信息的一种物理体现。它一般是随时间或 位置变化的物理量。
信号按物理属性分:电信号和非电信号。它们 可以相互转换。
电信号容易产生,便于控制,易于处理。本课 程讨论电信号——简称“信号”。


第1页
信号与系统
是电子技术、信息工程、通信工程 等专业重要的学科基础课
课程介绍
Signals and Systems
电子技术、 信息工程、 通信工程 等专业的 考研课程

第3页
课程位置
先修课
后续课程
《高等数学》 《通信原理》
《线性代数》 《数字信号处理》
《复变函数》 《自动控制原理》
《电路分析基础》 《数字图像处理》


第7页
参考书目
(1)郑君里等. 信号与系统(第二版) . 北京:高等教育出 版社, 2000 (2) 管致中等 . 信号与线性系统 (第四版) . 北京:高等 教育出版 社, 2004 (3)A.V.OPPENHEIM. 信号与系统 (第二版) .北京 :电 子工业出版 社, 2002 (4)王松林、张永瑞、郭宝龙、李小平.信号与线性系统 分析 (第4版) 教学指导书. 北京:高等教育出版 社, 2006


第8页
信号与系统
第一章 信号与系统
第二章 连续系统的时域分析
第三章 离散系统的时域分析
第四章 傅里叶变换和系统的频域分析
第五章 连续系统的s域分析
第六章 离散系统的z域分析
第七章 系统函数
第八章 系统的状态变量分析

高西全_丁玉美_数字信号处理课件(第三版)

高西全_丁玉美_数字信号处理课件(第三版)
③ Sa(t) 0, t nπ ,n 1, 2,3L
④ sin t d t π , sin t d t π
0t
2 t
⑤ limSa(t) 0 t
四.冲激响应
1.定义
系统在单位冲激信号 (t) 作用下产生的零状态响应,称为单位
冲激响应,简称冲激响应,一般用h(t)表示。
(t)
解:由初始条件 y(1) 0及
差分方程y(n) ax(n 1) x(n) 得
n 0时, y(0) ay(1) δ(0) 1
n 1时,y (1) ay(0) δ(1) a
n 2时, y(2) ay(1) δ(2) a2 n n时, y(n) an y(n) anu(n)
(t t0 )
(1)
0
t0
t
延时的冲激信号
冲激信号可以由满足下面条件的一些脉冲信号极限得到
脉冲信号是偶函数; 脉冲宽度逐渐变小,直至无穷小; 脉冲高度逐渐变大,直至无穷大; 脉冲面积一直保持为 1。
二、冲激函数的性质
(1)抽样性
f (t) (t) d t f (0)
f (t) f1(t) f2 (t)
主要利用卷积来求解系统的零状态响应。
1.2 时域离散信号
离散时间信号(序列)只在离散时刻给出函数 值,是时间上不连续的序列。
实际中遇到的信号一般是模拟信号,对它进行 等间隔采样便可以得到时域离散信号。假设模 拟信号为xa (t),以采样间隔T对它进行等间隔 采样,得到:
3、判断题: 一个系统是因果系统的充要条件是,
单位序列响应h(n)是因果序列。
答案: 错
课堂练习
4、将序列x(n)用一组幅度加权和延迟的 冲激序列的和来表示 。
刻的序列值逐项对应相加和相乘。

第一章 时域离散信号和时域离散系统

第一章 时域离散信号和时域离散系统

x(n) = −3δ (n + 4) − δ (n + 3) − δ (n + 2) − δ (n + 1) +6δ (n) + 6δ (n − 1) + 6δ (n − 2) + 6δ (n − 3) + 6δ (n − 4)
时域离散信号
Example (2) x1(n)的波形是x (n)的波形右移2个单位,再乘以2,波形如 下。
x3(n) 6 3 1 0 1 2 -1 -3 n
时域离散信号
Example 2. 给定信号x(n) : ( n) x
= R5 (n + 1) − R4 (n − 1)
试用延迟的单位脉冲序列及其加权和画出表示x(n)序列
R5(n+1) -R4(n-1)
x (n)
-1 0 1
n
0
n
x( n) = δ ( n + 1) + δ ( n) − δ (n − 4)
时域离散系统
【例2】检查y(n)=nx(n)所代表的系统是否是时不变系统。 解 : y(n)=nx(n) y(n-n0)=(n- n0)x(n- n0) T[x(n- n0)]=nx(n- n0) y(n- n0)≠T[x(n- n0)] )≠T[ 因此该系统不是时不变系统。 π 同样方法可以证明 y(n) = x(n)sin(ω0n + ) 4 所代表的系统不是时不变系统。
ω = Ω / fs
时域离散信号
复指数序列
x(n) = e(σ+jω0)n
式中 ω0 为数字域频率,设σ=0,用极坐标和实部虚部表示如 下式:
x(n)=e jω0n x(n)=cos(ω0n)+jsin(ω0n)

