第四节 函数的单调性与曲线的凹凸性

合集下载

3.4 函数的单调性与曲线的凹凸性

3.4 函数的单调性与曲线的凹凸性
10
f ' ( x0 ) 0 x0为函数的极值点 ?
例2 求函数 y x 的驻点 .
3
y
y x3

y x 3 的驻点为 x 0 .
O
x
但它不是极值点.
11
此外, 不可导点也可能是极值点,
如 y | x | 在 x 0 处不可导,但却是极小值点.
函数的不可导点也不一定是极值点。 y
19
例5 求函数 f ( x ) x 3 3 x 2 9 x 5 的极值.

D f : (,)
2 f ( x ) 3 x 6 x 9 3( x 1)( x 3) ,
令 f ( x ) 0, 得驻点 x1 1, x2 3.
f ( x ) 6 x 6 ,
x1 x2 x1 x2 f( ) f ( x1 ) f ( x2 ) f ( ) 2 2
1 1 f ( x1 ) ( x2 x1 ) f ( x2 ) ( x2 x1 ) 2 2
f ( x1 ) f ( x2 ).
曲线的凹向与函数导数的单调性的关系:


曲线凹 导函数递增?
x1 x2 1 f( ) [ f ( x1 ) f ( x2 ))] 2 2 x1 x2 x1 x2 f( ) f ( x1 ) f ( x2 ) f ( ) 2 2
设 x1 x2 ,由泰勒展开定理
3 2
不可导点 x 3, 驻点x 2,4.
17
23 求 f ( x ) ( x 4 ) x 3 的单调区间和极值 . 例4 不可导点 x 3, 7( x 4)( x 2) f ( x ) 驻 点x 2,4. 3 3 ( x 3) 2

3.4 函数的单调性与曲线的凹凸性

3.4 函数的单调性与曲线的凹凸性

从几何上看,曲线的凹凸性反映的是曲线弧上两点,连接这两点间的弦与 这两点间的弧段的位置关系。
第三章 微分中值定理与导 数的应用
9
定理 2
设 f (x ) 在 a ,b 上连续,在 (a ,b ) 内具有一阶和二阶导数,那么
> 0 ,则 f ( x ) 在 a ,b 上的图形是凹的; < 0 ,则 f ( x ) 在 a ,b 上的图形是凸的。 ∈ a ,b ,且 x 1 < x 2 ,记 x 0 =
= 0 处,曲线 y = x 3 有水平切线,即 x 轴。
一般地,如果 f ′ (x ) 在某区间内的有限个点处为零,在其余各点处保持固定 符号时,函数 f (x ) 在该区间上是单调的。 结论在 f ′ (x )
= 0 有无限个解时未必成立。
第三章 微分中值定理与导 数的应用
7
例6 证
证明:当 x 令 f (x )
=0
< a < 1,b = 2k + 1 k ∈ Z + ,ab > 1 +
(
)
3π 2

Van Der Waerden 构造并证明: f (x )
=
n =0


ϕ 10n x
10n
(
) ,其中
x − x , ϕ (x ) = x + 1 − x ,
> 1 时, 2 x > 3 −
1
x

1 = 2 x − 3 − ,则 x
f ′ (x ) =
1
x

1
x
2
=
1
x2

3-4第四节 函数的单调性和曲线的凹凸性

3-4第四节    函数的单调性和曲线的凹凸性

y 高 x=1,x=3是曲线的拐点. 等 数 x 学 2 5 1 3 2 3 电 (2) y 3 x , y x , y x 3 9 子 教 没有使y“(x)=0的点,但当x=0时y“不存在,点(0,0)可能是拐点. 案 当x<0时, y“>0,当x>0, y“<0,
武 汉 科 技 学 院 数 理 系
y 2( x 1)e x ( x 1) 2 e x ( x 2 4 x 3)e x
则1,3可能是拐点
武 汉 科 技 学 院 数 理 系
x 1, y 0 1 x 3, y 0 x 3, y 0
曲线是凹的
曲线是凸的 曲线是凹的
高 等 数 学 电 子 教 案
第四节
函数的单调性和曲线的凹凸性
一、函数的单调性之判定
y Y=f(x)
y Y=f(x)
x
武 汉 科 技 学 院 数 理 系
x
a a b b 在图象中我们发现上升函数的导数大于0,而下降函数的 导数小于0,可见,函数的单调性与函数导数的符号有关.
高 等 数 学 电 子 教 案
高 等 数 学 电 子 教 案


y’
函数的单调性
(-∞,-1] [-1,1) (1,3] [3,+ ∞)
f ’(x)≥0 f ’(x) ≤ 0 f ’(x) ≤ 0 f ’(x)≥0
3
单调上升 单调下降 单调下降 单调上升
-1
武 汉 科 技 学 院 数 理 系
1
x
高 等 数 学 电 子 教 案
武 汉 科 技 学 院 数 理 系
记(x1+x2)/2=x0,并记 x2-x0=x0-x1=h, 则x1=x0-h, x2=x0+h 由拉格朗日中值公式,得到

