几种简单证明勾股定理的方法
勾股定理五种证明方法
勾股定理五种证明方法
1. 代数证明:假设直角三角形的两条直角边分别为a和b,斜
边为c。
根据勾股定理,我们有a^2 + b^2 = c^2。
将三条边的
长度代入该等式,进行计算验证即可证明。
2. 几何证明:通过绘制直角三角形,并利用几何原理证明。
例如,可以画一个正方形,然后在其两条相对边上各画一个相等的直角三角形,再使用平行四边形的性质可以得出a^2 + b^2
= c^2。
3. 相似三角形证明:假设两个直角三角形,已知其斜边比例为m:n,利用相似三角形的性质可以得出直角边的比例也是m:n,进而得到a^2 + b^2 = c^2。
4. 平行四边形法证明:利用平行四边形的性质,可通过画出一个具有相等对边的平行四边形来证明勾股定理。
通过平行四边形的性质可以得出a^2 + b^2 = c^2。
5. 微积分证明:利用微积分的知识可以证明勾股定理。
通过对直角三角形边长进行微分,并进行适当的运算,可以得到a^2 + b^2 = c^2。
这种证明方法比较复杂,需要较高的数学知识和
技巧。
勾股定理证明方法大全
勾股定理证明方法大全
勾股定理是数学中比较基础的内容,下面介绍几种证明方法: 1. 几何证明法
构造直角三角形ABC,其中∠ABC=90度,AB=c,AC=a,BC=b,则根据勾股定理,有:
c = AB + AC
即:
c = a + b
这个方法是最常见的证明方法,也是最直观的。
2. 代数证明法
将勾股定理转化为代数式,如下所示:
设直角三角形的两条直角边分别为a和b,斜边为c,则根据勾股定理,有:
c = a + b
将c用另一种方式表示,如下所示:
c = sqrt(a + b)
将c代入原式,并进行平方操作可以得到:
c = a + b
因此,勾股定理成立。
3. 数学归纳法
首先,在直角三角形中,当一条直角边为0时,另外两条直角边的长度必然相等,而且都为0,勾股定理显然成立。
接下来,假设当直角边长为n时,勾股定理成立,即:
c = a + b
考虑当直角边长为n+1时,如何证明勾股定理仍然成立。
此时,可以将直角边长为n+1的直角三角形划分成以一条边长为n的直角三角形和一个长度为1的小直角三角形。
根据勾股定理,前者的斜边平方和等于两直角边平方和,后者的斜边平方就是1。
组合起来就得到:
(c + 1) = a + b + 1
即:
c + 2c + 1 = a + b + 1
移项可得:
c = a + b
因此,当直角边长为n+1时,勾股定理仍然成立。
根据数学归纳法,勾股定理对所有正整数均成立。
求证勾股定理的七种方法
求证勾股定理的七种方法一、几何法几何法是最直观的证明方法之一。
我们可以通过画图,将直角三角形的三边关系表示出来,然后运用几何知识进行推导。
例如,可以构造一个正方形,将直角三角形的三边分别作为正方形的三个边,然后利用正方形的性质进行推导,最终得到勾股定理的结果。
二、代数法代数法是使用代数运算进行证明的方法。
我们可以假设直角三角形的两个直角边的长度分别为a和b,斜边的长度为c,然后根据勾股定理的表达式c^2 = a^2 + b^2,利用代数运算进行推导,最终得到等式成立的结果。
三、相似三角形法相似三角形法是利用相似三角形的性质进行证明的方法。
我们可以构造与直角三角形相似的三角形,然后利用相似三角形的边比例关系进行推导。
通过比较两个相似三角形的边长比例,可以得到勾股定理的结果。
四、三角函数法三角函数法是利用三角函数的定义和性质进行证明的方法。
我们可以利用正弦函数、余弦函数和正切函数的定义,将直角三角形的三边关系表示为三角函数的关系式,然后利用三角函数的性质进行推导,最终得到勾股定理的结果。
五、向量法向量法是利用向量的性质进行证明的方法。
我们可以将直角三角形的三条边表示为向量,然后利用向量的运算和性质进行推导。
通过计算向量的模和向量的内积,可以得到勾股定理的结果。
六、平面几何法平面几何法是利用平面几何的性质进行证明的方法。
我们可以利用平行线的性质和平行四边形的性质,构造与直角三角形有关的平行四边形,然后运用平行四边形的性质进行推导,最终得到勾股定理的结果。
七、数学归纳法数学归纳法是利用数学归纳的原理进行证明的方法。
我们可以先证明勾股定理对于某个特殊情况成立,然后再证明如果勾股定理对于某个特殊情况成立,那么它对于下一个更一般的情况也成立。
通过数学归纳的推理过程,最终得到勾股定理对于所有直角三角形都成立的结果。
通过以上七种方法的证明,我们可以看到勾股定理在不同的数学领域和角度都得到了证明。
这些方法各有特点,有些方法更直观易懂,有些方法更注重形式化推导,但它们都能有效地证明勾股定理的正确性。
几种简单证明勾股定理的方法
几种简单证明勾股定理的方法勾股定理是一个著名的数学定理,它描述了直角三角形三条边的长度之间的关系。
下面是几种简单证明勾股定理的方法:方法一:特例验证法对于任意一个直角三角形,我们可以列出它的两条直角边的长度的平方和,以及斜边的长度的平方,验证它们是否相等。
例如,对于一个直角边分别为3和4的直角三角形,我们可以计算出它的斜边的长度为5,然后验证3²+4²=5²。
这种方法虽然简单,但是只适用于特例,不能推广到一般情况。
方法二:几何构造法将两个大小相同的直角三角形放在同一直线上,使得它们的斜边成为一条直线。
这时,我们可以证明两个三角形的面积之和等于底边长度之和的两倍。
由于两个三角形面积相等,因此可以得出底边长度之和等于斜边长度。
例如,对于两个直角边分别为a和b的直角三角形,它们的斜边长度分别为c,将它们放在同一直线上,使得它们的斜边成为一条直线。
可以证明两个三角形的面积之和等于底边长度之和的两倍,即ab/2+ab/2=c²/2。
因此,可以得出a²+b²=c²。
方法三:代数推导法通过代入特殊值的方式,可以得到勾股定理的公式。
例如,当直角三角形的两条直角边分别为3和4时,可以得出斜边的长度为5,然后代入公式3²+4²=5²得到验证。
这种方法虽然简单,但是只适用于已知直角三角形两条直角边长度的特殊情况。
方法四:平方法通过平方法证明勾股定理的思路是:将直角三角形的一条直角边平移到斜边所在的直线上方,与斜边重合。
这时,可以将直角三角形的一条直角边看作是斜边减去一条直角边的长度所得的差,因此可以得出斜边的平方等于两条直角边的平方和。
例如,对于一个直角边分别为a和b的直角三角形,可以将其一条直角边平移到斜边所在的直线上方,与斜边重合。
这时,可以将直角三角形的一条直角边看作是斜边减去一条直角边的长度所得的差,即a²+b²=c²。
勾股定理16种经典证明方法
