高中数学填空题的常用解题方法
高中数学答题模板
一、选择填空题1.易错点归纳九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。
针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。
2.答题方法选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法。
填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。
二、解答题专题一、三角变换与三角函数的性质问题1.解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2.构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二、解三角形问题1.解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2.构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
专题三、数列的通项、求和问题1.解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2.构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
高中数学填空题解题技巧剖析
高中数学填空题解题技巧剖析填空题是高中数学试卷中常见的一种题型,通常考查考生对基础知识的掌握程度以及对解题思路的把握。
以下将对高中数学填空题的解题技巧进行剖析。
一、审题与理解首先,对于填空题,我们需要认真审题,理解题意,确定题目的求解目标和题目所给出的信息。
在阅读题目时,我们要注重以下几个方面的内容:1.题目要求:明确题目的求解目标和所需填空的个数。
2.已知条件:理解题目中已给出的条件,包括数据、等式、图形等,这些已知条件是解题的基础。
3.隐含条件:有些题目会有一些隐含条件,需要我们根据题目的描述自行推断。
通过仔细审题,我们可以对题目的信息做到心中有数,才能在解题过程中根据所给条件与已知知识来推导解答。
二、关注关键词在填空题的解题过程中,识别和把握题目中的关键词是非常重要的。
常见的数学关键词包括“最大值”、“最小值”、“相似”、“比例”、“约分”、“倍数”、“公因数”等。
在解题时,我们可以通过关键词的提示,判断题目的解题思路和逻辑。
举个例子,如果题目中出现了“比例”,那么我们就要考虑使用比例的性质来求解;如果出现了“最大值”、“最小值”,那么就要通过极值的方法来求解。
三、思路明确解题思路的明确是填空题的解题关键之一。
仔细阅读题,在弄清题目的目标,所给条件之后,要通过思考,明确解题的思路。
对于一些简单的题目,需要使用基本公式,例如利用勾股定理解三角形边长,利用圆周率求圆的面积和周长等;对于一些复杂的题目,则需要结合已有的知识和技巧来思考如何解决问题。
四、记忆公式高中数学包含很多的公式和定理,掌握这些公式和定理是解题的必要条件。
在平时的学习过程中,要注意理解和记忆公式的使用方法和注意事项,以便在考试中运用自如。
五、检查答案检查结果在填空题中非常必要,因为填空题的答案相对比较简单,在计算过程中容易出现错别字、错位、运算符号错误等小错误,所以我们需要反复检查计算过程,确保每一个空都填对了,并且运算过程没有错误。
高中数学常考体型及试题解析
高中数学常考体型及试题解析专题:填空题的解法一、题型特点:数学填空题是一种只要求写出结果,不要求写出解答过程的客观性试题,是高考数学中的三种常考题型之一,填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题. 这说明了填空题是数学高考命题改革的试验田,创新型的填空题将会不断出现. 因此,我们在备考时,既要关注这一新动向,又要做好应试的技能准备.解题时,要有合理的分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整. 合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求.数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。
求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫。
下面是一些常用的方法。
二、例题解析(一)定义法有些问题直接去解很难奏效,而利用定义去解可以大大地化繁为简,速达目的。
例1. 的值是_________________。
解:从组合数定义有:又代入再求,得出466。
例2. 到椭圆右焦点的距离与到定直线x =6距离相等的动点的轨迹方程是_______________。
解:据抛物线定义,结合图1知:图1轨迹是以(5,0)为顶点,焦参数P =2且开口方向向左的抛物线,故其方程为:(二)直接法这是解填空题的基本方法,它是直接从题设条件出发、利用定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
例3设,)1(,3)1(j m i b i i m a -+=-+=其中i ,j 为互相垂直的单位向量,又)()(b a b a -⊥+,则实数m = 。
解:.)2(,)4()2(j m mi b a j m i m b a +-=--++=+∵)()(b a b a -⊥+,∴0)()(=-⋅+b a b a ∴0)4)(2()]4()2([)2(222=-+-⋅-++-++j m m j i m m m j m m ,而i ,j 为互相垂直的单位向量,故可得,0)4)(2()2(=-+-+m m m m ∴2-=m 。
高中数学填空题的解决策略
高中数学填空题的解决策略
作者:何彩霞
来源:《数理化学习·高三版》2013年第08期
填空题基本定义为先根据所给已知条件,然后按要求在横线中填出数字、式子、语句等内容.它具有题目文字少、形式灵活、覆盖面广,跨度大等特点,可以专注于某个知识点的考查,也可以和谐地综合一些问题,主要是训练我们准确、全面、灵活运用知识的能力和基本运算能力.
一、直接法
这是解填空题最常用,也是最基本的方法.它是直接从题目条件出发、利用定义、定理、公式、性质等知识,通过推理、变形、运算等过程,直接得到结果.
解析:这道题如果按题意从正面解决的话需讨论一条、两条或三条抛物线分别与x轴有公共点这三种情况,比较繁琐,所以我们采用对立思想去解决,即求出三条抛物线与x轴都没有有公共点时a的取值范围,然后取所得a的范围的补集即为所求.
三、特殊法
特殊法就是对题目中的某个变量进行特殊化,选取符合题意的特殊点,特殊值,特殊角度,特殊函数等,从而达到又快又准解答填空题的目的.
四、数形结合法
所谓数形结合,就是根据数与形之间的关系,把抽象的数学语言、数学符号用直观的几何图形表示出来,使复杂问题简单化,抽象问题具体化,从而起到优化解题的目的.
六、类比法
类比法就是通过由两类对象具有某些类似的特征,和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的方法.
七、构造法
构造法就是通过对已知条件的观察、分析,解剖其本质特征,联想出熟悉的数学背景,进而转化命题,合理、准确的构造出新的数学模型,从而达到优化解题的方法.