第四节 函数的单调性与曲线的凹凸性

第四节 函数的单调性与曲线的凹凸性

第四节 函数的单调性与曲线的凹凸性一、函数单调性的判定法定理1 设函数()y f x =在[],a b 上连续,在(),a b 内可导.(1)如果在(),a b 内()0f x '≥,且等号仅在有限多个点处成立,那么函数()y f x =在[],a b 上单调增加;(2)如果在(),a b 内()0f x '≤,且等号仅在有限多个点处成立,那么函数()y f x =在[],a b 单调减少.例1 判定函数sin y x x =-在[],ππ-上的单调性. 解 因为函数sin y x x =-在[],ππ-上连续,当x ∈(),ππ-时, 1cos 0y x '=-≥,且等号仅在0x =处成立,所以函数sin y x x =-在[],ππ-上单调增加. 例2 讨论函数1x y e x =--的单调性.解 函数1x y e x =--的定义域为(),-∞+∞, 1.x y e '=- 因为在(),0-∞内0y '<,在()0,+∞内0y '>,所以1x y e x =--在(],0-∞上单调减少,在[)0,+∞上单调增加.例3 讨论函数y解 的定义域为(),-∞+∞.当0x ≠时,y '=而函数在0x =处不可导.在(),0-∞内,0y '<,在()0,+∞内0y '>,因此函数y =在(],0-∞上单调减少,在[)0,+∞上单调增加.该函数的图象如下图所示.例4 确定函数()3229123f x x x x =-+-的单调区间.解 该函数的定义域为(),-∞+∞.()()()261812611.f x x x x x '=-+=--方程()0f x '=的全部根为121, 2.x x ==这两个根把区间(),-∞+∞分为三个部分区间:(][][),1,1,2,2,.-∞+∞在区间(),1-∞内()0f x '>,函数()f x 在(],1-∞单调增加.在区间()1,2内,()0f x '<,函数()f x 在区间[]1,2单调减少.在区间()2,+∞内()0f x '>,函数()f x 在区间[)2,+∞单调增加.例5 证明:当1x >时,13.x-证 令()13f x x ⎛⎫=- ⎪⎝⎭,则 ()()22111.f x x x '== ()f x 在[)1,+∞上连续,在()1,+∞内()0f x '>,因此在[)1,+∞上函数()f x 单调增加,于是当1x >时,()()10f x f >=,即130,x ⎛⎫-> ⎪⎝⎭ 13.x- 二、曲线的凹凸性与拐点定义 设函数()f x 在区间I 上连续,如果对I 上任意两点12,x x ,恒有()()1212,22f x f x x x f ++⎛⎫< ⎪⎝⎭那么称()f x 在I 上的图形是凹的;如果恒有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭, 那么称()f x 在I 上是凸的.定理2 设()f x 在[],a b 上连续,在(),a b 内具有一阶和二阶导数,那么(1)若在(),a b 内()0f x ''>,则()f x 在[],a b 上的图形是凹的;(2)若在(),a b 内()0f x ''<,则()f x 在[],a b 上的图形是凸的. 例6 判定曲线ln y x =的凹凸性.解 因为211,y y x x'''==-,所以函数ln y x =在定义域()0,+∞内,0y ''<,故曲线ln y x =是凸的.例7 判定曲线3y x =的凹凸性.解 因为23,6.y x y x '''==当0x <时,0y ''<,所以曲线在(],0-∞是凸的;当0x >时,0y ''>,曲线在[)0,+∞是凹的.例8 求曲线32231214y x x x =+-+的拐点.解 216612,126122y x x y x x ⎛⎫'''=+-=+=+ ⎪⎝⎭. 解方程0y ''=,得1.2x =-当12x <-时,0y ''<;当12x >-时,0y ''>.因此点11,2022⎛⎫- ⎪⎝⎭是曲线的拐点.例9 求曲线43341y x x =-+的拐点及凸凹区间. 解 函数43341y x x =-+的定义域为(),-∞+∞.321212,y x x '=-22362436.3y x x x x ⎛⎫''=-=- ⎪⎝⎭ 解方程0y ''=,得1220,.3x x == 在(),0-∞内,0y ''>,曲线在区间(),0-∞凹的.在20,3⎛⎫ ⎪⎝⎭内,0y ''<,曲线在区间20,3⎡⎤⎢⎥⎣⎦是凸的.在2,3⎛⎫+∞ ⎪⎝⎭内,0y ''>,曲线在区间2,3⎡⎫+∞⎪⎢⎣⎭是凹的. 当0x =时,1y =.当23x =时,11.27y = 点()0,1和211,327⎛⎫ ⎪⎝⎭是这曲线的两个拐点. 习题3-41.判定函数()arctan f x x x =-的单调性.解 ()22211011x f x x x '=-=-≤++且仅在0x =时成立.因此函数()arctan f x x x =-在(),-∞+∞内单调减少.2.判定函数()cos f x x x =+的单调性.解 ()1sin 0f x x '=-≥,且当()20,1,2,2x n n ππ=+=±± 时,()0f x '=.因此函数()cos f x x x =+在(),-∞+∞内单调增加.3.确定下列函数的单调区间:(1)3226187y x x x =---;解 函数的定义域为(),-∞+∞,在(),-∞+∞内可导,且 ()()261218631.y x x x x '=--=-+令0y '=,得驻点121, 3.x x =-=当时1x <- 时,0y '>,函数在(],1-∞-单调增加; 当13x -<<时,0y '<,函数在[]1,3-单调减少; 当3x >时,0y '>,函数在()3,+∞单调增加.(2)()820y x x x=+>;解 函数的定义域为()0,+∞,在()0,+∞内可导,且()()22222228282.x x x y x x x -+-'=-== 令0y '=,得驻点12x =-(舍去),22x = 当02x <<时,0y '<,函数在(]0,2单调减少;当2x >时,0y '>,函数在[)2,+∞单调增加.。

函数的单调性及曲线的凹凸性

函数的单调性及曲线的凹凸性

定义. 连续曲线yf(x)上凹弧与凸弧的分界 点称为该曲线的拐点 由定义知: 如果在x0左右两侧f (x)异 号, 则(x0, f (x0))是拐点. 因此只有f (x0)=0 或不存在时, (x0 , f (x0))才可能是拐点.
求连续曲线弧拐点的步骤 (1) 在f(x)所定义的区间内, 求出二阶导数 f ( x)等于零的点. (2) 求出二阶导数 f ( x) 不存在的点.
即F ( x) F (1) 0. x 当x 1时,F ( x) e e 0, 可知F ( x)
为[1,)上的严格单调增加函数, 即F ( x) F (1) 0. x 故对任意x 1,都有F ( x) 0, 即 e ex.
二、曲线的凹凸性与拐点
函数曲线除了有升有降之外, 还有不 同的弯曲方向, 如何根据函数本身判断函 数曲线的弯曲方向呢?
3 2 2. 例 3 讨论函数 y x 的单调性 解: 函数的定义域为( ) 2 y 3 (x0) 函数在 x0 处不可导 3 x 因为x<0时 y<0 所以函数在( 0] 上单减 因为x>0时 y>0 所以函数在[0 ) 上单增
1 3. 例 6 证明 当 x1 时 2 x 3 x 1 证明 证明 : 令 f (x) 2 x (3 ) 则 x 1 1 1 f (x) 2 2 (x x 1) x x x 因为当x>1时, f (x)>0 所以f(x)在[1 )上 f(x)单增 因此 当x>1时, f(x)>f(1)=0 即 2 x (3 1 ) 0 x 1 也就是 2 x 3 (x1) x
研究函数的单调性, 我们只关心 y在 子区间内的符号.
y
5 x3

第四节 函数的单调性与曲线的凹凸性与极值

第四节 函数的单调性与曲线的凹凸性与极值

第四节 函数的单调性与曲线的凹凸性与极值教学目的:理解函数的单调性和曲线的凹凸性的判定定理,会求函数的单调区间和曲线的凹凸区间,理解函数极值的概念,会求函数极值。

