(完整word版)2020年上海浦东初三数学一模试卷及答案,推荐文档
2020年上海市中考数学一模试卷及解析
2020年上海市中考一模试卷数学试卷一、选择题(本大题共6小题,共24分)1.在Rt△ABC中,∠C=90°,如果BC=5,AB=13,那么sin A的值为()A. 513B. 512C. 1213D. 1252.下列函数中,是二次函数的是()A. y=2x−1B. y=2x2C. y=x2+1D. y=(x−1)2−x23.抛物线y=x2−4x+5的顶点坐标是()A. (−2,1)B. (2,1)C. (−2,−1)D. (2,−1)4.如图,点D、E分别在△ABC的边AB、AC上,下列各比例式不一定能推得DE//BC的是()A. ADBD =AECEB. ADAB=DEBCC. ABBD =ACCED. ADAB=AEAC5.如图,传送带和地面所成斜坡的坡度为1:3,它把物体从地面点A处送到离地面3米高的B处,则物体从A到B所经过的路程为()A. 3√10米B. 2√10米C. √10米D. 9米6.下列说法正确的是()A. a⃗+(−a⃗ )=0B. 如果a⃗和b⃗ 都是单位向量,那么a⃗=b⃗C. 如果|a⃗|=|b⃗ |,那么a⃗=b⃗D. 如果a⃗=−12b⃗ (b⃗ 为非零向量),那么a⃗//b⃗二、填空题(本大题共12小题,共48分)7.已知x=3y,那么x+yx+2y=______.8.已知线段AB=2cm,P是线段AB的黄金分割点,PA>PB,那么线段PA的长度等于______cm.9.如果两个相似三角形对应边之比是2:3,那么它们的对应中线之比是______.10.如果二次函数y=x2−2x+k−3的图象经过原点,那么k的值是______.11.将抛物线y=−3x2向下平移4个单位,那么平移后所得新抛物线的表达式为______.12.如果抛物线经过点A(−1,0)和点B(5,0),那么这条抛物线的对称轴是直线______.13.二次函数y=−2(x+1)2的图象在对称轴左侧的部分是______.(填“上升”或“下降”)14.如图,在△ABC中,AE是BC边上的中线,点G是△ABC的重心,过点G作GF//AB交BC于点F,那么EFEB=______.15.如图,已知AB//CD//EF,AD=6,DF=3,BC=7,那么线段CE的长度等于______.16.如图,将△ABC沿射线BC方向平移得到△DEF,边DE与AC相交于点G,如果BC=6cm,△ABC的面积等于9cm2,△GEC的面积等于4cm2,那么CF=______cm.17.用“描点法”画二次函数y=ax2+bx+c的图象时,列出了如下的表格:x…01234…y=ax2+bx+c…−3010−3…那么当x=5时,该二次函数的值为.18.在Rt△ABC中,∠C=90°,AC=2,BC=4,点D、E分别是边BC、AB的中点,将△BDE绕着点B旋转,点D、E旋转后的对应点分别为点、,当直线经过点A时,线段的长为______.三、计算题(本大题共1小题,共10分)19.为了测量大楼顶上(居中)避雷针BC的长度,在地面上点A处测得避雷针底部B和顶部C的仰角分别为55°58′和57°,已知点A与楼底中间部位D的距离约为80米,求避雷针BC的长度(参考数据:,,,sin57°≈0.84,tan57°≈1.54)四、解答题(本大题共6小题,共68分) 20. 计算:tan45°−cos60°2sin30∘+cot 260°21. 如图,在平行四边形ABCD 中,点E 在边AD 上,且AE =2ED ,联结BE 并延长交边CD 的延长线于点F ,设BA ⃗⃗⃗⃗⃗ =a ⃗ ,BC⃗⃗⃗⃗⃗ =b ⃗ . (1)用a ⃗ ,b ⃗ 表示BE⃗⃗⃗⃗⃗ ,DF ⃗⃗⃗⃗⃗ ; (2)先化简,在求作:(−32a⃗ +b ⃗ )+2(a ⃗ −b ⃗ )(不要求写作法,但要写明结论).22. 如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,且AD =3,AC =6,AE =4,AB =8.(1)如果BC =7,求线段DE 的长;(2)设△DEC 的面积为a ,求△BDC 的面积(用a 的代数式表示).23.如图,已知△ABC和△ADE,点D在BC边上,DA=DC,∠ADE=∠B,边DE与AC相交于点F.(1)求证:AB⋅AD=DF⋅BC;(2)如果AE//BC,求证:BDDC =DFFE.24.如图,在平面直角坐标系xOy中,抛物线y=−x2+bx+c与x轴的两个交点分别为A(−1,0),B(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)联结AC、BC,求∠ACB的正切值;(3)点P在抛物线上,且∠PAB=∠ACB,求点P的坐标.25.在Rt△ABC中,∠A=90°,AB=4,AC=3,D为AB边上一动点(点D与点A、B不重合),联结CD,过点D作DE⊥DC交边BC于点E.(1)如图,当ED=EB时,求AD的长;(2)设AD=x,BE=y,求y关于x的函数解析式并写出函数定义域;(3)把△BCD沿直线CD翻折得,联结,当是等腰三角形时,直接写出AD的长.答案和解析1.【答案】A【解析】解:如图:在Rt△ABC中,∠C=90°,BC=5,AB=13,sinA=BCAB =513.故选:A.本题可画出三角形,结合图形运用三角函数定义求解.此题考查了三角函数的定义.可借助图形分析,确保正确率.2.【答案】C【解析】解:二次函数的标准形式为y=ax2+bx+c(a≠0),∴y=x2+1是二次函数,故选:C.根据二次函数的标准形式y=ax2+bx+c(a≠0),从选项中直接可以求解.本题考查二次函数的定义;熟练掌握二次函数的定义是解题的关键.3.【答案】B【解析】解:∵y=x2−4x+5=(x−2)2+1,∴顶点坐标为(2,1),故选:B.利用配方法化成顶点式求解即可.本题考查了二次函数的性质,化成顶点解析式是求抛物线的顶点坐标的一种方法.4.【答案】B【解析】解:∵ADBD =AECE,∴DE//BC,∵ABBD =ACEC,∴DE//BC,∵ADAB =AEAC,∴DE//BC,故选:B.根据平行线分线段成比例定理判断即可.本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.5.【答案】A【解析】解:∵BC:AC=1:3,∴3:AC=1:3,∴AC=9,∴AB=√AC2+BC2=√9+81=3√10,∴物体从A到B所经过的路程为3√10,故选:A.由题意可得物体从A到B所经过的路程为AB的长,根据坡比求出AC的长,再根据勾股定理求出AB的长即可.本题考查了轨迹,解直角三角形,知道坡比的概念是解题的关键.6.【答案】D【解析】解:A、a⃗+(−a⃗ )=0,错误应该等于零向量.B、如果a⃗和b⃗ 都是单位向量,那么a⃗=b⃗ ,错误,模相等,方向不一定相同.C、如果|a⃗|=|b⃗ |,那么a⃗=b⃗ ,错误,模相等,方向不一定相同.D、如果a⃗=−12b⃗ (b⃗ 为非零向量),那么a⃗//b⃗ ,正确,故选:D.根据平面向量的性质一一判断即可.本题考查平面向量,平行向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】45【解析】解:∵x=3y,∴x+yx+2y =3y+y3y+2y=45.故答案为:45.直接利用已知代入原式求出答案.此题主要考查了比例的性质,正确把x代入是解题关键.8.【答案】√5−1【解析】解:根据黄金分割定义,得PA2=AB⋅PB,PA2=2(2−PA)解得PA=√5−1.故答案为√5−1.根据黄金分割的定义:把线段AB分成两条线段AP和BP(PA>PB),且使AP是AB和BP的比例中项,叫做把线段AB黄金分割,点P叫做线段AB的黄金分割点.本题考查了黄金分割,解决本题的关键是掌握黄金分割定义.9.【答案】2:3【解析】解:∵两个相似三角形对应边之比是2:3,∴它们的对应中线之比是2:3,故答案为:2:3.根据相似三角形对应中线的比等于相似比解答.本题考查的是相似三角形的性质,相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.10.【答案】3【解析】解:∵二次函数y=x2−2x+k−3的图象经过原点,∴k−3=0,解得k=3,故答案为:3.将原点坐标(0,0)代入二次函数解析式,列方程求k即可.此题考查了二次函数图象上的点与解析式的关系,将点的坐标代入解析式是解题的关键.11.【答案】y=3x2−4【解析】解:∵抛物线y=−3x2向下平移4个单位,∴抛物线的解析式为y=−3x2−4,故答案为:y=−3x2−4.根据向下平移,纵坐标相减,即可得到答案.本题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.12.【答案】x=2【解析】解:∵抛物线经过点A(−1,0)和点B(5,0),∴抛物线的对称轴为直线x=−1+52=2.故答案为:x=2.根据点A,B的坐标,利用二次函数的性质可求出抛物线的对称轴,此题得解.本题考查了二次函数的性质,根据抛物线的对称性,找出抛物线的对称轴是解题的关键.13.【答案】上升【解析】解:∵−2<0,∴二次函数的开口向下,则图象在对称轴左侧的部分y随x值的增大而增大,故答案为上升.由函数解析式可知二次函数的开口向下,图象在对称轴左侧的部分y随x值的增大而增大.本题考查二次函数的性质;熟练掌握二次函数的图象及性质是解题的关键.14.【答案】13【解析】解:∵点G是△ABC的重心,∴GE:AG=1:2,∴GE:AE=1:3,∵GF//AB,△EGF∽△EAB,∴EFEB =GEAE=13,故答案为13.由点G是△ABC的重心,可得GE:AG=1:2,则GE:AE=1:3,再GF//AB,得出结论.本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了相似三角形的判定与性质.15.【答案】72【解析】解:∵AB//CD//EF,AD=6,DF=3,BC=7,∴ADDF =BCCE,即63=7CE,解得:CE=72,故答案为:72根据平行线分线段所得线段对应成比例解答即可.本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.16.【答案】2【解析】解:∵AB//DE,∴△ABC∽△GEC,∴S△GECS△ABC =(ECBC)2=49,∴EC6=23∴EC=4cm,∵EF=BC=6cm,∴CF=EF−EC=6−4=2cm.故答案是:2易证△ABC∽△GEC,根据相似三角形的面积的比等于相似比的平方,即可求得EC的长,则CF即可求解.本题考查了平移的性质,以及相似三角形的性质,正确理解性质求得EC的长是关键.17.【答案】−8【解析】解:从表格可知:抛物线的顶点坐标为(2,1),设y=ax2+bx+c=a(x−2)2+1,从表格可知过点(0,−3),代入得:−3=a(0−2)2+1,解得:a=−1,即y=−(x−2)2+1,当x=5时,y=−(5−2)2+1=−8,故答案为:−8.从表格可知:抛物线的顶点坐标为(2,1),抛物线过点(0,−3),代入求出抛物线的解析式,再把x=5代入函数解析式,即可求出答案.本题考查了二次函数图象上点的坐标特征,二次函数的图象和性质,用待定系数法求二次函数的解析式等知识点,能求出函数的解析式是解此题的关键.18.【答案】2√5或65√5【解析】解:如图1,当点A在的延长线上时,∵∠C=90°,AC=2,BC=4,∴AB=√AC2+BC2=√4+16=2√5,∵点D、E分别是边BC、AB的中点,∴DE//AC,DE=12AC=1,BD=12BC=2,∴∠EDB=∠ACB=90°,∵将△BDE绕着点B旋转,,,,∵在Rt△ABC和中,,AB=BA,∴Rt△ABC≌,,且,∴四边形是平行四边形,且∠ACB=90°,∴四边形是矩形,;如图2,当点A在线段的延长线上时,,,,∵将△BDE绕着点B旋转,,∵BE′AB =12=BD′BC,∽,,,,故答案为:2√5或6√55.分两种情况:①点A在的延长线上时;②点A在线段的延长线上时;然后分类讨论,求出线段BD的长各是多少即可.本题属于三角形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,矩形的判定和性质,勾股定理等知识,解题的关键是理解题意,正确寻找相似三角形解决问题,属于中考常考题型.19.【答案】解:在Rt△ABD中,∵tan∠BAD=BDAD,∴1.48=BD80,∵AD =80米,∴BD =118.4(米),在Rt △CAD 中,∵tan∠CAD =CDAD , ∴1.54=CDAD ,∴CD =123.2(米),∴BC =CD −BD =4.8(米). 答:避雷针BC 的长度为4.8米.【解析】解直角三角形求出CD ,BD ,根据BC =CD −BD 求解即可.本题考查解直角三角形的应用,解题的关键是熟练掌握基本知识,属于中考常考题型.20.【答案】解:原式=1−122×12+(√33)2=12+13=56.【解析】直接利用特殊角的三角函数值进而分别代入求出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键. 21.【答案】解:(1)∵四边形ABCD 是平行四边形, ∴AD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ =b ⃗ ,AB//CD , ∵AE =2ED ,∴AE ⃗⃗⃗⃗⃗ =23AD ⃗⃗⃗⃗⃗⃗ =23b ⃗ ,∴BE ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AE ⃗⃗⃗⃗⃗ =a ⃗ +23b ,∵DF :AB =DE :AE =1:2, ∴DF =12AB ,∴DF ⃗⃗⃗⃗⃗ =12BA ⃗⃗⃗⃗⃗ =12a ⃗ .(2)(−32a ⃗ +b ⃗ )+2(a ⃗ −b ⃗ )=−32a ⃗ +b ⃗ +2a ⃗ −2b ⃗ =12a ⃗ −b⃗ ,取AB 的中点H ,连接HC ,HC ⃗⃗⃗⃗⃗⃗ 即为所求.【解析】(1)利用三角形的法则以及平行线分线段成比例定理求解即可.(2)先化简,取AB 的中点H ,连接HC ,HC⃗⃗⃗⃗⃗⃗ 即为所求. 本题考查平面向量,平行向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:(1)∵AEAB =48=12,ADAC=36=12,∴AEAB =ADAC,且∠DAE=∠BAC,∴△ADE∽△ACB,∴ADAC =DEBC=12,∴DE=12BC=12×7=72;(2)∵AE=4,AC=6,∴EC=2=13AC,∴S△ACD=3S△DEC=3a,∵AD=3,AB=8,∴BD=5=53AD,∴S△BDC=53S△ADC=5a.【解析】(1)通过证明△ADE∽△ACB,可求解;(2)由线段的数量关系可求面积关系,即可求解.本题考查了相似三角形的判定和性质,证明△ADE∽△ACB是本题的关键.23.【答案】(1)证明:∵DA=DC,∴∠DAC=∠C,又∵∠ADE=∠B,∴△ABC∽△FDA,∴ABDF =BCAD,∴AB⋅AD=DF⋅BC;(2)证明:∵∠ADE+∠CDF=∠B+∠BAD,∠ADE=∠B,∴∠CDF=∠BAD,∵AE//BC,∴∠E=∠CDF,∠C=∠EAF,∴∠BAD=∠E,又∵∠ADE=∠B,∴△ABD∽△EDA,∴BDAD =ADAE,∵DA=DC,∴∠DAC=∠C,∴∠EAF=∠DAC,即AC平分∠DAE,作FM⊥AD于M,FN⊥AE于N,则FM=FM,∵△ADF的面积△AEF的面积=DFEF=12AD×FM12AE×FN=ADAE,∴BD DC =DFFE .【解析】(1)由等腰三角形的性质得出∠DAC =∠C ,由已知∠ADE =∠B ,证明△ABC∽△FDA ,得出ABDF =BCAD ,即可得出结论;(2)由三角形的外角性质得出∠CDF =∠BAD ,由平行线的性质得出∠E =∠CDF ,∠C =∠EAF ,证出∠BAD =∠E ,证明△ABD∽△EDA ,得出BDAD =ADAE ,证出∠EAF =∠DAC ,即AC 平分∠DAE ,作FM ⊥AD 于M ,FN ⊥AE 于N ,则FM =FM ,求出△ADF 的面积△AEF 的面积=DF EF=AD AE,即可得出结论.本题考查了相似三角形的判定与性质、等腰三角形的性质、三角形的外角性质、平行线的性质、角平分线的性质等知识;证明三角形相似是解题的关键.24.【答案】解:(1)将点A(−1,0),B(3,0)代入抛物线y =−x 2+bx +c 中, 得{−1−b +c =0−9+3b +c =0, 解得,b =2,c =3,∴抛物线的表达式为y =−x 2+2x +3;(2)∵在y =−x 2+2x +3中,当x =0时,y =3, ∴C(0,3),∴OC =OB =3,∴△OBC 为等腰直角三角形,∠OBC =45°, ∴BC =√2OC =3√2,如图1,过点A 作AH ⊥BC 于H , 则∠HAB =∠HBA =45°, ∴△AHB 是等腰直角三角形, ∵AB =4, ∴AH =BH =√22AB =2√2,∴CH =BC −BH =√2, ∴在Rt △AHC 中,tan∠ACH =AH CH=2√2√2=2,即∠ACB 的正切值为2;(3)①如图2,当∠PAB =∠ACB 时,过点P 作PM ⊥x 轴于点M ,设P(a,−a 2+2a +3),则M(a,0), 由(1)知,tan∠ACB =2, ∴tan∠PAM =2, ∴PMAM =2, ∴−a 2+2a+3a+1=2,解得,a 1=−1(舍去),a 2=1, ∴P 1(1,4);②取点P(1,4)关于x 轴的对称点Q(1,−4),延长AQ 交抛物线于P 2,则此时∠P 2AB =∠PAM =∠ACB ,设直线PQ 的解析式为y =kx +b ,将A(−1,0),Q(1,−4)代入, 得,{−k +b =0k +b =−4,解得,k =−2,b =−2, ∴y AQ =−2x −2, 联立,{y =−2x −2y =−x 2+2x +3,解得,{x =−1y =0或{x =5y =−12,∴P 2(5,−12);综上所述,点P 的坐标为(1,4)或(5,−12).【解析】(1)将点A ,B 坐标代入抛物线y =−x 2+bx +c 即可;(2)如图1,过点A 作AH ⊥BC 于H ,分别证△OBC 和△AHB 是等腰直角三角形,可求出CH ,AH 的长,可在Rt △AHC 中,直接求出∠ACB 的正切值; (3)此问需分类讨论,当∠PAB =∠ACB 时,过点P 作PM ⊥x 轴于点M ,设P(a,−a 2+2a +3),由同角的三角函数值相等可求出a 的值,由对称性可求出第二种情况.本题考查了待定系数法求解析式,锐角三角函数,交点的坐标等,解题关键是第三问要注意分类讨论思想的运用.25.【答案】解:(1)∵ED =EB , ∴∠EDB =∠B , ∵CD ⊥DE ,∴∠CDE =∠A =90°,∵∠ACD +∠ADC =90°,∠ADC +∠EDH =90°, ∴∠ACD =∠EDB =∠B , ∴tan∠ACD =tan∠B , ∴AD AC =AC AB ,∴AD 3=34, ∴AD =94.(2)如图1中,作EH ⊥BD 于H .在Rt △ACB 中,∵∠A =90°,AC =3,AB =4, ∴BC =√AC 2+BC 2=√32+42=5, ∵BE =y ,∴EH =35y ,BH =45y ,DH =AB −AD −BH =4−x −45y , ∵∠A =∠DHE =90°,∠ACD =∠EDH , ∴△ACD∽△HDE , ∴ACDH =AD EH ,∴34−x−45y=x35y, ∴y =20x−5x 29+4x(0<x <4).(3)①如图3−1中,设CB′交AB 于K ,作AE ⊥CK 于E ,DM ⊥CB′于M ,DN ⊥BC 于N∵AC =AB =3,AE ⊥CB′, ∴CE =EB′=12CB′=52,∴AE =√AC 2−CE 2=√32−(52)2=√112, 由△ACE∽△KCA , 可得AK =3√115,CK =185,∴BK =AB −AK =4−3√115, ∵∠DCK =∠DCB ,DM ⊥CM ,DN ⊥CB , ∴DM =DN , ∴S △CDKS△CDB=DKDB =12⋅CK⋅DM 12⋅BC⋅DN =CKCB =1855=1825,∴BD =2543BK =10043−1543√11,∴AD =AB −BD =4−(10043−15√1143)=7243+15√1143.②如图3−2中,当CB′交BA 的延长线于K 时,同法可得BD =2543BK =10043+15√1143,∴AD =AB −BD =7243−15√1143.【解析】(1)证明∠ACD=∠EDB=∠B,推出tan∠ACD=tan∠B,可得ADAC =ACAB,由此构建方程即可解决问题.(2)如图1中,作EH⊥BD于H.证明△ACD∽△HDE,推出ACDH =ADEH,由此构建关系式即可解决问题.(3)分两种情形:①如图3−1中,设CB′交AB于K,作AE⊥CK于E,DM⊥CB′于M,DN⊥BC于N.利用角平分线的性质定理求出BD即可.②如图3−2中,当CB′交BA的延长线于K时,同法可得BD.本题属于几何变换综合题,考查了解直角三角形,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.。
2020-2021学年上海市浦东新区九年级中考一模数学试卷(含解析)
2020-2021学年上海市浦东新区九年级一模数学试卷一、选择题(共6小题).1.A、B两地的实际距离AB=250米,如果画在地图上的距离A′B′=5厘米,那么地图上的距离与实际距离的比为()A.1:500B.1:5000C.500:1D.5000:12.已知在Rt△ABC中,∠C=90°,∠B=α,AC=2,那么AB的长等于()A.B.2sinαC.D.2cosα3.下列y关于x的函数中,一定是二次函数的是()A.y=(k﹣1)x2+3B.y=+1C.y=(x+1)(x﹣2)﹣x2D.y=2x2﹣7x4.已知一个单位向量,设、是非零向量,那么下列等式中正确的是()A.||=B.||=C.=D.=5.如图,在△ABC中,点D、F是边AB上的点,点E是边AC上的点,如果∠ACD=∠B,DE∥BC,EF∥CD,下列结论不成立的是()A.AE2=AF•AD B.AC2=AD•AB C.AF2=AE•AC D.AD2=AF•AB 6.已知点A(1,2)、B(2,3)、C(2,1),那么抛物线y=ax2+bx+1可以经过的点是()A.点A、B、C B.点A、B C.点A、C D.点B、C二、填空题(共12小题).7.如果线段a、b满足=,那么的值等于.8.已知线段MN的长为4,点P是线段MN的黄金分割点,那么较长线段MP的长是.9.计算:2sin30°﹣tan45°=.10.如果从某一高处甲看低处乙的俯角为36度,那么从低处乙看高处甲的仰角是度.11.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=3,那么AF=.12.如图,已知平行四边形ABCD的对角线AC与BD相交于点O,设=,=,那么向量关于、的分解式为.13.如果抛物线y=(m+4)x2+m经过原点,那么该抛物线的开口方向.(填“向上”或“向下”)14.如果(2,y1)(3,y2)是抛物线y=(x+1)2上两点,那么y1y2.(填“>”或“<”)15.如图,矩形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC的边BC长60厘米,高AH为40厘米,如果DE=2DG,那么DG=厘米.16.秦九韶的《数书九章》中有一个“峻积验雪”的例子,其原理为:如图,在Rt△ABC 中,∠C=90°,AC=12,BC=5,AD⊥AB,AD=0.4,过点D作DE∥AB交CB的延长线于点E,过点B作BF⊥CE交DE于点F,那么BF=.17.如果将二次函数的图象平移,有一个点既在平移前的函数图象上又在平移后的函数图象上,那么称这个点为“平衡点”.现将抛物线C1:y=(x﹣1)2﹣1向右平移得到新抛物线C2,如果“平衡点”为(3,3),那么新抛物线C2的表达式为.18.如图,△ABC中,AB=10,BC=12,AC=8,点D是边BC上一点,且BD:CD=2:1,联结AD,过AD中点M的直线将△ABC分成周长相等的两部分,这条直线分别与边BC、AC相交于点E、F,那么线段BE的长为.三、解答题(共7小题).19.已知向量关系式()=,试用向量、表示向量.20.已知抛物线y=x2+2x+m﹣3的顶点在第二象限,求m的取值范围.21.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F,且AB =6,BC=8.(1)求的值;(2)当AD=5,CF=19时,求BE的长.22.如图,燕尾槽的横断面是等腰梯形ABCD,现将一根木棒MN放置在该燕尾槽中,木棒与横断面在同一平面内,厚度等不计,它的底端N与点C重合,且经过点A.已知燕尾角∠B=54.5°,外口宽AD=180毫米,木棒与外口的夹角∠MAE=26.5°,求燕尾槽的里口宽BC(精确到1毫米).(参考数据:sin54.5°≈0.81,cos54.5°≈0.58,tan54.5°≈1.40,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)23.Rt△ABC中,∠ACB=90°,点D、E分别为边AB、BC上的点,且CD=CA,DE⊥AB.(1)求证:CA2=CE•CB;(2)联结AE,取AE的中点M,联结CM并延长与AB交于点H,求证:CH⊥AB.24.二次函数y=ax2+bx+c(a≠0)的图象经过点A(2,4)、B(5,0)和O(0,0).(1)求二次函数的解析式;(2)联结AO,过点B作BC⊥AO于点C,与该二次函数图象的对称轴交于点P,联结AP,求∠BAP的余切值;(3)在(2)的条件下,点M在经过点A且与x轴垂直的直线上,当△AMO与△ABP 相似时,求点M的坐标.25.四边形ABCD是菱形,∠B≤90°,点E为边BC上一点,联结AE,过点E作EF⊥AE,EF与边CD交于点F,且EC=3CF.(1)如图1,当∠B=90°时,求S△ABE与S△ECF的比值;(2)如图2,当点E是边BC的中点时,求cos B的值;(3)如图3,联结AF,当∠AFE=∠B且CF=2时,求菱形的边长.参考答案一、选择题(共6小题).1.A、B两地的实际距离AB=250米,如果画在地图上的距离A′B′=5厘米,那么地图上的距离与实际距离的比为()A.1:500B.1:5000C.500:1D.5000:1解:取米作为共同的长度单位,那么AB=250米,A'B'=5厘米=0.05米,所以==,所以地图上的距离与实际距离的比为1:5000.故选:B.2.已知在Rt△ABC中,∠C=90°,∠B=α,AC=2,那么AB的长等于()A.B.2sinαC.D.2cosα解:∵sin B=sinα=,AC=2,∴AB==,故选:A.3.下列y关于x的函数中,一定是二次函数的是()A.y=(k﹣1)x2+3B.y=+1C.y=(x+1)(x﹣2)﹣x2D.y=2x2﹣7x解:A、当k=1时,不是二次函数,故此选项不合题意;B、含有分式,不是二次函数,故此选项不合题意;C、化简后y=﹣x﹣2,不是二次函数,故此选项不合题意;D、是二次函数,故此选项符合题意;故选:D.4.已知一个单位向量,设、是非零向量,那么下列等式中正确的是()A.||=B.||=C.=D.=解:A、||=计算正确,故本选项符合题意.B、||与的模相等,方向不一定相同,故本选项不符合题意.C、与的模相等,方向不一定相同,故本选项不符合题意.D、与的模相等,方向不一定相同,故错误.故选:A.5.如图,在△ABC中,点D、F是边AB上的点,点E是边AC上的点,如果∠ACD=∠B,DE∥BC,EF∥CD,下列结论不成立的是()A.AE2=AF•AD B.AC2=AD•AB C.AF2=AE•AC D.AD2=AF•AB 解:∵DE∥BC,EF∥CD,∴∠AEF=∠ACD,∠ADE=∠B,又∵∠ACD=∠B,∴∠AEF=∠ADE,∴△AEF∽△ADE,∴,∴AE2=AF•AD,故选项A不合题意;∵∠ACD=∠B,∠DAC=∠BAC,∴△ACD∽△ABC,∴,∴AC2=AB•AD,故选项B不合题意;∵DE∥BC,EF∥CD,∴,,∴,∴AD2=AB•AF,故选项D不合题意;由题意无法证明AF2=AE•AC,故选项C符合题意,故选:C.6.