证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即整理得.【证法2】(邹元治证明)以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于•把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上, C G D三点在一条直线上••/ Rt △ HAE 也Rt △ EBF,••• / AHE = / BEF•/ / AEH + / AHE = 90o,•/ AEH + / BEF = 90 o.•/ HEF = 180o—90o= 90 o.•四边形EFGH是一个边长为c的正方形. 它的面积等于c2.•/ Rt △ GDH B Rt △ HAE,•/ HGD = / EHA•/ / HGD + / GHD = 90o,•/ EHA + / GHD = 90o.又••• / GHE = 90o,•/ DHA = 90o+ 90 o= 180 o.•ABCD是一个边长为a + b的正方形,它的面积等于.【证法3】(赵爽证明)以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于. 把这四个直角三角形拼成如图所示形状.•/ Rt △ DAH 也Rt △ ABE,•/ HDA = / EAB•/ / HAD + / HAD = 90o,•/ EAB + / HAD = 90o,•ABCD是一个边长为c的正方形,它的面积等于c2.•/ EF = FG =GH =HE = b —a ,/ HEF = 90 o.•EFGH是一个边长为b—a的正方形,它的面积等于.【证法4】(1876 年美国总统Garfield 证明)以a、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A E、B三点在一条直线上.•/ Rt △ EAD 也Rt △ CBE,••• / ADE = / BEC•/ / AED + / ADE = 90o,•/ AED + / BEC = 90 o.•/ DEC = 180o—90o= 90 o.•△ DEC是一个等腰直角三角形, 它的面积等于.又••/ DAE = 90o, / EBC = 90 o,AD // BCABCD是一个直角梯形,它的面积等于【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D E、F在一条直线上.过C作AC的延长线交DF于点P.•/ D、E、F 在一条直线上,且Rt △ GEF 也Rt △ EBD,•/ EGF = / BED•/ / EGF + / GEF = 90 ° ,•/ BED+ / GEF = 90 ° ,•/ BEG =180o—90o= 90 o.又••• AB = BE = EG = GA = c ,•ABEG是一个边长为c的正方形.•/ ABC + / CBE = 90 o.•/ Rt △ ABC 也Rt △ EBD,•/ ABC = / EBD•/ EBD + / CBE = 90 o.即 / CBD= 90o.又••• / BDE = 900,/ BCP = 90 o,BC = BD = a .•BDPC是一个边长为a的正方形.同理,HPFG是—个边长为b的正方形.设多边形GHCB的面积为S,则【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c 的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP// BC,交AC于点P 过点B作BM L PQ垂足为M;再过点F作FN^ PQ垂足为N.•/ / BCA = 90 o, QP// BC•/MPC = 90o,•/ BM丄PQ•/BMP = 90o•BCPM是一个矩形,即/ MBC = 90o.•/ / QBM + / MBA = / QBA = 90o ,/ABC + /MBA = /MBC = 90o•/ QBM = / ABC又••• / BMP = 90o , / BCA = 90 o , BQ = BA = c ,•Rt △ BMQ B Rt △ BCA同理可证Rt △ QNF也Rt △ AEF从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H C、B三点在一条直线上,连结BF、CD 过C作CL丄DE 交AB于点M 交DE于点L.•/ AF = AC , AB = AD,/ FAB = / GAD••• △ FAB 也△ GAD••• △ FAB的面积等于,△ GAD的面积等于矩形ADLM 的面积的一半,•矩形ADLM的面积=. 同理可证,矩形MLEB的面积=.•••正方形ADEB的面积=矩形ADLM勺面积+矩形MLEB的面积• ,即.【证法8】(利用相似三角形性质证明)如图,在Rt△ ABC中,设直角边AC BC的长度分别为a、b,斜边AB的长为c,过点C作CDLAB,垂足是D. 在厶ADC^D^ ACB 中,•/ / ADC = / ACB = 90o,/ CAD = / BAC△ ADC s △ ACB AD: AC = AC : AB,即.同理可证,△ CDB s △ ACB从而有.• ,即.【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b (b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形.过A作AF丄AC AF交GT于F, AF交DT于R 过B作BP丄AF,垂足为P 过D作DE 与CB的延长线垂直,垂足为E , DE交AF于H•/ / BAD = 90o, / PAC = 90o,•/ DAH = / BAC又••• / DHA = 90o,/ BCA = 90 o,AD = AB = c ,•Rt △ DHA 也Rt △ BCA•DH = BC = a ,AH = AC = b .由作法可知,PBCA 是一个矩形,所以Rt △ APB 也Rt △ BCA 即PB = CA = b , AP= a,从而PH = b —a.•/ Rt △ DGT 也Rt △ BCA ,Rt △ DHA 也Rt △ BCA•Rt △ DGT 也Rt △ DHA .•DH = DG = a,/ GDT = / HDA .又••• / DGT = 90o , / DHF = 90 o ,/ GDH = / GDT + / TDH = / HDA+ / TDH = 90o ,•DGFH是一个边长为a的正方形.•GF = FH = a . TF丄AF, TF = GT —GF = b —a .•TFPB是一个直角梯形,上底TF=b—a,下底BP= b,高FP=a + (b—a).用数字表示面积的编号(如图),则以c为边长的正方形的面积为①T =,•= . ②把②代入① 得【证法10】(李锐证明)设直角三角形两直角边的长分别为a、b (b>a),斜边的长为c.做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上.用数字表示面积的编号(如图).•/ / TBE = / ABH = 90o,••• / TBH = / ABE又••• / BTH = / BEA = 90 o,BT = BE = b ,•Rt △ HBT 也Rt △ ABE•HT = AE = a .•GH = GT —HT = b —a.又••• / GHF + / BHT = 90 o,/ DBC + / BHT = / TBH + / BHT = 90 o,•/ GHF = / DBC•/ DB = EB —ED = b —a,/ HGF = / BDC = 90o,•Rt △ HGF 也Rt △ BDC 即.过Q作QM L AG 垂足是M 由/BAQ = / BEA = 90 o,可知 / ABE=/ QAM 而AB = AQ = c,所以Rt △ ABE 也Rt △ QAM.又Rt △ HBT 也Rt △ ABE 所以Rt △ HBT 也Rt △ QAM.即.由Rt △ ABE 也Rt △ QAM 又得QM = AE = a,/ AQM = / BAE•/ / AQM + / FQM = 90o , / BAE + / CAR = 90o , / AQM = / BAE•/ FQM = / CAR又•••/ QMF = / ARC = 90o , QM = AR = a ,•Rt △ QMF B Rt △ ARC 即.