[江苏省南通市通州区二甲中学(226321)]。
2022年高考数学二轮复习教案:第二部分 专题一 选择、填空题常用的10种解法 Word版含答案
专题一 选择、填空题常用的10种解法 抓牢小题,保住基本分才能得高分________________________________________________________________________ 原则与策略:1.基本原则:小题不用大做.2.基本策略:充分利用题干和选项所供应的信息作出推断.先定性后定量,先特殊后推理,先间接后直接,选择题可先排解后求解.解题时应认真审题、深化分析、正确推演运算、谨防疏漏. 题型特点:1.高中低档题,且多数按由易到难的挨次排列.2.留意基本学问、基本技能与思想方法的考查.3.解题方法机敏多变不唯一.4.具有较好的区分度,试题层次性强.方法一 定义法所谓定义法,就是直接利用数学定义解题,数学中的定理、公式、性质和法则等,都是由定义和公理推演出来的.简洁地说,定义是对数学实体的高度抽象,用定义法解题是最直接的方法.一般地,涉及圆锥曲线的顶点、焦点、准线、离心率等问题,常用定义法解决.[例1] 如图,F 1,F 2是双曲线C 1:x 216-y 29=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限的公共点.若|F 1A |=|F 1F 2|,则C 2的离心率是( )A.56B.23C.25D.45解析:由双曲线C 1的方程可得|F 1F 2|=216+9=10, 由双曲线的定义可得|F 1A |-|F 2A |=216=8, 由已知可得|F 1A |=|F 1F 2|=10, 所以|F 2A |=|F 1A |-8=2.设椭圆的长轴长为2a ,则由椭圆的定义可得2a =|F 1A |+|F 2A |=10+2=12. 所以椭圆C 2的离心率e =2c 2a =1012=56.故选A.答案:A[增分有招] 利用定义法求解动点的轨迹或圆锥曲线的有关问题,要留意动点或圆锥曲线上的点所满足的条件,机敏利用相关的定义求解.如[本例]中依据双曲线的定义和已知条件,分别把A 到两个焦点的距离求出来,然后依据椭圆定义求出其长轴长,最终就可依据离心率的定义求值. [技法体验]1.(2021·广州模拟)假如P 1,P 2,…,P n 是抛物线C :y 2=4x 上的点,它们的横坐标依次为x 1,x 2,…,x n ,F 是抛物线C 的焦点,若x 1+x 2+…+x n =10,则|P 1F |+|P 2F |+…+|P n F |=( ) A .n +10 B .n +20 C .2n +10D .2n +20解析:由题意得,抛物线C :y 2=4x 的焦点为(1,0),准线为x =-1,由抛物线的定义,可知|P 1F |=x 1+1,|P 2F |=x 2+1,…,|P n F |=x n +1,故|P 1F |+|P 2F |+…+|P n F |=x 1+x 2+…+x n +n =n +10,选A. 答案:A2.(2022·高考浙江卷)设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________. 解析:借助双曲线的定义、几何性质及余弦定理解决.∵双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,∴|F 1F 2|=4,||PF 1|-|PF 2||=2.若△F 1PF 2为锐角三角形,则由余弦定理知|PF 1|2+|PF 2|2-16>0,可化为(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|>16①.由||PF 1|-|PF 2||=2,得(|PF 1|+|PF 2|)2-4|PF 1||PF 2|=4.故2|PF 1||PF 2|=|PF 1|+|PF 2|2-42,代入不等式①可得(|PF 1|+|PF 2|)2>28,解得|PF 1|+|PF 2|>27.不妨设P 在左支上,∵|PF 1|2+16-|PF 2|2>0,即(|PF 1|+|PF 2|)·(|PF 1|-|PF 2|)>-16,又|PF 1|-|PF 2|=-2,∴|PF 1|+|PF 2|<8.故27<|PF 1|+|PF 2|<8. 答案:(27,8)方法二 特例法特例法,包括特例验证法、特例排解法,就是充分运用选择题中单选题的特征,解题时,可以通过取一些特殊数值、特殊点、特殊函数、特殊数列、特殊图形、特殊位置、特殊向量等对选项进行验证的方法.对于定性、定值的问题可直接确定选项;对于其他问题可以排解干扰项,从而获得正确结论.这是一种求解选项之间有着明显差异的选择题的特殊化策略.[例2] (2022·高考浙江卷)已知实数a ,b ,c ( ) A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100 B .若|a 2+b +c |+|a 2+b -c |≤1,则a 2+b 2+c 2<100 C .若|a +b +c 2|+|a +b -c 2|≤1,则a 2+b 2+c 2<100 D .若|a 2+b +c |+|a +b 2-c |≤1,则a 2+b 2+c 2<100 解析:结合特殊值,利用排解法选择答案. 对于A ,取a =b =10,c =-110, 明显|a 2+b +c |+|a +b 2+c |≤1成立, 但a 2+b 2+c 2>100,即a 2+b 2+c 2<100不成立.对于B ,取a 2=10,b =-10,c =0, 明显|a 2+b +c |+|a 2+b -c |≤1成立, 但a 2+b 2+c 2=110,即a 2+b 2+c 2<100不成立.对于C ,取a =10,b =-10,c =0,明显|a +b +c 2|+|a +b -c 2|≤1成立, 但a 2+b 2+c 2=200,即a 2+b 2+c 2<100不成立. 综上知,A ,B ,C 均不成立,所以选D. 答案:D[增分有招] 应用特例排解法的关键在于确定选项的差异性,利用差异性选取一些特例来检验选项是否与题干对应,从而排解干扰选项. [技法体验]1.函数f (x )=cos x ·log 2|x |的图象大致为( )解析:函数的定义域为(-∞,0)∪(0,+∞),且f (12)=cos 12log 2|12|=-cos 12,f (-12)=cos(-12)·log 2|-12|=-cos 12,所以f (-12)=f (12),排解A ,D ;又f (12)=-cos 12<0,故排解C.