已知点A(1,2)、B(2,3)、C(2,1),那么抛物线y=ax2+bx+1可以经过的点是()A.点A、B、C B.点A、B C.点A、C D.点B、C解:∵B、C两点的横坐标相同,∴抛物线y=ax2+bx+1只能经过A,C两点或A、B两点,把A(1,2),C(2,1),代入y=ax2+bx+1得.解得,;把A(1,2),B(2,3),代入y=ax2+bx+1得.解得,(不合题意);∴抛物线y=ax2+bx+1可以经过的A,C两点,故选:C.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.如果线段a、b满足=,那么的值等于.解:∵=,∴可设a=5k,则b=2k,∴==.故答案为:.8.已知线段MN的长为4,点P是线段MN的黄金分割点,那么较长线段MP的长是2﹣2.解:∵线段MN的长为4,点P是线段MN的黄金分割点,MP>NP,∴MP=MN=×4=2﹣2,故答案为:2﹣2.9.计算:2sin30°﹣tan45°=0.解:原式=2×﹣1=0.10.如果从某一高处甲看低处乙的俯角为36度,那么从低处乙看高处甲的仰角是36度.解:如图所示:∵甲处看乙处为俯角36°,∴乙处看甲处为:仰角为36°,故答案为:36.11.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=3,那么AF=2.解:连接DE,∵AD、BE是△ABC的中线,∴DE是△ABC的中位线,∴DE=AB,DE∥AB,∴△AFB∽△DFE,∴==2,∴AF=2FD,∵AD=3,∴AF=2,故答案为:2.12.如图,已知平行四边形ABCD的对角线AC与BD相交于点O,设=,=,那么向量关于、的分解式为﹣.解:如图所示,=,=,则=﹣=﹣.故答案是:﹣.13.如果抛物线y=(m+4)x2+m经过原点,那么该抛物线的开口方向向上.(填“向上”或“向下”)解:∵抛物线y=(m+4)x2+m经过原点,∴m=0,∴a=4>0,∴该抛物线的开口方向向上.故答案为:向上.14.如果(2,y1)(3,y2)是抛物线y=(x+1)2上两点,那么y1<y2.(填“>”或“<”)解:∵y=(x+1)2,∴a=1>0,∴抛物线开口向上,∵抛物线y=(x+1)2对称轴为直线x=﹣1,∵﹣1<2<3,∴y1<y2.故答案为<.15.如图,矩形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC的边BC长60厘米,高AH为40厘米,如果DE=2DG,那么DG=15厘米.解:∵四边形DEFG是矩形,∴DG∥BC,AH⊥BC,DG=EF,∴AP⊥DG.设DG=EF=x,则GF=DE=2x,∵DG∥BC,∴△ADG∽△ABC,∴=,∵AH=40厘米,BC=60厘米,∴=,解得x=15.∴DG=15厘米,故答案为:15.16.秦九韶的《数书九章》中有一个“峻积验雪”的例子,其原理为:如图,在Rt△ABC 中,∠C=90°,AC=12,BC=5,AD⊥AB,AD=0.4,过点D作DE∥AB交CB的延长线于点E,过点B作BF⊥CE交DE于点F,那么BF=.解:如图,作CH⊥AB,BG⊥DE于点H,G,∵DE∥AB,∴BG⊥AB,∵AD⊥AB,∴∠DAB=∠ABG=∠BGD=90°,∴四边形ADGB是矩形,∴BG=AD=0.4,在Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB===13,∵S△ABC=BC•AC=AB•CH,∴CH===,∵DE∥AB,∴∠E=∠ABC,∵∠FBE=∠ACB=90°,∴△FBE∽△ACB,∵CH⊥AB,BG⊥DE,∴=,∴=,∴BF=.故答案为:.17.如果将二次函数的图象平移,有一个点既在平移前的函数图象上又在平移后的函数图象上,那么称这个点为“平衡点”.现将抛物线C1:y=(x﹣1)2﹣1向右平移得到新抛物线C2,如果“平衡点”为(3,3),那么新抛物线C2的表达式为y=(x﹣3)2﹣1或y=(x﹣7)2﹣1.解:设将抛物线C1:y=(x﹣1)2﹣1向右平移m个单位,则平移后的抛物线解析式是y =(x﹣1﹣m)2﹣1,将(3,3)代入,得(3﹣1﹣m)2﹣1=3.整理,得4﹣m=±2解得m1=2,m2=6.故新抛物线C2的表达式为y=(x﹣3)2﹣1或y=(x﹣7)2﹣1.故答案是:y=(x﹣3)2﹣1或y=(x﹣7)2﹣1.18.如图,△ABC中,AB=10,BC=12,AC=8,点D是边BC上一点,且BD:CD=2:1,联结AD,过AD中点M的直线将△ABC分成周长相等的两部分,这条直线分别与边BC、AC相交于点E、F,那么线段BE的长为2.解:如图,∵点D是BC的中点,BC=12,∴BD:CD=2:1,∴BD=8,CD=4,过点M作MH∥AC交CD于H,∴△DHM∽△DAC,∴==,∴点M是AD的中点,∴AD=2DM,∵AC=8,∴==,∴MH=4,DH=2,过点M作MG∥AB交BD于G,同理得,BG=DE=4,∵AB=10,BC=12,AC=8,∴△ABC的周长为10+12+8=30,∵过AD中点M的直线将△ABC分成周长相等的两部分,∴CE+CF=15,设BE=x,则CE=12﹣x,∴CF=15﹣(12﹣x)=3+x,EH=CE﹣CH=CE﹣(CD﹣DH)=12﹣x﹣2=10﹣x,∵MH∥AC,∴△EHM∽△ECF,∴,∴,∴x=2或x=9,当x=9时,CF=12>AC,点F不在边AC上,此种情况不符合题意,即BD=x=2,故答案为:2.三、解答题:(本大题共7题,满分78分)19.已知向量关系式()=,试用向量、表示向量.解:由()=,得=2,所以7=﹣2.所以=(﹣2).20.已知抛物线y=x2+2x+m﹣3的顶点在第二象限,求m的取值范围.解:∵y=x2+2x+m﹣3=(x+1)2+m﹣4,∴抛物线的顶点坐标为(﹣1,m﹣4),∵抛物线y=x2+2x+m﹣3顶点在第二象限,∴m﹣4>0,∴m>4.故m的取值范围为m>4.21.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F,且AB =6,BC=8.(1)求的值;(2)当AD=5,CF=19时,求BE的长.解:(1)∵AD∥BE∥CF,∴===;(2)过D点作DM∥AC交CF于M,交BE于N,如图,∵AD∥BN∥CM,AC∥DM,∴四边形ABND和四边形ACMD都是平行四边形,∴BN=AD=5,CM=AD=5,∴MF=CF﹣CM=19﹣5=14,∵NF∥MF,∴==,∴NE=MF=×14=6,∴BE=BN+NE=5+6=11.22.如图,燕尾槽的横断面是等腰梯形ABCD,现将一根木棒MN放置在该燕尾槽中,木棒与横断面在同一平面内,厚度等不计,它的底端N与点C重合,且经过点A.已知燕尾角∠B=54.5°,外口宽AD=180毫米,木棒与外口的夹角∠MAE=26.5°,求燕尾槽的里口宽BC(精确到1毫米).(参考数据:sin54.5°≈0.81,cos54.5°≈0.58,tan54.5°≈1.40,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)解:如图,过点B作BG⊥DE于G,过点C作CH⊥AD于H.∵四边形ABCD是等腰梯形,∴AB=DC,∠BAD=∠CDA,∴∠BAG=∠CDH,∵∠BGA=∠CHD=90°,∴△BGA≌△CHD(AAS),∴AG=DH,设AG=DH=x毫米,CH=y毫米,则有,解得,∴BC=GH=AG+AD+DH=100+180+100=380(毫米).23.Rt△ABC中,∠ACB=90°,点D、E分别为边AB、BC上的点,且CD=CA,DE⊥AB.(1)求证:CA2=CE•CB;(2)联结AE,取AE的中点M,联结CM并延长与AB交于点H,求证:CH⊥AB.【解答】证明:(1)∵DE⊥AB,∴∠EDB=∠ACB=90°,∴∠A+∠B=90°=∠B+∠DEB,∴∠A=∠DEB,∵CA=CD,∴∠A=∠CDA,∴∠CDA=∠DEB,∴∠CDB=∠CED,又∵∠DCE=∠DCB,∴△DCE∽△BCD,∴=,∴CD2=CE•CB,∴CA2=CE•CB;(2)如图,∵∠ACE是直角三角形,点M是AE中点,∴AM=ME=CM,∴∠MCE=∠MEC,∵∠ACB=∠ADE=90°,∴点A,点C,点E,点D四点共圆,∴∠AEC=∠ADC,∴∠AEC=∠MCE=∠ADC=∠CAD,又∵∠MCE+∠ACH=90°,∴∠CAD+∠ACH=90°,∴CH⊥AB.24.二次函数y=ax2+bx+c(a≠0)的图象经过点A(2,4)、B(5,0)和O(0,0).(1)求二次函数的解析式;(2)联结AO,过点B作BC⊥AO于点C,与该二次函数图象的对称轴交于点P,联结AP,求∠BAP的余切值;(3)在(2)的条件下,点M在经过点A且与x轴垂直的直线上,当△AMO与△ABP 相似时,求点M的坐标.解:(1)二次函数y=ax2+bx+c(a≠0)的图象经过点B(5,0)和O(0,0),∴设二次函数的解析式为y=ax(x﹣5),将点A(2,4)代入y=ax(x﹣5)中,得4=a×2(2﹣5),∴a=﹣,∴二次函数的解析式为y=﹣x(x﹣5)=﹣x2+x;(2)如图1,连接OP,过点P作PD⊥x轴于D,∴∠ODP=90°,∵A(2,4)、B(5,0)和O(0,0),∴OB=5,AB==5,∴OB=AB,∵BC⊥OA,∴AC=OC,∠OBC=∠ABC,∵BP=BP,∴△OBP≌△ABP(SAS),∴∠BOP=∠BAP,∵AC=OC,A(2,4),∴点C(1,2),∴直线BC的解析式为y=﹣x+①,由(1)知,二次函数的解析式为y=﹣x2+x②,联立①②解得,或,∴P(,),∴OD=,PD=,∴cot∠BAP=cot∠BOP===;(3)设M(2,m),∵A(2,4),B(5,0),P(,),∴AM=|m﹣4|.OA=2,AB=5,BP==,∵BC⊥OA,∴∠ACP=∠BCP=90°,∴∠ABP<90°,∠APC<90°,∵∠BOP<90°,∴∠BAP<90°,∴△ABP是锐角三角形,∵△AMO与△ABP相似,∴△AMO为锐角三角形,∴点M在点A的下方,∴AM=4﹣m,如图2,AM与x轴的交点记作点E,与BC的交点记作点F,∵AM⊥x轴,∴∠AEB=90°,∴∠OBP+∠BFE=90°,∵∠AFP=∠BFE,∴∠OBP+∠AFP=90°,∵BC⊥OA,∴∠AFP+∠OAE=90°,∴∠OAE=∠OBP,由(2)知,∠OBP=∠ABP,∴∠OAE=∠ABP,∵△AMO与△ABP相似,∴①当△OAM∽△ABP时,∴,∴,∴m=﹣,∴M(2,﹣),②当△MAO∽△ABP时,∴,∴,∴m=﹣,∴M(2,﹣),即满足条件的点M的坐标为(2,﹣)或(2,﹣).25.四边形ABCD是菱形,∠B≤90°,点E为边BC上一点,联结AE,过点E作EF⊥AE,EF与边CD交于点F,且EC=3CF.(1)如图1,当∠B=90°时,求S△ABE与S△ECF的比值;(2)如图2,当点E是边BC的中点时,求cos B的值;(3)如图3,联结AF,当∠AFE=∠B且CF=2时,求菱形的边长.解:(1)∵四边形ABCD是菱形,∠B=90°,∴四边形ABCD是正方形,∴∠B=∠C=90°,∵EF⊥AE,∴∠AEB+∠CEF=∠AEB+∠BAE=90°,∴∠BAE=∠CEF,∴△ABE≌△CEF,∴,∵EC=3CF,设CF=x,AB=a,则EC=3x,BE=a﹣3x,∴,解得,a=4.5x,∴;(2)过点A作AM⊥BC于点M,过点F用FN⊥BC于点H,如图2,则∠AME=∠CNF=90°,∵四边形ABCD是菱形,∴AB=BC,AB∥CD,∴∠B=∠FCN,设CF=x,则CE=3x,∵E是BC的中点,∴BE=CE=3x,AB=BC=2CE=6x,∴BM=AB•cos B=6x cos B,AM=AB•sin B=6x sin B,CN=CF•cos∠FCN=x cos B,FN=CF•sin∠FCN=x sin B,∴ME=BE﹣BM=3x﹣6x cos B,EN=EC+CN=3x+x cos B,∵∠AEF=90°,∴∠AEM+∠NEF=∠AEM+∠MAE=90°,∴∠MAE=∠NEF,∴△AME∽△ENF,∴,即,即,整理得,2sin2B=3﹣5cos B﹣2cos2B,∴2=3﹣5cos B,∴cos B=;(3)过点A作AM⊥BC于点M,过点F用FN⊥BC于点H,如图3,则∠AME=∠CNF=90°,∵四边形ABCD是菱形,∴AB=BC,AB∥CD,∴∠B=∠FCN,∵∠AEF=90°,∴∠AEM+∠NEF=∠AEM+∠MAE=90°,∴∠MAE=∠NEF,∴△AME∽△ENF,∴=,∵∠AFE=∠B,tan B=,tan∠AFE=,∴,∴,∴BM=EN,设菱形ABCD的边长为a,则AB=BC=a,∴BM=a cos B,CN=CF•cos∠FCN=CF•cos B,∴a cos B=EC+CF•cos B,∵CF=2,EC=3CF,∴EC=6,∴a cos B=6+2cos B,∴cos B=,∵,AM=AB•sin B=a sin B,EN=6+2cos B,ME=a﹣a cos B﹣6,NF=CF•sin∠FCN=2sin B,∴,化简得,2a(sin2B+cos2B)=6a﹣4a cos B﹣12cos B﹣36,2a=6a﹣4a cos B﹣12cos B﹣36,a﹣a cos B﹣3cos B﹣9=0,∵cos B=,∴a﹣﹣﹣9=0,解得,a=17,或a=0(舍),∴菱形的边长为17.。
上海市浦东新区2019-2020学年中考第一次质量检测数学试题含解析
上海市浦东新区2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于()A.3:1 B.4:1 C.5:2 D.7:22.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A.B.C.D.3.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A.64×105B.6.4×105C.6.4×106D.6.4×1074.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是()A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=1 5.下列各数中,比﹣1大1的是()A.0 B.1 C.2 D.﹣36.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.37.下列等式从左到右的变形,属于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x12-xx⎛⎫+⎪⎝⎭D.4my-2=2(2my-1)8.下列计算正确的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2 C.(a+b)2=a2+b2D.(a﹣b)2=a2﹣2ab+b29.下列说法正确的是( )A .“明天降雨的概率是60%”表示明天有60%的时间都在降雨B .“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D .“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近 10.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是( )A .204×103B .20.4×104C .2.04×105D .2.04×106 11.在下列二次函数中,其图象的对称轴为2x =-的是 A .()22y x =+B .222y x =-C .222y x =--D .()222y x =-12.已知x 2+mx+25是完全平方式,则m 的值为( ) A .10B .±10C .20D .±20二、填空题:(本大题共6个小题,每小题4分,共24分.)13_____. 14.关于x 的一元二次方程(k-1)x 2+6x+k 2-k=0的一个根是0,则k 的值是______. 15.如果a c eb d f===k (b+d+f≠0),且a+c+e=3(b+d+f ),那么k=_____. 16.高速公路某收费站出城方向有编号为,,,,A B C D E 的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:在,,,,A B C D E 五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________.17.方程_____.18.使得分式值242x x -+为零的x 的值是_________;三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)观察下列等式: ①1×5+4=32;②2×6+4=42; ③3×7+4=52; …(1)按照上面的规律,写出第⑥个等式:_____; (2)模仿上面的方法,写出下面等式的左边:_____=502; (3)按照上面的规律,写出第n 个等式,并证明其成立.20.(6分)已知:如图,AB 为⊙O 的直径,C 是BA 延长线上一点,CP 切⊙O 于P ,弦PD ⊥AB 于E ,过点B 作BQ ⊥CP 于Q ,交⊙O 于H , (1)如图1,求证:PQ =PE ;(2)如图2,G 是圆上一点,∠GAB =30°,连接AG 交PD 于F ,连接BF ,若tan ∠BFE =33,求∠C 的度数;(3)如图3,在(2)的条件下,PD =63,连接QC 交BC 于点M ,求QM 的长.21.(6分)化简,再求值:222x-3231,211121x x x x x x x --÷+=+--++22.(8分)P 是C e 外一点,若射线PC 交C e 于点A ,B 两点,则给出如下定义:若0PA PB 3<⋅≤,则点P 为C e 的“特征点”.()1当O e 的半径为1时.①在点)1P 2,0、()2P 0,2、()3P 4,0中,O e 的“特征点”是______;②点P 在直线y x b =+上,若点P 为O e 的“特征点”.求b 的取值范围;()2C e的圆心在x 轴上,半径为1,直线y x 1=+与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是C e 的“特征点”,直接写出点C 的横坐标的取值范围.23.(8分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.(1)这次调查的市民人数为________人,m =________,n =________; (2)补全条形统计图;(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.24.(10分)如图,在四边形ABCD 中,BD 为一条对角线,AD BC ∥,2AD BC =,90ABD ∠=︒.E 为AD 的中点,连结BE .(1)求证:四边形BCDE 为菱形;(2)连结AC ,若AC 平分BAD ∠,1BC =,求AC 的长.25.(10分)已知关于x 的一元二次方程2(3)0x m x m ---=.求证:方程有两个不相等的实数根;如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.26.(12分)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A、B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A、B、C.(1)求该抛物线的解析式;(2)根据图象直接写出不等式ax2+(b﹣1)x+c>2的解集;(3)点P是抛物线上一动点,且在直线AB上方,过点P作AB的垂线段,垂足为Q点.当PQ=2时,求P点坐标.27.(12分)声音在空气中传播的速度y(m/s)是气温x(℃)的一次函数,下表列出了一组不同气温的音速:气温x(℃) 0 5 10 15 20音速y(m/s)331 334 337 340 343(1)求y与x之间的函数关系式:(2)气温x=23℃时,某人看到烟花燃放5s后才听到声响,那么此人与烟花燃放地约相距多远?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.【详解】连接DO,交AB于点F,∵D是»AB的中点,∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位线,AC∥DO,∵BC为直径,AB=8,AC=6,∴BC=10,FO=12AC=1,∴DO=5,∴DF=5-1=2,∵AC∥DO,∴△DEF∽△CEA,∴CE AC DE FD,∴CEDE=62=1.故选:A.【点睛】此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.2.C【解析】【详解】左视图就是从物体的左边往右边看.小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形13,故D错误,所以C正确.故此题选C.3.C【解析】【分析】由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:6400000=6.4×106,故选C.点睛:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.A【解析】【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答.【详解】∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命题的反例.故选A.【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.5.A【解析】【分析】用-1加上1,求出比-1大1的是多少即可.【详解】∵-1+1=1,∴比-1大1的是1.故选:A.【点睛】本题考查了有理数加法的运算,解题的关键是要熟练掌握:“先符号,后绝对值”.6.D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=1.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.7.D【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选D.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.8.D【解析】A、原式=a2﹣4,不符合题意;B、原式=a2﹣a﹣2,不符合题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a2﹣2ab+b2,符合题意,故选D9.D【解析】【分析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.【详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;B. “抛一枚硬币正面朝上的概率为12”表示每次抛正面朝上的概率都是12,故B不符合题意;C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;D. “抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近,故D符合题意;故选D【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.10.C【解析】试题分析:204000米/分,这个数用科学记数法表示2.04×105,故选C.考点:科学记数法—表示较大的数.11.A【解析】y=(x+2)2的对称轴为x=–2,A正确;y=2x2–2的对称轴为x=0,B错误;y=–2x2–2的对称轴为x=0,C错误;y=2(x–2)2的对称轴为x=2,D错误.故选A.1.12.B【解析】【分析】根据完全平方式的特点求解:a2±2ab+b2.【详解】∵x2+mx+25是完全平方式,∴m=±10,故选B.【点睛】本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x 和1的平方,那么中间项为加上或减去x和1的乘积的2倍.二、填空题:(本大题共6个小题,每小题4分,共24分.)13【解析】试题分析:先进行二次根式的化简,然后合并同类二次根式即可,==考点:二次根式的加减 14.2. 【解析】试题解析:由于关于x 的一元二次方程()22160k x x k k -++-=的一个根是2,把x=2代入方程,得20k k -= ,解得,k 2=2,k 2=2当k=2时,由于二次项系数k ﹣2=2,方程()22160k x x k k -++-=不是关于x 的二次方程,故k≠2.所以k 的值是2.故答案为2. 15.3 【解析】 ∵a c eb d f===k ,∴a=bk ,c=dk ,e=fk ,∴a+c+e=bk+dk+fk=k(a+b+c), ∵a+c+e=3(b+d+f),∴k=3, 故答案为:3. 16.B 【解析】 【分析】利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果. 【详解】同时开放A 、E 两个安全出口,与同时开放D 、E 两个安全出口,20分钟的通过数量发现得到D 疏散乘客比A 快;同理同时开放BC 与 CD 进行对比,可知B 疏散乘客比D 快; 同理同时开放BC 与 AB 进行对比,可知C 疏散乘客比A 快; 同理同时开放DE 与 CD 进行对比,可知E 疏散乘客比C 快; 同理同时开放AB 与 AE 进行对比,可知B 疏散乘客比E 快; 所以B 口的速度最快 故答案为B . 【点睛】本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题. 17.x=1 【解析】 【分析】无理方程两边平方转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到无理方程的解.【详解】两边平方得:(x+1)1=1x+5,即x 1=4,开方得:x=1或x=-1,经检验x=-1是增根,无理方程的解为x=1.故答案为x=118.2【解析】【分析】根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.【详解】解:要使分式有意义则20x +≠ ,即2x ≠-要使分式为零,则240x -= ,即2x =±综上可得2x =故答案为2【点睛】本题主要考查分式的性质,关键在于分式的分母不能为0.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.6×10+4=82 48×52+4【解析】【分析】(1)根据题目中的式子的变化规律可以解答本题;(2)根据题目中的式子的变化规律可以解答本题;(3)根据题目中的式子的变化规律可以写出第n 个等式,并加以证明.【详解】解:(1)由题目中的式子可得,第⑥个等式:6×10+4=82, 故答案为6×10+4=82; (2)由题意可得,48×52+4=502,故答案为48×52+4; (3)第n 个等式是:n×(n+4)+4=(n+2)2,证明:∵n×(n+4)+4=n 2+4n+4=(n+2)2,∴n×(n+4)+4=(n+2)2成立.【点睛】本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法.20.(1)证明见解析(2)30°【解析】试题分析:(1)连接OP,PB,由已知易证∠OBP=∠OPB=∠QBP,从而可得BP平分∠OBQ,结合BQ⊥CP于点Q,PE⊥AB于点E即可由角平分线的性质得到PQ=PE;(2)如下图2,连接OP,则由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,设EF=x,则由∠GAB=30°,∠AEF=90°可得,在Rt△BEF中,由tan∠BFE=BE=,从而可得AB=,则OP=OA=,结合可得,这样即可得到sin∠OPE=12 OEOP,由此可得∠OPE=30°,则∠C=30°;(3)如下图3,连接BG,过点O作OK⊥HB于点K,结合BQ⊥CP,∠OPQ=90°,可得四边形POKQ为矩形.