教学重点:掌握用一阶导数判断函数的单调性和利用二阶导数判断曲线的凹凸性的方法和极值。

教学难点:导数不存在的连续点、也可能是单调区间和曲线的凹凸区间的分界点。

教学内容:一、函数单调性的判定法 如果函数)(x f y=在],[b a 上单调增加(单调减少), 那么它的图形是一条沿x 轴正向上升(下降)的曲线. 这时曲线的各点处的切线斜率是非负的(是非正的), 即0)(≥'='x f y (或0)(≤'='x f y ) 由此可见, 函数的单调性与导数的符号有着密切的关系.反过来, 能否用导数的符号来判定函数的单调性呢? 定理1 (函数单调性的判定法) 设函数)(x f y =在],[b a 上连续, 在),(b a 内可导.(1)如果在),(b a 内0)(>'x f , 那么函数)(x f y =在],[b a 上单调增加;(2)如果在),(b a 内0)(<'x f , 那么函数)(x f y =在],[b a 上单调减少.证明 只证(1)((2)可类似证得)在],[b a 上任取两点)(,2121x x x x <, 应用拉格朗日中值定理, 得到)()()()()(211212x x x x f x f x f <<-'=-ξξ.由于在上式中012>-x x , 因此, 如果在),(b a 内导数)(x f '保持正号,即0)(>'x f , 那么也有0)(>'ξf , 于是0)()()()(1212>-'=-x x f x f x f ξ从而)()(21x f x f <,因此函数)(x f y=在],[b a 上单调增加. 证毕注: 判定法中的闭区间可换成其他各种区间. 例1 判定函数x x ysin -=在]2,0[π上的单调性.解 因为在)2,0(π内0cos 1>-='xy ,所以由判定法可知函数x x y sin -=在]2,0[π上单调增加.例2 讨论函数1--=x e y x的单调性.解 由于1-='xe y 且函数1--=x e y x的定义域为),(+∞-∞令0='y , 得0=x , 因为在)0,(-∞内0<'y , 所以函数1--=x e y x在]0,(-∞上单调减少; 又在),0(+∞内0>'y , 所以函数1--=x e y x在),0[+∞上单调增加.例3. 讨论函数32x y =的单调性.解: 显然函数的定义域为),(+∞-∞, 而函数的导数为332x y =')0(≠x所以函数在0=x处不可导.又因为0<x 时,0<'y , 所以函数在]0,(-∞上单调减少; 因为0>x时, 0>'y , 所以函数在),0[+∞上单调增加.说明: 如果函数在定义区间上连续, 除去有限个导数不存在的点外导数存在且连续, 那么只要用方程0)(='x f 的根及导数不存在的点来划分函数)(x f 的定义区间, 就能保证)(x f '在各个部分区间内保持固定的符号, 因而函数)(x f 在每个部分区间上单调.例4. 确定函数31292)(23-+-=x x x x f 的单调区间.解 该函数的定义域为),(+∞-∞.而)2)(1(612186)(2--=+-='x x x x x f ,令0)(='x f , 得2,121==x x .列表函数f (x )在区间]1,(-∞和),2[+∞内单调增加, 在区间]2,1[上单调减少.例5. 讨论函数3xy=的单调性.解 函数的定义域为),(+∞-∞函数的导数为:23x y =', 除0=x时, 0='y 外, 在其余各点处均有0>'y 因此函数3xy =在区间]0,(-∞上单调减少;因为当0≠x时, 0>'y , 所以函数在),0[+∞及),0[+∞上都是单调增加的.从而在整个定义域),(+∞-∞内3xy =是单调增加的. 其在0=x 处曲线有一水平切线.说明:一般地, 如果)(x f '在某区间内的有限个点处为零, 在其余各点处均为正(或负)时,那么)(x f 在该区间上仍旧是单调增加(或单调减少)的.例6. 证明: 当1>x 时, xx 132->.证明: 令)13(2)(xx x f --=, 则)1(111)(22-=-='x x xx x x f 因为当1>x 时,0)(>'x f , 因此)(x f 在),1[+∞上单调增加, 从而当1>x 时,)1()(f x f > ,又由于0)1(=f , 故0)1()(=>f x f ,即0)13(2>--xx , 也就是xx 132->,(1>x ).二、曲线的凹凸与拐点 1. 凹凸性的概念x 1x 2y x O221x x +()221x x f+2)()(21x f x f + f (x 2) f (x 1) x 1 x 2yxO221x x +()221x x f+2)()(21x f x f + f (x 2)f (x 1)定义 设)(x f 在区间I 上连续, 如果对I 上任意两点21,x x , 恒有2)()()2(2121x f x f x x f +<+, 那么称)(x f 在I 上的图形是(向上)凹的(或凹弧); 如果恒有2)()()2(2121x f x f x x f +>+, 那么称)(x f 在I 上的图形是(向上)凸的(或凸弧). 定义' 设函数)(x f y =在区间I 上连续, 如果函数的曲线位于其上任意一点的切线的上方,则称该曲线在区间I 上是凹的;如果函数的曲线位于其上任意一点的切线的下方,则称该曲线在区间I 上是凸的. 2.曲线凹凸性的判定定理 设)(x f 在],[b a 上连续, 在(a , b )内具有一阶和二阶导数, 那么 (1)若在),(b a 内0)(>''x f , 则)(x f 在],[b a 上的图形是凹的;(2)若在),(b a 内0)(<'x f , 则)(x f 在],[b a 上的图形是凸的. 证明 只证(1)((2)的证明类似) 设)(,],[,2121x x b a x x <∈ 记2210x x x +=由拉格朗日中值公式得2)())(()()(21101101x x f x x f x f x f -'=-'=-ξξ 011x x <<ξ2)())(()()(12202202x x f x x f x f x f -'=-'=-ξξ 220x x <<ξ两式相加并应用拉格朗日中值公式得2)]()([)(2)()(1212021x x f f x f x f x f -'-'=-+ξξ 02))((1212>--''=x x f ξξξ 21ξξξ<<即)2(2)()(2121xx f x f x f +>+ 所以)(x f 在],[b a 上的图形是凹的拐点: 连续曲线)(x f y =上凹弧与凸弧的分界点称为这曲线的拐点.确定曲线)(x f y =的凹凸区间和拐点的步骤: (1)确定函数)(x f y =的定义域;(2)求出在二阶导数)(x f ' ;(3)求使二阶导数为零的点和使二阶导数不存在的点; (4)判断或列表判断, 确定出曲线凹凸区间和拐点; 注: 根据具体情况(1)、(3)步有时省略. 例1. 判断曲线x yln =的凹凸性.解:xy 1=',21xy -=''.因为在函数x y ln =的定义域),0(+∞内, 0<''y , 所以曲线x y ln =是凸的.例2. 判断曲线3xy=的凹凸性.解: 因为23x y =' ,x y 6=''. 令0=''y 得0=x .当0<x 时, 0<''y , 所以曲线在]0,(-∞内为凸的;当0>x 时,0>''y , 所以曲线在),0[+∞内为凹的. 例3. 求曲线14123223+-+=x x x y的拐点.