综上,选B. 答案:B2.已知E 为△ABC 的重心,AD 为BC 边上的中线,令AB →=a ,AC →=b ,过点E 的直线分别交AB ,AC 于P ,Q 两点,且AP →=m a ,AQ →=n b ,则1m +1n=( )A .3B .4C .5D.13解析:由于题中直线PQ 的条件是过点E ,所以该直线是一条“动”直线,所以最终的结果必定是一个定值.故可利用特殊直线确定所求值.法一:如图1,PQ ∥BC ,则AP →=23AB →,AQ →=23AC →,此时m =n =23,故1m +1n=3.故选A.法二:如图2,取直线BE 作为直线PQ ,明显,此时AP →=AB →,AQ →=12AC →,故m =1,n =12,所以1m +1n =3.故选A.答案:A方法三 数形结合法数形结合法,包含“以形助数”和“以数辅形”两个方面,其应用分为两种情形:一是代数问题几何化,借助形的直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是几何问题代数化,借助于数的精确性阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.[例3] (2021·安庆模拟)已知函数f (x )=⎩⎪⎨⎪⎧|x +1|,-7≤x ≤0ln x ,e -2≤x ≤e ,g (x )=x 2-2x ,设a 为实数,若存在实数m ,使f (m )-2g (a )=0,则实数a 的取值范围为( )A .[-1,+∞)B .[-1,3]C .(-∞,-1]∪[3,+∞)D .(-∞,3]解析:∵g (x )=x 2-2x ,a 为实数,∴2g (a )=2a 2-4a .∵函数f (x )=⎩⎪⎨⎪⎧|x +1|,-7≤x ≤0ln x ,e -2≤x ≤e ,作出函数f (x )的图象可知,其值域为[-2,6],∵存在实数m ,使f (m )-2g (a )=0,∴-2≤2a 2-4a ≤6,即-1≤a ≤3, 故选B.答案:B[增分有招] 数形结合的思想,其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,如[本例]中求解,可通过作出图象,数形结合求解. [技法体验]1.(2021·珠海摸底)已知|a |=|b |,且|a +b |=3|a -b |,则向量a 与b 的夹角为( ) A .30° B .45° C .60°D .120°解析:通解:设a 与b 的夹角为θ,由已知可得a 2+2a ·b +b 2=3(a 2-2a ·b +b 2),即4a ·b =a 2+b 2,由于|a |=|b |,所以a ·b =12a 2,所以cos θ=a ·b |a |·|b |=12,θ=60°,选C.优解:由|a |=|b |,且|a +b |=3|a -b |可构造边长为|a |=|b |=1的菱形,如图,则|a +b |与|a -b |分别表示两条对角线的长,且|a +b |=3,|a -b |=1,故a 与b 的夹角为60°,选C. 答案:C2.已知点P 在抛物线y 2=4x 上,则点P 到点Q (2,-1)的距离与点P 到抛物线的焦点F 的距离之和取得最小值时,点P 的坐标为( ) A .(14,1)B .(14,-1)C .(1,2)D .(1,-2)解析:如图,由于点Q (2,-1)在抛物线的内部,由抛物线的定义可知,|PF |等于点P 到准线x =-1的距离.过Q (2,-1)作x =-1的垂线QH ,交抛物线于点K ,则点K 为点P 到点Q (2,-1)的距离与点P 到准线x =-1的距离之和取得最小值时的点.将y =-1代入y 2=4x 得x =14,所以点P 的坐标为(14,-1),选B.答案:B方法四 待定系数法要确定变量间的函数关系,设出某些未知系数,然后依据所给条件来确定这些未知系数的方法叫作待定系数法,其理论依据是多项式恒等——两个多项式各同类项的系数对应相等.使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决.待定系数法主要用来解决所求解的数学问题具有某种确定的数学表达式,例如数列求和、求函数式、求复数、解析几何中求曲线方程等. [例4] (2021·天津红桥区模拟)已知椭圆C 的焦点在y 轴上,焦距等于4,离心率为22,则椭圆C 的标准方程是( ) A.x 216+y 212=1 B.x 212+y 216=1C.x 24+y 28=1 D.x 28+y 24=1 解析:由题意可得2c =4,故c =2,又e =2a =22,解得a =22,故b =222-22=2,由于焦点在y 轴上,故选C. 答案:C[增分有招] 待定系数法主要用来解决已经定性的问题,如[本例]中已知椭圆的焦点所在坐标轴,设出标准方程,依据已知列方程求解. [技法体验]1.若等差数列{a n }的前20项的和为100,前45项的和为400,则前65项的和为( ) A .640 B .650 C .660D .780解析:设等差数列{a n}的公差为d ,依题意,得⎩⎪⎨⎪⎧ 20a 1+20×192d =10045a 1+45×442d =400⇒⎩⎪⎨⎪⎧a 1=9245d =1445,则前65项的和为65a 1+65×642d =65×9245+65×642×1445=780.答案:D2.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,则f (π4)的值为( )A. 2 B .0 C .1D. 3解析:由题图可知,A =2,34T =11π12-π6=34π,∴T =2πω=π,∴ω=2,即f (x )=2sin(2x +φ),由f (π6)=2sin(2×π6+φ)=2得2×π6+φ=2k π+π2,k ∈Z ,即φ=π6+2k π,k ∈Z ,又0<φ<π,∴φ=π6,∴f (x )=2sin(2x +π6),∴f (π4)=2sin(2×π4+π6)=2cos π6=3,故选D.答案:D 方法五 估值法估值法就是不需要计算出代数式的精确 数值,通过估量其大致取值范围从而解决相应问题的方法.该种方法主要适用于比较大小的有关问题,尤其是在选择题或填空题中,解答不需要具体的过程,因此可以猜想、合情推理、估算而获得,从而削减运算量.[例5] 若a =20.5,b =log π3,c =log 2sin 2π5,则( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a解析:由指数函数的性质可知y =2x在R 上单调递增,而0<0.5<1,所以a =20.5∈(1,2).