由此可得QK=PO,OK∥CQ从而可得∠KOB=∠C=30°;由已知易证PE=Rt△EPO中结合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG 中由已知条件可得BG=6,∠ABG=60°;过点G作GN⊥QB交QB的延长线于点N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,从而可得解得GN=BN=3,由此可得QN=12,则在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分线,由此可得QM:GM=QB:GB=9:6由此即可求得QM的长了.试题解析:(1)如下图1,连接OP,PB,∵CP切⊙O于P,∴OP⊥CP于点P,又∵BQ⊥CP于点Q,∴OP∥BQ,∴∠OPB=∠QBP,∵OP=OB,∴∠OPB=∠OBP,∴∠QBP=∠OBP,又∵PE⊥AB于点E,∴PQ=PE;(2)如下图2,连接OP ,∵CP 切⊙O 于P ,∴90OPC OPQ ∠=∠=︒∴90C COP ∠+∠=︒∵PD ⊥AB∴ 90PEO AEF BEF ∠=∠=∠=︒∴90EPO COP ∠+∠=︒∴C EPO ∠=∠在Rt FEA ∆中,∠GAB=30°∴设EF=x ,则tan303AE EF x =÷︒= 在Rt FEB ∆中,tan ∠BFE=33∴·tan 33BE EF BFE x =∠=∴43AB AE BE x =+=∴23AO PO x ==∴3EO AO AE x =-=∴在Rt ∆PEO 中, 1sin 2EO EPO PO ∠== ∴C EPO ∠=∠=30°;(3)如下图3,连接BG ,过点O 作OK HB ⊥于K ,又BQ ⊥CP ,∴90OPQ Q OKQ ∠=∠=∠=︒,∴四边形POKQ 为矩形,∴QK=PO,OK//CQ ,∴C KOB ∠=∠=30°,∵⊙O 中PD ⊥AB 于E ,PD=63 ,AB 为⊙O 的直径, ∴PE= 12PD= 33, 根据(2)得30EPO ∠=︒,在Rt ∆EPO 中,cos PE EPO PO ∠=, ∴cos 33cos306PO PE EPO =÷∠=÷︒=,∴OB=QK=PO=6,∴在Rt KOB ∆中,sin KB KOB OB ∠=, ∴01sin30632KB OB =⋅=⨯=, ∴QB=9,在△ABG 中,AB 为⊙O 的直径,∴∠AGB=90°,∵∠BAG=30°,∴BG=6,∠ABG=60°, 过点G 作GN ⊥QB 交QB 的延长线于点N ,则∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,∴BN=BQ·cos ∠GBQ=3,GN=BQ·sin ∠GBQ=33, ∴QN=QB+BN=12,∴在Rt △QGN 中,QG=2212(33)319+=,∵∠ABG=∠CBQ=60°,∴BM 是△BQG 的角平分线,∴QM :GM=QB :GB=9:6,∴QM=991931915⨯=.点睛:解本题第3小题的要点是:(1)作出如图所示的辅助线,结合已知条件和(2)先求得BQ 、BG 的长及∠CBQ=∠ABG=60°;(2)再过点G 作GN ⊥QB 并交QB 的延长线于点N ,解出BN 和GN 的长,这样即可在Rt △QGN 中求得QG 的长,最后在△BQG 中“由角平分线分线段成比例定理”即可列出比例式求得QM 的长了.21【解析】试题分析:把分式化简,然后把x 的值代入化简后的式子求值就可以了.试题解析:原式=23(1)1(1)(1)(1)(3)1x x x x x x x -+⨯++-+-- =21x -当1x =时,原式=. 考点:1.二次根式的化简求值;2.分式的化简求值.22.(1)①)1P 、()2P 0,2;②b -≤≤(2)m 1>或,m 1<-. 【解析】【分析】 ()1①据若03PA PB <⋅≤,则点P 为C e 的“特征点”,可得答案;②根据若03PA PB <⋅≤,则点P 为C e 的“特征点”,可得2m ≤,根据等腰直角三角形的性质,可得答案;()2根据垂线段最短,可得PC 最短,根据等腰直角三角形的性质,可得CM =,根据若03PA PB <⋅≤,则点P 为C e 的“特征点”,可得答案.【详解】解:()))1PA PB 11211①⋅=⨯=-=,0PA PB 3∴<⋅≤,点)1P 是O e 的“特征点”; ()()PA PB 212131⋅=-⨯+==,0PA PB 3∴<⋅≤,点()2P 0,?2是O e 的“特征点”; ()()PA PB 414115⋅=-⨯+=,PA PB 3∴⋅>,点()3P 4,0不是O e 的“特征点”;故答案为)1P 、()2P 0,2②如图1,在y x b =+上,若存在O e 的“特征点”点P ,点O 到直线y x b =+的距离m 2≤.直线1y x b =+交y 轴于点E ,过O 作OH ⊥直线1y x b =+于点H .因为OH 2=.在Rt DOE V 中,可知OE 22=. 可得1b 2 2.=同理可得2b 22=-.b ∴的取值范围是:22b 2 2.-≤≤()2如图2,设C 点坐标为()m,0,直线y x 1=+,CMP 45∠∴=o .PC MN ⊥,CPM 90∠∴=o ,MC 2PC ∴=,2PC MC 2=. MC m 1=+.)22PC m 1==+()PA PC 1m 112=-=+-,()PB PC 1m 112=+=++ Q 线段MN 上的所有点都不是C e 的“特征点”,PA PB 3∴⋅>,即))21m 11m 11(m 1)132⎤⎤+-++=+->⎥⎥⎣⎦⎣⎦,解得m 1>或m 1<-,点C 的横坐标的取值范围是m 1>或,m 1<-.故答案为 :(1)①)1P 、()2P 0,2;②b -≤(2)m 1>或,m 1<-. 【点睛】本题考查一次函数综合题,解()1①的关键是利用若03PA PB <⋅≤,则点P 为C e 的“特征点”;解()1②的关键是利用等腰直角三角形的性质得出OE 的长;解()2的关键是利用等腰直角三角形的性质得出)122PC MC m ==+,又利用了3PA PB ⋅>. 23. (1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.【解析】【分析】(1)根据项目B 的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A ,C 的百分比;(2)根据对“社会主义核心价值观”达到“A .非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A 项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A 非常了解”的程度的人数.【详解】试题分析:试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%, (2)对“社会主义核心价值观”达到“A .非常了解”的人数为:32%×500=160, 补全条形统计图如下:(3)100000×32%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.24.(1)证明见解析;(2)AC=3;【解析】【分析】(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)只要证明△ACD是直角三角形,∠ADC=60°,AD=2即可解决问题;【详解】(1)证明:∵AD=2BC,E为AD的中点,∴DE=BC,∵AD∥BC,∴四边形BCDE是平行四边形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四边形BCDE是菱形.(2)连接AC,如图所示:∵∠ADB=30°,∠ABD=90°,∴AD=2AB,∵AD=2BC,∴AB=BC,∴∠BAC=∠BCA,∵AD ∥BC ,∴∠DAC=∠BCA ,∴∠CAB=∠CAD=30°∴AB=BC=DC=1,AD=2BC=2,∵∠DAC=30°,∠ADC=60°,在Rt △ACD 中,=【点睛】考查菱形的判定和性质、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定方法.25.(1)证明见解析(1)1或1【解析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(1)根据根与系数的关系可以得到关于m 的方程,从而可以求得m 的值.试题解析:(1)证明:∵()230x m x m ---=,∴△=[﹣(m ﹣3)]1﹣4×1×(﹣m )=m 1﹣1m+9=(m ﹣1)1+8>0,∴方程有两个不相等的实数根;(1)∵()230x m x m ---=,方程的两实根为1x ,2x ,且2212127x x x x +-=,∴123x x m +=- ,12x x m =- ,∴()2121237x x x x +-=,∴(m ﹣3)1﹣3×(﹣m )=7,解得,m 1=1,m 1=1,即m 的值是1或1.26.(1)y=﹣x 2﹣x+2;(2)﹣2<x <0;(3)P 点坐标为(﹣1,2).【解析】分析:(1)、根据题意得出点A 和点B 的坐标,然后利用待定系数法求出二次函数的解析式;(2)、根据函数图像得出不等式的解集;(3)、作PE ⊥x 轴于点E ,交AB 于点D ,根据题意得出∠PDQ=∠ADE=45°,,然后设点P (x ,﹣x 2﹣x+2),则点D (x ,x+2),根据PD 的长度得出x 的值,从而得出点P 的坐标.详解:(1)当y=0时,x+2=0,解得x=﹣2,当x=0时,y=0+2=2,则点A (﹣2,0),B (0,2), 把A (﹣2,0),C (1,0),B (0,2),分别代入y=ax 2+bx+c 得42002a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得112a b c =-⎧⎪=-⎨⎪=⎩.∴该抛物线的解析式为y=﹣x 2﹣x+2;(2)ax 2+(b ﹣1)x+c >2,ax 2+bx+c >x+2,则不等式ax 2+(b ﹣1)x+c >2的解集为﹣2<x <0;(3)如图,作PE⊥x轴于点E,交AB于点D,在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠ADE=45°,在Rt△PDQ中,∠DPQ=∠PDQ=45°,PQ=DQ=22,∴PD=22PQ DQ+=1,设点P(x,﹣x2﹣x+2),则点D(x,x+2),∴PD=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,即﹣x2﹣2x=1,解得x=﹣1,则﹣x2﹣x+2=2,∴P点坐标为(﹣1,2).点睛:本题主要考查的是二次函数的性质以及直角三角形的性质,属于基础题型.利用待定系数法求出函数解析式是解决这个问题的关键.27.(1) y=35x+331;(2)1724m.【解析】【分析】(1)先设函数一般解析式,然后根据表格中的数据选择其中两个带入解析式中即可求得函数关系式(2)将x=23带入函数解析式中求解即可.【详解】解:(1)设y=kx+b,∴331 5334bk b=⎧⎨+=⎩∴k=35,∴y=35x+331.(2)当x=23时,y=35x23+331=344.8∴5⨯344.8=1724.∴此人与烟花燃放地相距约1724m.【点睛】此题重点考察学生对一次函数的实际应用,熟练掌握一次函数解析式的求法是解题的关键.。
2020年上海市浦东新区中考数学一模试题(附详细解析)
10.如果二次函数 的图像经过原点,那么 的值是___________.
11.将抛物线 向下平移4个单位,那么平移后所得新抛物线的表达式为___________.
12.如果抛物线经过点 和点 ,那么这条抛物线的对称轴是直线___________.
17.用“描点法”画二次函数 的图像时,列出了如下的表格:
…
0
1
2
3
4
…
…
0
1
0
…
那么当 时,该二次函数 的值为___________.
18.在Rt△ABC中,∠C=90°,AC=2,BC=4,点D、E分别是边BC、AB的中点,将△BDE绕着点B旋转,点D、E旋转后的对应点分别为点D′、E′,当直线D′E′经过点A时,线段CD′的长为_____.
【详解】
解:∵y=x2-4x+5=(x-2)2+1,
∴顶点坐标为(2,1),
故选:B.
【点睛】
本题考查了二次函数的性质,化成顶点解析式是求抛物】
【分析】
根据对应线段成比例,两直线平行,可得答案.
【详解】
解:A、∵ ,∴DE∥BC,不符合题意;
B、由 ,不一定能推出DE∥BC,符合题意;
三、解答题
19.计算:
20.如图,在平行四边形 中,点 在边 上,且 ,联结 并延长交边 的延长线于点 ,设, .
(1)用 表示, ;
(2)先化简,再求作: (不要求写作法,但要写明结论)
21.如图,在 中,点 分别在边 、 上,且 .
(1)如果 ,求线段 的长;
(2)设 的面积为 ,求 的面积(用 的代数式表示).
(完整版)2020年上海杨浦初三数学一模试卷及答案,推荐文档
2 7PH3考生注意:杨浦区 2019 学年度第一学期期末质量调研初 三 数 学 试 卷2019.12(测试时间:100 分钟,满分:150 分)1. 本试卷含三个大题,共 25 题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)1. 把抛物线 y = x2 向左平移 1 个单位后得到的抛物线是 A . y =(x +1 2 ;B . y =(x -1 2 ;C . y = x 2 +1;D . y = x 2 -1.32. 在Rt △ABC 中,∠C =90°,如果AC =2, cos A =5 ,那么AB 的长是410 A.;B 8C . ;D . .. ; 23333. 已知 a 、b 和c 都是非零向量,下列结论中不能判定 a // b 的是1 A . a // c ,b // c ; B . a = 2c , b = 2c ;C . a = 2b ;D . a = b .4. 如图,在 6×6 的正方形网格中,联结小正方形中两个顶点 A 、B ,如果线段 AB 与网格线的其中两个交点为 M 、N ,那么 AM ∶MN ∶NB 的值是A .3∶5∶4;B .3∶6∶5;C .1∶3∶2;D .1∶4∶2.5. 广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度 y (米)关于水珠和喷头的水平距离 x (米)的函数解析式是第 4 题图y = - 3 x 2+ 6x (0)≤ x ≤ 4 2,那么水珠的高度达到最大时,水珠与喷头的水平距离是A .1 米;B .2 米;C .5 米;D .6 米.6. 如图,在正方形 ABCD 中,△ABP 是等边三角形,AP 、BP 的延长线分别交边 CD 于点 E 、F ,联结AC 、CP ,AC 与 BF 相交于点 H ,下列结论中错误的是 AD A .AE =2DE ;B .△CFP ∽△APH ;C .△CFP ∽△APC ;D .CP 2=PH •PB .二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)7. 如果cot= ,那么锐角= ▲ 度.8. 如果抛物线 y = -x 2 + 3x -1 + m 经过原点,那么 m =▲. 9. 二次函数 y = 2x 2 + 5x -1 的图像与 y 轴的交点坐标为 ▲.FE BC第 6 题图10. 已知点 A (,)y 、 B (x )y 为抛物线 y =(x - 2 2 上的两点,如果 x < x < 2 ,那么 ▲.112212(填“>”、“<”或“=”)11. 在比例尺为 1:8 000 000 地图上测得甲、乙两地间的图上距离为 4 厘米,那么甲、乙两地间的实际距离为 ▲ 千米.12. 已知点 P 是线段 AB 上的一点,且 BP 2 = AP ⋅ AB ,如果 AB =10cm ,那么 BP =▲ cm .13. 已知点 G 是△ABC 的重心,过点 G 作 MN ∥BC 分别交边 AB 、AC 于点 M 、N ,那么 S∆AMN =▲S ∆ABC.14. 如图,某小区门口的栏杆从水平位置 AB 绕固定点 O 旋转到位置 DC ,已知栏杆 AB 的长为 3.5 米,OA 的长为 3 米,点 C 到 AB 的距离为 0.3 米,支柱 OE 的高为 0.6 米,那么栏杆端点 D 离地面的距离为▲ 米.15. 如图,某商店营业大厅自动扶梯 AB 的坡角为 31°,AB 的长为 12 米,那么大厅两层之间 BC 的高度为 ▲ 米.(结果保留一位小数)【参考数据:sin31°=0.515,cos31°=0.867,tan31°=0.601】416. 如图,在四边形 ABCD 中,∠B =∠D =90°,AB =3,BC =2, tan A = ,那么 CD = ▲ .3DAAO B CE第 14 题图AC第 15 题图DCB第 16 题图17. 定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线.在四边形 ABCD 中,对角线 BD 是它的相似对角线,∠ABC =70°,BD 平分∠ABC ,那么∠ADC= ▲ 度.18. 在 Rt △ABC 中,∠A =90°,AC =4,AB =a ,将△ABC 沿着斜边 BC 翻折,点 A 落在点 A 1 处,点 D 、E分别为边 AC 、BC 的中点,联结 DE 并延长交 A 1B 所在直线于点 F ,联结 A 1E ,如果△A 1EF 为直角三角形时,那么 a = ▲ .三、解答题:(本大题共 7 题,满分 78 分)19.(本题满分 10 分,第(1)小题 6 分,第(2)小题 4 分)抛物线 y =ax 2+bx +c 中,函数值 y 与自变量 x 之间的部分对应关系如下表:x … -3 -2 -1 0 1 … y…-4-1-1-4…B31°(1)求该抛物线的表达式;2 3 6 E(2) 如果将该抛物线平移,使它的顶点移到点 M (2,4)的位置,那么其平移的方法是 ▲ .20.(本题满分 10 分,第(1)小题 6 分,第(2)小题 4 分)如图,已知在梯形 ABCD 中,AB //CD ,AB =12,CD =7,点 E 在边 AD 上, DE = 2 ,过点 E 作AE 3EF //AB 交边 BC 于点 F . D C (1) 求线段 EF 的长;EF(2) 设 AB = a , AD = b ,联结 AF ,请用向量 a 、b 表示向量 AF .21. (本题满分 10 分,第(1)小题 5 分,第(2)小题 5 分)第 20 题图如图,已知在△ABC 中,∠ACB=90º, sin B = 3,延长边 BA 至点 D ,使 AD =AC ,联结 CD .5(1) 求∠D 的正切值;(2) 取边 AC 的中点 E ,联结 BE 并延长交边 CD 于点 F ,求 CF的值.FDC22.(本题满分 10 分)DAB第 21 题图某校九年级数学兴趣小组的学生进行社会实践活动时,想利用所学的解直角三角形的知识测量教学 楼的高度,他们先在点 D 处用测角仪测得楼顶 M 的仰角为30︒ ,再沿 DF 方向前行 40 米到达点 E 处,在点 E 处测得楼顶 M 的仰角为45︒,已知测角仪的高 AD 为 1.5 米.请根据他们的测量数据求此楼 MF 的M高.(结果精确到 0.1m ,参考数据: ≈ 1.414 , ≈ 1.732 , ≈ 2.449 )23.(本题满分 12 分,每小题各 6 分)A30ºDB 45ºC EF第 22 题图如图,已知在△ABC 中, AD 是△ABC 的中线, ∠DAC = ∠B ,点 E 在边 AD 上, CE = CD .AC BDA (1) 求证: = ;AB AD(2) 求证: AC 2 = 2 AE ⋅ AD .DC24.(本题满分 12 分,每小题各 4 分)已知在平面直角坐标系 xOy 中,抛物线 y = mx 2 - 2mx + 4 ( m ≠ 0 ) 与 x 轴交于点 A 、B (点 A 在点 B 的左侧),且 AB=6.(1) 求这条抛物线的对称轴及表达式;(2) 在 y 轴上取点 E (0,2),点 F 为第一象限内抛物线上一点,联结 BF 、EF ,如果 S 四边形OEFB =10 ,求点 F 的坐标;(3) 在第(2)小题的条件下,点 F 在抛物线对称轴右侧,点 P 在 x 轴上且在点 B 左侧,如果直线 PF与 y 轴的夹角等于∠EBF ,求点 P 的坐标.25.(本题满分 14 分,第(1)小题 3 分,第(2)小题 5 分,第(3)小题 6 分)已知在菱形 ABCD 中,AB=4, ∠BAD = 120︒ ,点 P 是直线 AB 上任意一点,联结 PC ,在∠PCD 内部作射线 CQ 与对角线 BD 交于点 Q (与 B 、D 不重合),且∠PCQ= 30︒ .(1) 如图,当点 P 在边 AB 上时,如果 BP = 3 ,求线段 PC 的长;(2) 当点 P 在射线 BA 上时,设 BP =x ,CQ =y ,求 y 关于 x 的函数解析式及定义域;(3) 联结 PQ ,直线 PQ 与直线 BC 交于点 E ,如果△QCE 与△BCP 相似,求线段 BP 的长.第 25 题图备用图⎨⎩⎩⎨b a b 在 Rt △ABC 中,∵ sin B = ,∴ (1 分)杨浦区 2019 学年度第一学期初三数学期末质量调研试卷答案2019.12一、选择题:(本大题共 6 题,每题 4 分,满分 24 分) 1.A ;2.B ;3.D ;4.C ;5.B ;6.C二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)7.30; 8.1; 9.(0,- 1); 10.>; 11.320; 12. 5 13. 4 ; 14.2.4; 15.6.2; 16. 6 ; 17.145; 18. 4 9 5 三、解答题:(本大题共 7 题,满分 78 分)- 5 ;、 419. 解:(1)∵二次函数 y = ax 2 + bx + c 图像过点(- 1,0 )、 ⎧a - b + c = 0,(0,-1) 和(1,- 4) ,∴ ⎪c = -1, ⎪a + b + c = -4. ⎧a = -1, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(3 分) ∴ ⎪= -2,∴二次函数解析式为 y = -x 2 - 2x -1 .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(3 分) ⎪c = -1. (2)平移的方法是先向右平移 3 个单位再向上平移 4 个单位或先向上平移 4 个单位再向右平移 3 个单位.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(4 分)20. 解:(1)过 D 作 DH //BC 交 AB 于 H ,交 EF 于 G .∵DH //BC ,AB //DC ,∴四边形 DHBC 是平行四边形.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分) ∴BH =CD ,∵CD=7,∴BH =7.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分) 同理 GF =7. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分) 又 AB=12,∴AH =5. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分) ∵EF //AB , ∴ EG = DE. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分)AH DA∵ DE = 2 ,∴ DE = 2 . AE 3 DA 5 ∴ EG = 2 , EG = 2 ,∴ EF = 9 .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分)5 5 (2) 3 →+ 3 →∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(4 分)4 521. 解:(1)过 C 作 CH ⊥AB 于 H .3 AC 3=.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 5 AB 5∴设 AC =3k ,AB =5k ,则 BC =4k .∵ S = 1 AC ⋅ BC = 1 AB ⋅ CH ,∴ CH = AC ⋅ BC = 12k . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分)∆ABC 2 2 AB 5 ∴ AH = 9k . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分)55 33 ∵AD=AC ,∴DH = 3k + 9 k = 24k . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分)5 5CH12k 1 在 Rt △CDH 中, tan ∠CDH = = 5 = .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分)DH(2) 过点 A 作 AH//CD 交 BE 于点 H.24 k 25∵AH//CD ,∴ AH = AE . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分 )CF EC∵点 E 为边 AC 的中点,∴ AE = CE .∴ AH = CF . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分) ∵AH//CD ,∴ AH = AB. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分 )DF BD∵AB =5k ,BD =3k ,∴ AB = 5 .∴ AH = 5.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分)BD 8 DF 8∴ CF = 5.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分) DF 8 22.解:由题意可知∠MCA =90°,∠MAC =30°,∠MBC =45°,AB =40,CF =1.5.设 MC =x 米,则在 Rt △MBC 中,由tan ∠MBC = MC得 BC = x . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(2 分) BC 又 Rt △ACM 中,由cot ∠MAC =AC得 AC =MC3x . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(2 分)∴ 3x - x = 40 . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(2 分 )∴x = 20 + 20 . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分)∴MF =MC+CF = 20 3+21.5 ≈ 56.1米.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(2 分) 答:此楼 MF 的高度是 56.1 米.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分)23.证明:(1)∵CD =CE ,∴∠CED =∠CDA . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分)∴∠AEC =∠BDA . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分) 又∵∠DAC =∠B ,∴△ACE ∽△BAD. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分)∴ AC =CE .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分 ) AB AD∵ AD 是△ABC 的中线,∴ BD = CD .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分)∵CD =CE ,∴ BD = CE .∴ AC = BD. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分)AB AD(2)∵∠DAC =∠B ,又∠ACD =∠BCA ,∴△ACD ∽△BCA. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分)∴ AC = CD ,∴ AC 2 = CD ×CB . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分) BC AC∵ AD 是△ABC 的中线,∴ BC = 2CD ,∴ AC 2 = 2CD 2 . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分)5 5 (2 - 4)2 + (4 - 0)2∵△ACE ∽△BAD ,∴ CE = AE. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分)AD BD 又∵CD =CE=BD ,∴ CD 2 = AD ×AE . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分) ∴ AC 2 = 2 AD ×AE .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分)24. 解:(1)抛物线对称轴 x = -- 2m= 1 ................................................................... (1 分) 2m ∵AB =6,∴抛物线与 x 轴的交点 A 为(- 2,0) ,B (4,0) ............................................. (1 分)∴ 4m + 4m + 4 = 0 (或16m - 8m + 4 = 0 ) .................................................................. (1 分)∴ m = -1.∴抛物线的表达式为 y = - 2 1 x 2 + x + 4..................................................... (1 分) 2(2) 设点 F (x ,- 1 x 2+ x + 4) ..................................................................................... (1 分) 2 ∵点 E (0,-)2 ,点 B (4,0),∴OE = 2,OB = 4.∵ S 四边形OEFB =S ∆OEF+S ∆OBF= 10 , ∴ 1 ⨯ 2 ⨯ x + 1 ⨯ 4 ⨯ (- 1 x 2+ x + 4) = 10 ....................... (1 分) 2 2 2∴ x = 1或2 ,∴点 F (19、(2,4) .............................................................................. (2 分),) 2(3) ∵ S=S +S = 10 ,又 S = 1 OB ⋅ OE = 1⨯ 4 ⨯ 2 = 4 ,∴ S = 6 . 四边形OEFB∆OBE ∆ BEF ∆OBE 2 2∆ BEF 过 F 作 FH ⊥ BE ,垂足为点 H .∵ S ∆ BEF= 1 BE ⋅ FH = 6 ,又 BE = 2 = 2 ,∴ FH = 6 585 ................................. (1 分) 又 BF = = 2 ,∴ BH = 5 .5 ∴在 Rt ∆BFH 中,tan ∠EBF= FH = 565 3 ................................................................... = (1 分)BH 8 5 45设直线 PF 与 y 轴的交点为 M ,则∠PMO=∠EBF ,过 F 作 FG ⊥ x 轴,垂足为点 G. ∵FG//y 轴,∴∠PMO=∠PFG . ∴tan ∠PFG=tan ∠EBF ................................................ (1 分)∴tan ∠PFG= PG = 3.FG 4 又 FG =4,∴PG =3.∴点 P 的坐标(- 1,0 ) ........................................................................................................ (1 分)25. 解:(1)过 P 作 PH ⊥ BC ,垂足为点 H.在 Rt ∆BPH 中,∵BP =3,∠ABC =60°,∴ BH = 3,PH = 3 3 .................................. (2 分)2 2 在 Rt ∆PCH 中, CH = 4 -3 = 5,PC =2 2(2)过 P 作 PH ⊥ BC ,垂足为点 H.=...1..3 .................................... (1 分) 22 + 42 ( 3 2 3)2 + ( 5)2 24 x 2 - 4x + 163 3 3 34 3x 在 Rt ∆BPH 中, BH = 1x ,PH =3 x . 2 2∴在 Rt ∆PCH 中, CH = 4 - 1x ,PC =2设 PC 与对角线 BD 交于点 G .∵AB//CD ,∴ BP = PG = BG = x.CD GC GD 4= ...x ..2..-...4..x ...+...1..6 ............. (1 分)∴ BG = x + 4,CG = x + 4. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分) ∵∠ABD =∠PCQ ,又∠PGC =∠QGC ,∴△PBG ∽△QCG .∴ PB = BG ,∴ x = CQ CG y x + 4 . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分) x + 4∴ y =3x 2 -12x + 48( 0 ≤ x < 8 ).∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(2 分) 3(3)i )当点 P 在射线 BA 上,点 E 在边 BC 的延长线时.∵BD 是菱形 ABCD 的对角线,∴∠PBQ =∠QBC= 1∠ABC = 30︒ .2∵△PBG ∽△QCG ,∴ PG =BG,又∠PGQ =∠BGC ,∴△PGQ ∽△BGC . QG CG∴∠QPG =∠QBC = 30︒ , 又 ∠PBQ =∠PCQ = 30︒ ,∴ ∠CQE = ∠QPC + ∠QCP = 60︒ .∴ ∠CQE = ∠PBC = 60︒ . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1 分)∵ ∠PCB > ∠E ,∴ ∠PCB = ∠QCE .又∠PCB + ∠QCE + ∠PCQ = 180︒ ,∠PCQ = 30︒ ,∴ ∠PCB = ∠QCE = 75︒ .过 C 作CN ⊥ BP ,垂足为点 N ,∴在 Rt ∆CBN 中, BN = 2,CN = 2.∴在 Rt ∆PCN 中, PN = CN = 2 .∴ BP = 2 + 2 ..................................................................................................................... (2 分)ii )当点 P 在边 AB 的延长线上,点 E 在边 BC 上时,同理可得 BP = 2 - 2 .......... (3 分)4 3x ( 3 x )2 + (4 - 1 x )2 2 24 x 2 - 4x + 16“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
2020年上海市浦东新区中考一模数学试卷(含有答案解析)
2020年上海市浦东新区中考一模数学试卷1. (2020·上海浦东新区·模拟)在 Rt △ABC 中,∠C =90∘,如果 BC =5,AB =13,那么 sinA 的值为 ( ) A .513B .512C .1213D .1252. (2020·上海浦东新区·模拟)下列函数中,是二次函数的是 ( ) A . y =2x −1 B . y =2x 2C . y =x 2+1D . y =(x −1)2−x 23. (2020·上海浦东新区·模拟)抛物线 y =x 2−4x +5 的顶点坐标是 ( ) A . (−2,1) B . (2,1) C . (−2,−1)D . (2,−1)4. (2020·上海浦东新区·模拟)如图,点 D ,E 分别在 △ABC 的边 AB ,AC 上,下列各比例式不一定能推得 DE ∥BC 的是 ( )A .AD BD=AE CEB .AD AB=DE BCC .AB BD=AC CED .AD AB=AE AC5. (2020·上海浦东新区·模拟)如图,传送带和地面所成斜坡的坡度为 1:3,它把物体从地面点 A 处送到离地面 3 米高的 B 处,则物体从 A 到 B 所经过的路程为 ( )A . 3√10 米B . 2√10 米C . √10 米D . 9 米6. (2020·上海浦东新区·模拟)下列说法正确的是 ( )A . a ⃗+(−a ⃗)=0B .如果 a ⃗ 和 b ⃗⃗ 都是单位向量,那么 a ⃗=b ⃗⃗C .如果 ∣a ⃗∣=∣∣b ⃗⃗∣∣,那么 a⃗=b ⃗⃗D . a ⃗=−1b ⃗⃗(b ⃗⃗ 为非零向量),那么 a ⃗∥b⃗⃗7.(2020·上海浦东新区·模拟)已知x=3y,那么x+y=.x+2y8.(2020·上海浦东新区·模拟)已知线段AB=2cm,点P是线段AB的黄金分割点,且AP>PB,则线段AP=cm.9.(2020·上海浦东新区·模拟)如果两个相似三角形对应边之比是2:3,那么它们的对应中线之比是.10.(2020·上海浦东新区·模拟)如果二次函数y=x2−2x+k−3的图象经过原点,那么k的值是.11.(2020·上海浦东新区·模拟)将抛物线y=−3x2向下平移4个单位,那么平移后所得新抛物线的表达式为.12.(2020·上海浦东新区·模拟)如果抛物线经过点A(−1,0)和点B(5,0),那么这条抛物线的对称轴是直线.13.(2020·上海浦东新区·模拟)二次函数y=−2(x+1)2的图象在对称轴左侧的部分是(填“上升”或“下降”).14.(2020·上海浦东新区·模拟)如图,在△ABC中,AE是BC边上的中线,点G是△ABC的=.重心,过点G作GF∥AB交BC于点F,那么EFEB15.(2020·上海浦东新区·模拟)如图,已知AB∥CD∥EF,AD=6,DF=3,BC=7,那么线段CE的长度等于.16.(2020·上海浦东新区·模拟)如图,将△ABC沿射线BC方向平移得到△DEF,边DE与AC相交于点G,如果BC=6cm,△ABC的面积等于9cm2,△GEC的面积等于4cm2,那么CF = cm .17. (2020·上海浦东新区·模拟)用“描点法”画二次函数 y =ax 2+bx +c 的图象时,列出了如下的表格:x⋯01234⋯y =ax 2+bx +c⋯−3010−3⋯那么当 x =5 时,该二次函数 y 的值为 .18. (2020·上海浦东新区·模拟)在 Rt △ABC 中,∠C =90∘,AC =2,BC =4,点 D ,E 分别是边BC ,AB 的中点,将 △BDE 绕着点 B 旋转,点 D ,E 旋转后的对应点分别为点 Dʹ,Eʹ,当直线 DʹEʹ 经过点 A 时,线段 CDʹ 的长为 .19. (2020·上海浦东新区·模拟)计算:tan45∘−cos60∘2sin30∘+cot 260∘.20. (2020·上海浦东新区·模拟)如图,在平行四边形 ABCD 中,点 E 在边 AD 上,且 AE =2ED ,连接 BE 并延长交边 CD 的延长线于点 F ,设 BA ⃗⃗⃗⃗⃗⃗=a ⃗,BC⃗⃗⃗⃗⃗⃗=b ⃗⃗.(1) 用 a ⃗,b ⃗⃗ 表示 BE ⃗⃗⃗⃗⃗⃗,DF ⃗⃗⃗⃗⃗⃗;(2) 先化简,再求作:(−32a ⃗+b ⃗⃗)+2(a ⃗−b ⃗⃗)(不要求写作法,但要写明结论).21. (2020·上海浦东新区·模拟)如图,在 △ABC 中,点 D ,E 分别在边 AB ,AC 上,且 AD =3,AC =6,AE =4,AB =8.(1) 如果BC=7,求线段DE的长;(2) 设△DEC的面积为a,求△BDC的面积(用a的代数式表示).22.(2020·上海浦东新区·模拟)为了测量大楼顶上(居中)避雷针BC的长度,在地面上点A处测得避雷针底部B和顶部C的仰角分别为55∘58ʹ和57∘,已知点A与楼底中间部位D的距离约为80米,求避雷针BC的长度.(参考数据:sin55∘58ʹ≈0.83,cos55∘58ʹ≈0.56,tan55∘58ʹ≈1.48,sin57∘≈0.84,tan57∘≈1.54)23.(2020·上海浦东新区·模拟)如图,已知△ABC和△ADE,点D在BC边上,DA=DC,∠ADE=∠B,边DE与AC相交于点F.(1) 求证:AB⋅AD=DF⋅BC;(2) 如果AE∥BC,求证:BDDC =DFFE.24.(2020·上海浦东新区·模拟)如图,在平面直角坐标系xOy中,抛物线y=−x2+bx+c与x轴的两个交点分别为A(−1,0),B(3,0),与y轴相交于点C.(1) 求抛物线的表达式;(2) 连接AC,BC,求∠ACB的正切值;(3) 点P在抛物线上,且∠PAB=∠ACB,求点P的坐标.25.(2020·上海浦东新区·模拟)在Rt△ABC中,∠A=90∘,AB=4,AC=3,D为AB边上一动点(点D与点A,B不重合),连接CD,过点D作DE⊥DC交边BC于点E.(1) 如图,当ED=EB时,求AD的长;(2) 设AD=x,BE=y,求y关于x的函数解析式并写出函数定义域;(3) 把△BCD沿直线CD翻折得△CDBʹ,连接ABʹ,当△CABʹ是等腰三角形时,直接写出AD的长.答案1. 【答案】A【解析】如图:在Rt△ABC中,∠C=90∘,BC=5,AB=13,sinA=BCAB =513.2. 【答案】C【解析】A.y=2x−1是一次函数,故A选项错误;B.y=2x2右边不是整式,不是二次函数,故B选项错误;C.y=x2+1右边是整式,自变量最高次数是2,是二次函数,故C选项正确;D.y=(x−1)2−x2整理为y=−2x+1是一次函数,故D选项错误.3. 【答案】B【解析】∵y=x2−4x+5=(x−2)2+1,∴顶点坐标为(2,1).4. 【答案】B【解析】A、∵ADBD =AECE,∴DE∥BC,不符合题意;B、由ADAB =DEBC,不一定能推出DE∥BC,符合题意;C、∵ABBD =ACCD,∴DE∥BC,不符合题意;D、∵ADAB =AEAC,∴DE∥BC,不符合题意.5. 【答案】A【解析】设BC⊥AC,垂足为C,∵i=BC:AC=1:3,∴3:AC=1:3,∴AC=9,在Rt△ACB中,由勾股定理得AB=√AC2+BC2=√92+32=3√10.∴AB=3√10米.6. 【答案】D【解析】A.a⃗+(−a⃗)等于0向量,而不是0,故A选项错误;B.如果a⃗和b⃗⃗都是单位向量,说明两个向量长度相等,但是方向不一定相同,故B选项错误;C.如果∣a⃗∣=∣∣b⃗⃗∣∣,说明两个向量长度相等,但是方向不一定相同,故C选项错误;D.如果a⃗=−12b⃗⃗(b⃗⃗为非零向量),可得到两个向量是共线向量,可得到a⃗∥b⃗⃗,故D选项正确.7. 【答案】45【解析】∵x=3y,∴x+yx+2y =3y+y3y+2y=4y5y=45.8. 【答案】√5−1【解析】由于P为线段AB=2cm的黄金分割点,且AP是较长线段,则AP=2×√5−12=√5−1.9. 【答案】2:3【解析】∵两三角形相似,且对应边比为2:3,∴相似比k=2:3.∴它们对应中线的比为2:3.10. 【答案】3【解析】∵二次函数y=x2−2x+k−3的图象经过原点,∴0=k−3,∴k=3.11. 【答案】y=−3x2−4【解析】∵y=−3x2,∴原抛物线的顶点坐标为(0,0),∵向下平移4个单位,∴平移后的抛物线的顶点坐标为(0,4),∴平移后的抛物线的表达式为:y=−3x2−4.12. 【答案】x=2【解析】∵一条抛物线经过点(−1,0),(5,0),∴这两点关于对称轴对称,∴x=−1+52=2,即x=2.13. 【答案】上升【解析】∵二次函数y=−2(x+1)2中,a=−2<0,∴抛物线开口向下,∴对称轴左侧的函数增减性为y随x的增大而增大,∴函数图象在对称轴左侧部分是上升.14. 【答案】13【解析】∵点G是△ABC的重心,∴GE:AG=1:2,∴GE:AE=1:3,∴GF∥AB,△EGF∽△EAB,∴EFEB =GEAE=13.15. 【答案】72【解析】∵AB∥CD∥EF,∴ADDF =BCCE,∵AD=6,DF=3,BC=7,∴63=7CE,∴CE=72.16. 【答案】2【解析】∵AB∥DE,∴△ABC∽△GEC,∴S△GECS△ABC =(ECBC)2=49,∴EC6=23.∴EC=4cm,∵EF=BC=6cm,∴CF=EF−EC=6−4=2cm.17. 【答案】 −8【解析】将点 (0,−3),(1,0),(2,1) 代入 y =ax 2+bx +c 中得,{c =−3,a +b +c =0,4a +2b +c =1.解得,{a =−1,b =4,c =−3.∴ 抛物线表达式为 y =−x 2+4x −3, ∴ 当 x =5 时,y =−8.18. 【答案】 2√5 或 65√5【解析】如图 1,当点 A 在 ED 的延长线上时, ∵∠C =90∘,AC =2,BC =4, ∴AB =√AC 2+BC 2=√4+16=2√5, ∵ 点 D ,E 分别是边 BC ,AB 的中点, ∴DE ∥AC ,DE =12AC =1,BD =12BC =2,∴∠EDB =∠ACB =90∘. ∵ 将 △BDE 绕着点 B 旋转,∴∠BDʹEʹ=∠BDE =90∘,DʹEʹ=DE =1,BD =BD =2, ∵ 在 Rt △ABC 和 Rt △BADʹ 中, {DʹB =AC =2,AB =BA, 即 {AC =DʹB,AB =BA, ∵Rt △ABC ≌Rt △BADʹ(HL ), ∴ADʹ=BC ,且 AC =DʹB ,∴ 四边形 ACBDʹ 是平行四边形,且 ∠ACB =90∘, ∴ 四边形 ACBDʹ 是矩形,∴CD =AB =2√5;如图 2,当点 A 在线段 DʹEʹ 的延长线上时, ∵∠ADʹB =90∘,∴ADʹ=√AB 2−DʹB 2=√20−4=4, ∴AE =ADʹ−DEʹ=3, ∵ 将 △BDE 绕着点 B 旋转, ∴∠ABC =∠EBD , ∵BEʹAB=12=BDʹBC,∴△ABE ∽△BCDʹ. ∴AEʹCDʹ=ABBC ,∴3CDʹ=2√54,CDʹ=6√55.19. 【答案】tan45∘−cos60∘2sin30∘+cot 260∘=1−122×12+(√33)2=12+13=56.20. 【答案】(1) ∵ 四边形 ABCD 是平行四边形, ∴AB =CD ,AB ∥CD ,AD =BC ,AD ∥BC , ∴ABDF =AEED , ∵AE =2ED ,∴DF =12AB ,AE =23AD ,∵BA ⃗⃗⃗⃗⃗⃗=a ⃗,BC ⃗⃗⃗⃗⃗⃗=b ⃗⃗, ∴DF ⃗⃗⃗⃗⃗⃗=12a ⃗,AE⃗⃗⃗⃗⃗⃗=23b ⃗⃗, ∴BE ⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗+AE ⃗⃗⃗⃗⃗⃗=a ⃗+23b⃗⃗. (2) (−32a⃗+b ⃗⃗)+2(a ⃗−b ⃗⃗)=−32a ⃗+b ⃗⃗+2a ⃗−2b ⃗⃗=12a ⃗−b⃗⃗.如图,平行四边形 ABCD ,取 AB 的中点, 则 BM ⃗⃗⃗⃗⃗⃗⃗=12a ⃗,CB ⃗⃗⃗⃗⃗⃗=−b ⃗⃗, ∴CM ⃗⃗⃗⃗⃗⃗⃗=CB ⃗⃗⃗⃗⃗⃗+BM ⃗⃗⃗⃗⃗⃗⃗=−b ⃗⃗+12a ⃗=12a ⃗−b⃗⃗,∴CM ⃗⃗⃗⃗⃗⃗⃗=12a ⃗−b ⃗⃗.21. 【答案】(1) ∵AD =3,AC =6,AE =4,AB =8,∴AD AC =AE AB =12,∵∠A =∠A ,∴△ADE ∽ACB ,∴DE BC =12,∵BC =7,∴DE =72.(2) ∵AE EC =46−4=2,∴S △ADES △EDC =AE EC =2.∵S △DEC =a ,∴S △ADE =2a .∵△ADE ∽ACB ,∴S △ADE S △ACB =(12)2. ∴2a S △BDC +a+2a=14. ∴S △BDE =5a .22. 【答案】在 Rt △ABD 中,∵tan∠BAD =BD AD , ∴1.48=BD 80,∵AD =80 米,∴BD =118.4(米),Rt △CAD 中,∵tan∠CAD =CD AD ,∴1.54=CD AD ,∴CD =123.2(米),∴BC =CD −BD =4.8(米).答:避雷针 BC 的长度为 4.8 米.23. 【答案】(1) ∵AD =DC ,∴∠DAC =∠C ,∵∠ADE =∠B ,∴△ABC ∽△FDA ,∴AD BC =DF AB ,∴AB ⋅AD =DF ⋅BC .(2) ∵AE ∥BC ,∴∠E =∠EDC ,∠EAC =∠C ,∴△AEF ∽△CDF ,∴DF FE =DC AE , ∴DF FE =AD AE ,∵∠ADC =∠ADE +∠EDC =∠B +∠BAD ,∠ADE =∠B ,∴∠BAD =∠EDC ,∴∠BAD =∠E ,∴△ABD ∽△EDA ,∴BD AD =AD AE ,∴BD CD =AD AE , ∴BD DC =DF FE .24. 【答案】(1) 将 A (−1,0),B (3,0) 代入 y =−x 2+bx +c 中得,{−1−b +c =0,−9+3b +c =0, 解得,{b =2,c =3,∴ 抛物线的表达式为 y =−x 2+2x +3.(2) 如图,过点 A 作 AD ⊥BC 垂足为 D .∵A (−1,0),B (3,0),C (0,3),∴AB=4,OC=3,BC=3√2,AC=√10.∵AB⋅OC2=BC⋅AD2,∴4×32=3√2⋅AD2.∴AD=2√2.由勾股定理得CD=√2.∴tan∠ACB=ADCD =√2√2=2,即tan∠ACB=2.(3) 如图,设P在抛物线上,P(x,−x2+2x+3),过P作PE⊥x轴,垂足为E.∵∠PAB=∠ACB,∴tan∠PAB=12,∴−x2+2x+3x+1=2或−(−x2+2x+3)x+1=2,解得x=−1(舍去)或x=1,x=−1(舍去)或x=5.当x=−1时,y=4;当x=5时,y=−12.∴P点坐标为(1,4)或(5,−12).25. 【答案】(1) ∵ED=EB,∴∠EDB=∠B.∵CD⊥DE,∴∠CDE=∠A=90∘.∵∠ACD+∠ADC=90∘,∠ADC+∠EDH=90∘,∴∠ACD=∠EDB=∠B.∴tan∠ACD=tan∠B.∴ADAC =ACAB.∴AD3=34.∴AD=94.(2) 如图1中,作EH⊥BD于H.在Rt△ACB中,∵∠A=90∘,AC=3,AB=4,∴BC=√AC2+BC2=5.∴sin∠B =35,cos∠B =45. ∵BE =y ,∴EH =BE ⋅sin∠B =35y ,BH =BE ⋅cos∠B =45y .∴DH =AB −AD −BH =4−x −45y .∵∠A =∠DHE =90∘,∠ACD =∠EDH ,∴△ACD ∽△HDE ,∴AC GH =AD EH . ∴34−x−45y =x35y. ∴y =20x−5x 29+4x (0<x <4).(3) 7243+15√1143 或 7243−15√1143.【解析】 (3) ①如图 3−1 中,设 CBʹ 交 AB 于 K ,作 AE ⊥CK 于 E ,DM ⊥CBʹ 于 M ,DN ⊥BC 于 N .∵AC =AB =3,AE ⊥CBʹ,∴CE =EBʹ=12CBʹ=52. ∴AE =√AC 2−CE 2=√32−(52)2=√112. ∵∠ACE =∠KCA ,∠AEC =∠KAC =90∘,∴△ACE ∽△KCA .∴AC KC =AE KA =CE CA ,即3KC =√112KA =523. ∴AK =3√115,CK =185.∴BK =AB −AK =4−3√115.∵∠DCK =∠DCB ,DM ⊥CM ,DN ⊥CB ,∴DM =DN .∴S △CDKS △CDB =DK DB =12CK⋅DM 12BC⋅DN =CK CB =1855=1825. ∴BD =2543BK =10043−15√1143.∴AD=AB−BD=4−(10043−15√1143)=7243+15√1143.②如图3−2中,当CBʹ交BA的延长线于K时,同法可得BD=2543BK=10043+15√1143,∴AD=AB−BD=7243−15√1143.。
上海市浦东新区2019-2020学年中考一诊数学试题含解析
