乘法公式教案3

合集下载

初中乘法公式专题教案

初中乘法公式专题教案

初中乘法公式专题教案教学目标:1. 理解并掌握乘法公式,包括平方差公式和完全平方公式。

2. 能够运用乘法公式进行简便计算和因式分解。

3. 培养学生的逻辑思维能力和解决问题的能力。

教学重点:1. 平方差公式的推导及应用。

2. 完全平方公式的推导及应用。

教学难点:1. 对公式中字母的广泛含义的理解及正确运用。

2. 学生在运用公式进行计算和因式分解时出现的错误。

教学准备:1. 教师准备相关例题和练习题。

2. 学生准备笔记本和文具。

教学过程:一、导入(5分钟)1. 教师通过复习整式乘法,引导学生思考如何简化计算过程。

2. 学生分享自己在计算整式乘法时遇到的问题和困惑。

二、新课讲解(15分钟)1. 教师介绍平方差公式和完全平方公式的定义和结构。

2. 教师通过示例演示平方差公式的推导过程,让学生理解并掌握公式的运用方法。

3. 教师引导学生观察和总结完全平方公式的特征,让学生自主推导完全平方公式。

三、课堂练习(15分钟)1. 学生独立完成教师提供的练习题,巩固对乘法公式的理解和运用。

2. 教师选取部分学生的作业进行点评,指出常见的错误和问题,并进行讲解和指导。

四、拓展提高(10分钟)1. 教师提供一些综合性的题目,让学生运用乘法公式进行计算和因式分解。

2. 学生合作讨论,共同解决问题,教师进行指导和解答。

五、总结与反思(5分钟)1. 教师引导学生总结乘法公式的特点和运用方法。

2. 学生分享自己在学习过程中的收获和体会。

教学评价:1. 通过课堂练习和拓展提高环节的题目,评估学生对乘法公式的理解和运用能力。

2. 观察学生在课堂中的参与程度和合作意识,评估学生的学习态度和团队协作能力。

教学反思:教师在课后对自己的教学进行反思,分析学生的学习情况和教学效果。

根据学生的反馈和表现,调整教学方法和策略,以提高学生的学习兴趣和能力。

同时,教师应及时给予学生反馈和指导,帮助学生巩固知识,提高解决问题的能力。

七年级数学下册 9.4乘法公式(3)教案 苏科版

七年级数学下册 9.4乘法公式(3)教案 苏科版

(3)(4)(4)x y x y +-++教学目标:正确熟练地运用乘法公式进行混合运算和简化的计算,提高变形应用公式的能力 重 点: 正确熟练的运用乘法公式进行混合运算和简化的计算 难 点: 能够在运用公式计算中,提高变形应用公式的能力 教学过程: 一、复习回顾1、完全平方公式:(1) (2)2、平方差公式: 二、应用举例 例1、用乘法公式计算⑴ ; ⑵ ; ⑶ ; ⑷练习:1. (2x-y)(_____ )=4x 2-y 22. (b-a)(_____ )=a 2-b23. 4x 2-12xy+(____ )=(______ )24. (-3x-2)(_____ )=4-9x 25.在下列多项式的乘法中,能用平方差公式计算的是 ( )A (a+3)(3+a)B (6x-y)(y+6x)C (-m+2n)(m-2n)D (a 2-b)(a+b 2)例2、计算⑴ ; ⑵ ;; ⑷ [(a-b)2-(a+b)2]2例3、数学实验室:(5)(5)a b a b +-2(25)a --2(27)x y -2(53)p +2(3)(3)(9)x x x -++22(23)(23)x x +-制作若干张长方形和正方形硬纸片,通过图形计算(a+b+c)2的公式,并通过运算推导这个公式。

*例4、拓展与延伸1、已知(a+b )2=7,(a-b )2=3, 求:(1)a 2+b 2(2)ab 的值.2、观察下面各式规律:写出第n 行的式子,并证明你的结论. 12+(1×2)2+22=(1×2+1)2; 22+(2×3)2+32=(2×3+1)2; 32+(3×4)2+42=(3×4+1)2;……教(学)后感:【当堂检测】【课后巩固】222(1) (23)(49)(23)(2) (1)(1)(3) (-2)(2)(4) : (2)(2)(2)(2) ,1,2x x x x y x y m n m n y x x y y x y x x y ++--++---+---+--==化简求值其中1、 )12)(12(+-+x x 的计算结果是 ( )A.-4x 2+1 B.1-4x 2C. 4x 2+1 D. 4x 2-1 2、若x 2+mx+1是完全平方式,则m=( )A 、±2B 、2C 、±4D 、43、若N b a b a ++=-22)32()32(,则N 的代数式是( )A. -24abB.12abC.24abD.-12ab 4、下列运算中,正确的是( )A 、()222a b a b +=+ B 、()2222x y x xy y --=++C 、()()2326x x x +-=-D 、()()22a b a b a b --+=- 5、若多项式m x y 12x 92+-是完全平方式,则m= .6、若3,2a b ab +=-=,则22a b += ,()2a b -=7、已知a - a 1 =3,则a 2+a12 的值等于 · 8、计算:(1)(3a+2b )(3a -2b ) (2)(4m+n )2(3)(31x 2+-)(31x 2--)(4) (a -b )(a+b )(a 2+b 2) (5)22)2()2(y x y x +-9、已知a+b=-2,ab=-15求a 2+b 2。