•,,,又•••,,,【证法11】(利用切割线定理证明)在Rt △ ABC中,设直角边BC = a , AC = b ,斜边AB = c .如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,贝U BD = BE = BC = a .因为/ BCA = 90o,点C在O B上,所以AC是O B的切线.由切割线定理,得即,【证法12】(利用多列米定理证明)在Rt △ ABC中,设直角边BC = a , AC = b ,斜边AB = c (如图).过点A作AD// CB过点B作BD// CA贝U ACBD 为矩形,矩形ACBD内接于一个圆.根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有•AB = DC = c AD = BC = a AC = BD = b ,•,即,【证法13】(作直角三角形的内切圆证明)在Rt △ ABC中,设直角边BC = a , AC = b,斜边AB = c.作Rt △ ABC的内切圆O O,切点分别为D E、F (如图),设O O的半径为r.•/ AE = AF , BF = BD , CD = CE,= = r + r = 2r, 即,即,又•••==【证法14】(利用反证法证明)如图,在Rt△ ABC中,设直角边AC BC的长度分别为a、b,斜边AB的长为c,过点C作CDLAB,垂足是D. 假设,即假设 ,则由可知,或者•即AD: AO AC: AB 或者BD: BC^ BC: AB在A ADC^D A ACB中,•/ / A = / A•••若AD: AC M AC: AB,贝U/ ADO / ACB在A CDB和A ACB中,•/ / B = / B,•若BD BC M BC: AB,贝U/ CDB^Z ACB又••• / ACB = 90o,• / ADO 90o,/ CD M 90o.这与作法CDL AB矛盾.所以,的假设不能成立.证法15】(辛卜松证明)设直角三角形两直角边的长分别为a、b,斜边的长为c.作边长是a+b的正方形ABCD 把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD的面积为;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD 的面积为= .【证法16】(陈杰证明)设直角三角形两直角边的长分别为a、b (b>a),斜边的长为c.做两个边长分别为a、b的正方形(b>a),把它们拼成如图所示形状,使E、H、M三点在一条直线上.用数字表示面积的编号(如图).在EH = b 上截取ED = a ,连结DA、DC, 则AD = c .•/ EM = EH + HM = b + a , ED = a ,••• DM = EM —ED = —a = b .又••• / CMD = 90o, CM = a,/ AED = 90o, AE = b ,•Rt △ AED 也Rt △ DMC•/ EAD = / MDC DC = AD = c .•/ / ADE + / ADC+ / MDC =18Gb,/ ADE + / MDC = / ADE + / EAD = 90 o, / ADC = 90 o.•作AB// DC CB// DA 贝U ABCD是一个边长为c 的正方形.•/ / BAF + / FAD = / DAE + / FAD = 90 o,•/ BAF=/ DAE连结FB"A ABF和A ADE中,••• AB =AD = c , AE = AF = b,/ BAF=/ DAE• A ABF 也A ADE•/ AFB = / AED = 90o,BF = DE = a .•点B、F、G H在一条直线上.在Rt A ABF和Rt A BCG中,AB = BC = c , BF = CG = a , •Rt A ABF 也Rt A BCG•, , ,。
十种方法证明勾股定理
十种方法证明勾股定理勾股定理是中学数学中最基本的定理之一,解决了数学中的许多问题。
它是一个既基础且实用的定理,有许多方法可以证明它,下面介绍十种方法:1.欧拉定理证明法:构造出一个直角三角形,把它的两条直角边对应的两个正方形放在直角三角形外面,另一条边对应的正方形放在直角三角形内部,再利用欧拉定理计算出三个正方形的面积,可以证明勾股定理。
2.代数证明法:利用代数的平方公式,把直角三角形的两条直角边平方相加,再把斜边平方,然后再将两者相减,得到一个等式,即可证明勾股定理。
3.数学归纳法证明:用数学归纳法证明勾股定理,证明当n为正整数时,定理成立。
4.相似三角形证明法:构造出相似的三角形,利用相似三角形的性质,可以推导出勾股定理。
5.向量证明法:用向量的几何意义证明勾股定理,首先利用向量的长度和夹角的公式计算出向量的长度和夹角,再利用向量的点积公式计算出勾股定理中的各个变量,最后推导出勾股定理。
6.割圆术证明法:利用割圆术将直角三角形对角线作为半径画圆,利用圆上弧角定理,可以得到勾股定理。
7.平面几何证明法:用平面几何证明勾股定理,利用平面几何图形的形状和大小关系,推导出勾股定理。
8.解析几何证明法:用解析几何证明勾股定理,利用平面直角坐标系,将三角形的三个点用坐标表示出来,推导出勾股定理。
9.三角函数证明法:用三角函数证明勾股定理,利用三角函数的性质,将三角形分离出直角三角形和非直角三角形,再用三角函数计算出各个变量,推导出勾股定理。
10.古希腊证明法:古希腊人对勾股定理有自己的证明方法,即利用几何图形的形状和大小,通过构造几何图形推导出勾股定理。
这些证明方法都可以证明勾股定理的正确性,它们有不同的适用范围和难度级别,可以根据自己的水平和兴趣选择合适的证明方法。
勾股定理十种证明
勾股定理十种证明勾股定理,即建立在三角形中的根号三,是一个被越来越多的人所熟知的数学定理,它表明了任何一个正三角形的斜边的平方加上邻边的平方等于对角线的平方。
此定理也经常被用来解决三角形的面积,甚至有益于解决复杂的数学问题。
这里,我们会介绍十种有关勾股定理的证明,让大家可以更好地理解这个定理:第一种:边角平方法。
此法将三角形的斜边和邻边分别平方,并将它们相加,得出的结果也是对角线的平方。
第二种:相似三角形法。
这个方法建立在相似三角形的概念基础上,根据同比例的相似,将斜边和邻边分别乘以相应的比值,即可得出对角线平方的结果。
第三种:重心三角形法。
按照重心三角形的性质,将三角形的斜边和邻边分别乘以对应的比值,将它们相加,就可以得到对角线的平方。
第四种:字母替换法。
这种方法利用三角形的相关性,将斜边和邻边分别替换成字母a,b和c,然后将a的平方加上b的平方和c的平方替换回原来的数字,就可以得到对角线的平方。
第五种:四边形证明法。
这种方法是基于将一个正三角形分解成四个相等的小三角形,并且每个小三角形都满足勾股定理的要求。
第六种:变形法。
这种方法是基于将正三角形变形成其他图形,例如正方形、矩形或梯形,然后将斜边和邻边拆分成几部分,并将这些部分分别平方,加和,就可以得到对角线的平方。
第七种:勾股余弦定理法。
这种方法是基于勾股余弦定理,其基本思想是将三角形的夹角和边长之间的关系作出表达,然后将斜边和邻边分别平方,加和,就可以得到对角线的平方。
第八种:勾股坐标表达法。
这种方法是基于以坐标表示法表达勾股定理,其中将斜边、邻边和对角线分别表示成坐标形式,然后将坐标形式的斜边和邻边分别平方,加和,就可以得到对角线的平方。
第九种:向量表示法。
根据向量的性质,将三角形的斜边和邻边分别表示成向量形式,然后根据公式,将其分别平方后相加,就可以得到对角线的平方。