上海市浦东新区2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.y=(m ﹣1)x |m|+3m 表示一次函数,则m 等于( )A .1B .﹣1C .0或﹣1D .1或﹣12.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >43.如果2a b -=,那么22b a a b a a-+÷的值为( ) A .1 B .2 C .1- D .2-4.已知(AC BC)ABC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,则符合要求的作图痕迹是( )A .B .C .D . 5.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得A .B .C.D.6.如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF=14时,点E的运动路程为114或72或92,则下列判断正确的是( )A.①②都对B.①②都错C.①对②错D.①错②对7.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的()A.平均数B.中位数C.众数D.方差8.若x是2的相反数,|y|=3,则12y x的值是()A.﹣2 B.4 C.2或﹣4 D.﹣2或49.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm210.将2001×1999变形正确的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+1 11.下列生态环保标志中,是中心对称图形的是()A.B.C.D.12.-2的绝对值是()A.2 B.-2 C.±2 D.1 2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8;x x =甲乙 =8,则这两人5次射击命中的环数的方差S 甲2_____S 乙2(填“>”“<”或“=”).14.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解, 则a 的取值范围是 ________. 15.写出一个比2大且比5小的有理数:______.16.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是__________.17.如图,六边形ABCDEF 的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.18.若关于x 的方程x 2-2x+sinα=0有两个相等的实数根,则锐角α的度数为___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)﹣(﹣1)2018+4﹣(13)﹣1 20.(6分)如图,AB 是⊙O 的直径,BE 是弦,点D 是弦BE 上一点,连接OD 并延长交⊙O 于点C ,连接BC ,过点D 作FD ⊥OC 交⊙O 的切线EF 于点F .(1)求证:∠CBE =12∠F ; (2)若⊙O 的半径是23,点D 是OC 中点,∠CBE =15°,求线段EF 的长.21.(6分)某海域有A 、B 两个港口,B 港口在A 港口北偏西30°方向上,距A 港口60海里,有一艘船从A 港口出发,沿东北方向行驶一段距离后,到达位于B 港口南偏东75°方向的C 处,求:(1)∠C= °;(2)此时刻船与B 港口之间的距离CB 的长(结果保留根号).22.(8分)高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A 是某市一高考考点,在位于A 考点南偏西15°方向距离125米的C 点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C 点北偏东75°方向的F 点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(3取1.732)23.(8分)已知抛物线2y x bx c =++过点(0,0),(1,3),求抛物线的解析式,并求出抛物线的顶点坐标.24.(10分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.① 若该公司当月卖出3部汽车,则每部汽车的进价为 万元;② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)25.(10分)如图,△ABC 是等腰三角形,AB =AC ,点D 是AB 上一点,过点D 作DE ⊥BC 交BC 于点E ,交CA 延长线于点F .证明:△ADF 是等腰三角形;若∠B =60°,BD =4,AD =2,求EC 的长,26.(12分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?27.(12分)计算:22b a b -÷(a a b-﹣1)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】由一次函数的定义知,|m|=1且m-1≠0,所以m=-1,故选B.2.C【解析】【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【详解】∵直线y 1=kx+b 与直线y 2=mx+n 分别交x 轴于点A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集为﹣1<x <4,故选C .【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.3.D【解析】【分析】先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案.【详解】22()()=b a a b b a b a b a a a ba a a -++-÷⨯=-+ 2ab -=Q()2b a a b ∴-=--=-故选:D .【点睛】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.4.D【解析】试题分析:D 选项中作的是AB 的中垂线,∴PA=PB ,∵PB+PC=BC ,∴PA+PC=BC .故选D .考点:作图—复杂作图. 5.A【解析】若设走路线一时的平均速度为x 千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x 千米/小时,故选A .6.A【解析】【分析】由已知,AB=a ,AB+BC=5,当E 在BC 上时,如图,可得△ABE ∽△ECF ,继而根据相似三角形的性质可得y=﹣2155a x x a a ++-,根据二次函数的性质可得﹣215551·5223a a a a a +++⎛⎫+-= ⎪⎝⎭,由此可得a=3,继而可得y=﹣218533x x +-,把y=14代入解方程可求得x 1=72,x 2=92,由此可求得当E 在AB 上时,y=14时,x=114,据此即可作出判断. 【详解】解:由已知,AB=a ,AB+BC=5,当E 在BC 上时,如图,∵E 作EF ⊥AE ,∴△ABE ∽△ECF ,∴AB CE BE FC=, ∴5a x x a y-=-, ∴y=﹣2155a x x a a++-, ∴当x=522b a a +-=时,﹣215551·5223a a a a a +++⎛⎫+-= ⎪⎝⎭, 解得a 1=3,a 2=253(舍去), ∴y=﹣218533x x +-, 当y=14时,14=﹣218533x x +-, 解得x 1=72,x 2=92, 当E 在AB 上时,y=14时, x=3﹣14=114, 故①②正确,故选A .【点睛】本题考查了二次函数的应用,相似三角形的判定与性质,综合性较强,弄清题意,正确画出符合条件的图形,熟练运用二次函数的性质以及相似三角形的判定与性质是解题的关键.7.B【解析】【分析】由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8 名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.故选B.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.8.D【解析】【分析】直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案.【详解】解:∵x是1的相反数,|y|=3,∴x=-1,y=±3,∴y-12x=4或-1.故选D.【点睛】此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键.9.C【解析】【分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE 等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE S△ABC=4cm1.故选C.【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE S△ABC.10.A【解析】【分析】原式变形后,利用平方差公式计算即可得出答案.【详解】解:原式=(2000+1)×(2000-1)=20002-1,故选A.【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.11.B【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【考点】中心对称图形.12.A【解析】【分析】根据绝对值的性质进行解答即可【详解】解:﹣1的绝对值是:1.故选:A.【点睛】此题考查绝对值,难度不大二、填空题:(本大题共6个小题,每小题4分,共24分.)13.>【解析】【分析】分别根据方差公式计算出甲、乙两人的方差,再比较大小.【详解】 ∵x x =甲乙=8,∴2S 甲=15[(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=15(1+1+0+4+4)=2,2S 乙=15[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=15(1+0+1+0+0)=0.4,∴2S 甲>2S 乙. 故答案为:>.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.2a ≥-【解析】【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】3122x a x x ->⎧⎨->-⎩①②, 解①得:x >a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故答案是:a≥-2.【点睛】本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤..15.2【解析】【分析】.【详解】解:2到5之间可以为:2(答案不唯一),故答案为:2(答案不唯一).【点睛】此题考查无理数的估算,解题的关键在于利用题中所给有理数的大小求符合题意的答案.16.k>-14且k≠1【解析】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.又∵方程是一元二次方程,∴k≠1,∴k>-1/4 且k≠1.17.2【解析】【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是110°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【详解】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是110°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=1.∴GH=GP=GC+CD+DP=3+3+1=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-1=1.∴六边形的周长为1+3+3+1+4+1=2.故答案为2.【点睛】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.18.30°【解析】试题解析:∵关于x 的方程2sin 0x α+=有两个相等的实数根,∴(241sin 0V ,α=-⨯⨯= 解得:1sin 2α=, ∴锐角α的度数为30°;故答案为30°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.-1.【解析】【分析】直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案.【详解】原式=﹣1+1﹣3=﹣1.【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.20.(1)详见解析;(1)6-【解析】【分析】(1)连接OE 交DF 于点H ,由切线的性质得出∠F+∠EHF =90∘,由FD ⊥OC 得出∠DOH+∠DHO =90∘,依据对顶角的定义得出∠EHF =∠DHO ,从而求得∠F=∠DOH ,依据∠CBE=12∠DOH ,从而即可得证; (1)依据圆周角定理及其推论得出∠F=∠COE =1∠CBE =30°,求出OD 的值,利用锐角三角函数的定义求出OH 的值,进一步求得HE 的值,利用锐角三角函数的定义进一步求得EF 的值.【详解】(1)证明:连接OE 交DF 于点H ,∵EF 是⊙O 的切线,OE 是⊙O 的半径,∴OE ⊥EF .∴∠F+∠EHF =90°.∵FD ⊥OC ,∴∠DOH+∠DHO=90°.∵∠EHF=∠DHO,∴∠F=∠DOH.∵∠CBE=12∠DOH,∴12 CBE F ∠=∠(1)解:∵∠CBE=15°,∴∠F=∠COE=1∠CBE=30°.∵⊙O的半径是23,点D是OC中点,∴3OD=.在Rt△ODH中,cos∠DOH=OD OH,∴OH=1.∴232HE=-.在Rt△FEH中,tan=EHFEF∠∴3623EF EH==-【点睛】本题主要考查切线的性质及直角三角形的性质、圆周角定理及三角函数的应用,掌握圆周角定理和切线的性质是解题的关键.21.(1)60;(2)26【解析】(1)由平行线的性质以及方向角的定义得出∠FBA=∠EAB=30°,∠FBC=75°,那么∠ABC=45°,又根据方向角的定义得出∠BAC=∠BAE+∠CAE=75°,利用三角形内角和定理求出∠C=60°;(2)作AD⊥BC交BC于点D,解Rt△ABD,得出2,解Rt△ACD,得出6,根据BC=BD+CD即可求解.解:(1)如图所示,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABC=45°,∵∠BAC=∠BAE+∠CAE=75°,∴∠C=60°.故答案为60;(2)如图,作AD⊥BC于D,在Rt△ABD中,∵∠ABD=45°,AB=60,∴2.在Rt△ACD中,∵∠C=60°,2,∴tanC=AD CD,∴30236,∴26.答:该船与B港口之间的距离CB的长为(26)海里.22.不需要改道行驶【解析】【详解】解:过点A作AH⊥CF交CF于点H,由图可知,∵∠ACH=75°-15°=60°, ∴()3 1.732AH AC sin60125125108.252=⋅︒==⨯=米. ∵AH >100米,∴消防车不需要改道行驶.过点A 作AH ⊥CF 交CF 于点H ,应用三角函数求出AH 的长,大于100米,不需要改道行驶,不大于100米,需要改道行驶.23.y=2x +2x ;(-1,-1).【解析】试题分析:首先将两点代入解析式列出关于b 和c 的二元一次方程组,然后求出b 和c 的值,然后将抛物线配方成顶点式,求出顶点坐标. 试题解析:将点(0,0)和(1,3)代入解析式得:0{13c b c =++=解得:2{0b c == ∴抛物线的解析式为y=2x +2x ∴y=2x +2x=2(1)x +-1 ∴顶点坐标为(-1,-1).考点:待定系数法求函数解析式.24.解:(1)22.1.(2)设需要售出x 部汽车,由题意可知,每部汽车的销售利润为:21-[27-0.1(x -1)]=(0.1x +0.9)(万元),当0≤x≤10,根据题意,得x·(0.1x +0.9)+0.3x=12,整理,得x 2+14x -120=0,解这个方程,得x 1=-20(不合题意,舍去),x 2=2.当x >10时,根据题意,得x·(0.1x +0.9)+x=12,整理,得x 2+19x -120=0,解这个方程,得x 1=-24(不合题意,舍去),x 2=3.∵3<10,∴x 2=3舍去.答:要卖出2部汽车.【解析】一元二次方程的应用.(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.25.(1)见解析;(2)EC=1.【解析】【分析】(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论.【详解】(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=1,∴BE=12BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=1.【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠FDA,即可推出结论.26.(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元.【解析】【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%; (2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.1,2y =2.1,∵有利于减少库存,∴y =2.1.答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.27.1a b+ 【解析】【分析】根据分式的混合运算法则把原式进行化简即可.【详解】原式=()()b a b a b +-÷(a a b -﹣a b a b--) =()()b a b a b +-÷a a b a b-+- =()()b a b a b +-•a b b -=1a b.【点睛】本题考查的是分式的混合运算,熟知分式的混合运算的法则是解答此题的关键.。
2020届初三中考数学一诊联考试卷含参考答案 (上海)
2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为()A.13B.1136C.512D.142.下列各数中是无理数的是()A.cos60°B.·1.3C.半径为1cm的圆周长D3.如图,在直角坐标系中,Rt△OAB的边OB在y轴上,∠ABO=90°,AB=3,点C在AB上,BC=13AB,且∠BOC=∠A,若双曲线y=kx经过点C,则k 的值为( )A B C .1 D .24.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为( )A .44×108B .4.4×108C .4.4×109D .4.4×10105.已知点P 为某个封闭图形边界上一定点,动点M 从点P 出发,沿其边界顺时针匀速运动一周,设点M 的运动时间为x ,线段PM 的长度为y ,表示y 与x 的函数图象大致如图所示,则该封闭图形可能是( )A .B .C .D . 6.已知反比例函数(0)k y k x=<的图象上有两点A (1x ,1y ),B (2x ,2y ),且12x x <,则12y y -的值是( )A .正数B .负数C .非正数D .不能确定7.在下列命题中,是真命题的是( )A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形8.关于反比例函数y=2x的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小9.按如图所示的运算程序,当输出的y值为0时,x的值是()A.1B.2C.1±D.2±10.如图,AB是圆O的直径,点C在BA的延长线上,直线CD与圆O相切于点D,弦DF⊥AB于点E,连接BD,CD=BD=OE的长度为( )A B.2C.D.4二、填空题(共4题,每题4分,共16分)11.平面直角坐标系xOy中,若抛物线y=ax2上的两点A、B满足OA=OB,且tan∠OAB=12,则称线段AB为该抛物线的通径.那么抛物线y=12x2的通径长为______.12.如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若∠1=120°,∠2=80°,则∠3的度数是_____.13.在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位称为1次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),把△ABC经过连续9次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是______.14.已知一元二次方程x2=0有两个相等的实数根,则nm的值是_____.三、解答题(共6题,总分54分)15.如图,AP平分∠BAC,∠ADP和∠AEP互补.(1)作P到角两边AB,AC的垂线段PM,PN.(2)求证:PD=PE.16.在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t 的值.17.为了更好的落实阳光体育运动,学校需要购买一批足球和篮球,已知一个足球比一个篮球的进价高30元,买一个足球和两个篮球一共需要300元.(1)求足球和篮球的单价;(2)学校决定购买足球和篮球共100个,为了加大校园足球活动开展力度,现要求购买的足球不少于60个,且用于购买这批足球和篮球的资金最多为11000元.试设计一个方案,使得用来购买的资金最少,并求出最小资金数.18.据《中国教育报》2004年5月24日报道:目前全国有近3万所中小学建设了校园网,该报为了了解这近3万所中小学校园网的建设情况,从中抽取了4600所学校,对这些学校校园网的建设情况进行问卷调查,并根据答卷绘制了如图的两个统计图:说明:统计图1的百分数=样本中校园网建设时间在某段时间内的中小学数量×100%;样本数量统计图2的百分数=样本中校园网建设资金投入在某资金段内的中小学数量×100%.样本容量。
(完整版)2020年上海浦东初三数学一模试卷及答案
浦东新区2019 学年第一学期初中学业质量监测初三数学试卷考生注意:1.本试卷共25 题,试卷满分150 分,考试时间100 分钟.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无.效3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6 题,每题4 分,满分24 分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.在Rt△ABC 中,∠C=90°,如果BC=5,AB=13,那么sin A 的值为5 5 12 12(A);(B);(C);(D).13 12 13 52.下列函数中,是二次函数的是(A)y = 2x -1 ;(B)y =2 ;x2(C)y=x2 +1;(D)y=(x-1)2-x2.3.抛物线y =x2- 4x + 5 的顶点坐标是(A)(−2,1);(B)(2,1);(C)(−2, −1);(D)(2,−1).4.如图,点D、E 分别在△ABC 的边AB、AC 上,下列各比例式不一定能推得DE∥BC 的是(A)AD =AE ;(B)AD=DE ;BD CE AB BC1210 10 10(C ) AB = AC ;(D ) AD = AE .BD CE AB AC5. 如图,传送带和地面所成斜坡的坡度为 1∶3,它把物体从地面点 A 处送到离地面 3 米高的 B 处,则物体从 A 到 B 所经过的路程为(A ) 3 米; (B ) 2 米;(C ) 米;(D )9 米.6. 下列说法正确的是(A ) a + (-a ) = 0 ;(B )如果a 和b 都是单位向量,那么a = b ;1 (C )如果| a |=| b |,那么a = b ; (D )如果 a = - b ( b 为非零向量),那么a // b .2二、填空题:(本大题共 12 题,每题 4 分,满分 48 分) 【请将结果直接填入答题纸的相应位置】x + y7.已知 x =3y ,那么 x + 2 y = ▲ .8. 已知线段 AB =2cm ,P 是线段AB 的黄金分割点,PA >PB ,那么线段PA 的长度等于 ▲ cm .9. 如果两个相似三角形对应边之比是 2∶3,那么它们的对应中线之比是▲ .10. 如果二次函数 y = x 2 - 2x + k - 3 的图像经过原点,那么 k 的值是▲.11. 将抛物线 y = - 3x 2 向下平移4 个单位,那么平移后所得新抛物线的表达式为 ▲ .12. 如果抛物线经过点 A (−1,0)和点 B (5,0),那么这条抛物线的对称轴是直线 ▲.13. 二次函数 y = -2( x + 1)2 的图像在对称轴左侧的部分是 ▲ .(填“上升”或“下降”)14. 如图,在△ABC 中,AE 是 BC 边上的中线,点 G 是△ABC 的重心,过点 G 作 GF ∥ABEF交 BC 于点 F ,那么 EB =▲ .15.如图,已知AB∥CD∥EF,AD=6,DF=3,BC=7,那么线段CE 的长度等于▲.16.如图,将△ABC 沿射线BC 方向平移得到△DEF,边DE 与AC 相交于点G,如果BC = 6cm,△ABC 的面积等于9cm2,△GEC 的面积等于4cm2,那么CF= ▲cm.(第16 题图)17.用“描点法”画二次函数y =a x2+b x +c 的图像时,列出了如下的表格:x …0 1 2 3 4 …y =a x2+b x +c …−30 1 0 −3…那么当x = 5 时,该二次函数y 的值为▲.18.在Rt△ABC 中,∠C=90°,AC=2,BC=4,点D、E 分别是边BC、AB 的中点,将△BDE 绕着点B 旋转,点D、E 旋转后的对应点分别为点D’、E’,当直线D’E’经过点A 时,线段CD’的长为▲ .三、解答题:(本大题共7 题,满分78 分)19.(本题满分10 分)计算:tan 45︒- cos 60︒+ cot2 60︒.2 sin 30︒20.(本题满分10 分,其中每小题各5 分)如图,在平行四边形ABCD 中,点E 在边AD 上,且AE=2ED,联结BE 并延长交边34bCD 的延长线于点 F ,设 BA = a , BC =.(1)用 a 、 表示 、;b BE DF3(2)先化简,再求作: ( a + b ) + 2(a 2b) .(不要求写作法,但要写明结论)21.(本题满分 10 分,其中每小题各 5 分)(第 20 题图)如图,在△ABC 中,点 D 、E 分别在边 AB 、AC 上,且 AD =3,AC =6,AE =4,AB =8.(1) 如果 BC =7,求线段 DE 的长;(2) 设△DEC 的面积为 a ,求△BDC 的面积.(用 a 的代数式表示)22.(本题满分 10 分)为了测量大楼顶上(居中)避雷针 BC 的长度,在地面上点 A 处测得避雷针底部 B 和顶部 C 的仰角分别为 55°58'和 57°.已知点 A 与楼底中间部位 D 的距离约为 80 米.求避雷针BC 的长度.(参考数据: sin 55︒58' ≈ 0.83 , cos 55︒58' ≈ 0.56 , tan 55︒58' ≈ 1.48 ,5.sin 57︒ ≈ 0.84 , cos 57︒ ≈ 0.54 , tan 57︒ ≈ 1.54 )23.(本题满分 12 分,其中每小题各 6 分)如图,已知△ABC 和△ADE ,点 D 在 BC 边上,DA =DC ,∠ADE =∠B ,边 DE 与 AC 相交于点 F .(1) 求证: AB ⋅ AD = DF ⋅ BC ;(2) 如果 AE ∥BC ,求证:BD=DF .DCFE24.(本题满分 12 分,其中每小题各 4 分)如图,在平面直角坐标系 xOy 中,抛物线 y = - x 2 + bx + c 与 x 轴的两个交点分别为A (−1,0)、B (3,0),与 y 轴相交于点C .(1) 求抛物线的表达式;(2) 联结 AC 、BC ,求∠ACB 的正切值;(3) 点 P 在抛物线上且∠PAB =∠ACB ,求点 P 的坐标(第24 题图)25.(本题满分14 分,其中第(1)小题5 分,第(2)小题5 分,第(3)小题4 分)在Rt△ABC 中,∠A=90°,AB=4,AC=3,D 为AB 边上一动点(点D 与点A、B 不重合),联结CD.过点D 作DE⊥DC 交边BC 于点E.(1)如图,当ED=EB 时,求AD 的长;(2)设AD=x,BE=y,求y 关于x 的函数解析式并写出函数定义域;(3)把△BCD 沿直线CD 翻折得△CDB’,联结AB’.当△CAB’是等腰三角形时,直接写出AD 的长.(备用图)(第25 题图)67浦东新区 2019 学年第一学期初中学业质量监测初三数学试卷参考答案及评分说明一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)1.A ; 2.C ;3.B ;4.B ;5.A ;6.D .二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)47. ;8. ( 5- 1) ;9.2∶3; 10.k =3;11. y = -3x 2 - 4 ;1712.x =2; 13.上升; 14. ;15. ;16.2; 17.-8;18. 2 32或6 5 .5三、解答题:(本大题共 7 题,满分 78 分)1- 1⎛⎫219.解: 原式=2 +3 ⎪ ……………………………………………………(各 2 分)2 ⨯ 12⎝ 3 ⎭= 1 + 1 2 35 ………………………………………………………………(1 分)=. .......................................................................................................(1 分)620.解:(1)∵ 四边形 ABCD 是平行四边形,∴ AD = BC .∵ AE=2ED ,∴ AE = 2 AD .