乘法公式初中教案

乘法公式初中教案

乘法公式初中教案教学目标:1. 理解乘法公式的概念和意义。

2. 学会运用乘法公式进行计算和解决问题。

3. 培养学生的逻辑思维能力和数学思维习惯。

教学重点:1. 乘法公式的概念和意义。

2. 乘法公式的运用和计算。

教学难点:1. 乘法公式的理解和记忆。

2. 乘法公式的灵活运用。

教学准备:1. 教学课件或黑板。

2. 练习题和答案。

教学过程:一、导入(5分钟)1. 引导学生回顾加法、减法、乘法、除法的定义和运算规则。

2. 提问:我们已经学过加法、减法、乘法、除法,那么有没有什么规律可以让我们更快地计算乘法呢?二、新课讲解(15分钟)1. 介绍乘法公式的概念:乘法公式是指在乘法运算中,两个数的乘积与它们的因数之间的关系。

2. 讲解乘法公式的意义:乘法公式可以帮助我们更快地计算乘法,避免繁琐的计算过程。

3. 举例讲解乘法公式:以2x3和3x2为例,解释它们的乘积都是6,强调乘法公式的交换律。

4. 讲解乘法公式的运用:通过例题展示如何运用乘法公式进行计算和解决问题。

三、课堂练习(15分钟)1. 布置练习题,让学生独立完成。

2. 选取部分学生的作业进行讲解和点评,纠正错误并巩固知识点。

四、拓展与应用(15分钟)1. 引导学生思考:乘法公式在日常生活中有哪些应用?2. 举例说明乘法公式在实际问题中的应用,如购物时计算总价、计算面积等。

3. 让学生尝试自己用乘法公式解决实际问题,培养学生的应用能力。

五、总结与反思(5分钟)1. 回顾本节课所学内容,让学生复述乘法公式的概念和意义。

2. 提问:通过本节课的学习,你们认为乘法公式在数学中的作用是什么?3. 鼓励学生积极思考,提出问题,培养学生的批判性思维。

教学评价:1. 课后作业:布置相关练习题,检验学生对乘法公式的掌握程度。

2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评估学生的学习效果。

3. 学生反馈:收集学生的学习心得和意见,不断改进教学方法,提高教学质量。

初中数学乘法公式教案

初中数学乘法公式教案

初中数学乘法公式教案教学目标:1. 理解乘法公式的含义和运用。

2. 掌握乘法公式的计算方法和步骤。

3. 能够灵活运用乘法公式解决实际问题。

教学重点:1. 乘法公式的含义和运用。

2. 乘法公式的计算方法和步骤。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引导学生回顾加法、减法、乘法、除法的定义和运算规律。

2. 提问:我们已经学习了加法、减法、乘法、除法,那么有没有一种方法可以快速计算两个数的乘积呢?二、新课讲解(15分钟)1. 介绍乘法公式的含义:乘法公式是一种用来计算两个数乘积的方法,它将乘法运算转化为加法运算。

2. 讲解乘法公式的计算方法和步骤:a. 将两个数写成加数的形式。

b. 将加数按照一定的顺序相加。

c. 得出结果。

3. 举例讲解乘法公式的运用:以2x3为例,将其写成加数的形式为2+2+2+2,然后按照顺序相加得到结果6。

三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固乘法公式的计算方法和步骤。

2. 引导学生相互讨论,解决练习题中的问题。

四、总结与拓展(5分钟)1. 总结乘法公式的含义和运用,强调乘法公式的计算方法和步骤。

2. 提问:乘法公式可以用来计算两个数的乘积,那么能不能用来计算三个数或者更多数的乘积呢?五、课后作业(布置作业)1. 根据课堂练习的情况,布置适量的作业,让学生巩固乘法公式的计算方法和步骤。

教学反思:本节课通过讲解乘法公式的含义和运用,让学生掌握了乘法公式的计算方法和步骤,并能够灵活运用乘法公式解决实际问题。

在教学过程中,注意引导学生相互讨论,解决练习题中的问题,提高了学生的合作意识和解决问题的能力。

同时,通过提问和拓展,激发了学生的思考和探究欲望,为后续的学习打下了基础。

七年级数学下册教案-9.4 乘法公式3-苏科版

七年级数学下册教案-9.4 乘法公式3-苏科版

教学案
年级:七年级学科:数学
课题:9.4 乘法公式(1)执笔二次备课时间
学习目标1.会推导完全平方公式,并能运用公式进行简单的计算;2.通过图形面积的计算,感受乘法公式的直观解释;
3.经历探索完全平方公式的过程,发展学生的符号感和推理能力.
学习重点运用完全平方公式进行简单的计算.
学习难点完全平方公式的应用.
学时安排1课时
学法指导合作探究,自主练习
学习过程:
【预习导学】
新课引入:同学们知道阿凡提的故事吗?
从前有一个贪心的财主,人们叫他巴依老爷.巴依老爷有两块地,一块面积为a2,另一块面积为b2,而阿凡提只有一块地,面积为(a+b)2.有一天,巴依老爷眼珠一转对阿凡提说:“我用我的两块地换你的一块地,可以吧?”阿凡提答应了吗?(a+b)2与a2+b2哪个大呢?学习了今天这节课,大家都可以成为聪明的阿凡提了.
设计思路:以悬念故事引入,大大的激发了学生的学习兴趣,在好奇心的驱动下,学生欲罢不能,很容易就产生继续学习、探索新知识的欲望.
【课堂教学】
实践探索:
如图所示,大正方形的边长为,面积为.它由两块正方形和两块长方形构成,面积分别是、、、.由此得到:(a+b)2=.
你能用前面学习的多项式的乘法法则来推导上面的公式吗?
(a+b)2=.
4.如图所示,内外两个均为正方形,则小正方形的边长为多少
cm?大正方形的面积比小正方形大多少? 3
【布置作业】
补充习题
教学
反思
授课人:(签名)
年月日。