由对数函数的性质可知y =log πx ,y =log 2x 均在(0,+∞)上单调递增,而1<3<π,所以b =log π3∈(0,1);由于sin 2π5∈(0,1),所以c =log 2sin 2π5<0.综上,a >1>b >0>c ,即a >b >c .故选A. 答案:A[增分有招] 估算,省去很多推导过程和比较简单的计算,节省时间,是发觉问题、争辩问题、解决问题的一种重要的运算方法.但要留意估算也要有依据,如[本例]是依据指数函数与对数函数的单调性估量每个值的取值范围,从而比较三者的大小,其实质就是找一个中间值进行比较. [技法体验]已知函数f (x )=2sin(ωx +φ)+1⎝⎛⎭⎪⎫ω>0,|φ|≤π2,其图象与直线y =-1相邻两个交点的距离为π.若f (x )>1对于任意的x ∈⎝ ⎛⎭⎪⎫-π12,π3恒成立,则φ的取值范围是( ) A.⎣⎢⎡⎦⎥⎤π6,π3 B.⎣⎢⎡⎦⎥⎤π12,π2 C.⎣⎢⎡⎦⎥⎤π12,π3D.⎝⎛⎦⎥⎤π6,π2解析:由于函数f (x )的最小值为-2+1=-1,由函数f (x )的图象与直线y =-1相邻两个交点的距离为π可得,该函数的最小正周期为T =π,所以2πω=π,解得ω=2.故f (x )=2sin(2x +φ)+1.由f (x )>1,可得sin(2x +φ)>0.又x ∈⎝ ⎛⎭⎪⎫-π12,π3,所以2x ∈⎝ ⎛⎭⎪⎫-π6,2π3.对于选项B ,D ,若取φ=π2,则2x +π2∈⎝ ⎛⎭⎪⎫π3,7π6,在⎝ ⎛⎭⎪⎫π,7π6上,sin(2x +φ)<0,不合题意;对于选项C ,若取φ=π12,则2x +π12∈⎝ ⎛⎭⎪⎫-π12,3π4,在⎝ ⎛⎭⎪⎫-π12,0上,sin(2x +φ)<0,不合题意.选A.答案:A方法六 反证法反证法是指从命题正面论证比较困难,通过假设原命题不成立,经过正确的推理,最终得出冲突,因此说明假设错误,从而证明白原命题成立的证明方法.反证法证明问题一般分为三步:(1)反设,即否定结论;(2)归谬,即推导冲突;(3)得结论,即说明命题成立.[例6] 已知x ∈R ,a =x 2+32,b =1-3x ,c =x 2+x +1,则下列说法正确的是( )A .a ,b ,c 至少有一个不小于1B .a ,b ,c 至多有一个不小于1C .a ,b ,c 都小于1D .a ,b ,c 都大于1解析:假设a ,b ,c 均小于1,即a <1,b <1,c <1,则有a +b +c <3,而a +b +c =2x 2-2x +72=2⎝ ⎛⎭⎪⎫x -122+3≥3.明显两者冲突,所以假设不成立.故a ,b ,c 至少有一个不小于1.选A. 答案:A[增分有招] 反证法证明全称命题以及“至少”“至多”类型的问题比较便利.其关键是依据假设导出冲突——与已知条件、定义、公理、定理及明显的事实冲突或自相冲突.如[本例]中导出等式的冲突,从而说明假设错误,原命题正确. [技法体验]假如△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:由条件知△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形. 假设△A 2B 2C 2是锐角三角形,则由题意可得⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1,sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1,解得⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1,所以A 2+B 2+C 2=⎝ ⎛⎭⎪⎫π2-A 1+⎝ ⎛⎭⎪⎫π2-B 1+⎝ ⎛⎭⎪⎫π2-C 1,即π=3π2-π,明显该等式不成立,所以假设不成立.易知△A 2B 2C 2不是锐角三角形,所以△A 2B 2C 2是钝角三角形.故选D. 答案:D 方法七 换元法换元法又称帮助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者变为生疏的形式,把简单的计算和推证简化.换元的实质是转化,关键是构造元和设元.理论依据是等量代换,目的是变换争辩对象,将问题移至新对象的学问背景中去争辩,从而使非标准型问题标准化、简单问题简洁化.换元法经常用于三角函数的化简求值、复合函数解析式的求解等. [例7] 已知正数x ,y 满足4y -2yx=1,则x +2y 的最小值为________.解析:由4y -2y x =1,得x +2y =4xy ,即14y +12x =1,所以x +2y =(x +2y )⎝ ⎛⎭⎪⎫14y +12x =1+x 4y +y x ≥1+2x 4y ×yx=2⎝ ⎛⎭⎪⎫当且仅当x 4y =yx ,即x =2y 时等号成立.所以x +2y 的最小值为2.答案:2[增分有招] 换元法主要有常量代换和变量代换,要依据所求解问题的特征进行合理代换.如[本例]中就是使用常数1的代换,将已知条件改写为“14y +12x =1”,然后利用乘法运算规律,任何式子与1的乘积等于本身,再将其开放,通过构造基本不等式的形式求解最值. [技法体验]1.(2022·成都模拟)若函数f (x )=1+3x+a ·9x,其定义域为(-∞,1],则a 的取值范围是( ) A .a =-49B .a ≥-49C .a ≤-49D .-49≤a <0解析:由题意得1+3x +a ·9x≥0的解集为(-∞,1],即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13x 2+⎝ ⎛⎭⎪⎫13x +a ≥0的解集为(-∞,1].令t =⎝ ⎛⎭⎪⎫13x ,则t ≥13,即方程t 2+t +a ≥0的解集为⎣⎢⎡⎭⎪⎫13,+∞,∴⎝ ⎛⎭⎪⎫132+13+a =0,所以a =-49.答案:A2.函数y =cos 2x -sin x 在x ∈⎣⎢⎡⎦⎥⎤0,π4上的最大值为________.解析:y =cos 2x -sin x =-sin 2x -sin x +1. 令t =sin x ,又x ∈⎣⎢⎡⎦⎥⎤0,π4,∴t ∈⎣⎢⎡⎦⎥⎤0,22,∴y =-t 2-t +1,t ∈⎣⎢⎡⎦⎥⎤0,22.∵函数y =-t 2-t +1在⎣⎢⎡⎦⎥⎤0,22上单调递减,∴t =0时,y max =1.