第十种:贝塞尔准则法。
根据贝塞尔准则,将三角形的斜边和邻边分别乘以各自的比例,将乘积相加,就可以得到对角线的平方。
勾股定理的证明方法5种
勾股定理的证明方法5种勾股定理是几何学中最为经典的定理之一,它揭示了直角三角形中直角边与斜边的关系。
勾股定理有多种不同的证明方法,下面我们将依次介绍其中五种不同的证明方法。
方法一:几何法证明这种证明方法是最为直观的,它通过几何形状的变换来证明勾股定理。
首先,我们先画出一个直角三角形ABC,然后作出辅助线AD ⊥BC,将三角形ABC分成两个小三角形ΔABD和ΔADC。
根据相似三角形的性质,我们可以得到BD/AB=AB/AC,即BD*AC=AB^2。
同理,我们可以得到CD*AB=AC^2。
将这两个式子相加起来,我们就可以得到BD*AC+CD*AB=AB^2+AC^2,根据平行四边形的性质,我们可以得到BC*AD=AB^2+AC^2,而BC*AD就是直角三角形ABC的斜边的平方AC^2。
因此,通过几何法证明,我们可以得到勾股定理成立。
方法二:代数法证明这种证明方法是使用代数运算来证明勾股定理。
我们可以用直角三角形的三条边的长度来表示三角形的面积。
假设直角三角形的三条边分别为a、b、c,其中c 为斜边,利用面积公式S=1/2*底*高,我们可以得到三角形面积的两种表达式:S=1/2* a*bS=1/2* c*h通过这两个表达式,我们可以得到c*h=a*b,即c^2=a^2+b^2。
方法三:相似三角形法证明这种证明方法利用相似三角形的性质来证明勾股定理。
我们可以在直角三角形ABC中找到一个与之全等的直角三角形DEF。
然后我们可以发现直角三角形ABC和DEF分别是直角三角形ACB和EDF的相似三角形。
由于相似三角形的对应边成比例,我们可以得到AB/DE=BC/EF=AC/DF。
利用这个性质,我们可以得到AB^2=DE^2+DF^2和AC^2=DE^2+EF^2。
将这两个式子相加起来,我们可以得到AB^2+AC^2=DE^2+DF^2+DE^2+EF^2,根据平行四边形的性质,我们可以得到AB^2+AC^2=2*DE^2+2*DF^2。
证明勾股定理的多种方法
证明勾股定理的多种方法勾股定理是数学中一条重要的几何定理,它是数学中的基础知识之一。
勾股定理的形式可以简洁地表达为:直角三角形的斜边的平方等于两直角边的平方和。
本文将探索并介绍证明勾股定理的多种方法。
方法一:几何证明最常见的证明勾股定理的方法之一是几何证明。
该方法利用了直角三角形的特性,根据三角形的几何关系和平行线的性质,从而得出勾股定理的结论。
以直角三角形ABC为例,其中∠C为直角,假设∠A=α,∠B=β,边长分别为a, b, c。
根据正弦定理和余弦定理,可以推导出以下关系式:sinα = a / c,sinβ = b / c,cosα = b / c,cosβ = a / c由此可得:sin²α + cos²α = a² / c² + b² / c² = (a² + b²) / c²根据三角恒等式sin²α + cos²α = 1,可得:(a² + b²) / c² = 1即 a² + b² = c²,从而证明了勾股定理。
方法二:代数证明除了几何证明外,勾股定理还可以通过代数方法进行证明。
假设直角三角形的边长分别为a, b, c,且∠C为直角。
根据勾股定理,我们有:a² + b² = c²我们可以将其转化为代数方程组,从而进行证明。
构造方程组如下:x² + y² = 1²(x+c)² + y² = a²x² + (y+c)² = b²解方程组可得:x = (a² - b² + c²) / (2c)y = ±√(a² - x²)因此,可得到:a² + b² = (a² - b² + c²)² / (4c²) + (a² - (a² - b² + c²)² / (4c²) = c² · [(a² + b²) / (4c²) + (a² + b² - 2ab)/(4c²)]将a² + b² = c²带入上式,得到:c² = (c² · [(c² + 2ab) / (4c²)])化简后可得:c² = (c² + 2ab) / 4即 a² + b² = c²,从而证明了勾股定理。
勾股定理16种证明方法
勾股定理的证明【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE,∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2.∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+. 【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º. ∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c.又∵ ∠DAE = 90º, ∠EBC = 90º, ∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +. ∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD, ∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º.又∵ AB = BE = EG = GA = c , ∴ ABEG 是一个边长为c 的正方形∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD .∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则abS c 2122⨯+=,∴ 222c b a =+. 【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P . 过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ , ∴ ∠BMP = 90º, ∴ BCPM 是一个矩形,即∠MBC = 90∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF . 从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD . 过C 作CL ⊥DE , 交AB 于点M ,交DE 于点L . ∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD ,∵ ΔFAB 的面积等于221a ,ΔGAD 的面积等于矩形ADLM的面积的一半,∴ 矩形ADLM 的面积 =2a .同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90º,∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB , 即 AB AD AC •=2.同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC •=2. ∴ ()222AB AB DB AD BC AC =•+=+,即 222c b a =+. 【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90º,∠PAC = 90º, ∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA . ∴ DH = BC = a ,AH = AC = b .