时域离散信号和时域离散系统数字信号处理第三版课程辅导及课后习题详解

时域离散信号和时域离散系统数字信号处理第三版课程辅导及课后习题详解

第 1 章 时域离散信号和时域离散系统
(2)
x(n)=x(n)*δ(n)
该式说明任何序列与δ(n)的线性卷积等于原序列。
x(n-n0)=x(n)*δ(n-n0)
第 1 章 时域离散信号和时域离散系统
1.2
解线性卷积是数字信号处理中的重要运算。 解线性卷积有 三种方法, 即图解法(列表法)、 解析法和在计算机上用 MATLAB语言求解。 它们各有特点。 图解法(列表法)适合 于简单情况, 短序列的线性卷积, 因此考试中常用, 不容易 得到封闭解。 解析法适合于用公式表示序列的线性卷积, 得 到的是封闭解, 考试中会出现简单情况的解析法求解。 解析 法求解过程中, 关键问题是确定求和限, 求和限可以借助于 画图确定。 第三种方法适合于用计算机求解一些复杂的较难的 线性卷积, 实验中常用。
第 1 章 时域离散信号和时域离散系统
1.4
1. 用单位脉冲序列δ(n)及其加权和表示题1图所示的序列。
题1图
第 1 章 时域离散信号和时域离散系统
解:
x(n)=δ(n+4)+2δ(n+2)-δ(n+1)+2δ(n)+δ(n-1)
+2δ(n-2)+4δ(n-3)+0.5δ(n-4)+2δ(n-6)
第 1 章 时域离散信号和时域离散系统
1.1 学习要点与重要公式
本章内容是全书的基础,因此学好本章是极其重要的。 数字信号和数字系统与模拟信号和模拟系统不同,尤其是处 理方法上有本质的区别。 模拟系统用许多模拟器件实现, 数字系统则通过运算方法实现。
第 1 章 时域离散信号和时域离散系统
1.1.1
第 1 章 时域离散信号和时域离散系统

数字信号处理_吴镇扬_第一章_ppt课件

数字信号处理_吴镇扬_第一章_ppt课件

M(t) (t n T)
则有
n
xˆa(t)xa(t)M(t)xa(t)(tn)T xa(n)T(tn)T
n
n
实际情况下,τ=0达不到,但 τ<<T时,实际采样接近理想采样 ,理想采样可看作是实际采样物理 过程的抽象,便于数学描述,可集 中反映采样过程的所有本质特性, 理想采样对Z变换分析相当重要。
满足绝对可和的条件。
值得指出:
(1)由于 ejej(2),所以 X(e j )是以2π为周期的周期函数。
(2)DTFT
X(ej) x(n)ejn n
正是周期函数 X(e j ) 的付氏级数展开,而x(n)是付氏级数的系数。这一概
念在以后滤波器设计中有用。
DTFT的一些主要性质见表1.2。(补充!)
在每一个采样点上,由于只有该采样值对应的内插函数不为零,所以保 证了各采样点上信号值不变,而采样之间的信号则由各采样值内插函数的波 形延伸迭加而成。
内插公式的意义: 证明了只要满足采样频率高于两倍信号最高频谱,整个连续信号就可以 用它的采样值完全代表,而不损失任何信息——奈奎斯特定律。
1.3 离散信号的DTFT与z变换
dt
1 T
xa (t)
e jm st e jt dt
m
因此有,
1 T M
xa
(t)e
j ( m s
)t
dt
X ˆa(j )T 1m X a(j jm s)
所以,理想采样信号的频谱是连续信号频谱的周期延拓,重复周期为s( 采样频率)。
Xa(j)
T
Xa(j)
0
s 2 s 2
X(z) (n)zn1z01 n
由于n1=n2=0,其收敛域为整个闭域 z 平面,0≤|Z|≤∞,