答案:1 方法八 补集法补集法就是已知问题涉及的类别较多,或直接求解比较麻烦时,可以通过求解该问题的对立大事,求出问题的结果,则所求解问题的结果就可以利用补集的思想求得.该方法在概率、函数性质等问题中应用较多. [例8]某学校为了争辩高中三个班级的数学学习状况,从三个班级中分别抽取了1,2,3个班级进行问卷调查,若再从中任意抽取两个班级进行测试,则两个班级不来自同一班级的概率为________. 解析:记高一班级中抽取的班级为a 1,高二班级中抽取的班级为b 1,b 2, 高三班级中抽取的班级为c 1,c 2,c 3.从已抽取的6个班级中任意抽取两个班级的全部可能结果为(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 1,c 2),(a 1,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3),共15种.设“抽取的两个班级不来自同一班级”为大事A ,则大事A 为抽取的两个班级来自同一班级. 由题意,两个班级来自同一班级的结果为(b 1,b 2),(c 1,c 2),(c 1,c 3),(c 2,c 3),共4种. 所以P (A )=415,故P (A )=1-P (A )=1-415=1115. 所以两个班级不来自同一班级的概率为1115.答案:1115[增分有招] 利用补集法求解问题时,肯定要精确 把握所求问题的对立大事.如[本例]中,“两个班级不来自同一班级”的对立大事是“两个班级来自同一班级”,而高一班级只有一个班级,所以两个班级来自同一班级的可能性仅限于来自于高二班级,或来自于高三班级,明显所包含基本大事的个数较少. [技法体验]1.(2022·四川雅安中学月考)已知命题“∃x 0∈R ,使2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是( ) A .(-∞,-1) B .(-1,3) C .(-3,+∞)D .(-3,1)解析:依题意可知“∀x ∈R,2x 2+(a -1)x +12>0”为真命题,所以Δ=(a -1)2-4×2×12<0,即(a +1)·(a -3)<0,解得-1<a <3.故选B. 答案:B2.已知函数f (x )=ax 2-x +ln x 在区间(1,2)上不单调,则实数a 的取值范围为________. 解析:f ′(x )=2ax -1+1x.(1)若函数f (x )在区间(1,2)上单调递增,则f ′(x )≥0在(1,2)上恒成立,所以2ax -1+1x≥0,得a ≥12⎝ ⎛⎭⎪⎫1x -1x 2.①令t =1x ,由于x ∈(1,2),所以t ∈⎝ ⎛⎭⎪⎫12,1, 设h (t )=12(t -t 2)=-12⎝ ⎛⎭⎪⎫t -122+18,t ∈⎝ ⎛⎭⎪⎫12,1,明显函数y =h (t )在区间⎝ ⎛⎭⎪⎫12,1上单调递减,所以h (1)<h (t )<h ⎝ ⎛⎭⎪⎫12,即0<h (t )<18. 由①可知,a ≥18.(2)若函数f (x )在区间(1,2)上单调递减,则f ′(x )≤0在(1,2)上恒成立,所以2ax -1+1x≤0,得a ≤12⎝ ⎛⎭⎪⎫1x -1x 2.②结合(1)可知,a ≤0.综上,若函数f (x )在区间(1,2)上单调,则实数a 的取值范围为(-∞,0]∪⎣⎢⎡⎭⎪⎫18,+∞. 所以若函数f (x )在区间(1,2)上不单调,则实数a 的取值范围为⎝ ⎛⎭⎪⎫0,18.答案:⎝ ⎛⎭⎪⎫0,18 方法九 分别参数法分别参数法是求解不等式有解、恒成立问题常用的方法,通过分别参数将问题转化为相应函数的最值或范围问题求解,从而避开对参数进行分类争辩的繁琐过程.该种方法也适用于含参方程有解、无解等问题的解决.但要留意该种方法仅适用于分别参数后能够求解相应函数的最值或值域的状况.[例9] 若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是________.解析:由于x >0,则由已知可得a ≥-x -1x 在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立,而当x ∈⎝ ⎛⎦⎥⎤0,12时,⎝ ⎛⎭⎪⎫-x -1x max =-52, ∴a ≥-52,故a 的最小值为-52.答案:-52[增分有招] 分别参数法解决不等式恒成立问题或有解问题,关键在于精确 分别参数,然后将问题转化为参数与函数最值之间的大小关系.分别参数时要留意参数系数的符号是否会发生变化,假如参数的系数符号为负号,则分别参数时应留意不等号的变化,否则就会导致错解. [技法体验]1.(2022·长沙调研)若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( ) A.⎝ ⎛⎦⎥⎤-∞,518 B .(-∞,3] C.⎣⎢⎡⎭⎪⎫518,+∞D .[3,+∞)解析:f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立, 即3x 2-2tx +3≤0在[1,4]上恒成立,则t ≥32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上恒成立,由于y =32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝ ⎛⎭⎪⎫4+14=518,故选C.答案:C2.(2022·湖南五校调研)方程log 12(a -2x)=2+x 有解,则a 的最小值为________.解析:若方程log 12(a -2x )=2+x 有解,则⎝ ⎛⎭⎪⎫122+x =a -2x有解,即14⎝ ⎛⎭⎪⎫12x +2x =a 有解,∵14⎝ ⎛⎭⎪⎫12x +2x ≥1,故a 的最小值为1. 答案:1 方法十 构造法构造法是指利用数学的基本思想,经过认真的观看,深化的思考,构造出解题的数学模型,从而使问题得以解决.构造法的内涵格外丰富,没有完全固定的模式可以套用,它是以广泛抽象的普遍性与现实问题的特殊性为基础,针对具体问题的特点实行相应的解决方法,其基本的方法是借用一类问题的性质,来争辩另一类问题的相关性质.常见的构造法有构造函数、构造方程、构造图形等. [例10] 已知m ,n ∈(2,e),且1n 2-1m 2<ln mn,则( )A .m >nB .m <nC .m >2+1nD .m ,n 的大小关系不确定解析:由不等式可得1n 2-1m2<ln m -ln n ,即1n 2+ln n <1m2+ln m .