由作法可知, PBCA 是一个矩形,所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a . ∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+= 812S S b -- . ②把②代入①,得= 922S S b ++ = 22a b +.∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE . 又∵ ∠BTH = ∠BEA = 90º,BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a . ∴ GH = GT ―HT = b ―a .又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a , ∠HGF = ∠BDC = 90º, ∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c , 即 222c b a =+. 【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得=()()BD AB BE AB -+ =()()a c a c -+= 22a c -,即222a cb -=, ∴ 222c b a =+. 【证法12】在Rt ΔABC 中,设直角边BC . 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•,∵ AB = DC = c ,AD = BC = a , AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=, ∴ 222c b a =+.【证法13】在Rt ΔABC 中,设直角边BC = a ,作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42, 又∵ AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+.【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中,∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B , ∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+. 【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a 2222++=+;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+. 【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a ,连结DA 、DC , 则 AD = c .∵ EM = EH + HM = b + a , ED = a , ∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a ,∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC .∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中,∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++=2c ∴ 222c b a =+.。
勾股定理五种证明方法
勾股定理五种证明方法1. 几何证明法勾股定理是数学中的基本定理之一,用于描述直角三角形的边长关系。
根据勾股定理,直角三角形的斜边的平方等于两个直角边的平方和。
几何证明法是最直观的证明方法之一。
我们可以通过绘制一个正方形来证明勾股定理。
假设直角三角形的两个直角边分别为a和b,斜边为c。
我们可以将这个三角形绘制在一个边长为a+b的正方形内。
将正方形分成四个小正方形,其中三个小正方形的边长分别为a,b和c。
通过计算小正方形的面积,我们可以得出结论:c^2 = a^2 + b^2。
2. 代数证明法代数证明法是另一种常用的证明勾股定理的方法。
这种方法使用代数运算和方程的性质来证明定理。
假设直角三角形的两个直角边分别为a和b,斜边为c。
我们可以通过使用平方的性质来证明勾股定理。
根据勾股定理,我们有:c^2 = a^2 + b^2。
我们可以将c^2展开为(a + b)2,即:c2 = (a + b)^2 = a^2 + 2ab + b^2。
通过对比等式两边的表达式,我们可以得出结论:2ab = 0。
由于直角三角形的边长必须为正数,因此我们可以得出结论:ab = 0。
这意味着a或b至少有一个为0。
如果a为0,那么直角三角形就变成了一个直角边长为b的直角三角形,此时勾股定理显然成立。
同样地,如果b为0,那么直角三角形就变成了一个直角边长为a的直角三角形,此时勾股定理也成立。
综上所述,勾股定理成立。
3. 数学归纳法证明数学归纳法是一种常用的证明数学命题的方法,它通常用于证明自然数的性质。
虽然勾股定理是针对直角三角形的,但我们可以通过数学归纳法证明勾股定理对于所有正整数的直角三角形都成立。
首先,我们证明当直角三角形的直角边长度为1时,勾股定理成立。
这是显而易见的,因为直角三角形的斜边长度必然大于1,所以直角边长度为1的直角三角形一定满足勾股定理。
然后,我们假设当直角三角形的直角边长度为k时,勾股定理成立。
即假设a^2 + b^2 = c^2,其中a和b分别为直角三角形的直角边,c为斜边。
勾股定理的证明方法十种过程
勾股定理的证明方法十种过程全文共四篇示例,供读者参考第一篇示例:勾股定理,又称毕达哥拉斯定理,是几何学中最基础的定理之一。
它表明在直角三角形中,直角的两边的平方和等于斜边的平方。
勾股定理的证明方法有很多种,下面我将介绍十种常用的证明过程。
一、几何证明法1. 利用相似三角形的性质,构造辅助线,将直角三角形分割成两个直角三角形,再利用勾股定理的定义证明斜边的平方等于直角两边的平方和。
2. 利用平行线的性质,构造辅助线,形成四边形,再利用四边形的性质推导出勾股定理。
二、代数证明法1. 利用代数方法将直角三角形的三边长度表示成a,b,c,利用勾股定理的定义列出等式a^2 + b^2 = c^2,再进行变形推导得到结论。
2. 利用向量法,将三角形的三个顶点表示成二维向量,用向量的性质证明直角三角形满足勾股定理。
三、三角函数证明法1. 利用正弦、余弦、正切等三角函数的关系,将直角三角形的三条边长和角度联系起来,通过三角函数的计算推导出勾股定理。
2. 利用三角函数的定义,将角度和边长关系转换成三角函数的等式,再通过化简和运算得到勾股定理。
五、解析几何证明法1. 利用直角三角形在坐标平面上的表示,用坐标的差和平方和表达斜边和直角两边之间的关系,进行运算保证两边相等。
2. 利用解析几何的方法,利用两直线间的距离公式和直线的斜率关系,推导出勾股定理成立的条件。
七、数学归纳法证明法1. 从一个特殊的直角三角形出发,比如3-4-5直角三角形,验证勾股定理成立。
然后假设勾股定理对于n=1的情况成立,推导出n=k+1的情况也成立,利用数学归纳法证明定理的普遍性。
2. 从勾股数列的性质入手,证明勾股定理的普遍性。