解: 12662-+='x x y , )12(6612+=+=''x x y ,令0=''y , 得21-=x . 因为当21-<x 时,0<''y ; 当21->x 时, 0>''y , 所以点(21-, 2120)是曲线的拐点.例4. 求曲线14334+-=x x y的拐点及凹、凸的区间.解: (1)函数14334+-=x x y 的定义域为),(+∞-∞; (2) 231212x x y -=',)32(3624362-=-=''x x x x y ;(3)解方程0=''y , 得01=x , 322=x ; (4)列表判断:(-, 0) 0 (0, 2/3) 2/3 (2/3, +) f ''(x ) + 0 - 0 +)(x f1 11/27在区间]0,(-∞和),32[+∞上曲线是凹的, 在区间]32,0[上曲线是凸的. 点)1,0( 和)2711,32(是曲线的拐点.例5 问曲线4xy =是否有拐点?解34xy =',212xy ='' .当0≠x 时, 0>''y , 在区间),(+∞-∞内曲线是凹的, 因此曲线无拐点.例6. 求曲线3x y =的拐点.解 (1)函数的定义域为),(+∞-∞; (2) 3231x y =', 32 92x x y -=''; (3)函数无二阶导数为零的点,二阶导数不存在的点为0=x ;(4)判断: 当0<x 时,0>''y ; 当0>x时, 0<''y .因此, 点)0,0(是曲线的拐点.三、函数的极值及其求法定义 设函数)(x f 在0x 的某一邻域)(0x U 内有定义如果对于去心邻域)(0x U ︒内的任一x ,有)()(0x f x f <(或)()(0x f x f >), 则称)(0x f 是函数)(x f 的一个极大值(或极小值).函数的极大值与极小值统称为函数的极值, 使函数取得极值的点称为极值点.说明:函数的极大值和极小值概念是局部性的. 如果)(0x f 是函数)(x f 的一个极大值, 那只是就0x 附近的一个局部范围来说, )(0x f 是)(x f 的一个最大值; 如果就)(x f 的整个定义域来说, )(0x f 不一定是最大值. 对于极小值情况类似.极值与水平切线的关系: 在函数取得极值处, 曲线上的切线是水平的. 但曲线上有水平切线的地方, 函数不一定取得极值.定理3 (必要条件)设函数)(x f 在点0x 处可导, 且在0x 处取得极值, 那么函数在0x 处的导数为零, 即0)(0='x f .定理1可叙述为:可导函数)(x f 的极值点必定是函数的驻点. 但是反过来, 函数)(x f 的驻点却不一定是极值点.考察函数3)(x x f =在0=x 处的情况. 显然0=x 是函数3)(x x f =的驻点,但0=x 却不是函数3)(x x f =的极值点.定理4 (第一种充分条件)设函数)(x f 在点0x 处连续, 在0x 的某去心邻域),(0δx U ︒内可导.(1) 若),(00x x x δ-∈时,0)(>'x f , 而),(00δ+∈x x x 时,0)(<'x f , 则函数)(x f 在0x 处取得极大值;(2) 若),(00x x x δ-∈时,0)(<'x f , 而),(00δ+∈x x x 时,0)(>'x f , 则函数)(x f 在0x 处取得极小值;(3)如果),(0δx U x ︒∈时,)(x f '不改变符号, 则函数)(x f 在0x 处没有极值. 定理2也可简单地叙述为: 当x 在0x 的邻近渐增地经过0x 时, 如果)('x f 的符号由负变正, 那么)(x f 在0x 处取得极大值; 如果)('x f 的符号由正变负, 那么)(x f 在0x 处取得极小值; 如果)('x f 的符号并不改变, 那么)(x f 在0x 处没有极值.确定极值点和极值的步骤: (1)求出导数)('x f ;(2)求出)(x f 的全部驻点和不可导点;(3)列表判断(考察)('x f 的符号在每个驻点和不可导点的左右邻近的情况, 以便确定该点是否是极值点, 如果是极值点, 还要按定理2确定对应的函数值是极大值还是极小值); (4)确定出函数的所有极值点和极值. 例1 求出函数593)(23+--=x x x x f 的极值解 963)(2--='x x x f )3)(1(3-+=x x令,0)(='x f 得驻点.3,121=-=x x 列表讨论x)1,(--∞1-)3,1(-3),3(+∞)(x f '++)(x f↑极大值↓极小值↑所以极大值)1(-f ,10=极小值22)3(-=f .22-= 函数593)(23+--=x x x x f 的图形如下例2 求函数32)1()4()(+-=x x x f 的极值解 显然函数)(x f 在),(+∞-∞内连续 除1-=x 外处处可导 且 313)1(5)(+-='x x x f 令)('x f 得驻点1=x ,1-=x 为)(x f 的不可导点(3)列表判断x )1,(--∞-1 )1,1(-1 ),1(+∞)('x f+ 不可导 - 0 + )(x f↗↘343-↗所以极大值为0)1(=-f 极小值为343)1(-=f如果)(x f 存在二阶导数且在驻点处的二阶导数不为零则有定理5 (第二种充分条件) 设函数)(x f 在点0x 处具有二阶导数且0)(0'=x f ,0)(0≠''x f , 那么(1)当0)(0<''x f 时, 函数)(x f 在0x 处取得极大值;(1)当0)(0>''x f 时, 函数)(x f 在0x 处取得极小值; 证明 对情形(1), 由于0)(0<''x f , 由二阶导数的定义有0)()(lim)(0000<-'-'=''→x x x f x f x f x x .根据函数极限的局部保号性, 当x 在0x 的足够小的去心邻域内时,0)()(00<-'-'x x x f x f . 但0)(0'=x f , 所以上式即为0)(0<-'x x x f . 于是对于去心邻域内的x 来说, )('x f 与0x x -符号相反. 因此, 当00<-x x 即0x x <时,0)('>x f ; 当00>-x x 即0x x >时,0)('<x f . 根据定理2,)(x f 在0x 处取得极大值.类似地可以证明情形(2).说明:如果函数)(x f 在驻点0x 处的二导数0)(0≠''x f , 那么该点0x 一定是极值点, 并可以按)(0x f ''的符来判定)(0x f 是极大值还是极小值. 但如果0)(0=''x f , 定理3就不能应用.例如讨论函数4)(x x f =, 3)(x x g =在点0=x 是否有极值?因为34)(x x f =', 212)(x x f ='',所以0)0(='f ,0)0(=''f但当0<x 时0)(<'x f , 当0>x 时0)(>'x f , 所以)0(f 为极小值. 而23)(x x g =',x x g 6)(='',所以0)0(='g ,0)0(=''g 但)0(g 不是极值.例3 求出函数 20243)(23--+=x x x x f 的极值解 2463)(2-+='x x x f )2)(4(3-+=x x令,0)(='x f 得驻点 2,421=-=x x ,由于66)(+=''x x f由于=-'')4(f ,018<- 所以极大值)4(-f 60= 而='')2(f ,018>所以极小值)2(f .48-=函数 20243)(23--+=x x x x f 的图形如下注意 当0)(0=''x f 时,)(x f 在点0x 处不一定取得极值,此时仍用定理2判断。