设f (x )=1x2+ln x (x ∈(2,e)),则f ′(x )=-2x 3+1x =x 2-2x3.由于x ∈(2,e),所以f ′(x )>0,故函数f (x )在(2,e)上单调递增. 由于f (n )<f (m ),所以n <m .故选A. 答案:A[增分有招] 构造法的实质是转化,通过构造函数、方程或图形等将问题转化为对应的问题来解决.如[本例]属于比较两个数值大小的问题,依据数值的特点,构造相应的函数f (x )=1x2+ln x .[技法体验]1.a =ln 12 014-12 014,b =ln 12 015-12 015,c =ln 12 016-12 016,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b解析:令f (x )=ln x -x ,则f ′(x )=1x -1=1-xx.当0<x <1时,f ′(x )>0,即函数f (x )在(0,1)上是增函数.∵1>12 014>12 015>12 016>0,∴a >b >c .答案:A2.如图,已知球O 的面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析:如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以CD =22+22+22=2R ,所以R =62,故球O 的体积V =4πR33=6π.答案:6π。
高中数学选择填空题解法
浅谈高中数学选择填空题解法对高中数学考试长久以来很多家长以及学生总把眼光盯在计算题等大题上,似乎大题不会做,最终分数也上不去,考试得不到高分。
其实,决定考分高低的重点在于选择题、填空题。
尤其选择题60分,填空题20分,它们以中低档题为主,但单题分值较大,学生在此类题目上丢分过多,很容易影响整体分数。
反之,即便大题做不好,但单选填空题正确率高总分并不会太低,有的同学数学并不扎实,但基础好,高考时可确保基础全对,即便放弃最后两个大题,可是因为中低档题全对,数学依然得120分以上,因此我们不可忽视对选择题、填空题的正确率。
当然,仅仅有思路还是不够的,“解题思路”再某种程度上来说,属于理论上的“定性”,要想解具体的题目,还得有科学、合理、简便的方法。
解题时,应该“不择手段”的以达到目的,切忌“小题大做”而“潜在失分”。
解答选择题“要会算,要会少算,也要会不算”。
在次向大家介绍几种有关选择题的解法(填空题也类似)。
1、直接法有些选择题是由计算题、应用题、证明题、判断题改编而成的。
这类题型可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则,通过准确的运算、严谨的推理、合理的验证得出正确的结论,从而确定选择支的方法。
例:已知集合中的三个元素是的三边长,则一定不是()a、锐角三角形b、直角三角形c、钝角三角形d、等腰三角形分析:这道题可以直接利用集合的特征:互异性直接得到d2、排除法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的错误答案,找到符合题意的正确结论。
可通过筛除一些教易判定的、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确答案。
若筛去不合题意的以后,结论只有一个,则为应选项。
例:若角终边上有一点的值为( )a、b、-c、±d、以上都不对分析:∵≠0则有解>0时在第二象限0成立的一个充分不必要条件是()a、x2b、x>2c、x2d、x2分析:由x2-x-2>0得x2,可见a是充要条件。
2023天津高考数学填空最后一题 -回复
主题:2023年天津高考数学填空题最后一题解析一、题目回顾2023年天津高考数学填空题最后一题具体内容是:已知函数f(x)=ax^2+bx+c,其中a>0,且在区间[-2,3]上的最大值为5,最小值为-3。
求f(x)在区间[-2,3]上的零点个数。
二、解题思路1. 根据题目要求,我们可以将函数f(x)的最大值和最小值分别代入,得到两个方程,利用这两个方程可以解出a,b,c的值。
2. 求f(x)在区间[-2,3]上的零点个数可以转化为求f(x)在区间[-2,3]上的函数图像与x轴的交点个数。
三、解题步骤1. 根据题目要求得到方程组:5 = 4a - 2b + c-3 = 9a + 3b + c通过解方程组可以得到a,b,c的值。
2. 求得a=1, b=-4, c=3。
3. 根据所求函数f(x)=x^2-4x+3,求f(x)在区间[-2,3]上的函数图像:a. 求导数f'(x)=2x-4,令f'(x)=0得到x=2,所以x=2时是函数f(x)的驻点。
b. 将x=2代入原函数f(x)得到y=1,所以(2,1)是函数f(x)的一个极小值点。
c. 根据求导的结果可得函数f(x)在x<2时单调递减,在x>2时单调递增。
4. 根据函数f(x)在区间[-2,3]上的函数图像与x轴的交点个数的求法,我们可以得出结论:f(x)在区间[-2,3]上有两个零点,即函数图像与x轴有两个交点。
四、总结通过以上步骤,我们得出在区间[-2,3]上,函数f(x)的零点个数为2。
以上就是2023年天津高考数学填空题最后一题的解析,希望能帮到大家。
很抱歉,上面所提供的内容本身已经对该题目的解析做出了全面的说明,扩写1500字在这种情况下似乎会显得有些牵强。
然而,我可以提供一些额外的信息,把解析和讨论更加全面。
我们知道,在数学中,函数的最大值和最小值通常是通过导数的方法来求解的。
在上面的解析中,我们利用了导数的方法求出了函数f(x)的驻点和单调性,进而得出了在指定区间内的零点个数。
高中数学填空解题宝典
高考数学填空题解题策略根据填空时所填写的内容形式,可以将填空题分成两种类型:一是定量型,要求考生填写数值、数集或数量关系,如:方程的解、不等式的解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等。
由于填空题和选择题相比,缺少选择支的信息,所以高考题中多数是以定量型问题出现。
二是定性型,要求填写的是具有某种性质的对象或者填写给定的数学对象的某种性质,如:给定二次曲线的准线方程、焦点坐标、离心率等等。
近几年出现了定性型的具有多重选择性的填空题。
在解答填空题时,由于不反映过程,只要求结果,所以对正确性的要求比解答题更高、更严格,《考试说明》中对解答填空题提出的基本要求是“正确、合理、迅速”。