∴ AE = 2BC . ........................................... (1 分)3 35 583∵ BC = ,∴ = 2. ........................................................................... (1 分)b AE b3∵ BA = a ,∴ BE = BA + AE = a + 2b . ..................................................... (1 分)3 ∵ 四边形 ABCD 是平行四边形,∴ AB // CD .∴ DF = DE = 1 .∴ DF = 1AB . ............................................................. (1 分) AB AE 2 2∵ BA = a ,∴ DF = 1a . ......................................................................... (1 分)2(2)原式= - 3a +b + 2a - 2b ...............................................................(1 分) 2= - a + 2a + b - 2b = 2 1 a -b 2. ................................................. (1 分)作图正确. .................................................................................................. (2 分)结论. ........................................................................................................ (1 分)21. 证明:(1)∵AD =3,AC =6,AE =4,AD =8,∴ AD = AE = 1. ..................... (2 分)AC AB 2∵∠A=∠A ,∴△ADE ∽△ACB . ............................................................... (1 分)∴ DE = AD . .............................................................................................. (1 分) BC AC ∵BC =7,∴ DE = 7. ................................................................................... (1 分)2(2)∵AE =4,AC =6,∴EC =2.∵△ADE 与△CDE 同高,∴ S △ A DE = AE = 2. ..................................... (1 分)S △DEC EC 1∵S △DEC =a ,∴S △ADE =2a . ................................................................................ (1 分)S ⎛ AD ⎫21 ∵△ADE ∽△ACB ,∴ △ ADE = ⎪ = . .............................................. (1 分) S △ ACB ⎝ AC ⎭ 49∴S △ACB =8a . .................................................................................................... (1 分)∴S △BDC =8a ―2a ―a =5a . ............................................................................ (1 分)22.解:根据题意,得∠ADC=90°,∠BAD=55°58',∠CAD=57°,AD =80.(各 1 分)在 Rt △CAD 中,∵∠ADC=90°,tan 57︒ ≈ 1.54 ,∴ CD≈ 1.54 ,即 CD≈ 1.54 . …(1 分) AD 80∴CD =123.2. ................................................................................................. (1 分)在 Rt △BAD 中,∵∠ADC=90°, tan 55︒58' ≈ 1.48 ,∴ BD ≈ 1.48 ,即BD≈ 1.48 .… (1 分) AD 80∴BD =118.4. ................................................................................................... (1 分)∴BC=DC ―BD =123.2―118.4=4.8. ........................................................... (1 分)答:避雷针 BC 的长度为 4.8 米. .............................................................. (1 分)23. 证明:(1)∵DA =DC ,∴∠DCA=∠DAC . ....................................................... (1 分)∵∠B=∠ADE ,∴△ABC ∽△FDA . ......................................................... (3 分)∴ AB = BC . ................................................................................................. (1 分) FD DA∴ AB ⋅ DA = FD ⋅ BC . ................................................................................... (1 分) (2)∵AE // BC ,∴ DF =DC ,∠BDA=∠DAE . ................................. (2 分) EF EA∵∠B=∠ADE ,∴△ABD ∽△EDA . ........................................................... (1 分)∴ AD = BD . .............................................................................................. (1 分) AE AD10∵DA =DC ,∴ BD =DC. ........................................................................... ( 1 分) DC AE∴ BD = DF . ...............................................................................................(1 分) DC FE24.解:(1)把 A (−1,0)、B (3,0)分别代入 y = - x 2 + bx + c 得-1-b +c =0,-9+3b +c =0 . ....................................................................................... (2 分)解得 b =2,c =3. ............................................................................................. (1 分)∴抛物线的表达式是 y = - x 2 + 2x + 3 . ................................................. (1 分)(2) 过点 A 作 AH ⊥BC ,垂足为点 H .∵抛物线 y = - x 2 + 2x + 3 与 y 轴相交于点 C ,∴C (0, 3). .................. (1 分)∵B (3,0)、A (−1,0)、C (0, 3),∴OC =OB =3, AB =4.在 Rt △BOC 中,BC = 3 ,∠ABC =45°.在 Rt △HAB 中,∵sin ∠ABH = AH ,AB =4,∴ AH = BH = 2 AB. ................................. (1 分)∵ BC = 3 ,∴ CH = . .................................................................... (1 分)∴ tan ∠ACB = AH = 2 .............................................................................. (1 分) CH(3) 过点 P 作 PM ⊥x 轴,垂足为点 M .设 P (x ,-x 2+2x +3),则 PM = - x 2 + 2x + 3 ,AM =x +1.∵∠PAB=∠ACB , tan ∠ACB = 2 ,∴ tan ∠PAB = 2 . ..........................(1 分)(i )P 在 x 轴上方时,-x 2+2x +3=2(x +1) .解得:x 1=1,x 2= -1(舍) ...................................................................... (1 分)2 2 2 2 {(ii)P 在x 轴下方时,-(-x2+2x+3)=2(x+1) .解得:x1=5,x2= -1(舍)..................................................................... (1 分)∴P 的坐标为(1,4)或(5,-12).......................................................... (1 分)25.解:(1)∵ED=EB,∴∠B=∠BDE. .................................................................. (1 分)∵DE⊥CD,∴∠BDE+∠ADC=90°.∵∠A=90°,∴∠ACD+∠ADC=90°.∴∠BDE=∠ACD. ...................................................................................... (1 分)∴∠ACD=∠B. .............................................................................................. (1 分)在Rt△ABC 中,AB=4,AC=3,∴ tan B =AC=3 .AB 4∴ tan ∠ACD =3 . ....................................................................................... (1 分)4在Rt△ADC 中,tan ∠ACD =AD=3 ,AC=3,AC 4∴ AD =9 . .................................................................................................... (1 分)4(2)过点 E 作EH⊥AB,垂足为点H.∴∠EDH=∠A=90°.∵∠BDE=∠ACD,∴△ACD∽△DEH...................................................... (1 分)∴ HD =HE .AC AD在Rt△BEH 中,可得EH =3y ,BH =4y ........................................ (1 分)5 5∴DH = 4 -x -4 y .................................................................................... (1 分)511124 - x - 4 y 3 y ∴5 = 5 .∴ y = 3 20x - 5x 2 4x + 9x . .................................................................................... (1 分) (0 < x < 4) . ........................................................................................ (1 分)(3)AD = 72 + 15 11 或 AD = 72 - 15 11 . ..........................................(各 2 分)43 4313。
2020届初三中考数学一诊联考试卷含答案解析 (上海)
2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.在△ABC中,AB=10,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或102.如图,在Rt△ABC中,∠C=90°,AB=10,AC=6,D、E、F分别是△ABC三边的中点,则△DEF的周长为()A.24 B.16 C.14 D.123.关于x的一元二次方程(m﹣2)x2﹣4x+1=0有两个实数解,则实数m的取值范围()A.m≤6 B.m≤6且m≠2 C.m<6且m≠2 D.m<64.若a﹣b=12,则a2﹣b2﹣b的值为()A.12B.14C.1 D.25.如图,在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P从点C出发,沿折线CA→AB以3cm/s的速度匀速运动,动点Q从C出发沿CB以1cm/s 的速度匀速运动,若动点P、Q同时从点C出发任意一点到达B点时两点都停止运动,则这一过程中,△PCQ的面积S(cm2)与运动时间t(s)之间的关系大致图象是()A.B.C.D.6.下列方程,是一元二次方程的是( )①3x 2+x =20,②2x 2-3xy +4=0,③x 2-1x =4,④x 2=0,⑤x 2-3x +3=0 A .①② B .①④⑤ C .①③④ D .①②④⑤7.如图,在平面直角坐标系中,第二象限内的点P 是反比例函数y =kx (k ≠0)图象上的一点,过点P 作P A ⊥x 轴于点A ,点B 为AO 的中点若△P AB 的面积为3,则k 的值为( )A .6B .﹣6C .12D .﹣128.将一副三角板(∠A =30°)按如图所示方式摆放,使得AB ∥EF ,则∠1等于( )A .75°B .90°C .105°D .115°9.如图,在矩形ABCD 中,4,30AD DAC =∠=,点,P E 分别在,AC AD 上,则PE PD +的最小值是()A .2B .C .4 D10.若实数m、n满足20m-=,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12B.10C.8D.6二、填空题(共4题,每题4分,共16分)11.如图,六边形ABCDEF是⊙O的内接正六边形,若正六边形的面积等于O的面积等于 __________ .12.如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为_____.13.分解因式:4m2﹣16n2=_____.14.如图,PA切⊙O于点A,点B是线段PO的中点,若⊙O,则图中阴影部分的面积为_____.三、解答题(共6题,总分54分)15.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.16.如图,10×10的网格中,A,B,C均在格点上,诮用无刻度的直尺作直线MN,使得直线MN平分△ABC的周长(留作图痕迹,不写作法)(1)请在图1中作出符合要求的一条直线MN;(2)如图2,点M为BC上一点,BM=5.请在AB上作出点N的位置.17.某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C 对应的中心角度数是 ;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A ,B 口味的牛奶共约多少盒?18.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球,求下列事件的概率: (1)两次取出的小球标号相同;(2)两次取出的小球标号的和等于4.19.如图,抛物线2y ax bx c =++经过A(-2,0), B(4,0), C(0,-4)三点.点P 是抛物线BC 段上一动点(不含端点(,)B C ,BD BC ⊥与CP 的延长线交于点D(1)求抛物线的解析式.。
2020年上海市中考数学一模试卷 (含解析)
2020年上海市中考数学一模试卷一、选择题(本大题共6小题,共24.0分)1.下列根式中,与√3是同类二次根式的是()A. 4√6B. √18C. √32 D. √122.用换元法解方程x2−12x −4xx2−12=3时,设x2−12x=y,则原方程可化为()A. y−1y −3=0 B. y−4y−3=0 C. y−1y+3=0 D. y−4y+3=03.空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是()A. 扇形统计图B. 条形统计图C. 折线统计图D. 以上都可以4.若反比例函数y=kx的图象经过点(2,3),则k的值是()A. 2B. 3C. 6D. 15.下列命题中,正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 有一个角为90°的四边形是平行四边形C. 对角线相等的四边形是矩形D. 对角线相等的菱形是正方形6.下列图形中可由其中的部分图形经过平移得到的是()A. B. C. D.二、填空题(本大题共12小题,共48.0分)7.计算:2a2⋅3ab=______.8.已知函数f(x)=1x−2,那么f(0)=______.9.若正比例函数y=kx(k是常数,k≠0)的图像经过第一、三象限,则k的值可以是____.(写出一个值即可).10.若关于x的方程2x2−3x+k=0有两个相等的实数根,则k值为.11.从0~9这些自然数中,任取一个,是4的倍数的概率是______ .12. 如果将抛物线y =3(x +1)2向上平移1个单位,再向左平移2个单位,那么所得到的抛物线的表达式是______.13. 每年5月11日是由世界卫生组织确定的世界防治肥胖日,某校为了解全校2000名学生的体重情况,随机抽测了200名学生的体重,根据体质指数(BMI)标准,体重超标的有15名学生,则估计全校体重超标学生的人数为________名.14. 如图所示,为了测量一棵树AB 的高度,测量者在D 点立一高CD =2米的标杆,现测量者从E 处可以看到杆顶C 与树顶A 在同一直线上,如果测得BD =20米,FD =4米,EF =1.8米,则树的高度为__________.15. 如图,在平行四边形ABCD 中,点E 是边CD 的中点,联结AE 、BD 交于点F ,若BC ⃗⃗⃗⃗⃗ =a ⃗ ,BA ⃗⃗⃗⃗⃗ =b ⃗ ,用a ⃗ 、b ⃗ 表示DF ⃗⃗⃗⃗⃗=______.16. 波波和爸爸两人以相同路线从家出发,步行前往公园.图中OA 、BC 分别表示爸爸和波波所走的路程y(米)与爸爸步行的时间x(分)的函数图象,已知爸爸从家步行到公园所花的时间比波波的2倍还多10分钟.则在步行过程中,他们父子俩相距的最远路程是______ 米.17. 如图,在△ABC 中,∠CAB =90°,AB =6,AC =4,CD 是△ABC 的中线,将△ABC 沿直线CD 翻折,点B′是点B 的对应点,点E 是线段CD 上的点,如果∠CAE =∠BAB′,那么CE 的长是______.18. 如图,在矩形ABCD 中,过点A 的圆O 交边AB 于点E ,交边AD 于点F ,已知AD =5,AE =2,AF =4.如果以点D 为圆心,r 为半径的圆D 与圆O有两个公共点,那么r 的取值范围是______.三、计算题(本大题共2小题,共20.0分)19. 化简:(12)−2−|2√2−3|+3√18;20. 解不等式组{2x ≤x +4x+33−x <−1.四、解答题(本大题共5小题,共58.0分)21. 如图,在四边形ABCD 中,∠BCD 是钝角,AB =AD ,BD 平分∠ABC ,若CD =3,BD =2√6,sin∠DBC =√33,求对角线AC 的长.22.某旅游商店8月份营业额为15万元,9月份下降了20%.受“十一”黄金周以及经济利好因素的影响,10月份、11月份营业额均比上一个月有所增长,10月份增长率是11月份增长率的1.5倍,已知该旅游商店11月份营业额为24万元.(1)问:9月份的营业额是多少万元?(2)求10月份营业额的增长率.23.如图,已知四边形ABCD是菱形,点E是对角线AC上一点,连接BE并延长交AD于点F,交CD的延长线于点G,连接DE.(1)求证:△ABE≌△ADE;(2)求证:EB2=EF⋅EG;(3)若菱形ABCD的边长为4,∠ABC=60°,AE:EC=1:3,求BG的长.24.在平面直角坐标系xOy中抛物线y=−x2+bx+c经过点A、B、C,已知A(−1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.25.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,连结EB,交OD于点F.(1)求证:OD⊥BE.(2)若DE=√6,AB=6,求AE的长.(3)若△CDE的面积是△OBF面积的2,求线段BC与AC长度之间的等量关系,并说明理由.3【答案与解析】1.答案:D解析:此题主要考查同类二次根式的定义,属于基础题,化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.可先将各二次根式化为最简,然后根据同类二次根式的被开方数相同即可作出判断.解:A.4√6与√3不是同类二次根式,故本选项错误;B.√18=3√2与√3不是同类二次根式,故本选项错误;C.√32=√62与√3不是同类二次根式,故本选项错误;D.√12=2√3与√3是同类二次根式,故本选项正确;故选D.2.答案:B解析:【试题剖析】【试题解析】解:∵设x2−12x=y,∴x2−12x −4xx2−12=3,可转化为:y−4y=3,即y−4y−3=0.故选:B.直接利用已知将原式用y替换得出答案.此题主要考查了换元法解分式方程,正确得出y与x值间的关系是解题关键.3.答案:A解析:此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.解:根据统计图的特点可知:空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是扇形统计图;故选A.4.答案:C解析:本题主要考查的是反比例函数的图象,求反比例函数的解析式的有关知识.把点(2,3)代入已知函数解析式,列出关于k的方程,通过解方程来求k的值.,解:由题意得3=k2解得k=6.故选C.5.答案:D解析:解:A、一组对边平行,另一组对边相等的四边形还可能是等腰梯形,故错误;B、有一个角是90°的平行四边形是矩形,故错误;C、对角线相等的平行四边形是矩形,故错误;D、对角线相等的菱形是正方形,正确;故选D.利于平行四边形的判定方法、矩形的判定方法及正方形的判定方法分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解平行四边形的判定方法、矩形的判定方法及正方形的判定方法,难度不大.6.答案:A解析:根据平移的性质,平移不改变图形的形状和大小对各选项分析判断即可得解.本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.解:A、可由其中的部分图形经过平移得到,故本选项正确;B、不可由其中的部分图形经过平移得到,故本选项错误;C、不可由其中的部分图形经过平移得到,故本选项错误;D、不可由其中的部分图形经过平移得到,故本选项错误.故选:A.7.答案:6a3b解析:解:2a2⋅3ab=6a3b,故答案为:6a3b.根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,计算可得.本题主要考查单项式乘单项式,解题的关键是掌握单项式乘单项式的运算法则.8.答案:−12解析:本题考查了函数值的知识,将自变量的取值代入函数解析式即可求得答案.将x=0代入f(x)=1x−2求解即可.解:∵函数f(x)=1x−2,∴f(0)=10−2=−12,故答案为:−12.9.答案:2(答案不唯一)解析:本题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y 随x的增大而减小.根据正比例函数的性质可得k>0,写一个符合条件的数即可.解:∵正比例函数y=kx(k≠0)的图象经过一、三象限,∴k>0∴k的值可以是2.故答案为2.10.答案:98解析:此题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.根据关于x的方程2x2−3x+k=0有两个相等的实数根可得△=(−3)2−4×2k=0,求出k的值即可.解:∵关于x的方程2x2−3x+k=0有两个相等的实数根,∴△=(−3)2−4×2k=0,∴9−8k=0,∴k=9.8故答案为9.811.答案:310解析:解:∵从0−9这10个自然数中任取一个数,每个数被取到的机会相同,即这10个结果出现的机会相同,在这10个数中是4的倍数的有0,4,8共3个数,∴P(是4的倍数)=3.10.故答案为:310首先得出从0−9有10个自然数,在这10个数中是4的倍数的有0,4,8共3个数,进而得出概率.此题主要考查了概率公式,正确理解列举法求概率应用的条件,是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.12.答案:y=3(x+3)2+1解析:解:抛物线y=3(x+1)2的顶点坐标为(−1,0),把点(−1,0)向上平移1个单位,再向右平移2个单位得到点(−3,1),所以所得到的抛物线的表达式为y=3(x+3)2+1.故答案为y=3(x+3)2+1.先得到抛物线y=3(x+1)2的顶点坐标为(−1,0),再根据题意把点(−1,0)向上平移1个单位,再向左平移2个单位得到点(−3,1),则可根据顶点式写出平移后的抛物线的解析式.本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.答案:150解析:本题考查用样本估计总体.用全校学生乘以样本中体重超标学生占的比例,即可求解.=150(名)解:2000×15200故答案为150.14.答案:3米解析:本题考查相似三角形的应用,属于中档题.过E作EH⊥AB于H,交CD于G,利用相似三角形的性质即可得出结论.