第四节函数的单调性与曲线的凹凸性共36页

第四节函数的单调性与曲线的凹凸性共36页
x2
x
=
3
是极值点
y 2 7 6ab0
x 3
( 3)
联立(1)-(3),得 a = -6, b = 9, c = 2.
例15. 利用函数的凹凸性证明不等式:
ex
ey
xy
e 2 (xy).
2
证明: 令f(x)ex,
f(x)ex0, (x (, ) )
f(x)在( , )上是凹的
同理可证明(2).
例1.讨 论 函 f(x) 数 exx1的 单.调 性
解: 定 义 D:( 域 , ) . f(x)ex 1.
x
f (x) f (x)
(, 0)

0 (0, )
0
f(x)在( ,0]单调减 ;在少 [0,)上单调增. 加
说明:导数等于零的点(即驻点)划分函数的定义 区间为两个具有单调性的区间.
令f(x)0, x10,x2 2 ;x3 1是不可导.
(3) 列表判断:
x (,2) 2 (2,1) 1 (1, 0) 0 (0,)
f (x) 0 不存在 0
f (x)
单调增加区间: ( ,2][0, ) 单调减少区间: [2, 0].
1x 因f为 (x)在 [0,) 上连 , 续 且 (0 , 在 )内 ,可 f(x ) 0 导 ,
所以 f(x)在 [0, )上单调 ;由 增 f(0) 加 0, 知x当 0时 , f(x)f(0), 即 xln 1(x).
3. 曲线
y1ex2 的凹区间是 ( 1 , 2
( D )f ( 1 ) f ( 0 ) f ( 1 ) f ( 0 )
提示: 利用 f (x)单调增加 , 及
f( 1 ) f( 0 ) f()( 0 1 )

第四节函数的单调性与曲线的凹凸性描述

第四节函数的单调性与曲线的凹凸性描述

2 36 x( x ) 3
y y
2018/12/9


0 拐点 凸 (0,1)
2 3 0
(2 , ) 3

拐点
( 2 , 11 ) 3 27

22
3-4 单调性和凹凸性
2 2 故该曲线在( , 0) 及( , ) 上向上凹, 在 (0 , ) 上 3 2 11 3 向上凸 , 点 ( 0 , 1 ) 及 ( , ) 均为拐点. 3 27
3-4 单调性和凹凸性
12
例4 当x 0时, 试证x ln(1 x )成立.
证 : 设f ( x ) x ln(1 x ), 则 1 x f ( x ) 1 . 1 x 1 x f ( x )在[0,)上连续, 且(0,)可导, f ( x ) 0,
第四节 函数的单调性与 曲线的凹凸性
一、函数单调性的判定法
二、曲线的凹凸与拐点
2018/12/9
3-4 单调性和凹凸性
1
y
y f ( x)
A
B
பைடு நூலகம்
y
A y f ( x)
B
o a
b
x
o a
b x
f ( x ) 0
f ( x ) 0
2018/12/9
3-4 单调性和凹凸性
2
一、函数单调性的判定法
3 7 在[0,2]内曲线有拐点为 ( ,0), ( ,0). 4 4
2018/12/9
3-4 单调性和凹凸性
25
• 用一阶导数符号判别单调性;用二阶导数符 号判别凹凸性。 • 一阶导数为0或不存在的点为单调性发生变 化的可疑点;二阶导数为0或不存在的点为 凹凸性发生变化的可疑点。

第四节函数的单调性与曲线

第四节函数的单调性与曲线

−∞ , 单调区间为 (−∞,0] [0,+∞).
注意:区间内个别点导数为零 不影响区间的单调性 注意 区间内个别点导数为零,不影响区间的单调性 区间内个别点导数为零 不影响区间的单调性.
在 单 增 . y = x3 , y′ x=0 = 0, 但 (−∞,+∞)上 调 加 例如, 例如 x , 证 立 例4 当 > 0时 试 x > ln(1 + x)成 .
3π 7π [ ∴在 0,2π] 曲 有 点 内 线 拐 为 ( ,0), ( ,0). 4 4
注意: 注意: 若 f ′′( x0 ) 不 在点( x0 , f ( x0 )) 也 能 存 , 可
连 曲 是 续 线 y = f ( x)的 点 拐 .
例4
曲 求 线y = 3 x的 点 拐 .
2 − 3 5 − 3
( ∴点 0,0)是 线 y = 3 x 拐 . 曲 的 点
三、小结
单调性的判别是拉格朗日中值定理的重要应用. 单调性的判别是拉格朗日中值定理的重要应用 曲线的弯曲方向——凹凸性 凹凸性; 曲线的弯曲方向 凹凸性
凹凸性的判定. 凹凸性的判定 改变弯曲方向的点——拐点 拐点; 改变弯曲方向的点 拐点 拐点的求法1, 拐点的求法 2.
x , 可 函 取 极 的 件 ∴ f ′( x)在 0取得极值由 导 数 得 值 条 ,
∴ f ′′( x) = 0.
x 邻 内 阶 导 方法1: 函 f 方法1: 设 数 ( x)在 0的 域 二 可 , 且 ′′( x0 ) = 0, f
(1) x0两 旁 ′′( x)变 ,点 x0, f ( x0 ))即 拐 ; 近 f 号 ( 为 点 (2) x0两 旁 ′′( x)不 号 点 x0 , f ( x0 ))不 拐 . 近 f 变 , ( 是 点