时域离散信号和系统ppt课件

时域离散信号和系统ppt课件
归纳得:y(n)=(1+a)an u(n)
问题: u(n)的作用 ? 递推方向?
2021精选ppt
8
第1章 时域离散信号和时域离散系统
结论: 1. 对同一个差分方程和同一个输入信号,因为初始条件不同
得到的输出信号是不相同的。
2. 一个差分方程不一定代表因果系统,初始条件不同,则可 能得到非因果系统 。
y1(n)=ay1(n-1)+δ(n)
和例1.4.1(2)相同,输出如下:
y1(n)=(1+a)an u(n)
2021精选ppt11源自第1章 时域离散信号和时域离散系统
(2) x2(n)=δ(n-1),y2(-1)=1 y2(n)=ay2(n-1)+δ(n-1)
n=0时,n=1时,n=2时, …n=n时,
y2(0)=ay2(-1)+δ(-1)=a y2(1)=a y2(0)+δ(0)=1+a2 y2(2)=a y2(1)+δ(1)=(1+ a2)a y2(n)=(1+ a2)a n-1 y2(n)=(1+ a2)a n-1 u(n-1)+aδ(n)
2021精选ppt
12
第1章 时域离散信号和时域离散系统
n=1: y(0)=a-1(y(1)-δ(1))=0
n=0: y(-1)=a-1(y(0)-δ(0))=-a-1
n=-1: y(-2)=a-1(y(-1)-δ(-1))=-a-2
n=-|n| y(n-1)=-a n-1
通式
将n-1用n代替,得到
y(n)=-an u(-n-1) ? 非因果序列 2021精选ppt
P20
10
第1章 时域离散信号和时域离散系统

数字信号处理西安邮电大学第一章 (2)

数字信号处理西安邮电大学第一章 (2)

如右图所示。
2. 移位、翻转及尺度变换
设序列x(n),其移位序列为x(n-m);
当m >0时,称为x(n)的延时(右移)序列; 当m <0时,称为x(n)的超前(左移)序列。 x(-n)则是x(n)的翻转序列(关于纵轴翻转)。 x(mn)是x(n)序列每m(m≥1)个点取一点形成的(序
列的抽取)。如当m=2时,x(2n)是x(n)每两个点取一个点。
函数δ(t)。但是, 在连续时间系统中,δ(t)是 t=0 点脉
宽趋于零,幅值趋于无限大,面积为1的信号,是极
限概念的信号, 并非任何现实的信号。而离散时间系 统中的δ(n),却完全是一个现实的序列, 它的脉冲幅 度是1, 是一个有限值。
2. 单位阶跃序列u(n)
1 u ( n) 0
n0 n0
(1-1)
这个序列只在n=0 处有一个单位值1,其余点上皆为0, 因
此也称为“单位采样序列”。单位采样序列如图1-2所示。
(n)
1 … -5 -4 -3 -2 -1 0 1 2 3 4 5 … n
图 1-2 δ(n)序列
这是最常用、最重要的一种序列,它在离散时间
系统中的作用,很类似于连续时间系统中的单位冲激
P 0 Q 2
其中,P,Q为互素的整数,取k=Q,则N=P。
(3)当2π/ω0是无理数时,则任何k皆不能使N取正整数。 这 时,正弦序列不是周期性的。 这和连续信号是不一样的。
同样,指数为纯虚数的复指数序列
x(n) Ae j0n
的周期性与正弦序列的情况相同。
四、 用单位采样序列来表示任意序列

n
-1 0 1 2 3 4 5
… n
-1 0 1 2 3 4 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ 本章作为全书的基础,主要学习时域离散信号的表示方法和典型信 号、线性时不变系统的因果性和稳定性,以及系统的输入输出描述 法,线性常系数差分方程的解法。最后介绍模拟信号数字处理方法。
时域离散信号
▪ 对模拟信号xa(t)进行等间隔采样,采样间隔为T,得到
x a (t)t= n T = x a (n T ), -∞ < n < ∞
δ(n) 1
-1 0 1 2 3
n
(a)
δ(t)
0
t
(b)
时域离散信号
▪ 单位阶跃序列u(n)
u(n)
=
1, 0,
n≥0 n<0
单位阶跃序列如图所示。 u(n)
1

n
012 3
它类似于模拟信号中的单位阶跃函数u(t)。δ(n)与u(n)之间的关
系如下式所示:
δ(n)= u(n) - u(n-1)

时域离散信号
如果对所有n存在一个最小的正整数N,使下面等式成立:

x(n)=x(n+N),
-∞<n<∞
则称序列x(n)为周期性序列,周期为N,注意N要取整数。例如:
▪ Example
2n+5,
1. 给定信号x(n) : x(n)=6,
0,
-4≤n≤-1 0≤n≤4
其他
(1)试用延迟的单位脉冲序列及其加权和画出表示x(n)序列;
(2)令x1(n)=2 x(n-2),试画出x1(n)的波形; (3)令x2(n)=2 x(n+2),试画出x2(n)的波形; (4)令x3(n)= x(2 - n),试画出x3(n)的波形。
如下。
x3(n)
6 3 1
01 2
-1 n -3
时域离散信号
▪ Example
2. 给定信号x(n) :x(n ) R 5(n 1 ) R 4(n 1 )
试用延迟的单位脉冲序列及其加权和画出表示x(n)序列
R5(n+1) -R4(n-1)
x (n)
-1 0 1
n
0
n
x ( n ) ( n 1 ) ( n ) ( n 4 )
也可以表示成下式:
/ fs
时域离散信号
▪ 复指数序列
x(n) = e(σ+jω0)n 式中ω0为数字域频率,设σ=0,用极坐标和实部虚部表示如
下式:
x(n)=e
jω n 0
x(n)=cos(ω0n)+jsin(ω0n)
由于n取整数,下面等式成立:
e j(ω0+2πM)n= e jω0n,
M=0,±1,±2…
如果正弦序列是由模拟信号xa(t)采样得到的,那么 xa(t)=sin(Ωt) xa (t)|t=nT = sin(ΩnT) x(n) = sin(ωn)
因为在数值上,序列值与采样信号值相等,因此得到数字频率ω 与模拟角频率Ω之间的关系为
ω =ΩT 它表示凡是由模拟信号采样得到的序列,模拟角频率Ω与序列的 数字域频率ω成线性关系。由于采样频率fs与采样周期T互为倒数,
个序列值。
时域离散信号
▪ 需要说明的是,这里n取整数,非整数时无定义,另外,
在数值上它等于信号的采样值,即
x(n)=xa(nT), -∞<n<∞ 信号随n的变化规律可以用公式表示,也可以用图形表 示。如果x(n)是通过观测得到的一组离散数据,则其可用
集合符号表示,例如:
x(n)={…1.3,2.5,3.3,1.9,0,4.1…}
解:
(1)
x ( n ) 3 ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) 6( n ) 6( n 1 ) 6( n 2 ) 6( n 3 ) 6( n 4 )
时域离散信号
▪ Example
▪ (2) x1(n)的波形是x (n)的波形右移2个单位,再乘以2,波形如
时域离散信号
▪ 常用的典型序列 ▪ 单位采样序列d(n)
(n)
1, 0,
n n
0 0
▪ 单位采样序列也可以称为单位脉冲序列,特点是仅在n=0时取值为1,其它均为 零。
▪ 它类似于模拟信号和系统中的单位冲激函数δ(t),但不同的是δ(t)在t=0时, 取值无穷大,t≠0时取值为零,对时间t的积分为1。单位采样序列和单位冲激 信号如图所示。
u(n) = δ(n-k) k=0
时域离散信号
▪ 矩形序列RN(n)
RN(n)=10,,0el≤sen≤N-1
▪ 上式中N称为矩形序列的长度。当N=4时,R4(n)的波形如图所示。
R4(n) 1
n 01 23
▪ 矩形序列可用单位阶跃序列表示,如下式:
▪ RN(n)=u(n)-u(n-N)
时域离散信号
-∞<n<∞ 这里n取整数。对于不同的n值, xa(nT)是一个有序的数字序 列:… xa(-T)、 xa(0)、 xa(T)…,该数字序列就是时域离散
信号。实际信号处理中,这些数字序列值按顺序放在存贮器中,
此时nT代表的是前后顺序。为简化,采样间隔可以不写,形成 x(n)信号,x(n)可以称为序列。对于具体信号,x(n)也代表第n
下。
x1(n)
12
6
01 2 3 45 6Biblioteka n-2-6
时域离散信号
▪ Example
(3) x2(n)的波形是x (n)的波形左移移2个单位,再乘以2,波形如
下。
x2(n) 12
6 2 -4 -3 -2 -1 0 1 2 n -2 -6
时域离散信号
▪ Example
(4) x3(n)的波形:先画x (-n)的波形,然后右移移2个单位,波形
时域离散信号
▪ 实指数序列
x(n)=anu(n),
a为实数
如果|a| < 1,x(n)的幅度随n的增大而减小,称x(n)为收敛序列;
如果|a| > 1,则称为发散序列。其波形如图所示。
时域离散信号
正弦序列 x(n) = sin(ωn)
式中ω称为正弦序列的数字域频率,单位是弧度,它表示序列变
化的速率,或者说表示相邻两个序列值之间变化的弧度数。
第一章时域离散信号和时域离散系统
精品
第一章 时域离散信号和时域离散系统
本章主要内容 1.1 引言 1.2 时域离散信号 1.3 时域离散系统 1.4 时域离散系统的输入输出描述法—线性常系数差分
方程 1.5 模拟信号数字处理方法 1.6 小结
引言
▪ 信号通常是一个自变量或几个自变量的函数。如果仅有一个自变量, 则称为一维信号;如果有两个以上的自变量,则称为多维信号。本 书仅研究一维数字信号处理的理论与技术。关于信号的自变量,有 多种形式,可以是时间、距离、温度、电压等,我们一般地把信号 看作时间的函数。
相关文档
最新文档