2024乘法公式人教版数学八年级上册教案

2024乘法公式人教版数学八年级上册教案

2024乘法公式人教版数学八年级上册教案一、教学目标1.让学生掌握多项式乘以多项式的法则。

2.能够灵活运用乘法公式解决实际问题。

3.培养学生的观察能力、逻辑思维能力和解决问题的能力。

二、教学重点与难点重点:多项式乘以多项式的法则。

难点:运用乘法公式解决实际问题。

三、教学过程1.导入新课(1)回顾已学的平方公式和立方公式。

(2)引导学生思考:如何将多项式相乘转化为平方和立方公式来解决?2.探究新知(1)引导学生观察多项式乘以多项式的特点,如(a+b)(c+d)。

(2)引导学生利用平方公式和立方公式,将(a+b)(c+d)转化为平方和立方公式的形式。

3.应用练习(1)让学生独立完成课本P30页的练习题1、2。

(2)教师选取部分学生板演,讲解解题过程。

(2)让学生举例说明如何运用乘法公式解决实际问题。

5.课堂小结(1)回顾本节课所学内容,让学生复述多项式乘以多项式的法则。

(2)强调乘法公式在解决实际问题中的应用。

6.课后作业(1)完成课本P31页的练习题3、4、5。

(2)预习下一节课的内容,思考如何运用乘法公式解决实际问题。

四、教学反思2.在探究环节,教师引导学生观察、思考,充分调动了学生的积极性,提高了课堂参与度。

3.在应用练习环节,教师选取部分学生板演,讲解解题过程,让学生在实践中巩固所学知识。

4.课堂小结环节,教师引导学生回顾所学内容,强化了知识点,提高了学生的学习效果。

五、教学策略1.采用启发式教学,引导学生主动探究、发现规律。

2.利用实例讲解,让学生在具体情境中感受乘法公式的应用。

3.注重课后作业的布置,巩固所学知识,提高学生的实际运用能力。

六、教学评价1.课堂参与度:观察学生在课堂上的发言、提问情况,了解学生的参与程度。

2.作业完成情况:检查学生的作业完成情况,了解学生对知识点的掌握程度。

3.测试成绩:通过测试,了解学生对乘法公式的掌握情况,评估教学效果。

重难点补充:1.教学重点:多项式乘以多项式的法则(1)难点解释:学生可能会混淆多项式乘法的步骤,比如在分配律的应用上出错。

北师大版七年级下册辅导班教案第三讲乘法公式

北师大版七年级下册辅导班教案第三讲乘法公式
-公式的灵活应用:学生需在掌握公式的基础上,能够灵活运用公式解决各种问题,如选择合适的公式进行因式分解、计算等。
-识别应用场景:学生在解决实际问题时,需能够识别哪些问题可以用乘法公式来解决,哪些问题需要其他方法。
-计算准确性:学生在运用乘法公式进行计算时,需注意细节,避免出现计算错误。
举例:在讲解平方差公式时,解释为何a² - b²可以分解为(a+b)(a-b),引导学生理解公式背后的逻辑关系。在解决实际问题时,指导学生如何识别问题中的关键信息,选择合适的乘法公式进行求解。
北师大版七年级下册辅导班教案第三讲乘法公式
一、教学内容
北师大版七年级下册辅导班教案第三讲乘法公式
1.完全平方公式:a² = (a+b)² = a² + 2ab + b²,(a-b)² = a² - 2ab + b²
2.平方差公式:a² - b² = (a+b)(a-b)
3.立方和公式:a³ + b³ = (a+b)(a² - ab + b²),a³ - b³ = (a-b)(a² + ab + b²)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了乘法公论加深了对乘法公式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
今天在讲解乘法公式这一章节时,我发现学生们对于完全平方公式和平方差公式的推导和应用掌握得还不错,但在立方和公式的理解上似乎有些困难。在今后的教学中,我需要针对这个情况做出一些调整。

乘法公式教案

乘法公式教案

乘法公式教案教案名称:乘法公式教案教案目标:1. 了解乘法公式及其应用;2. 能够熟练地运用乘法公式解决实际问题;3. 培养学生的数学思维和解决问题的能力。

教学重点:1. 掌握乘法公式的结构和应用方法;2. 能够正确运用乘法公式解决实际问题。

教学难点:1. 学生能够将实际问题抽象为乘法公式;2. 学生能够准确地运用乘法公式解决问题。

教学准备:1. 教师准备乘法公式的教学素材及练习题;2. 学生准备纸笔。

教学过程:一、导入(5分钟)1. 教师介绍乘法公式的概念和作用,并与学生进行互动交流。

二、讲解与示范(15分钟)1. 教师详细讲解乘法公式的结构和应用方法;2. 教师通过示范解决几个实际问题的方式,帮助学生理解乘法公式的使用。

三、练习与巩固(20分钟)1. 学生在纸上完成一些练习题,巩固乘法公式的应用;2. 学生自主解决一些实际问题,运用乘法公式解决;3. 学生与同桌交流和讨论解决问题的过程和方法。