解:如图,过E作EH⊥AB于H,交CD于G;则:CG=CD−EF=0.2米,EG=FD=4米,EH=BF=BD+DF=24米;可得CG//AH ,可知:△CEG∽△AEH ,则有:CG AH =EG EH ,即:0.2AH =424,解得:AH =1.2米;∴AB =AH +BH =AH +EF =3米,故答案为3米.15.答案:−13a ⃗ −12b ⃗解析:本题考查平面向量,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.根据DF ⃗⃗⃗⃗⃗ =DE ⃗⃗⃗⃗⃗⃗ +EF ⃗⃗⃗⃗⃗ ,求出DE ⃗⃗⃗⃗⃗⃗ ,EF⃗⃗⃗⃗⃗ 即可解决问题. 解:∵四边形ABCD 是平行四边形,∴AB =CD ,AB//CD ,∴CD ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ =b ⃗ ,AD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ =a ⃗ , ∵DE =DC ,∴DE ⃗⃗⃗⃗⃗⃗ =−12CD ⃗⃗⃗⃗⃗ =−12b ⃗ , ∴AE ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗⃗ =a ⃗ −12b , ∵DE//AB ,∴EF :AF =DE :AB =1:2,∴EF =13AE ,∴EF ⃗⃗⃗⃗⃗ =−13AE ⃗⃗⃗⃗⃗ =−13a ⃗ , ∴DF ⃗⃗⃗⃗⃗ =DE ⃗⃗⃗⃗⃗⃗ +EF ⃗⃗⃗⃗⃗ =−13a ⃗ −12b ⃗ , 故答案为−13a ⃗ −12b ⃗ . 16.答案:1200解析:解:波波所花的时间为(50−10)÷2=20(分钟),爸爸的速度为3000÷50=60(米/分钟),波波的速度为3000÷20=150(米/分钟).根据题意得:线段OA的解析式为y=60x(0≤x≤50);线段BC的解析式为y=150(x−10)=150x−1500(10≤x≤30).当x=10时,60x−(150x−1500)=600;当x=30时,150x−1500−60x=1200.∵1200>600,∴他们父子俩相距的最远路程是1200米.故答案为:1200.根据父子所需时间之间的关系可算出波波所花的时间,由速度=路程÷时间即可分别算出父亲及波波的速度,再根据路程=速度×时间即可找出线段OA、BC的函数解析式,代入x=10及x=30求出y 值,比较后即可得出结论.本题考查了一次函数的应用,根据路程=速度×时间找出线段OA、BC的函数解析式是解题的关键.17.答案:165解析:解:如图,∵△CDB′是由△CDB翻折,∴∠BCD=∠DCB′,∠CBD=∠CB′D,AD=DB=DB′,∴∠DBB′=∠DB′B,∵2∠DCB+2∠CBD+2∠DBB′=180°,∴∠DCB+∠CBD+∠DBB′=90°,∵∠CDA=∠DCB+∠CBD,∠ACD+∠CDA=90°,∴∠ABB′=∠ACE,∵AD =DB =DB′=3,∴∠AB′B =90°,∵∠ACE =∠ABB′,∠CAE =∠BAB′,∴△ACE∽△ABB′,∴∠AEC =∠AB′B =90°,在Rt △ADC 中,∵AC =4,AD =3,∴CD =√AC 2+AD 2=5, ∵12AC ⋅AD =12⋅CD ⋅AE , ∴AE =AC⋅ADCD =125,在Rt △ACE 中,CE =√AC 2−AE 2=√42−(125)2=165.故答案为165. 先证明∠AB′B =90°,再证明△ACE∽△ABB′,得到∠AEC =90°,利用面积法求出AE ,再利用勾股定理求出EC 即可.本题考查翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是利用翻折不变性解决问题,学会利用相似三角形证明直角,属于中考常考题型.18.答案:√10−√5<r <√10+√5解析:解:如图,连接EF ,∵四边形ABCD 是矩形,∴∠BAC =90°,则EF 是⊙O 的直径,取EF 的中点O ,连接OD ,作OG ⊥AF ,则点G 是AF 的中点,∴GF =12AF =2,∴OG 是△AEF 的中位数,∴OG=12AE=1,∴OF=√OG2+GF2=√5,OD=√OG2+DG2=√10,∵圆D与圆O有两个公共点,∴√10−√5<r<√10+√5,故答案为:√10−√5<r<√10+√5.连接EF,知EF是⊙O的直径,取EF的中点O,连接OD,作OG⊥AF,知点G是AF的中点,据此可得GF=12AF=2,OG=12AE=1,继而求得OF=√OG2+GF2=√5,OD=√OG2+DG2=√10,最后根据两圆的位置关系可得答案.本题主要考查圆与圆的位置关系,解题的关键是掌握圆周角定理、圆心角定理、三角形中位线定理、勾股定理、矩形的性质及圆与圆的位置关系等知识点.19.答案:解:原式=4−(3−2√2)+3√2,=4−3+2√2+√22,=1+52√2.解析:这是一道考查实数的运算的题目,解题关键在于根据负整数指数幂和绝对值以及去分母,将原式进行化简,再进行合并.20.答案:解:解不等式2x≤x+4,得:x≤4,解不等式x+33−x<−1,得:x>3,则不等式组的解集为3<x≤4.解析:求得每一个不等式的解集,再进一步求得公共部分即可.此题考查一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.21.答案:解:过D作DE⊥BC交BC的延长线于E,如图,则∠E=90°,∵sin∠DBC=√3,BD=2√6,3∴DE=2√2,∵CD=3,∴CE=1,BE=4,∴BC=3,∴BC=CD,∴∠CBD=∠CDB,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠CDB,∴AB//CD,同理AD//BC,∴四边形ABCD是菱形,连接AC交BD于O,则AC⊥BD,AO=CO,BO=DO=√6,∴OC=√BC2−BO2=√3,∴AC=2√3.解析:本题考查了菱形的判定和性质,解直角三角形有关知识,过D作DE⊥BC交BC的延长线于E,得到∠E=90°,根据三角形函数的定义得到DE=2√2,推出四边形ABCD是菱形,根据菱形的性质得到AC⊥BD,AO=CO,BO=DO=√6,根据勾股定理得到结论.22.答案:解:(1)9月份的营业额=15×(1−20%)=12(万元);(2)设11月份的增长率为x,则10月份的增长率为1.5x,依题意,得:12(1+1.5x)(1+x)=24,, x2=−2(不合题意,舍去),解得:x1=13=0.5.∴10月份的增长率为1.5×13答:10月份的增长率为50%.解析:本题考查了一元二次方程的应用,若原来的数量为a,平均每次增长或降低的百分率为x,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“−”.(1)用8月份的营业额×(1+增长率)计算九月份的营业额即可;(2)设设11月份的增长率为x,则10月份的增长率为1.5x,依题意,得:12(1+1.5x)(1+x)=24,解方程即可.23.答案:解:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,又AE=AE,∴△ABE≌△ADE(SAS);(2)∵AB//CG,∴∠ABG=∠EGD,由(1)得△ABE≌△ADE,∴ED=EB,∠ABG=∠ADE,∴∠EGD=∠ADE,∵∠FED=∠DEG,∴△EDF∽△EGD,∴EDEG =EFED,所以ED2=EF⋅EG;∴EB2=EF⋅EG;(3)∵AB=BC,∠ABC=60°,∴△ABC是等边三角形.∴AC=AB=4.连接BD交AC于O,则AC⊥BD,OA=OC=2,OB=2√3,∵AE :EC =1:3,∴AE =OE =1.∴BE =√(2√3)2+1=√13.∵AD//BC ,∴AE EC =EF BE =13, ∴EF =13BE =√133. 由(2)得EB 2=EF ⋅EG ,∴EG =√13)2√133=3√13, ∴BG =BE +EG =4√13.解析:【试题解析】本题主要考查相似三角形的判定和性质,全等三角形的判定和性质、等边三角形的判定性质菱形的性质.线段间的转化是解题的关键.(1)用SAS 证明即可;(2)先证明△EDF∽△EGD ,得到ED 2=EF ⋅EG ,代换ED =EB 即可;(3)根据已知先求出BE 和EF 值,再根据EB 2=EF ⋅EG 求出EG 值,最后用BG =BE +EG 计算即可.24.答案:解:(1)由题意得:{−1−b +c =0c =3, 解得:{b =2c =3, ∴抛物线解析式为y =−x 2+2x +3;(2)令−x 2+2x +3=0,∴x 1=−1,x 2=3,即B(3,0),设直线BC 的解析式为y =kx +b′,∴{b′=33k +b′=0, 解得:{k =−1b′=3, ∴直线BC 的解析式为y =−x +3,设P(a,3−a),则D(a,−a 2+2a +3),∴PD =(−a 2+2a +3)−(3−a)=−a 2+3a ,∴S △BDC =S △PDC +S △PDB =12PD ⋅a +12PD ⋅(3−a) =12PD ⋅3 =32(−a 2+3a) =−32(a −32)2+278, ∴当a =32时,△BDC 的面积最大,此时P(32,32);(3)由(1),y =−x 2+2x +3=−(x −1)2+4,∴E(1,4),设N(1,n),则0≤n ≤4,取CM 的中点Q(m 2,32),∵∠MNC =90°,∴NQ =12CM ,∴4NQ 2=CM 2,∵NQ 2=(1−m 2)2+(n −32)2, ∴4[(1−m 2)2+(n −32)2]=m 2+9,整理得,m =n 2−3n +1,即m =(n −32)2−54,∵0≤n ≤4,当n =32时,m 最小值=−54,n =4时,,综上,m 的取值范围为:−54≤m ≤5.解析:(1)由y =−x 2+bx +c 经过点A 、B 、C ,A(−1,0),C(0,3),利用待定系数法即可求得此抛物线的解析式;(2)首先令−x 2+2x +3=0,求得点B 的坐标,然后设直线BC 的解析式为y =kx +b′,由待定系数法即可求得直线BC 的解析式,再设P(a,3−a),即可得D(a,−a 2+2a +3),即可求得PD 的长,由S △BDC =S △PDC +S △PDB ,即可得S △BDC =−32(a −32)2+278,利用二次函数的性质,即可求得当△BDC 的面积最大时点P 的坐标;(3)根据直角三角形斜边上的中线等于斜边的一半列出关系式m =(n −32)2−54,然后根据n 的取值得到最小值和最大值.此题考查了待定系数法求函数的解析式、二次函数的最值问题等知识.此题综合性很强,难度较大. 25.答案:(1)证明见解析;(2)4;(3)AC =√2BC .解析:(1)连接AD.根据直径所对的圆周角是直角、等腰三角形的性质以及平行线的性质即可证明;(2)先证△CDE∽△CAB 得CE CB =DE AB ,据此求得CE 的长,依据AE =AC −CE =AB −CE 可得答案;(3)由BD =CD 知S △CDE =S △BDE ,证△OBF∽△ABE 得,据此知S △ABE =4S △OBF ,结合S ▵CDE S ▵OBF =23知S △ABE =6S △CDE ,S △CAB =8S △CDE ,由△CDE∽△CAB 知,据此得出CDCA =2√2,结合BD =CD ,AB =AC 知BC AB =√2,从而得出答案.【详解】(1)连接AD ,∵AB 是直径,∴∠AEB =∠ADB =90°,∵AB =AC ,∴∠CAD =∠BAD ,BD =CD ,∴BD ⌢=ED ⌢,∴OD ⊥BE ;(2)∵∠AEB =90°,∴∠BEC =90°,∵BD =CD ,∴BC =2DE =2√6,∵四边形ABDE内接于⊙O,∴∠BAC+∠BDE=180°,∵∠CDE+∠BDE=180°,∴∠CDE=∠BAC,∵∠C=∠C,∴△CDE∽△CAB,∴CECB =DEAB,即2√6=√66,∴CE=2,∴AE=AC−CE=AB−CE=4;(3)∵BD=CD,∴S△CDE=S△BDE,∵BD=CD,AO=BO,∴OD//AC,∵△OBF∽△ABE,∴,∴S△ABE=4S△OBF,∵S▵CDES▵OBF =23,∴S△ABE=4S△OBF=6S△CDE,∴S△CAB=S△CDE+S△BDE+S△ABE=8S△CDE,∵△CDE∽△CAB,∴,∴CDCA =2√2,∵BD=CD,AB=AC,∴BCAB =√2,即AC=√2BC.本题是圆的综合问题,解题的关键是掌握圆周角定理、圆内接四边形的性质、相似三角形的判定与性质及等底共高三角形的面积关系的问题.。
2020年上海市中考数学一模试卷含答案解析
2020年上海市中考数学一模试卷含答案解析一.选择题(共6小题,每题4分,满分24分)1.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2D.y=﹣2(x+1)2﹣22.在Rt△ABC中,∠C=90°,若BC=3,AC=4,则sin B的值为()A.B.C.D.3.下列说法中,正确的是()A.如果k=0,是非零向量,那么k=0B.如果是单位向量,那么=1C.如果||=||,那么=或=﹣D.已知非零向量,如果向量=﹣5,那么∥4.如图,在6×6的正方形网格中,联结小正方形中两个顶点A、B,如果线段AB与网格线的其中两个交点为M、N,那么AM:MN:NB的值是()A.3:5:4B.3:6:5C.1:3:2D.1:4:25.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮的旋转角度约为()A.33°B.36°C.42°D.49°6.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE②△DFP∽△BPH③DP2=PH•PC;④FE:BC=,其中正确的个数为()A.1B.2C.3D.4二.填空题(共12小题,每题4分,满分48分)7.如果tanα=,那么锐角α的度数是.8.已知f(x)=,那么f(3)=.9.已知线段AB=2,如果点P是线段AB的黄金分割点,且AP>BP,那么AP的值为.10.已知点A(x1,y1)、B(x2,y2)为抛物线y=(x﹣2)2上的两点,如果x1<x2<2,那么y1y2.(填“>”“<”或“=”)11.如果点A(﹣3,y1)和点B(﹣2,y2)是抛物线y=x2+a上的两点,那么y1y2.(填“>”、“=”、“<”).12.抛物线y=﹣2(x﹣1)2+3在对称轴右侧的部分是的.(填“上升”或“下降”)13.如图,某小区门口的栏杆从水平位置AB绕固定点O旋转到位置DC,已知栏杆AB的长为3.5米,OA的长为3米,点C到AB的距离为0.3米,支柱OE的高为0.6米,那么栏杆端点D离地面的距离为米.14.如图,在菱形ABCD中,O、E分别是AC、AD的中点,联结OE.如果AB=3,AC=4,那么cot∠AOE=.15.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=,则CD=.16.已知在Rt△ABC中,∠C=90°,AC=3,BC=4,⊙C与斜边AB相切,那么⊙C的半径为.17.在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.如图,请在边长为1个单位的2×3的方格纸中,找出一个格点三角形DEF.如果△DEF 与△ABC相似(相似比不为1),那么△DEF的面积为.18.如图,在等腰△ABC中,AB=AC=4,BC=6,点D在底边BC上,且∠DAC=∠ACD,将△ACD沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为.三.解答题(共7小题,满分78分)19.计算:3tan30°﹣+cos45°+20.已知:在平行四边形ABCD中,AB:BC=3:2.(1)根据条件画图:作∠BCD的平分线,交边AB于点E,取线段BE的中点F,联结DF交CE于点G.(2)设=,=,那么向量=;(用向量、表示),并在图中画出向量在向量和方向上的分向量.21.如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC、CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,经试验后发现,如图3,当∠BCD=150°时台灯光线最佳.求此时连杆端点D离桌面l的高度比原来降低了多少厘米?22.如图,梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=4,tan B=3.以AB为直径作⊙O,交边DC于E、F两点.(1)求证:DE=CF;(2)求:直径AB的长.23.水城门位于淀浦河和漕港河三叉口,是环城水系公园淀浦河梦蝶岛区域重要的标志性景观.在课外实践活动中,某校九年级数学兴趣小组决定测量该水城门的高.他们的操作方法如下:如图,先在D处测得点A的仰角为20°,再往水城门的方向前进13米至C处,测得点A的仰角为31°(点D、C、B在一直线上),求该水城门AB的高.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)24.已知:在平面直角坐标系xOy中,对称轴为直线x=﹣2的抛物线经过点C(0,2),与x轴交于A(﹣3,0)、B两点(点A在点B的左侧).(1)求这条抛物线的表达式;(2)联结BC,求∠BCO的余切值;(3)如果过点C的直线,交x轴于点E,交抛物线于点P,且∠CEO=∠BCO,求点P 的坐标.25.如图,在△ABC中,AB=AC=10,BC=16,点D为BC边上的一个动点(点D不与点B、点C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF ⊥AD交射线DE于点F.(1)求证:AB•CE=BD•CD;(2)当DF平分∠ADC时,求AE的长;(3)当△AEF是等腰三角形时,求BD的长.参考答案与试题解析一.选择题(共6小题,每题4分,满分24分)1.【分析】先确定物线y=﹣2x2的顶点坐标为(0,0),再把点(0,0)平移所得对应点的坐标为(1,﹣2),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=﹣2x2的顶点坐标为(0,0),把(0,0)先向右平移1个单位,再向下平移2个单位所得对应点的坐标为(1,﹣2),所以平移后的抛物线解析式为y=﹣2(x﹣1)2﹣2.故选:B.2.【分析】根据三角函数的定义解决问题即可.【解答】解:如图,在Rt△ABC中,∵∠C=90°,BC=3,AC=4,∴AB===5,∴sin B==,故选:A.3.【分析】根据平面向量的性质一一判断即可.【解答】解:A、如果k=0,是非零向量,那么k=0,错误,应该是k=.B、如果是单位向量,那么=1,错误.应该是||=1.C、如果||=||,那么=或=﹣,错误.模相等的向量,不一定平行.D、已知非零向量,如果向量=﹣5,那么∥,正确.故选:D.4.【分析】根据平行线分线段成比例定理得出即可.【解答】解:∵=,=,∴AM:MN:NB=1:3:2,故选:C.5.【分析】根据题意和二次函数的性质,可以确定出对称x的取值范围,从而可以解答本题.【解答】解:由图象可知,物线开口向上,该函数的对称轴x>且x<54,∴36<x<54,即对称轴位于直线x=36与直线x=54之间且靠近直线x=36,故选:C.6.【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故③正确;∵∠ABE=30°,∠A=90°∴AE=AB=BC,∵∠DCF=30°,∴DF=DC=BC,∴EF=AE+DF=﹣BC,∴FE:BC=(2﹣3):3故④正确,故选:D.二.填空题(共12小题,每题4分,满分48分)7.【分析】直接利用特殊角的三角函数值进而代入求出答案.【解答】解:∵tanα=,∴锐角α的度数是:60°.故答案为:60°.8.【分析】将x=3代入f(x)=计算即可.【解答】解:当x=3是,f(3)==,故答案为.9.【分析】直接利用黄金分割的定义计算.【解答】解:∵点P是线段AB的黄金分割点,且AP>BP,∴AP=AB=×2=﹣1.故答案为﹣1.10.【分析】根据二次函数的性质得到抛物线y=(x﹣2)2的开口向上,对称轴为直线x=2,则在对称轴左侧,y随x的增大而减小,所以x1<x2<2时,y1>y2.【解答】解:∵y=(x﹣2)2,∴a=1>0,∴抛物线开口向上,∵抛物线y=(x﹣2)2对称轴为直线x=2,∵x1<x2<2,∴y1>y2.故答案为>.11.【分析】根据二次函数的图象和性质得出抛物线的对称轴是直线x=0,抛物线的开口向上,当x<0时,y随x的增大而减小,再比较即可.【解答】解:∵y=x2+a,∴抛物线的对称轴是直线x=0,抛物线的开口向上,当x<0时,y随x的增大而减小,∵﹣3<﹣2<0,∴y1>y2,故答案为:>.12.【分析】根据a<0,知抛物线开口向下,则在对称轴右侧的部分呈下降趋势.【解答】解:∵a=﹣2<0,∴抛物线开口向下,∴对称轴右侧的部分呈下降趋势.故答案为:下降.13.【分析】过D作DG⊥AB于G,过C作CH⊥AB于H,则DG∥CH,根据相似三角形的性质即可得到结论.【解答】解:过D作DG⊥AB于G,过C作CH⊥AB于H,则DG∥CH,∴△ODG∽△OCH,∴=,∵栏杆从水平位置AB绕固定点O旋转到位置DC,∴CD=AB=3.5m,OD=OA=3m,CH=0.3m,∴OC=0.5m,∴=,∴DG=1.8m,∵OE=0.6m,∴栏杆D端离地面的距离为1.8+0.6=2.4m.故答案为:2.4.14.【分析】连接OD,根据菱形的性质、勾股定理求出OD,根据三角形中位线定理得到∠AOE=∠ACD,根据余切的定义计算,得到答案.【解答】解:连接OD,∵四边形ABCD为菱形,∴OD⊥AC,OA=OC=AC=2,由勾股定理得,OD===,∵O、E分别是AC、AD的中点,∴OE∥CD,∴∠AOE=∠ACD,∴cot∠AOE=cot∠ACD===,故答案为:.15.【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC 的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【解答】解:延长AD和BC交于点E.∵在直角△ABE中,tan A==,AB=3,∴BE=4,∴EC=BE﹣BC=4﹣2=2,∵△ABE和△CDE中,∠B=∠EDC=90°,∠E=∠E,∴∠DCE=∠A,∴直角△CDE中,tan∠DCE=tan A==,∴设DE=4x,则DC=3x,在直角△CDE中,EC2=DE2+DC2,∴4=16x2+9x2,解得:x=,则CD=.故答案是:.16.【分析】r的长即为斜边AB上的高,由勾股定理易求得AB的长,根据直角三角形面积的不同表示方法,即可求出r的值.【解答】解:Rt△ABC中,∠C=90°,AC=3,BC=4;由勾股定理,得:AB2=32+42=25,∴AB=5;又∵AB是⊙C的切线,∴CD⊥AB,∴CD=r;∵S△ABC=AC•BC=AB•r,∴r=,故答案为:.17.【分析】根据相似三角形的判定定理得到△DEF∽△ABC,根据三角形的面积公式计算,得到答案.【解答】解:如图,在△DEF中,DE=,EF=2,DF=,则=,==,==,∴==,∴△DEF∽△ABC,△DEF的面积=×2×1=1,故答案为:1.18.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,(不用四点共圆,可以先证明△BMA∽△EMD,推出△BME∽AMD,推出∠ADB=∠BEM也可以!)∴=,∴BE==1.故答案为:1.三.解答题(共7小题,满分78分)19.【分析】代入特殊角的三角函数值即可.【解答】解:原式=3×﹣+×+=﹣2+2+﹣1=2﹣1.20.【分析】(1)首先作∠BCD的平分线,然后作BE的垂直平分线即可;(2)首先判定△GEF∽△GCD,然后根据AB:BC=3:2,得==,进而得出EF=CD,CG=CE,最后根据向量运算即可得结论,即可画出分向量.【解答】解:(1)作∠BCD的平分线,交边AB于点E,取线段BE的中点F,联结DF 交CE于点G.作图如下:(2)∵CE为∠BCD的平分线,∴∠BCE=∠DCE又∵AB∥CD∴∠DCE=∠BEC∴△GEF∽△GCD∵AB:BC=3:2∴==∴EF=CD,CG=CE∵=,=,∴==,==∵+=,=﹣﹣∴=﹣(+)=﹣(+)=﹣﹣同理可得,=﹣=(+)=(﹣)=﹣)在向量和方向上的分向量,如图所示:故答案为:=.21.【分析】(1)如图2中,作BO⊥DE于O.解直角三角形求出OD即可解决问题.(2)过C作CG⊥BH,CK⊥DE,由题意得,BC=CD=20m,CG=KH,解直角三角形即可得到结论.【解答】解:(1)如图2中,作BO⊥DE于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°﹣90°=60°,∴OD=BD•sin60°=20(cm),∴DE=OD+OE=OD+AB=(20+5)cm;(2)过C作CG⊥BH,CK⊥DE,由题意得,BC=CD=20m,CG=KH,∴在Rt△CGB中,sin∠CBH=,∴CG=10cm,∴KH=10cm,∵∠BCG=90°﹣60°=30°,∴∠DCK=150°﹣90°﹣30°=30°,在Rt△DCK中,sin∠DCK===,∴DK=10cm,∴(20+5)﹣(15+10)=10﹣10,答:比原来降低了(10﹣10)厘米.22.【分析】(1)直接利用垂径定理结合平行线分线段成比例定理得出DH=HC,进而得出答案;(2)过点A作AG⊥BC,垂足为点G,再利用已知结合勾股定理得出答案.【解答】(1)证明:过点O作OH⊥DC,垂足为H.∵AD∥BC,∠ADC=90°,OH⊥DC,∴∠BCN=∠OHC=∠ADC=90°.∴AD∥OH∥BC.又∵OA=OB.∴DH=HC.∵OH⊥DC,OH过圆心,∴EH=HF,∴DH﹣EH=HC﹣HF.即:DE=CF.(2)解:过点A作AG⊥BC,垂足为点G,∠AGB=90°,∵∠AGB=∠BCN=90°,∴AG∥DC.∵AD∥BC,∴AD=CG.∵AD=2,BC=4,∴BG=BC﹣CG=2.在Rt△AGB中,∵tan B=3,∴AG=BG•tan B=2×3=6.在Rt△AGB中,AB2=AG2+BG2∴AB=.23.【分析】在Rt△ABD中可得出BD=,在Rt△ABC中,可得BC=,则可得BD﹣BC=13,求出AB即可.【解答】解:由题意得,∠ABD=90°,∠D=20°,∠ACB=31°,CD=13,在Rt△ABD中,∵tan∠D=,∴BD==,在Rt△ABC中,∵tan∠ACB=,∴BC==,∵CD=BD﹣BC,∴13=,解得AB≈11.7米.答:水城门AB的高为11.7米.24.【分析】(1)设抛物线的表达式为y=ax2+bx+c,将A,B的坐标及对称轴方程代入即可;(2)分别求出点B,C的坐标,直接在Rt△OBC中,根据余切定义即可求出;(3)设点E的坐标是(x,0),求出点E的坐标,再求出CE的解析式,即可求出其与抛物线的交点坐标.【解答】解:(1)设抛物线的表达式为y=ax2+bx+c,将点C(0,2)、A(﹣3,0)、对称轴直线x=﹣2代入,得:,解得:,,∴这条抛物线的表达式为;(2)令y=0,那么,解得x1=﹣3,x2=﹣1,∵点A的坐标是(﹣3,0),∴点B的坐标是(﹣1,0),∵C(0,2),∴OB=1,OC=2,在Rt△OBC中,∠BOC=90°,∴;(3)设点E的坐标是(x,0),得OE=|x|.∵∠CEO=∠BCO,∴cot∠CEO=cot∠BCO,在Rt△EOC中,∴,∴|x|=4,∴点E坐标是(4,0)或(﹣4,0),∵点C坐标是(0,2),∴,∴,或解得和(舍去),或和(舍去);∴点P坐标是(,)或(,).25.【分析】(1)根据等腰三角形的性质得到∠B=∠C,根据三角形的外角性质得到∠BAD =∠CDE,得到△BAD∽△CDE,根据相似三角形的性质证明结论;(2)证明DF∥AB,根据平行线的性质得到=,证明△BDA∽△BAC,根据相似三角形的性质列式计算,得到答案;(3)分点F在DE的延长线上、点F在线段DE上两种情况,根据等腰三角形的性质计算即可.【解答】(1)证明:∵AB=AC,∴∠B=∠C,∠ADC=∠BAD+∠B,∠ADE=∠B,∴∠BAD=∠CDE,又∠B=∠C,∴△BAD∽△CDE,∴=,即AB•CE=BD•CD;(2)解:∵DF平分∠ADC,∵∠CDE=∠BAD,∴∠ADE=∠BAD,∴DF∥AB,∴=,∵∠BAD=∠ADE=∠B,∴∠BAD=∠C,又∠B=∠B,∴△BDA∽△BAC,∴=,即=解得,BD=,∴=,解得,AE=;(3)解:作AH⊥BC于H,∵AB=AC,AH⊥BC,∴BH=HC=BC=8,由勾股定理得,AH===6,∴tan B==,∴tan∠ADF==,设AF=3x,则AD=4x,由勾股定理得,DF==5x,∵△BAD∽△CDE,∴=,当点F在DE的延长线上,F A=FE时,DE=5x﹣3x=2x,∴=,解得,CD=5,当EA=EF时,DE=EF=2.5x,∴=,解得,CD=,∴BD=BC﹣CD=;当AE=AF=3x时,DE=x,∴=,解得,CD=,∴BD=BC﹣CD=;当点F在线段DE上时,∠AFE为钝角,∴只有F A=FE=3x,则DE=8x,∴=,解得,CD=20>16,不合题意,∴△AEF是等腰三角形时,BD的长为11或或.。