第四节函数的单调性与曲线的凹凸性

第四节函数的单调性与曲线的凹凸性

y
拐点的判别法:
( x0 , f ( x0 ))
o
x
若 f ( x) 在 x0 两侧异号, 则点 ( x0 , f ( x0 ))是拐点.
求凹凸区间及拐点的方法:
(1) 求函数 f (x) 的定义域 D; (2) 求 f ( x); (3) 求 方 程 f ( x) 0 的 实 根,
证: x1, x2 [a, b], 且 x1 x2, 应用拉氏定理,得
f ( x2 ) f ( x1) f ( )( x2 x1 ) ( ( x1, x2 ))
(1) 若 在(a, b)内, f ( x) 0, 则 f ( ) 0, 又 x2 x1 0,
( A) f (1) f (0) f (1) f (0) (B) f (1) f (1) f (0) f (0) (C) f (1) f (0) f (1) f (0) (D) f (1) f (0) f (1) f (0) 提示: 利用 f ( x)单调增加 , 及
且点( x0 , f ( x0 ))是拐点,则
f ( x0 ) 0.
例14. 已知(2,4)是曲线y x3 ax2 bx c 的拐点,
且曲线在点x 3 处有极值,求常数a, b, c.
解:
(2,4) 是拐点

4
8 4a 2b c
(1)
y 12 2a 0 (2)
( x 0)
x (, 0) 0 (0 , )
f ( x) 不存在
f (x)
该函数在(,0]上单调减少; 在[0,) 上单调增加.
说明:导数不存在的点划分函数的定义区间为两 个具有单调性的区间.

高等数学第四节函数的单调性与曲线的凹凸性

高等数学第四节函数的单调性与曲线的凹凸性

f ( x) 0的点都是孤立点 , 所以 f ( x) 在 ( , ) 单调增加 . #
分区间讨论:
在 (0, 2 )内, f ( x) 0 , f ( x) 在 [0, 2 ] 单调增加 ; 在 (2 , 4 )内, f ( x) 0 , f ( x) 在[2 , 4 ] 单调增加 ,
1
一 . 单调性的判别法 .
y
y f (x) B
A
yA y f (x) B
oa
bx
f ( x) 0
oa
bx
f ( x) 0
定理1 . 设函数 y f ( x) 在[a , b] 上连续 , 在 (a , b)内可导 .
(1) 如果在 (a , b)内 f ( x) 0 ,
则 f ( x2 ) f ( x1) 0 , y f ( x) 在[a , b] 上单调减少.
3
例1 . 讨论函数 y e x x 1的单调性. 解 . 函数的定义域 : D (,)
y e x 1. 在 ( , 0)内, y 0 ,
在 ( , 0]内, 函数单调减少 .
f ( x) 在 [ 0, ) 连续 , 在 ( 0 , )内 f ( x) 0 , 所以 f ( x) 在[ 0 , ) 单调增加 . 当 x 0 时 , f ( x) f (0) 0 , 即 x ln(1 x) 0 , x ln(1 x) .
第四节 函数的单调性与曲线的凹凸性
P143 对于区间I上任意两点 x1 x2 , 恒有 f ( x1) f ( x2 ) , 则称 f ( x) 在区间 I 上是单调增加的 . 对于区间I上任意两点 x1 x2 , 恒有 f ( x1) f ( x2 ) , 则称 f ( x) 在区间 I 上是单调减少的 .

3.4 函数的单调性与曲线的凹凸性

3.4 函数的单调性与曲线的凹凸性
解方程 ′ () = 0 得, 1 = 1, 2 = 2.

(−∞, 1) (1,2)
(2, +∞)
′ ()
+

+
()
单增
单减
单增
单调增区间为
(−∞, 1], [2, +∞).
单调减区间为
[1,2].
第四节 函数的单调性与曲线的凹凸性
第三章 微分中值定理与导数的应用
例4 确定函数 () =
注意:
区间内个别点导数为零,不影响区间的单调性.
例如:
= 3, ′ቚ
=0
= 0, 但在(−∞, +∞)上单调增加.
一般地, 有如下定理:
定理2
设函数 = ()在[, ]上连续, 在(, )内可导.
(1) 如果在(, )内 ′ ()≥0, 且等号仅在有限多个点处成立,
例8
求曲线 = 3 4 − 4 3 + 1 #43;∞).
2
= 36( − ).
=

3
2

令 = 0, 得 1 = 0, 2 = .
3

12 3

″ ()
()
12 2 ,

(−∞, 0)
0
(0, 2ൗ3)
2ൗ
3
+
0

0
+
拐点(0,1)
凸的
拐点(2ൗ3 , 11ൗ27)
3. 利用单调性证明不等式
π
sin 2
例5 证明: 当0 < ≤ 时,
≥ .
2

π

π
sin 2

高数讲义第四节函数的单调性与凹凸性

高数讲义第四节函数的单调性与凹凸性

2、曲线凹凸的判定
特点:(1)曲线弧总位于 切线的下方。
(2)切线的斜率随 x 的增大 而减少。
y y f (x)
B
A oa
bx
即 f ( x)在[a, b]上单调减少.
由单调性判断可知:
若 f ( x) 0 f ( x)单调减少 曲线 y f ( x)是凸的.
2、曲线凹凸的判定
定理2 如果 f ( x) 在 [a, b] 上连续, 在 (a, b) 内具有
o
x
当 x 0时, y 0, 在(,0]上单调增加;
当0 x 时, y 0, 在[0,)上单调增加;
在(,)上函数单调增加.
一般地:若 f (x) 在区间内除有限个点处的导数为零, 在其余点处导数恒为正(或恒为负),则 f (x) 在该 区间上仍旧是单调增加的(或单调减少的 ) .
注意:单调性也常用来证明不等式或方程的根的个数.
一阶和二阶导数 , 若在 (a, b) 内 (1) f ( x) 0,则 f ( x) 在 [a, b] 上的图形是凹的; (2) f ( x) 0,则 f ( x) 在 [a, b] 上的图形是凸的.
说明: (1)证明的思路与单调性的情形完全一样。
(2)若将区间 [ a , b ] 换为其它形式的区间(包括 无穷区间),定理2的结论仍然成立。
解 D : (,).
f ( x) 6x2 18x 12 6( x 1)( x 2) 解方程f ( x) 0 得,x1 1, x2 2. 将 D划分为: (, 1], [1, 2] , [2, ) 当 x 1时, f ( x) 0, 在(,1]上单调增加; 当1 x 2时, f ( x) 0, 在[1,2]上单调减少;
f (1) 1 0, f (0) 1 0,