四、拓展与运用(10分钟)1. 学生自行选择一个实际问题,运用乘法公式解决,并将解题过程写在纸上;2. 学生按照分享的顺序,将自己的解题过程展示给其他同学。

五、总结与反思(5分钟)1. 教师对本节课的内容进行总结,并指出学生在掌握乘法公式上存在的问题;2. 学生反思自己在解题过程中出现的困惑和需要改进的地方。

教学延伸:针对学生存在的问题,教师可以在下节课中进行针对性的讲解和练习,帮助学生更好地掌握乘法公式的运用。

教学评价:1. 学生在练习中的表现;2. 学生在实际问题中的解题能力和思考能力;3. 学生对乘法公式的掌握程度和应用能力。

初中数学《乘法公式-添括号法则》教案

初中数学《乘法公式-添括号法则》教案
学习目标
1.类比去括号法则理解添括号法则.
2.能准确运用添括号法则进行计算.
3.通过经历添括号法则的探究,培养逆向思维能力.
评估任务
全部同学掌握去括号法则并能运用去括号法则进行计算
教 学 过 程
教学环节
教学活动
评估要点
自学即讲
你还记得去括号的法则吗?
如果括号前面是正号,去括号后原括号内各项的符号都不变;
学情分析
初二的学生已经通过一年的学习掌握了一些必要数学基础知识和思考方式。学生已初步了解了多项式的加减法、多项式乘法以及去括号法则等,这样的话本节课的知识比较易于理解。另外学生们处于求知欲和表现欲都很强的阶段,可以给学生提高更多的表现机会,加强合作交流,多互动,多反馈。同时在教学时,应注意讲练结合,随时注意纠正、反馈学生可能出现的符号、系数和计算等方面的错误
A.[(a+c)-b][(a-c)+b]
B.[(a-b)+c][(a+b)-c]
C.[(b+c)-a][(b-c)+a]
D.[a-(b-c)][a+(b-c)]
训练总结
5.运用乘法公式计算:
(1)(3a+b-2)(3a-b+2);
(2)(a+b-c)2.
板书设计
课后作业
课后反思
教学设计
课题
第3课时乘法公式——添括号法则
节次
1
课型
新授课
确立目标依据
课标分析
课标摘要
理解乘法公式,了解公式的几何背景,掌握添括号法则。
课标分解
掌握去括号法则,并能运用去括号法则进行整式运算和进行因式分解。
教材分析
去括号法则是在新人教版第二章出现的,学生对此法则较为熟悉,而添括号法则是讲去括号法则反过来理解和运用的,而添括号是本章的一个难点,今后学习因式分解,分式的运算等内容,经常会出现去括号和添括号的问题,所以一定要重视本节知识的教学,使学生掌握去括号和添括号法则,为今后学习打下基础。

乘法公式教案

乘法公式教案

乘法公式教案一、教学目标1. 知识目标:掌握乘法公式的概念、原理和应用。

2. 能力目标:能够灵活运用乘法公式解决实际问题。

3. 情感目标:培养学生对乘法公式的兴趣和探索精神,增强数学学科的学习动力。

二、教学重点与难点1. 教学重点:乘法公式的概念、原理和应用。

2. 教学难点:如何运用乘法公式解决实际问题。

三、教学准备1. 教具准备:黑板、彩色粉笔、乘法表。

2. 学具准备:学生练习册、习题集。

四、教学过程Step 1 引入新知1. 创设情境:小明要算一本书一共有多少页,他知道每页有24行,每行有32个字,他该如何计算?2. 导入问题:请同学们尝试解决这个问题,思考一下需要用到哪些数学方法?3. 引导讨论:请几位同学分享一下你们的解决思路。

Step 2 发现规律1. 呈现乘法表:在黑板上列出1-10的乘法表。

2. 观察与总结:请同学们观察乘法表,看看有没有什么规律或者特点?3. 引导思考:根据同学们的观察,我们能否总结出乘法公式的一般形式?Step 3 学习乘法公式1. 引入乘法公式:通过引导性的提问,教师介绍乘法公式的概念和原理。