2020年上海市浦东新区初三中考一模数学试卷及答案 Word含解析
2020年上海市浦东新区初三一模数学试卷一、选择题1. 在Rt ABC V 中,∠C =90°,如果BC =5,AB =13,那么sinA 的值为( )A . 513B . 512C . 1213D .1252. 下列函数中,是二次函数的是( ) A . 21y x =-B . 22y x =C . 21y x =+D .()221y x x =--3. 抛物线245y x x =-+的顶点坐标是( ) A . ()2,1-B . (2,1)C . ()2,1--D . ()2,1-4. 如图,点D 、E 分别在ABC V 的边AB 、AC 上,下列各比例式不一定能推得DE //BC 的是( ) A .AD AEBD CE=B .AD DEAB BC=C .AB ACBD CE=D .AD AEAB AC=5. 如图,传送带和地面所成斜坡的坡度为1:3,它把物体从地面点A 处送到离地面3米高的B 处,则物体从A 到B 所经过的路程为( )A .B . 米C .D . 9米6. 下列说法正确的是( )A . ()0a a +-=r rB . 如果a r 和b r 都是单位向量,那么a b =r rC . 如果a b =r r,那么a b =r rD . 如果12a b =-r r (b r为非零向量),那么a r //b r二、填空题7. 已知3x y =,那么2x yx y+=+____________8. 已知线段AB =2cm ,P 是线段AB 的黄金分割点,P A >PB ,那么线段P A 的长度等于____________cm 9. 如果两个相似三角形对应边之比是2:3,那么它们的对应中线之比是____________ 10. 如果二次函数223y x x k =-+-的图像经过原点,那么k 的值是____________11. 将抛物线23y x =-向下平移4个单位,那么平移后所得新抛物线的表达式为____________ 12. 如果抛物线经过点()1,0A -和点B (5,0),那么这条抛物线的对称轴是直线____________ 13. 二次函数()221y x =-+的图像在对称轴左侧的部分是____________(填“上升”或“下降”)14. 如图,在ABC V 中,AE 是BC 边上的中线,点G 是ABC V 的重心,过点G 作GF //AB 交BC 于点F ,那么EFEB=____________ 15. 如图,已知AB //CD //EF ,AD =6,DF =3,BC =7,那么线段CE 的长度等于____________16. 如图,将ABC V 沿射线BC 方向平移得到DEF V ,边DE 与AC 相交于点G ,如果BC =6cm ,ABCV 的面积等于92cm ,GEC V 的面积等于42cm ,那么CF =____________cm17. 用“描点法”画二次函数2y ax bx c =++的图像时,列出了如下的表格:那么当时,该二次函数y 的值为____________18. 在Rt ABC V 中,∠C =90°,AC =2,BC =4,点D 、E 分别是边BC 、AB 的中点,将BDE V 绕着点B 旋转,点D 、E 旋转后的对应点分别为点'D 、'E ,当直线''D E 经过点A 时,线段'CD 的长为____________三、解答题19. 计算:2tan 45cos60cot 602sin 30︒-︒+︒︒20. 如图,在平行四边形ABCD 中,点E 在边AD 上,且AE =2ED ,联结BE 并延长交边CD 的延长线于点F ,设,BA a BC b ==u u u r r u u u r r .(1)用,a b r r 表示,BE DF u u u r u u u r;(2)先化简,再求作:()322a b a b ⎛⎫-++- ⎪⎝⎭r r r r (不要求写作法,但要写明结论)21. 如图,在ABC V 中,点D 、E 分别在边AB 、AC 上,且AD =3,AC =6,AE =4,AB =8. (1)如果BC =7,求线段DE 的长;(2)设DEC V 的面积为a ,求BDC V 的面积(用a 的代数式表示).22. 为了测量大楼顶上(居中)避雷针BC 的长度,在地面上点A 处测得避雷针底部B 和顶部C 的仰角分别为55°58’和57°,已知点A 与楼底中间部位D 的距离约为80米,求避雷针BC 的长度(参考数据:sin5558'0.83,cos5558'0.56,tan5558' 1.48,sin570.84︒≈︒≈︒≈︒≈)23. 如图,已知ABC V 和ADE V ,点D 在BC 边上,DA =DC ,∠ADE =∠B ,边DE 与AC 相交于点F . (1)求证:AB AD DF BC ⋅=⋅;(2)如果AE //BC ,求证:BD DFDC FE=.24. 如图,在平面直角坐标系xOy 中,抛物线2y x bx c =-++与x 轴的两个交点分别为()()1,0,3,0A B -,与y 轴相交于点C . (1)求抛物线的表达式;(2)联结AC 、BC ,求∠ACB 的正切值;(3)点P 在抛物线上,且∠P AB =∠ACB ,求点P 的坐标.25. 在Rt ABC V 中,∠A =90°,AB =4,AC =3,D 为AB 边上一动点(点D 与点A 、B 不重合),联结CD ,过点D 作DE ⊥DC 交边BC 于点E . (1)如图,当ED =EB 时,求AD 的长;(2)设,AD x BE y ==,求y 关于x 的函数解析式并写出函数定义域;(3)把BCD V 沿直线CD 翻折得'CDB V ,联结'AB ,当'CAB V 是等腰三角形时,直接写出AD 的长.参考答案一、选择题1. A2. C3. B4. B5. A6. D二、填空题7.458. 1 9. 2:3 10. 3 11. 234y x =-- 12. 2x =13. 上升 14. 13 15. 72 16. 2 17. 8- 18.三、解答题19. 原式=56 20.(1)23BE a b =+u u u r r r ,12DF a =u u u r r(2)原式=12a b -r r,作图略21.(1)72(2)5BDC S a =V 22. 约4.8米23.(1)证明略 (2)证明略24.(1)223y x x =-++ (2)2(3)点P 坐标为(1,4)或()5,12- 25.(1)94(2)()22050494x x y x x-=<<+(3)7243。
(2021年整理)初三数学试卷浦东2020一模
(完整)初三数学试卷浦东2020一模编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)初三数学试卷浦东2020一模)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)初三数学试卷浦东2020一模的全部内容。
初三数学试卷—1—初三数学试卷 —2— (第4题图)浦东新区2019学年第一学期初中学业质量监测初三数学 试卷考生注意:1.本试卷共25题,试卷满分150分,考试时间100分钟.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.在Rt△ABC 中,∠C =90°,如果BC =5,AB =13,那么sin A 的值为(A )513; (B )512; (C )1213; (D )125. 2.下列函数中,是二次函数的是(A)21y x =-;(B )22y x =; (C )12+=x y ;(D )()221y x x =--. 3.抛物线245y x x =-+的顶点坐标是 (A )(−2,1);(B )(2,1); (C )(−2, −1); (D )(2,−1).4.如图,点D 、E 分别在△ABC 的边AB 、AC 上,下列各比例式不一定能推得DE ∥BC 的是(A )AD AE BD CE=; (B)AD DE AB BC =; (C )AB ACBD CE =; (D)AD AE AB AC =. 5.如图,传送带和地面所成斜坡的坡度为1∶3,它把物体从地面点A 处送到离地面3米高的B 处,则物体从A 到B 所经过的路程为(A )310米; (B )210米;(C )10米; (D )9米. 6.下列说法正确的是(A)()0a a +-=;(B )如果a 和b 都是单位向量,那么a b =;(C )如果||||a b =,那么a b =; (D )如果12a b =-(b 为非零向量),那么a //b . (第5题图) 传送带初三数学试卷 —3— 二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.已知x =3y ,那么 = ▲ . 8.已知线段AB =2cm ,P 是线段AB 的黄金分割点,PA 〉PB ,那么线段PA 的长度等于 ▲ cm .9.如果两个相似三角形对应边之比是2∶3,那么它们的对应中线之比是 ▲ .10.如果二次函数223y x x k =-+-的图像经过原点,那么k 的值是 ▲ .11.将抛物线23y x 向下平移4个单位,那么平移后所得新抛物线的表达式为 ▲ . 12.如果抛物线经过点A (−1,0)和点B (5,0),那么这条抛物线的对称轴是直线 ▲ .13.二次函数22(1)y x =-+的图像在对称轴左侧的部分是 ▲ .(填“上升”或“下降”)14.如图,在△ABC 中,AE 是BC 边上的中线,点G 是△ABC 的重心,过点G 作GF ∥AB交BC 于点F ,那么 = ▲ .15.如图,已知AB ∥CD ∥EF ,AD =6,DF =3,BC =7,那么线段CE 的长度等于 ▲ .16.如图,将△ABC 沿射线BC 方向平移得到△DEF ,边DE 与AC 相交于点G ,如果 BC = 6cm ,△ABC 的面积等于9cm 2,△GEC 的面积等于4cm 2,那么CF = ▲ cm .17.用“描点法”画二次函数2x … 0 1 2 3 4 …2y a x b x c =++ … −3 0 1 0 −3 …那么当x = 5时,该二次函数y 的值为 ▲ .18.在Rt △ABC 中,∠C =90°,AC =2,BC =4,点D 、E 分别是边BC 、AB 的中点,将△BDE 绕着点B 旋转,点D 、E 旋转后的对应点分别为点D '、E ’,当直线D ’E ’ 经过点A 时,线段CD '的长为 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:2tan 45cos60cot 602sin30︒-︒+︒︒. G C(第14题图) (第16题图)(第15题图) EF EB2x y x y++初三数学试卷 —4— (第21题图)(第22题图) 20.(本题满分10分,其中每小题各5分)如图,在平行四边形ABCD 中,点E 在边AD 上,且AE =2ED ,联结BE 并延长交边CD 的延长线于点F ,设=,b =.(1)用、b 表示BE 、DF ;(2)先化简,再求作:)(2)23(++.(不要求写作法,但要写明结论)21.(本题满分10分,其中每小题各5分)如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,且AD =3,AC =6,AE =4,AB =8.(1)如果BC =7,求线段DE 的长;(2)设△DEC 的面积为a ,求△BDC 的面积.(用a 的代数式表示)22.(本题满分10分)为了测量大楼顶上(居中)避雷针BC 的长度,在地面上点A 处测得避雷针底部B 和顶部C 的仰角分别为55°58'和57°.已知点A 与楼底中间部位D 的距离约为80米.求避雷针BC 的长度.(参考数据:sin5558'0.83︒≈,cos5558'0.56︒≈,tan5558' 1.48︒≈,sin570.84︒≈,cos570.54︒≈,tan57 1.54︒≈)23.(本题满分12分,其中每小题各6分)(第20题图)如图,已知△ABC和△ADE,点D在BC边上,DA=DC,∠ADE=∠B,边DE与AC相交于点F.(1)求证:AB AD DF BC⋅=⋅;(2)如果AE∥BC,求证:BD DF=.DC FE(第23题图)24.(本题满分12分,其中每小题各4分)如图,在平面直角坐标系xOy中,抛物线2y x bx c=-++与x轴的两个交点分别为A(−1,0)、B(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)联结AC、BC,求∠ACB的正切值;(3)点P在抛物线上且∠PAB=∠ACB,求点P的坐标.(第24题图)25.(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4分)在Rt△ABC中,∠A=90°,AB=4,AC=3,D为AB边上一动点(点D与点A、B不重合),联结CD.过点D作DE⊥DC交边BC于点E.(1)如图,当ED=EB时,求AD的长;(2)设AD=x,BE=y,求y关于x的函数解析式并写出函数定义域;(3)把△BCD沿直线CD翻折得△CDB',联结AB’.当△CAB’是等腰三角形时,直接写出AD的长.(第25题图)(备用图)初三数学试卷—5—。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第4题图)浦东新区2019学年第一学期初中学业质量监测初三数学 试卷考生注意:1.本试卷共25题,试卷满分150分,考试时间100分钟.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效. 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.在Rt △ABC 中,∠C =90°,如果BC =5,AB =13,那么sin A 的值为 (A )513; (B )512; (C )1213; (D )125. 2.下列函数中,是二次函数的是 (A )21y x =-;(B )22y x =; (C )12+=x y ;(D )()221y x x =--.3.抛物线245y x x =-+的顶点坐标是 (A )(−2,1);(B )(2,1);(C )(−2, −1);(D )(2,−1).4.如图,点D 、E 分别在△ABC 的边AB 、AC 上,下列各比例式 不一定能推得DE ∥BC 的是(A )AD AE BD CE=; (B )ADDEAB BC =; (C )AB AC BD CE =; (D )AD AEABAC=. 5.如图,传送带和地面所成斜坡的坡度为1∶3,它把物体从地面点A 处送到离地面3米高的B 处,则物体从A 到B 所经过的路程为 (A )310米; (B )210米;(C )10米;(D )9米.6.下列说法正确的是(A )()0a a +-=r r;(B )如果a r 和b r 都是单位向量,那么a b =r r;(第5题图)传送带(C )如果||||a b =r r ,那么a b =r r ; (D )如果12a b =-r r (b r为非零向量),那么a r //b r .二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.已知x =3y ,那么 = ▲ .8.已知线段AB =2cm ,P 是线段AB 的黄金分割点,P A >PB ,那么线段P A 的长度等于 ▲ cm . 9.如果两个相似三角形对应边之比是2∶3,那么它们的对应中线之比是 ▲ . 10.如果二次函数223y x x k =-+-的图像经过原点,那么k 的值是 ▲ . 11.将抛物线23y x =-向下平移4个单位,那么平移后所得新抛物线的表达式为 ▲ . 12.如果抛物线经过点A (−1,0)和点B (5,0),那么这条抛物线的对称轴是直线 ▲ . 13.二次函数22(1)y x =-+的图像在对称轴左侧的部分是 ▲ .(填“上升”或“下降”) 14.如图,在△ABC 中,AE 是BC 边上的中线,点G 是△ABC 的重心,过点G 作GF ∥AB交BC 于点F ,那么 = ▲ .15.如图,已知AB ∥CD ∥EF ,AD =6,DF =3,BC =7,那么线段CE 的长度等于 ▲ . 16.如图,将△ABC 沿射线BC 方向平移得到△DEF ,边DE 与AC 相交于点G ,如果BC = 6cm ,△ABC 的面积等于9cm 2,△GEC 的面积等于4cm 2,那么CF = ▲ cm .172x … 0 1 2 3 4…2y a x b x c =++ … −3 0 1 0 −3…那么当= 5时,该二次函数y 的值为 ▲ .18.在Rt △ABC 中,∠C =90°,AC =2,BC =4,点D 、E 分别是边BC 、AB 的中点,将△BDE 绕着点B 旋转,点D 、E 旋转后的对应点分别为点D ’、E ’,当直线D ’E ’ 经过点A 时,线段CD ’的长为 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)x GB C(第14题图)(第16题图)(第15题图)EFEB2x yx y++(第21题图) 计算:2tan 45cos60cot 602sin30︒-︒+︒︒.20.(本题满分10分,其中每小题各5分)如图,在平行四边形ABCD 中,点E 在边AD 上,且AE =2ED ,联结BE 并延长交边CD的延长线于点F ,设=,b ρ=.(1)用、b ρ表示BE u u u r 、DF u u u r ; (2)先化简,再求作:)(2)23(++.(不要求写作法,但要写明结论)21.(本题满分10分,其中每小题各5分)如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,且AD =3,AC =6,AE =4,AB =8. (1)如果BC =7,求线段DE 的长;(2)设△DEC 的面积为a ,求△BDC 的面积.(用a 的代数式表示)22.(本题满分10分)为了测量大楼顶上(居中)避雷针BC 的长度,在地面上点A 处测得避雷针底部B 和顶部C 的仰角分别为55°58'和57°.已知点A 与楼底中间部位D 的距离约为80米.求避雷针BC 的长度.(参考数据:sin5558'0.83︒≈,cos5558'0.56︒≈,tan5558' 1.48︒≈,sin570.84︒≈,cos570.54︒≈,tan57 1.54︒≈)(第20题图)23.(本题满分12分,其中每小题各6分)如图,已知△ABC 和△ADE ,点D 在BC 边上,DA =DC ,∠ADE =∠B ,边DE 与AC 相交于点F .(1)求证:AB AD DF BC ⋅=⋅;(2)如果AE ∥BC ,求证:BD DF DC FE =.24.(本题满分12分,其中每小题各4分)如图,在平面直角坐标系xOy 中,抛物线2y x bx c =-++与x 轴的两个交点分别为 A (−1,0)、B (3,0),与y 轴相交于点C . (1)求抛物线的表达式;(2)联结AC 、BC ,求∠ACB 的正切值;(3)点P 在抛物线上且∠P AB =∠ACB ,求点P 的坐标.25.(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4分)在Rt △ABC 中,∠A =90°,AB =4,AC =3,D 为AB 边上一动点(点D 与点A 、B 不重合),联结CD .过点D 作DE ⊥DC 交边BC 于点E . (1)如图,当ED =EB 时,求AD 的长;(2)设AD =x ,BE =y ,求y 关于x 的函数解析式并写出函数定义域;(3)把△BCD 沿直线CD 翻折得△CDB ’,联结AB ’.当△CAB ’是等腰三角形时,直接写出AD 的长.(第23题图)(第24题图)浦东新区2019学年第一学期初中学业质量监测初三数学试卷参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分) 1.A ; 2.C ;3.B ;4.B ;5.A ;6.D .二、填空题:(本大题共12题,每题4分,满分48分) 7.45; 8.1); 9.2∶3;10.k =3; 11.234y x =--;12.x =2; 13.上升; 14.13; 15.72; 16.2; 17.-8; 18.三、解答题:(本大题共7题,满分78分)19.解: 原式=23321221-1⎪⎪⎭⎫ ⎝⎛+⨯……………………………………………………(各2分) =3121+ ………………………………………………………………(1分) =65.……………………………………………………………………(1分)20.解:(1)∵ 四边形ABCD 是平行四边形,∴ AD = BC .∵ AE=2ED ,∴AD AE 32=.∴ 23AE BC =. …………………………(1分)∵ b BC ρ=,∴23AE b =u u u r r . ………………………………………………(1分)∵ ,∴ AE BA BE +=b a 32+=. …………………………………(1分)=(第25题图)(备用图)∵ 四边形ABCD 是平行四边形,∴ AB // CD .∴ 12DF DE AB AE ==.∴ 12DF AB =. ………………………………………(1分)∵ ,∴ 21=. ………………………………………………(1分)(2)原式=b a b a 2223-++-………………………………………………(1分) =2223-++-=-21.……………………………… (1分)作图正确.……………………………………………………………(2分)结论. ……………………………………………………………………(1分)21. 证明:(1)∵AD =3,AC =6,AE =4,AD =8,∴12AD AE AC AB ==.…………… (2分)∵∠A=∠A ,∴△ADE ∽△ACB .…………………………………………(1分) ∴DE AD BC AC=. ……………………………………………………………(1分) ∵BC =7,∴27=DE . ……………………………………………………(1分)(2)∵AE =4,AC =6,∴EC =2.∵△ADE 与△CDE 同高,∴21ADE DEC S AE S EC ==△△. ………………………(1分)∵S △DEC =a ,∴S △ADE =2a .…………………………………………………(1分)∵△ADE ∽△ACB ,∴412=⎪⎭⎫ ⎝⎛=AC AD S S ACB ADE △△.………………………………(1分)∴S △ACB =8a . …………………………………………………………………(1分)∴S △BDC =8a ―2a ―a =5a . …………………………………………………(1分)22.解:根据题意,得∠ADC=90°,∠BAD=55°58',∠CAD=57°,AD =80.(各1分)在Rt △CAD 中,∵∠ADC=90°,,∴1.54CDAD≈,即 1.5480CD ≈. …(1分) ∴CD =123.2. ……………………………………………………………(1分) 在Rt △BAD 中,∵∠ADC=90°,,∴1.48BDAD≈,即 1.4880BD ≈.… (1分) ∴BD =118.4. ……………………………………………………………(1分) ∴BC=DC ―BD =123.2―118.4=4.8. ……………………………………(1分) 答:避雷针BC 的长度为4.8米. ………………………………………(1分)=tan57 1.54︒≈tan5558' 1.48︒≈23. 证明:(1)∵DA =DC ,∴∠DCA=∠DAC .……………………………………(1分)∵∠B=∠ADE ,∴△ABC ∽△FDA . ……………………………………(3分)∴AB BC FD DA =. ……………………………………………………………(1分) ∴AB DA FD BC ⋅=⋅.………………………………………………………(1分)(2)∵AE // BC ,∴DF DCEF EA =,∠BDA=∠DAE . ……………………(2分) ∵∠B=∠ADE ,∴△ABD ∽△EDA .………………………………………(1分) ∴ADBD AE AD =. ……………………………………………………………(1分) ∵DA =DC ,∴AEDCDC BD =.…………………………………………………(1分) ∴FEDF DC BD =. ……………………………………………………………(1分) 24.解:(1)把A (−1,0)、B (3,0)分别代入得{10,930b c b c --+=-++=.…………………………………………………………(2分)解得b =2,c =3. …………………………………………………………(1分) ∴抛物线的表达式是223y x x =-++. ………………………………(1分) (2)过点A 作AH ⊥BC ,垂足为点H .∵抛物线223y x x =-++与y 轴相交于点C ,∴C (0, 3).……………(1分) ∵B (3,0)、A (−1,0)、C (0, 3),∴OC =OB =3, AB =4. 在Rt △BOC 中,BC=ABC =45°.在Rt △HAB 中,∵sin AHABH AB ∠=,AB =4,∴AH BH == ……………………(1分)∵BC =CH = . ……………………………………………(1分)∴tan 2AHACB CH ∠==. ……………………………………………(1分)(3)过点P 作PM ⊥x 轴,垂足为点M .设P (x ,-x 2+2x +3),则PM =223x x -++,AM =x +1.∵∠PAB=∠ACB ,tan 2ACB ∠=,∴tan 2PAB ∠=. ……………(1分) (i )P 在x 轴上方时,-x 2+2x +3=2(x +1) .解得:x 1=1,x 2= -1(舍). …………………………………………(1分)2y x bx c =-++(ii)P在x轴下方时,-(-x2+2x+3)=2(x+1) .解得:x1=5,x2=-1(舍). …………………………………………(1分)∴P的坐标为(1,4)或(5,-12).………………………………(1分)25.解:(1)∵ED=EB,∴∠B=∠BDE.……………………………………………(1分)∵DE⊥CD,∴∠BDE+∠ADC=90°.∵∠A=90°,∴∠ACD+∠ADC=90°.∴∠BDE=∠ACD.…………………………………………………………(1分)∴∠ACD=∠B.…………………………………………………………(1分)在Rt△ABC中,AB=4,AC=3,∴3 tan4ACBAB==.∴3tan4ACD∠=.…………………………………………………………(1分)在Rt△ADC中,3tan4ADACDAC∠==,AC=3,∴94AD=.……………………………………………………………(1分)(2)过点E作EH⊥AB,垂足为点H.∴∠EDH=∠A=90°.∵∠BDE=∠ACD,∴△ACD∽△DEH.………………………………(1分)∴HD HE AC AD=.在Rt△BEH中,可得35EH y=,45BH y=.…………………………(1分)∴445DH x y=--.……………………………………………………(1分)∴434553x y yx--=.∴220549x xyx-=+.……………………………………………………(1分)(0 < x < 4).……………………………………………………(1分)(3)ADAD………………………(各2分)。