为此在解填空题时要做到:快——运算要快,力戒小题大作;稳——变形要稳,不可操之过急;全——答案要全,力避残缺不齐;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。
填空题的基本要求是:快捷,准确,结果稍有问题,便得0分,要求比选择题高,选择题可以根据选项蒙,填空题不可以这样蒙。
填空题题不需要解题过程,切勿小题大做。
因此解填空题就有一些特殊的方法和技巧。
下面就简单介绍一下选择题的解题方法和技巧。
(一)数学填空题的解题方法 一定义法有些题目考察了数学定义的运用,可选用定义法。
如与圆锥曲线的第二定义,第一定义有关的题目,直接运用定义来解决问题可能更简便。
【例1】(99年全国卷)设椭圆 12222=+by a x (a >b >0 )的右焦点为F 1,右准线为L 1,若过F 1且垂直于x 轴的弦长等于点F 1到L 1的距离,椭圆的离心率是 。
【分析】出现了椭圆一点到焦点和准线的距离的关系,求离心率可考虑用椭圆的第二定义来解。
【解】过F 1且垂直于x 轴的弦长等于d,则弦长的一半等于2d ,即椭圆上一点到焦点的距离等于2d,到定直线的距离为 d.由椭圆的第二定义可知:离心率为2d d=21。
二直接法直接从题设条件出发,选用有关定义、定理、公式等直接进行求解而得出结论。
高中数学填空题的常用解题方法与必修二知识点全面总结
高中数学填空题的常用解题方法与必修二知识点全面总结填空题是高考试卷中的三大题型之一,和选择题一样,属于客观性试题.它只要求写出结果而不需要写出解答过程.在整个高考试卷中,填空题的难度一般为中等.不同省份的试卷所占分值的比重有所不同。
该怎么做?整理了相关资料,希望能帮助到您。
高中数学填空题的常用解题方法1、填空题的类型填空题主要考查学生的基础知识、基本技能以及分析问题和解决问题的能力,具有小巧灵活、结构简单、概念性强、运算量不大、不需要写出求解过程而只需要写出结论等特点.从填写内容看,主要有两类:一类是定量填写,一类是定性填写。
2、填空题的特征填空题不要求写出计算或推理过程,只需要将结论直接的“求解题”.填空题与选择题也有质的区别:第一,填空题没有备选项,因此,解答时有不受诱误干扰的好处,但也有缺乏提示之不足;第二,填空题的结构往往是在一个正确的命题或断言中,抽出其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活。
从历年高考成绩看,填空题得分率一直不很高,因为填空题的结果必须是数值准确、形式规范、表达式最简,稍有毛病,便是零分。
因此,解填空题要求在“快速、准确”上下功夫,由于填空题不需要写出具体的推理、计算过程,因此要想“快速”解答填空题,则千万不可“小题大做”,而要达到“准确”,则必须合理灵活地运用恰当的方法,在“巧”字上下功夫。
3.解填空题的基本原则解填空题的基本原则是“ 小题不能大做” ,基本策略是“ 巧做”。
解填空题的常用方法有:直接法、数形结合法、特殊化法、等价转化法、构造法等.高二数学必修二知识点全面总结高中数学必修二知识点总结1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:几何特征:上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形.(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径.2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面对后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.3、空间几何体的直观图斜二测画法斜二测画法特点:原来与x轴平行的线段仍然与x平行且长度不变;原来与y轴平行的线段仍然与y平行,长度为原来的一半.4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和.(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式高中数学必修二知识点总结:直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0180(2)直线的斜率定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0时,k=0,直线的方程是y=y1.当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.斜截式:,直线斜率为k,直线在y轴上的截距为b两点式:()直线两点,截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系()斜率为k的直线系:,直线过定点;()过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.(7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.高中数学必修二知识点总结:圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采纳待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、高中数学必修二知识点总结:直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线5、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面和相交,交线是a,记作=a.符号语言:公理2的作用:它是判定两个平面相交的方法.它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.它可以判断点在直线上,即证若干个点共线的重要依据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据公理4:平行于同一条直线的两条直线互相平行必修二知识点总结:空间直线与直线之间的位置关系异面直线定义:不同在任何一个平面内的两条直线异面直线性质:既不平行,又不相交.异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0,90],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.