2. 讲解乘法公式:详细讲解乘法公式的推导过程,并解释为什么可以使用乘法公式来解决实际问题。

3. 举例应用:提供具体实例,引导学生根据已学习的乘法公式解决实际问题。

Step 4 练习巩固1. 基础练习:在黑板上出示一些与乘法公式相关的习题,让学生上台做题并解释解题思路。

2. 拓展练习:提供一些较为复杂的应用题,要求学生分组讨论并给出解题思路和答案。

3. 自主练习:让学生在练习册上独立完成相关的练习题。

Step 5 归纳总结1. 归纳乘法公式:请同学们尝试总结乘法公式的基本形式和适用范围。

2. 教师点评:教师对同学们的总结给予点评和肯定。

五、课堂小结通过本节课的学习,我们掌握了乘法公式的概念、原理和应用,并且能够运用乘法公式解决实际问题。

六、作业布置1. 完成练习册上的相关练习题。

乘法公式教案

乘法公式教案

乘法公式教案乘法公式教案介绍:乘法公式是数学中非常重要的一部分,它能够帮助我们快速计算大量的乘法运算。

在小学阶段,学生们通常会学习到乘法公式的基本概念和应用方法。

本篇文章将为您介绍一份乘法公式的教案,帮助学生们更好地理解和掌握这一知识点。

一、教学目标通过本节课的学习,学生将能够:1. 理解乘法公式的概念和作用;2. 掌握乘法公式的基本应用方法;3. 运用乘法公式解决实际问题。

二、教学准备1. 教师准备:教案、黑板、彩色粉笔、习题册;2. 学生准备:课本、笔、作业本。

三、教学过程1. 导入教师可以通过提问的方式,引导学生回顾乘法的基本概念和运算方法。

例如:“请问,什么是乘法?我们怎样进行乘法运算?”2. 概念讲解教师通过讲解的方式,向学生介绍乘法公式的概念和作用。

可以使用图表或实例来帮助学生理解。

例如:“乘法公式是一种用于计算两个或多个数相乘的方法。

它可以帮助我们简化乘法运算,提高计算效率。

”3. 乘法公式的应用教师通过示范和练习的方式,向学生展示乘法公式的具体应用方法。

例如:“现在我们来看一个例子:计算5×7。

根据乘法公式,我们可以将5看作一个被乘数,将7看作一个乘数。

我们可以将5写成5×1,然后再将7分别乘以1,得到的结果相加。

这样我们就可以得到5×7的答案。

”4. 练习巩固教师布置一些练习题,让学生进行乘法公式的练习。

可以根据学生的不同水平,选择适当的难度。

例如:“请计算8×9,使用乘法公式进行计算。

”5. 拓展应用教师引导学生思考乘法公式在实际问题中的应用。

例如:“小明买了3个苹果,每个苹果的价格是2元。

请问,小明一共花了多少钱?你们可以使用乘法公式来解决这个问题。

”6. 总结教师对本节课的内容进行总结,并强调乘法公式的重要性和应用价值。

可以鼓励学生积极运用乘法公式,提高计算效率。

四、课后作业教师布置一些乘法公式的作业题,让学生巩固所学知识。

例如:“请计算6×4,使用乘法公式进行计算,并写出详细的解题过程。

乘法公式教案

乘法公式教案

乘法公式教案乘法公式教案一、教学目标:1. 理解乘法公式的概念和意义。

2. 能够正确运用乘法公式计算具体的乘法表达式。

3. 培养学生观察、分析和推理的能力。

二、教学重点:1. 乘法公式的概念和意义。

2. 乘法公式的运用。

三、教学难点:乘法公式的推导和运用。

四、教学过程:1. 引入乘法公式(10分钟)教师将一个简单的乘法算式写在黑板上,如3 × 4 = 12,并询问学生这个算式的结果是多少。

然后教师再列举一些简单的算式,让学生思考它们之间是否存在某种规律。

引导学生发现乘法的特点:乘法是将两个数相乘得到一个新的数。

2. 乘法公式的概念讲解(10分钟)教师解释乘法公式的概念和意义:乘法公式是一种用来表示乘法运算的数学语句。

它由被乘数、乘数和积三部分组成,被乘数和乘数相乘得到积。

3. 乘法公式的具体形式和推导(15分钟)教师将一个简单的推导过程写在黑板上,如4 × 3 = 12,然后通过分析推导过程让学生发现乘法公式的具体形式:a × b = b × a。

再通过多个例子的展示和讲解,让学生深入理解乘法公式的推导过程。

4. 乘法公式的运用(15分钟)教师给学生出示一些乘法算式,要求他们运用乘法公式计算出结果。

教师可以通过游戏的形式,让学生分组进行竞赛,提高学生的参与度和学习兴趣。

5. 乘法公式的应用(10分钟)教师通过实际问题的引入,让学生认识到乘法公式在日常生活中的应用。

例如,一个教室里有10排桌子,每排有12张桌子,学生们可以用乘法公式计算出这个教室里共有多少张桌子。

6. 总结和反思(10分钟)教师与学生一起总结乘法公式的概念、形式和运用,并提醒学生在学习中的注意事项。

然后让学生进行自我评价和反思,以确定下一步的学习目标。

五、课堂练习:1. 计算以下乘法算式的结果:5 × 3,8 × 4,9 × 2。

2. 计算以下乘法算式的结果,并写出乘法公式的推导过程:4× 6,7 × 2,3 × 8。

2024北师大版数学七年级下册1.6.3《乘法公式综合运用》教案3

2024北师大版数学七年级下册1.6.3《乘法公式综合运用》教案3

2024北师大版数学七年级下册1.6.3《乘法公式综合运用》教案3一. 教材分析《乘法公式综合运用》是北师大版数学七年级下册1.6.3的教学内容。

这部分内容是在学生掌握了平方差公式、完全平方公式等乘法公式的基础上进行学习的。

通过这部分的学习,学生能够灵活运用乘法公式解决实际问题,提高他们的解决问题的能力。

二. 学情分析面对七年级的学生,他们在之前的学习中已经掌握了平方差公式、完全平方公式等乘法公式。

但是,他们在运用这些公式解决实际问题时,往往会存在理解不深、运用不灵活的情况。

因此,在教学这部分内容时,需要引导学生深入理解乘法公式的内涵,提高他们解决问题的能力。

三. 教学目标1.知识与技能:使学生掌握乘法公式的运用方法,能够灵活解决实际问题。

2.过程与方法:通过自主学习、合作交流,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们积极思考、勇于探索的精神。

四. 教学重难点1.重点:乘法公式的运用。

2.难点:灵活运用乘法公式解决实际问题。

五. 教学方法采用自主学习、合作交流、教师引导相结合的教学方法,让学生在探究中掌握知识,提高解决问题的能力。

六. 教学准备1.准备相关的乘法公式的资料,以便在教学中进行查阅。

2.准备一些实际问题,让学生进行练习。

七. 教学过程1.导入(5分钟)教师通过提问的方式,引导学生回顾之前学过的平方差公式、完全平方公式等乘法公式,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过展示一些实际问题,让学生尝试运用乘法公式进行解决。