十、几何变换证明法1. 利用几何变换,比如平移、旋转等,将直角三角形变换成其他几何形状,再通过形状不变性证明勾股定理。
2. 利用相似性和对称性的变换,将直角三角形转化成其他几何形状,结合几何形状的性质证明勾股定理的成立。
勾股定理16种证明方法
勾股定理16种证明方法-CAL-FENGHAI.-(YICAI)-Company One12勾股定理的证明【证法1】(课本的证明)? ? ? ? ? ???a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o . ∴ ∠HEF = 180o ―90o= 90o .∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o . 又∵ ∠GHE = 90o,∴ ∠DHA = 90o+ 90o= 180o .∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90o , ∴ ∠EAB + ∠HAD = 90o ,∴ ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90o .∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+.【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90o,∴ ∠AED + ∠BEC = 90o . ∴ ∠DEC = 180o ―90o= 90o . ∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c.又∵ ∠DAE = 90o, ∠EBC = 90o, ∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +. ∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD, ∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180o ―90o= 90o . 又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90o . ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD .∴ ∠EBD + ∠CBE = 90o . 即 ∠CBD= 90o .又∵ ∠BDE = 90o ,∠BCP = 90o ,BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+. ?【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P . 过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90o ,QP ∥BC , ∴ ∠MPC = 90o , ∵ BM ⊥PQ , ∴ ∠BMP = 90o , ∴ BCPM 是一个矩形,即∠∵ ∠QBM + ∠MBA = ∠QBA = 90o ,∠ABC + ∠MBA = ∠MBC = 90o , ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90o ,∠BCA = 90o ,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF .从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L . ∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD , ∵ ΔFAB 的面积等于221a,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a .同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+.【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90o ,∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB , 即 AB AD AC •=2.同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC •=2. ∴ ()222AB AB DB AD BC AC =•+=+,即 222c b a =+. 【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90o ,∠PAC = 90o , ∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90o ,∠BCA = 90o , AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA . ∴ DH = BC = a ,AH = AC = b .由作法可知, PBCA 是一个矩形,所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90o ,∠DHF = 90o ,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90o , ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+=812SS b -- . ② 把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +.∴ 222c b a =+. ?【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90o , ∴ ∠TBH = ∠ABE . 又∵ ∠BTH = ∠BEA = 90o , BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a . ∴ GH = GT ―HT = b ―a .又∵ ∠GHF + ∠BHT = 90o ,∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a , ∠HGF = ∠BDC = 90o ,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90o ,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵ ∠AQM + ∠FQM = 90o ,∠BAE + ∠CAR = 90o ,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90o ,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵543212S S S S S c ++++=,612S S a +=,8732S S S b ++=, 又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c ,即 222c b a =+. ? ?