第四节 函数单调性、凸凹性与极值

第四节 函数单调性、凸凹性与极值
数的符号.
例2. 确定函数
令 f ( x) 0 , 得 x 1, x 2
的单调区间.
2 解: f ( x) 6 x 18 x 12 6( x 1)( x 2)
x
f ( x) f ( x)

( , 1)
1
0
(1 , 2)


2 0 1
( 2 , )
(2) 令 f '' ( x ) 0, 解出全部实根, 并求出使 f '' ( x )
不存在的点; (3) 对步骤(2)中求出的每一个点, 检查其邻近左、 右两侧二阶导数 f '' ( x ) 的符号, 确定曲线的凹凸 区间和拐点.
例8. 求曲线 解: 1) 求 y
的凹凸区间及拐点.
y 12 x3 12 x 2 ,
y f ( x ) 在 [a , b]上单调增加. 若在 (a , b )内, f ' ( x ) 0, 则 f ' ( ) 0, f ( x2 ) f ( x1 ). y f ( x )在[a , b]上单调减少.
例 1 讨论函数 y e x 1 的单调性.
y
2
2 的单调增区间为 ( , 1) , (2 , ); 1
的单调减区间为 (1 , 2).
o
1 2
x
2 3 y x 例 3 讨论函数 的单调区间. 解 D : ( , ). y 32 ( x 0), 3 x 当 x 0 时, 导数不存在. 当 x 0 时,y 0, 在 ( ,0] 上单调减少; 当 0 x 时,y 0,
2
2 1 f ( x ) ln(1 x ) x x , 2 因为 f ( x ) 在 [0,) 上连续,在 (0, ) 内可导,

函数的单调性与曲线的凹凸性教案

函数的单调性与曲线的凹凸性教案

x2
(1 2 x 2 )
第五节 目录
上页
下页
返回
结束
备用题
x 1 1. 求证曲线 y 2 有位于一直线的三个拐点. x 1 1 2x x2 ( x 2 1) ( x 1)2 x 证明:y 2 2 ( x 1) ( x 2 1) 2
(2 2 x) ( x 2 1) 2 (1 2 x x 2 ) 2( x 2 1) 2 x y ( x 2 1) 4 2( x 3 3x 2 3x 1) ( x 2 1) 3 2( x 1)( x 2 3)( x 2 3) ( x 2 1) 3
1
0
(1 , 2)


2 0 1
( 2 , )
2
y
2 的单调增区间为 ( , 1) , (2 , ); 1 的单调减区 返回 结束
说明: 1) 单调区间的分界点除驻点外,也可是导数不存在的点. 例如,
y y 3 x2
O y
x
2
2
练习2:P153 5(3)
且 f (x)cos xsec2x2 , f (0)0 ,
( x ) sin x 2sec2 x tan x sin x(2sec3 x 1) 0 f
从而f (x)在[0,

从而f(x)在 [0, ) 内单调增加 2 因此当 0 x 时 f(x)f(0)0 sin xtan x2x0 也就是 sin xtan x2x
x
f ( x )
1 ( , ) 2
1 2
1 ( , ) 2


0
拐点
1 arctan 1 2 ( ,e ) 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四节 函数的单调性与曲线的凹凸性㈠本课的基本要求掌握用导数判断函数的单调性的方法,会用导数判断函数图形的凹凸性以及拐点,会单调性和凹凸性的一些简单运用㈡本课的重点、难点单调性的判断是本课的重点、凹凸性的判定为本课的难点㈢教学内容单调性是函数的重要性态之一,它既是决定着函数递增和递减的状况,又能帮助我们研究函数的极值,还能证明某些不等式和分析函数的图形。

本节以微分中值定理为工具,给出函数单调性及极值的判别法。

一.函数单调性的充分条件单调性的定义。

再假设函数在某个区间内可导且具有单调性,如单调递增,由单调递增这一整体性质不难看到:无论0>∆x 还是0<∆x ,差商0)()(≥∆-∆+=∆∆xx f x x f x y ,这样可得0)(≥'x f 。

(注意,即使严格递增,一般也得不到0)(>'x f 。

),反过来,也希望利用导数的符号判断函数在某个区间上的单调性。

定理1 设函数内可导上连续,在在),(],[)(b a b a x f ⑴如果在内单调增加在,则内],[)(0)(),(b a x f x f b a >';⑵如果在内单调在,则内],[)(0)(),(b a x f x f b a <'减少。

证略。

(课堂上介绍)几何意义:如曲线)(x f y =在某区间内的切线与x 轴正向的夹角α是锐角(tan α>0),则该曲线在该区间内上升,若这个夹角是钝角(tan α<0),则该曲线在该区间内下降。

(在黑板上画图)由定理知,可导函数的单调性可根据其导数的正负情况予以确定。

如函数的导数仅在个别点处为0,而在其余的点处均满足定理的条件,那么定理1的结论仍然成立,例如3x y =在x=0处的导数为0,但在),(+∞-∞内的其它点处的导数均大于0,因此它在区间),(+∞-∞内是增加的。

有时,函数在其定义域上并不具有单调性,但在各个部分区间上却具有单调性。

如图(由图说明函数在哪些具体区间上具有单调性)。

另外由图可知,对于可导函数来说,显然这些单调区间的分界点处的导数值应为0.(在黑板上画图 )因此,要确定可导函数)(x f 的单调区间,应先求出满足不存在的点)(或)(0)(x f x f '='的一切值。

确定某个函数的单调性的一般步骤:⑴确定函数的定义域⑵求出使不存在的点和)(0)(x f x f '='并以这些点为分界将定义域分为若干个子区间。

⑶确定)(x f '在各个子区间的符号,从而判定出)(x f 的单调性。

例1.讨论函数]2,0[cos 1π在x x y -+=上的单调性例2.讨论55)(23+-+=x x x x f 的单调性例3.求函数323x x y -=的单调区间 例4.(血液的压强)血液从心脏里流出,经到主动脉后流到毛细血管,再通过静脉流回心脏。