学生在解决问题的过程中,教师给予适当的引导和提示。

3.操练(10分钟)学生分组进行练习,教师给出一些运用乘法公式的问题,学生通过合作交流,共同解决问题。

4.巩固(5分钟)教师挑选一些学生解决的实际问题,让学生上台进行讲解,以此巩固乘法公式的运用。

5.拓展(5分钟)教师提出一些拓展问题,引导学生深入思考,提高他们解决问题的能力。

八年级数学上册《乘法公式》教案、教学设计

八年级数学上册《乘法公式》教案、教学设计
(三)学生小组讨论
1.教学活动设计:将学生分成若干小组,每组针对以下问题进行讨论:
a.平方差公式和完全平方公式的推导过程;
b.乘法公式在解决实际问题中的应用;
c.运用乘法公式进行整式乘法的优点。
2.教师指导:在学生讨论过程中,教师巡回指导,解答学生的疑问,引导学生深入探讨。
(四)课堂练习
1.教学内容:设计以下几类练习题,巩固学生对乘法公式的掌握:
7.信息技术辅助教学:利用多媒体、网络资源等信息技术手段,形象直观地展示乘法公式的推导过程,提高教学效果。
8.关注个体差异,因材施教:针对不同学生的特点,给予个性化的指导,使每个学生都能在原有基础上得到提高。
9.定期评估,总结提高:通过定期测试和评估,了解学生的学习情况,总结教学经验,不断调整和优化教学方法,提高教学质量。
a.平方差公式:a² - b² = (a + b)(a - b)
通过具体的数值代入,引导学生观察、发现并总结出平方差公式的规律。
b.完全平方公式:a² + 2ab + b² = (a + b)²
同样,通过具体的数值代入,引导学生观察、发现并总结出完全平方公式的规律。
2.教学方法:采用引导式教学,让学生通过观察、思考和总结,自主发现乘法公式的规律。
4.利用信息技术手段,如多媒体、网络资源等,辅助教学,提高课堂教学效果。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发学生学习数学的积极性。
2.培养学生勇于探索、积极思考的学习态度,使学生养成良好的学习习惯。
3.培养学生合作交流的意识,学会倾听他人意见,提高人际沟通能力。
4.培养学生认识到数学知识在实际生活中的重要性,增强学生的应用意识和实践能力。

乘法公式教案

乘法公式教案

1.教学设计学科名称乘法公式(人教版八年级数学上册第15章)2.所在班级情况,学生特点分析学情分析:学生已有七年级上册所学习数的运算、字母表示数、合并同类项、去括号等内容,通过类比他们会产生“式是否也有相应的运算,如果有的话该怎样进行”等问题.为此本节课关注学生对公式的探索过程,有意识的培养学生的推理能力,让学生经历“特例→归纳→猜想→符号表示”的知识发生过程,并有条理地表达自己的思考过程,培养学生的数感和符号感,真正理解公式的来源、本质和应用。

3.教学内容分析本节课关注学生对公式的探索过程,有意识的培养学生的推理能力,鼓励学生经历根据特例进行归纳、建立猜想、用符号表示,有条理地表达自己的思考过程,培养学生的数感和符号感,真正理解公式的来源、本质和应用,为今后的学习打下坚实的基础.4.教学目标⑴.经历探索平方差公式的过程,进一步发展符号感和推理能力。

⑵.会推导平方差公式,并能运用公式进行简单计算。

⑶.认识平方差及其几何背景,使学生明白数形结合的思想。

⑷.在合作、交流和讨论中发掘知识,并体验学习的乐趣。

⑸.培养学生灵活运用知识、勇于探求科学规律的意识。

5.教学重、难点分析教学重点:体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。

教学难点:从广泛意义上理解公式中的字母含义,具体问题要具体分析,会运用公式进行计算。

6.教学课时:1课时7.教学过程一、创设问题情境,引导学生观察、设想。

教师发给每个学生一张正方形纸片(边长15cm),并用多媒体课件与正方形纸板显示正方形。

师:在一块45cm的正方形纸板上,因为工作的需要,中间挖去一块边长为15cm的正方形(如图),请问剩下部分的面积有多少平方厘米?师:计算剩下部分的面积可以有哪些方法?小组讨论:1.可以用大正方形面积减去小正方形面积得到。

2.可以把剩下的部分切割成几个矩形来计算。

师:从今天的问题来看,用哪一种方法比较好?你们小组能列出算式吗?或许有学生能迅速列出算式,得出答案是1800平方厘米。

第三册乘法数学教案设计

第三册乘法数学教案设计

第三册乘法數學教案設計标题:第三册乘法数学教案设计一、教学目标:1. 理解和掌握乘法的定义和运算规则。

2. 能够运用乘法解决实际问题,提高计算能力。

3. 培养学生的逻辑思维能力和抽象思维能力。

二、教学内容:1. 乘法的定义:乘法是加法的简化运算,表示相同加数的连加。

2. 乘法的运算规则:- 交换律:a×b=b×a- 结合律:(a×b)×c=a×(b×c)- 分配律:a×(b+c)=a×b+a×c三、教学过程:(一)引入新课教师可以先通过复习加法,引导学生思考如何快速计算多个相同的数相加的问题。