【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90o ,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC •=2=()()BD AB BE AB -+ =()()a c a c -+ = 22a c -,即222a c b -=,∴ 222c b a =+. ?【证法12在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•, ∵ AB = DC = c ,AD = BC = a , AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=, ∴ 222c b a =+.?【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42, 又∵ AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴ ()ABC S rc r ∆=+442,∴()ab rc r 242=+, ∴ 22222c ab ab b a +=++, ∴ 222c b a =+. 【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中,∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B , ∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90o ,∴ ∠ADC ≠90o ,∠CDB ≠90o .这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立. ∴ 222c b a =+.?【证法15】(辛卜松证明) ? ? ? ? ??a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a 2222++=+;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++, ∴ 222c b a =+. ?【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图). 在EH = b 上截取ED = a ,连结DA 、则 AD = c .∵ EM = EH + HM = b + a , ED = a ,∴ DM = EM ―ED = ()a b +―a = b .又∵ ∠CMD = 90o ,CM = a , ∠AED = 90o , AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC .∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180o ,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90o , ∴ ∠ADC = 90o .∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90o , ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90o ,BF = DE = a .D∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中, ∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++=2c∴ 222c b a =+.。
勾股定理的证明方法有多少种
勾股定理的证明方法有多少种
勾股定理的证明方法有很多种,下面介绍几种常见的方法:
1. 几何证明:通过构造直角三角形,在平面上利用几何图形进行证明。
常见的几何证明方法包括割圆法、方形法、相似三角形法等。
2. 代数证明:通过代数运算推导勾股定理。
常见的代数证明方法包括平方差公式法、向量法、复数法等。
3. 三角函数证明:利用三角函数的性质进行证明。
常见的三角函数证明方法包括正弦定理法、余弦定理法、正切定理法等。
4. 解析几何证明:通过利用坐标系的性质以及点之间的距离关系进行证明。
常见的解析几何证明方法包括斜率法、中点坐标法、向量法等。
不同的证明方法适用于不同的场景和问题,选择合适的证明方法可以简化证明过程,提高证明的可理解性和可推广性。
证明勾股定理的16种方法
勾股定理证明十六种方法方法一:赵爽弦图证法
方法二:毕达哥拉斯证法
方法三:书本证明方法
法四:利用三角形相似推导
方法五:切割线定理证明
方法六:托勒密定理证明
方法七:利用切线长定理
方法八:总统证法
方法九:八法变式
方法十和方法十一:
总结:上述方法是非常常见的方法,当然同学们可以总结出,用到最多的还是面积法,对于面积法无论证明方法如何变化,图形如何变化,方法都有一种熟悉感。
同时,还有很多其它与圆相关的定理应用,要理解它们,同学们要掌握更多的相关知识。
以下方法,只展示图片,同学们可以自行感悟。
方法十二:
方法十三:面积法
方法十四:拼接法1
方法十五:拼接法2
方法十六:射影定理。
勾股定理20种证明方法
勾股定理20种证明方法勾股定理是中国古代数学中的一个重要定理,也被称为勾股三角形定理,它是指直角三角形中,直角边的平方等于两直角边的平方和。
勾股定理的发现和证明有很多方法,下面我们来看看20种不同的证明方法。
1. 几何方法:这是最常见的证明方法,可以通过绘制直角三角形,然后运用几何知识来证明。
2. 代数方法:可以通过代数运算来证明,将直角三角形的三边长度表示为变量,然后通过代数运算得出结论。
3. 物理方法:可以利用物理学知识,比如平面几何法,来证明勾股定理。
4. 数学归纳法:可以运用数学归纳法来证明勾股定理,将直角三角形的边长依次递增,然后证明其中一个等式成立,推导出其他情况。
5. 解析几何法:可以通过解析几何的方法,利用坐标系和直线方程来证明勾股定理。
6. 函数法:可以通过函数图像和函数性质来证明勾股定理。
7. 同余定理方法:可以通过同余定理来证明勾股定理。
8. 三角函数方法:可以运用三角函数的性质和公式来证明勾股定理。
9. 相似三角形方法:可以通过相似三角形的性质来证明勾股定理。
10. 斜率方法:可以运用直线的斜率来证明勾股定理。
11. 反证法:可以通过反证法来证明勾股定理,假设直角三角形的三边不符合勾股定理,然后推导出矛盾。
12. 三角形面积法:可以通过计算直角三角形的面积来证明勾股定理。
13. 欧拉定理法:可以通过欧拉定理来证明勾股定理。
14. 空间几何法:可以将直角三角形的顶点放置在空间中,运用空间几何知识来证明勾股定理。
15. 弦与切线相交定理:可以利用弦与切线相交的性质来证明勾股定理。
16. 数列方法:可以通过构造数列,运用数列的性质来证明勾股定理。
17. 微积分方法:可以通过微积分的知识来证明勾股定理。
18. 统计方法:可以通过统计实验来证明勾股定理,比如通过大量的直角三角形数据验证勾股定理成立。
19. 推广方法:可以通过勾股定理的推广形式来证明勾股定理,比如勾股定理的逆定理。
20. 全等三角形法:可以通过全等三角形的性质来证明勾股定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拼法七:用四个相同的直角三角形(直角边为a、b,斜边为c)拼成图7。
问题:你能把图7转化为图c吗?通过位置变换,你发现了什么?你能发现边长分别为a、b、c的正方形吗?能否验证到:a2+b2= c2呢?