医生建立了某个病人在心脏收缩的一个周期里血压P 的数学模型 100,112325)(22≤≤++=t t t t P 其中,压强单位是mmHg ,时间单位是s 。

0=t 表示血液从心脏里流出的时间。

则血压的变化率0)1(196)1()12325(2)1(50112325)(22222222<+-=++-+='⎪⎪⎭⎫ ⎝⎛++='t t t t t t t t t t P 因此,在心脏收缩的一个周期里,血压是递减的。

例4.证明当x x xx x ≤+≤+->)1ln(11时,不等式成立 例5.证013=-+x x 有且仅有一个实根二.曲线的凹凸性及拐点在黑板上画出示意图定义1 设)(x f 在区间I 上连续,如果对I 上任意两点21,x x 恒有2)()(22121x f x f x x f +<⎪⎭⎫ ⎝⎛+, 那么称)(x f 在I 上的图形是(向上)凹的(或凹弧);如果恒有2)()(22121x f x f x x f +>⎪⎭⎫ ⎝⎛+, 那么称)(x f 在I 上的图形是(向上)凸的(或凸弧)。

定义2 设)(x f y =在某区间内连续,则曲线)(x f y =在该区间内的凹凸分界点,叫做该曲线的拐点。

注:拐点是曲线上的点,因此,拐点的坐标需用横坐标与纵坐标同时表示。

分析凹凸性函数)(x f '的单调性定理1 设)(x f 在],[b a 上连续,在),(b a 内具有一阶和二阶导数,那么⑴若在),(b a 内0)(>''x f ,则)(x f 在],[b a 上的图形是凹的;⑵若在),(b a 内0)(<''x f ,则)(x f 在],[b a 上的图形是凸的。

证 我们先证明⑴。

在),(b a 内任取两点21x x <,并记221x x c +=。

在],[1c x 与],[2x c 上对函数)(x f 分别用拉格朗日中值定理,得 ),(),)(()()(11111c x x c f x f c f ∈-'=-ξξ,),(),)(()()(22222x c c x f c f x f ∈-'=-ξξ下式减去上式,并记h c x x c =-=-21,得h f f c f x f x f )]()([)(2)()(1212ξξ'-'=-+由凹凸性定义,我们只要证明上式左边大于零就可以了。

由于函数)(x f 在),(b c 二阶可导,所以导函数)(x f '在],[b a 满足拉格朗日中值定理条件。

在],[21ξξ上对导函)(x f '再用拉帮朗日中值定理,得),(),)(()()(211212ξξξξξξξξ∈-''='-'f f f ,由定理条件知0)(>''ξf ,又0,12>>h ξξ,所以022)()()(2)()(121212>⎪⎭⎫ ⎝⎛+-+=-+x x f x f x f c f x f x f 即2)()(22121x f x f x x f +<⎪⎭⎫ ⎝⎛+。

所以曲线是凹的。

同理可证⑵。

定理2 (拐点的必要条件)若))(,()()(0000x f x x f x x f y 存在,且点处的二阶导数在''=为曲线0)()(0=''=x f x f y 的拐点,则。

注:这只是必要条件,不是充分条件,如处在04==x x y 。

定理3 若0000)()(x x f x x f y 且在处在=''=两侧的二阶导数变号,则点))(,(00x f x 为曲线)(x f y =的拐点。

注:这只是充分条件,如)(x f ''不存在的点,也可能是拐点。

判定)(x f y =的凹凸与拐点的步骤:⑴求一阶及二阶导数)(),(x f x f ''';⑵求出所有满足方程0)(=''x f 的点及使二阶导数不存在的点;⑶由定理1,2,3及定义来判定曲线的凹凸与拐点。

例1.判定曲线x y ln =的凹凸性。

例2.求曲线355x x y -=的凹凸区间与拐点。

例3.求3/11x y -=的凹凸区间及拐点。

例4.求323x x y -=的极值及增减区间、拐点及凹凸区间(0;1;2)例5.确定摆线π20),cos 1(),sin (≤≤-=-=t t a y t t a x 的凹凸性。

解 )20,0)c o s 11222π<<<--=t t a d y d ,又注意到摆线在]2,0[π上连续,所以它在]2,0[π上是凸的。

例6.(众议院席位(House function ))根据美国当选总统的得票率,预测他所在的党在众议院获得席位比率的一个数学模型。

设当选总统的得票率是p ,则House 函数10,)1()(333≤≤-+=p p p p p H 预示他所在的党在这届众议院里将得到的席位占总席位数的比率。

我们分析一下House 函数的凹凸性。

有)(p H 在)21,0(内是凹的,在)1,21(内是凸的,21=p 是拐点。

注 House 函数基本反映了美国众议院席位的实际情形。

例如在1936年的选举中罗斯福赢得61%的选票,由House 函数估计民主党在众议院中分得席位的比率是%)3.79(793.039.061,061.0)61.0(333≈+=H 实际上,当年民主党在众议院获得333个席位,占总席位的78.9%,与预测结果相差无几。

当然,它也并不总是非常准确的。

最大的差别出现在1984年里根连任时。

里根得到了59%的选票,由House 函数计算共和党在众议院可以得到约75%的席位,但实际只得到48%的席位,相差25个百分点。

这是由多方面的原因造成的。

例7.求224163234+-+-=x x x x y 的凹凸区间和拐点。

利用函数的凹凸性,可以证明关于算术平均值和几何平均值的不等式。

例8.设)(x f 在),(b a 内凹,),(,,,21b a x x x n ∈ 。

证明n x f x f x f n x x x f n n )()()(2121+++≥⎪⎭⎫ ⎝⎛+++ 。

(用数学归纳法) 例9.设n i x i ,,2,1,0 =>。

证明:nx x x x x x n n n +++≤2121,其中的等号成立当且仅当所有的i x 全相等。

证 当所有的i x 全相等时等号显然成立,因此只需证明当i x 不全相等时上式是严格不等式。

考虑函数x x f ln )(=在),0(+∞上是严格递增且凸的,故 n n n n x x x n x x x n x x x 1212121)ln(ln ln ln ln =+++>+++即nx x x x x x n n n +++≤ 2121 例10.利用函数图形的凹凸性,证明不等式)(,22y x e e e yx yx ≠>++证 因为x e x f =)(在R 内为凹。

由凹函数的定义即可得。

小结:作业:P.151.1,3(2)(8),4(3),5,7(3),8(2),9(1),10,12。

相关文档
最新文档