然后引出乘法的概念,让学生理解乘法是对加法的简化运算。

(二)新课讲解1. 教师讲解乘法的定义,并通过举例说明,使学生能够理解和接受乘法是对加法的简化运算这一概念。

2. 教师讲解乘法的运算规则,可以通过具体的算式进行演示,让学生观察并理解乘法的交换律、结合律和分配律。

(三)课堂练习教师设计一些简单的乘法题目,让学生进行练习,以检验他们对乘法的理解和掌握程度。

同时,教师还可以设计一些应用题,让学生运用乘法解决实际问题,提高他们的计算能力。

四、教学评价:教师可以通过课堂练习和作业来评估学生的学习效果。

如果大部分学生都能够正确地完成练习和作业,那么就可以认为他们已经掌握了乘法的基本知识和技能。

五、教学反思:在教学过程中,教师要注意观察学生的学习情况,及时调整教学方法和策略。

如果发现学生在某个知识点上有困难,就要加强辅导,帮助他们克服困难。

此外,教师还要注重培养学生的独立思考能力和创新能力,让他们学会用所学的知识去解决实际问题。

六、家庭作业:设计一些乘法题目作为家庭作业,要求学生回家后自己完成,以此巩固他们在课堂上学到的知识。

以上就是关于第三册乘法数学教案的设计,希望对大家有所帮助。

苏科版七下《乘法公式》word教案4篇

苏科版七下《乘法公式》word教案4篇

9.4 乘法公式(一)一、教学目标1.会推导完全平方公式、平方差公式,并能正确运用公式进行简单计算.2.通过图形面积的计算,感受乘法公式的直观解释,了解公式的几何背景.3.在探索公式的过程中,发展学生的符号感和推理能力.4.培养学生主动探索,敢于实践,勇于发现的科学精神,以及合作交流的能力和创新的意识.二、教学重点、难点正确运用公式进行相关的计算三、教具准备:自制长方形、正方形纸板 四、教学过程 情境创设学生利用准备好的长方形、正方形纸板(图1),拼成一个大正方形(图2). a(1) (2)通过这样的拼图过程,你能发现什么吗探索活动 做一做问题一:你是如何表示图(2)中大正方形的面积的?问题二:你能利用多项式乘法法则推导公式2222)(b ab a b a ++=+吗?结论:得到完全平方公式2222)(b ab a b a ++=+问题三:你能够不通过计算直接写出2222)(b ab a b a +-=-?结论:得到完全平方公式2222)(b ab a b a +±=±想一想你能仿照上面的过程,得到平方差公式:22))((b a b a b a -=-+(可通过计算图形的面积和多项式的乘法来说明.)试一试:1.计算(1)2)2(+x (2)2)2(-x (3))2)(2(-+x x (4)2)52(+a (5)2)52(--a 练一练(1)))()((22y x y x y x ++- (2)1)12)(12)(12)(12(842+++++ 3.计算(1)21.10 (2)2999练一练(1)98102⨯ (2)19952005⨯ 小结(1) 分别说出完全平方公式、平方差公式的特征(2) 在式子bd ad bc ac d c b a +++=++))((中当a 、b 、c 、d 满足什么关系时,由它可得到乘法公式?作业:P80练一练1、2、3、49.4 乘法公式课 题:9.4 乘法公式(第1课时) 课 型:新授型教学目标:(1) 探索并推导完全平方公式、平方差公式,并能运用公式进行简单的计算; (2) 引导学生感受转化的数学思想以及知识间的内在联系. 教学重点:完全平方公式;平方差公式教学难点:正确的应用完全平方公式、平方差公式进行计算 教学方法:探索、引导法b a教具准备:三角尺、投影仪 a 教学设想:−→−一. 情景创设 b如右图:你能通过不同的方法计算大正方形的面积吗? 从而你发现了什么? 二. 探索活动问题一:如何用字母表示上图中大正方形的面积? 生: 将上图看成一个大正方形,则面积为 2)(b a +.师:很好,还有没有其它的方法呢?生:可将上图看成是由两个小长方形和两个小正方形组成的图形,那么它的面积为2a2babab222b ab a ++.师:两种方法都求出了大正方形的面积,从而我们可以发现什么呢? 生:2)(b a +=222b ab a ++ 这个公式就叫做一个完全平方公式.问题二:你能用多项式的乘法法则推导公式2)(b a +=222b ab a ++吗? 生:2)(b a +=))((b a b a ++=22b ba ab a +++=222b ab a ++ 师:很好,你能用同样的方法计算2)(b a -吗?生:222222))(()(b ab a b ba ab a b a b a b a +-=---=--=- 即:2222)(b ab a b a +-=-,这是我们要学习的另一个完全平方公式. 完全平方公式:2)(b a +222b ab a ++=2222)(b ab a b a +-=-师:你能用文字语言叙述这两个公式吗?问题三:你能仿照上面的过程,完成对平方差公式的推导吗? 引导学生完成“试一试”中的平方差公式的推导. 平方差公式:22))((b a b a b a -=-+问题四:你知道乘法公式中的字母都可以代表什么吗?可分小组进行讨论,然后选一名代表回答.师再评议.三. 例题教学例 利用完全平方公式或平方差公式计算: ⑴2)2(+x ⑵)2)(2(-+x x ⑶2)(b a - ⑷2998⑸998102⨯ 解:略练一练:80p 1,2,3,4题四. 想一想⑴ 观察完全平方公式、平方差公式有什么特征?⑵在式子))((d c b a ++bd ad bc ac +++=中,当d c b a ,,,满足什么条件时,由它能得到完全平方公式,满足什么条件时能得到平方差公式?五. 小结这一节课你学到了什么?让学生试着小结,师再评议.六. 作业布置:1.8382-p 1,2,32.补充:.用乘法公式计算:(1)21001 (2) )3)(3(x x -+ (3)2)3(a - (4)10892⨯ 板书设计乘法公式(一)1.完全平方公式 : 3.例题教学2.平方差公式: 4.小结: 八.教后记:9.4乘法公式(2)课 题:9.4乘法公式(2)教学目标:通过图形面积的计算,感受乘法公式的直观解释. 教学重点:乘法公式的运用. 教学难点:灵活运用乘法公式 教学过程设想一.复习提问:叙述乘法公式的内容:2)(b a +=2a +2ab+2b2)(b a -=2a -2ab+2b(a+b )(a-b)=2a -2b学生回答,师板书. 二.情境创设让学生画一个正方形,再在其边上取3条线段c b a ,,,根据此图求是多少? 生:把)(b a +作为整体,得2)(c b a ++[]2)(c b a ++=把)(c a +作为整体,得2)(c b a ++[]2)(b c a ++=把)(c b +作为整体,得2)(c b a ++[]2)(c b a ++=三.学习例2.用乘法公式计算: ⑴2)35(p +⑵2)72(y x - ⑶2)52(--a ⑷)5)(5(b a b a -+直接用公式进行计算和上面公式进行对照和哪一个相似?a b cb第⑶题让学生先比较2)52(--a 与2)52(+a 的异同,并判断它们的值是否相等? 练一练 P.82.1. 学生板演,师小结. 四.学习例⒊计算:⑴)9)(3)(3(2++-x x x ⑵22)32()32(-+x x ⑶)4)(4(++-+y x y x思考:(1)如果先将第一、三项先乘进行比较,哪一种简便?(2)可否先运用完全平方公式再先乘,和例题进行比较哪一种简便?练一练 P.82.2 .3 .4 . 学生板演,师小结. 五.思维拓展回到开头,你能计算2)(c b a ++? 学生回答,师板书 六.巩固提高观察下式,你会发现什么规律? 3⨯5=15 而15=24-15⨯7=35 而35=26-1 …11⨯13=143 而143=212-1…请你将猜想到的规律用只含一个字母的式子表示出来.板书设计:2)(b a +=2a +2ab+2b 2)(c b a ++=2a +2b +2c +2ab+2bc+2ac 2)(b a -=2a -2ab+2b 例题2(a+b)(a-b)=2a -2b 例题39.4 乘法公式(二)一、教学目标:1.通过拼图探索计算2)(c b a ++的公式,并推导这个公式.2.进一步巩固完全平方公式和平方差公式,并会用乘法公式化简某些代数式. 二、教学重、难点: 如何灵活运用乘法公式 三、教学过程: 情境创设请同学们用准备好了的正方形和长方形纸板拼图,拼成如图所示的大正方形.问:通过这样的拼图过程,你能发现什么吗? 探索活动 做一做问题一:你是如何表示图中大正方形的面积的问题二:你能用2222)(b ab a b a ++=+推导2)(c b a ++吗? 结论:得到公式ca bc ab c b a c b a 222)(2222+++++=++小试牛刀计算(1)2)432(c b a ++ (2)2)23(z y x --例题教学 例1. 计算(1)2)35(p + (2)2)72(y x - (3))9)(3)(3(2++-x x x (4)22)32()32(+-x x (5))4)(4(++-+y x y x 练一练(1)22)10()10(+-x x (2)))((2222n mn m n mn m +-++(3)22)33()33(--+aa (4))3)(3()3(2y x y x y x +--+例2. 若,4,922-==+xy y x 求(1)2)(y x + (1)2)(y x -例3. 求代数式)(5)3()2(22n m m n m n m -+--+的值,其中51,101==n m . 小结(3) 说说完全平方公式、平方差公式的特征(4) 把b a +看成""x ,就可以用完全平方公式计算2)(c b a ++,运用这种转化的思想,你能计算3)(b a +、4)(b a +吗?作业P82习题9.4第1,4(2)、(4)、(6),6题。