分析:图7的面积可表示为:c2+4× ab
从图上可以看到,这两个正方形的边长都是a + b,所以面积相等.即
a2+b2+4× ab= c2+4× ab整理得a2+b2= c2
拼法三:用四个相同的直角三角形(直角边为a、b,斜边为c)按图3拼法。
问题:图3是由三国时期的数学家赵爽在为《周髀算经》作注时给出的。在图3中用同样的办法研究,你有什么发现?你能验证a2+b2=c2吗?
则有: (a+b)2= ab+ ab+ c2
化简可得:a2+b2= c2
比较图5与图2,你有什么发现?
图5面积为图2之半。
拼法五:用四个相同的直角三角形(直角边为a、b,斜边为c),拼成图6,得边长分别为a、b、c正方形。
问题:观察图6,你能发现边长分别为a、b、c的正方形吗?你能通验证到:a2+b2= c2吗?
一、拼图法证明(举例12种)
拼法一:用四个相同的直角三角形(直角边为a、b,斜边为c)按图2拼法。
问题:你能用两种方法表示左图的面积吗?对比两种不同的表示方法,你发现了什么?
分析图2:S正方形=(a+b)2= c2+ 4× ab
化简可得:a2+b2= c2
拼法二:做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像左图那样拼成两个正方形。
AB·DC=AD·BC+AC·BD从而可得a2+b2= c2
利用射影定理证明
如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.
根据射影定理,得
AC2=AD·AB,BC2=BD·BA
即AC2+BC2=AD·AB+BD·BA=AB(AD+BD)=AB2从而得a2+b2= c2
问题:运用五巧板,拼出图d、图e、图f、图g,并仔细观察、比较,你发现了什么?能否验证到:a2+b2= c2呢?你还有其它的拼法吗?
二、定理法证明(举例3种)
利用切割线定理证明
在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c.如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a.因为∠BCA = 90º,点C在⊙B上,所以AC是⊙B的切线.由切割线定理,得
图c的面积可表示为:a2+b2+4× ab
比较图c、图7,你发现了什么?
a2+b2Ʊb2= c2
拼法八、九、十、十一、十二:制作一个五巧板,如图8。
方法:先作一个直角三角形,直角边为a、b,斜边为c,以斜边为边长向内作正方形,并把正方形按图中实线分割为五个部分,这就是一个五巧板。
于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。
问题:图5就是伽菲尔德总统的拼法,你知道他是如何验证的吗?你能用两种方法表示图5的面积吗?
伽菲尔德总统是这样分析的:
S梯形ABCD= (a+b)2
S梯形ABCD=S△ABE+ S△ECD+ S△AED= ab+ ab+ c2
分析:其实,图6可以转化为下面两图:
图a的面积可表示为:a2+b2+2× ab
图b的面积可表示为:c2+2× ab
比较a、b两图,你发现了什么?
a2+b2+2× ab= c2+2× ab
化简可得:a2+b2= c2
拼法六:设直角三角形两直角边的长分别为a、b,斜边的长为c.作边长是a+b的正方形ABCD把正方形ABCD划分成左图所示的几个部分,则该正方形ABCD的面积为(a+b)2=a2+b2+2ab;再把正方形ABCD划分成右图所示的几个部分,则正方形ABCD的面积为(a+b)2=c2+4× ab
分析图3:S正方形= c2=(a-b)2+ 4× ab
化简可得:a2+b2= c2
观察图2、图3与图4的关系,并用一句话表示你的观点。
图4为图2与图3面积之和。
拼法四:用两个完全相同的直角三角形(直角边为a、b,斜边为c)按图5拼法。
背景:在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德(Garfield).他发现附近的一个小石凳上,有两个小孩正在谈论着什么.由于好奇心的驱使,伽菲尔德向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。
几种简单证明勾股定理的方法
——拼图法、定理法
江苏省泗阳县李口中学沈正中
据说对社会有重大影响的10大科学发现,勾股定理就是其中之一。早在4000多年前,中国的大禹曾在治理洪水的过程中利用勾股定理来测量两地的地势差。迄今为止,关于勾股定理的证明方法已有500余种,各种证法融几何知识与代数知识于一体,完美地体现了数形结合的魅力。让我们动起手来,拼一拼,想一想,娱乐几种,去感悟数学的神奇和妙趣吧!
AC2=AE·AD=(AB+BE)(AB-BD)=(c+a)(c-a)=c2-a2从而可得a2+b2= c2
利用托勒密定理证明
在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c(如图).过点A作AD∥CB,过点B作BD∥CA,则ACBD为矩形,矩形ACBD内接于一个圆.根据托勒密定理,圆内接四边形对角线的乘积等于两对边乘积之和,有