9.4乘法公式(第3课时)教案

9.4乘法公式(第3课时)教案

怀文中学2009——2010学年度第一学期教学设计初 一 数 学 (9.4 乘法公式 第3课时)主备:杨长江 审核人:戴鸿飞 日期:2010-2010-4-2教学目标: 1.正确熟练的运用乘法公式进行混合运算和简化的计算;2.在应用公式的过程中,提高变形应用公式的能力.重 点:正确熟练的运用乘法公式进行混合运算和简化的计算. 难 点:能够在运用公式计算中,提高变形应用公式的能力. 教学内容: 一、自主探究回忆上节课所学的乘法公式:2)(b a += 222b ab a ++ 2222)(b ab a b a +-=- 22))((b a b a b a -=-+这节课我们利用乘法公式解决实际问题. 二、自主合作 新课讲解: 例5:计算(1) )9)(3)(3(2++-x x x ;(2)22)32()32(-+x x ;例6:计算(1) )4)(4(++-+y x y x ;(2) [(a-b)2-(a+b)2]2能够根据实际情况灵活运用乘法公式解题. 课堂练习:(小组自主探究,合作展示) P68 练一练 1 、2 、3三、自主展示1.利用乘法公式进行计算:(板演展示)(1) (x-1)(x+1)(x 2+1)(x 4+1) (2) (3x+2)2-(3x-5)2(3) (x-2y+1)(x+2y-1) (4) (2x+3y)2(2x-3y)2(5) (2x+3)2-2(2x+3)(3x-2)+(3x-2)2 (6) (x 2+x+1)(x 2-x+1)2.已知a+b=-2,ab=-15求a 2+b 2.四、自主拓展分析题意,找出解题的关键点、难点.怎样突破难点. 1.已知31=+xx ,求⑴ 221xx +,⑵ 2)1(xx -2. 试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字3. a+b=5, ab=3,求:(1) (a-b)2 ;(2) a 2+b 2 ;(3) a 4+b 44.观察下列各式(x-1)(x+1)=x 2-1,(x-1)(x 2+x+1)=x 3-1,(x-1)(x 3+x 2+x+1)=x 4-1,根据前面各式的规律可得(x-1)(x n +x n –1+…+x+1)= .五、自主评价能够根据题目的要求灵活的运用乘法公式.作业布置:P80/6(2) (4) (6)7教学后记:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档