(8)空间直线与平面之间的位置关系直线在平面内有无数个公共点.三种位置关系的符号表示:aa=Aa(9)平面与平面之间的位置关系:平行没有公共点;相交有一条公共直线.=b2、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行线线平行)3、空间中的垂直问题(1)线线、面面、线面垂直的定义两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.(2)垂直关系的判定和性质定理线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.4、空间角问题(1)直线与直线所成的角两平行直线所成的角:规定为.两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.(2)直线和平面所成的角平面的平行线与平面所成的角:规定为.平面的垂线与平面所成的角:规定为.平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.(3)二面角和二面角的平面角二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角必修二知识点总结:解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.高中数学必修二知识点总结:数列(1)数列的概念和简单表示法了解数列的概念和几种简单的表示方法(列表、图象、通项公式).了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列理解等差数列、等比数列的概念.掌握等差数列、等比数列的通项公式与前项和公式.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.了解等差数列与一次函数、等比数列与指数函数的关系.高中数学必修二知识点总结:不等式高中数学必修二知识点总结:不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.(2)一元二次不等式会从实际情境中抽象出一元二次不等式模型.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(3)二元一次不等式组与简单线性规划问题会从实际情境中抽象出二元一次不等式组.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)基本不等式:了解基本不等式的证明过程.会用基本不等式解决简单的最大(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点。
高中数学答题模板全套整理
高中数学答题模板全套整理一、选择题1. 配方法:将各选择题中的函数解析式配成完全平方式,常用根式与二次根式有这密切关系。
2. 分离常数法:把常数与变量式分离,使问题更简单。
3. 判别式法:将不等式利用判别式转化为不等式组,求出结果。
4. 数形结合法:根据题意画出图形,使问题简单易懂。
5. 特殊值法:将特殊值代入题设条件进行检验,从而得出结论。
二、填空题1. 直接法:根据题目的已知条件,直接求解,得出结果。
2. 观察法:根据题目特点,通过观察得出解题思路。
3. 数形结合法:将问题转化为图形,用图形解答。
4. 变换法:通过变化已知条件,达到解决问题的目的。
三、解答题1. 通性通法解答:利用常见类型题的通性通法,即一般解题模式进行解答,要求熟练掌握各部分知识的常用方法、技巧。
对于抽象的函数、方程等问题,构建数学模型。
如:三角函数中一元二次方程的根及二次函数图象的应用。
圆锥曲线中的利用点差法求斜率。
直线方程中的数形结合等。
在求动点轨迹时注意点的坐标所满足的条件。
因此通性通法是解题的基础。
2. 特殊引路法:在解题陷入困境时,先采用简单的方法得出答案,再反推至一般情况,这种由特殊到一般的方法体现了思维的灵活性和创造性。
如:在求轨迹问题中常用此方法。
四、答题步骤及注意事项(一)答题步骤1. 将各题答案直接写在答题纸上(不必抄题)。
填空题把答案涂黑;选择题把所选答案的字母写在特定的位置;解答题写出最后结果。
答题时应认真仔细,注意卷面清晰。
对于一般的函数方程一般分两步去处理:一是求出所要求的未知数的取值范围;二是求出在所求范围内使等式成立的未知数的值。
最后一定要把题目中要求的内容全部答出,尤其注意一些细小的环节,不要因粗心而失分。
另外书写要工整规范,保留一些回头看的空间。
所以高三第一轮系统复习过程中要牢记这些要点,这样到考场上才能运用自如。
其实考试也是对自己心理素质的考验,同学们要学会抑制自己焦虑的心情,从容应考。
高中数学解题常用方法:反证法
反证法一、填空题1. 用反证法证明命题"三角形的内角中至少有一个钝角"时反设是.2. 用反证法证明“如果,那么”,假设的内容是.3. 用反证法证明命题“三角形的内角中至少有一个大于”时,与命题结论相矛盾的假设为.4. 用反证法证明命题“如果,,那么”,证明的第一个步骤是.5. 用反证法证明命题时,其结论为“直线在平面内”,那么假设的内容是.6. 用反证法证明命题“若正整数,,满足,则,,中至少有一个是偶数”时,反设应为.7. 用反证法证明命题:"若整数系数一元二次方程:有有理根,那么中至少有一个是偶数"时,第一步应假设.8. 用反证法证明"一个三角形至少有两个锐角",则反设是.9. 否定"自然数,,中恰有一个偶数"时,正确的反设是.10. 用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①,这与三角形内角和为相矛盾,则不成立;②所以一个三角形中不能有两个直角;③假设,,中的两个角是直角,不妨设.正确顺序的序号排列为.11. 用反证法证明"若,则 "时,第一步反设应为.12. 命题“关于的方程的解是唯一的”的结论的否定是.13. 用反证法证明命题:“如果,,可被整除,那么,中至少有一个能被整除”时,假设的内容应为.14. 用反证法证明命题"若实数满足,则中至少有一个是非负数"时,第一步要假设结论的否定成立,那么结论的否定是.15. 用反证法证明“若,则或”时’应假设.16. “任何三角形的外角都至少有两个钝角”的否定应是.17. 用反证法证明命题:"如果,是奇数,那么方程没有整数根"时,应该提出的假设是.18. 用反证法证明命题“若,是实数,且,则”时,应作的假设是.19. 和两条异面直线,都相交的两条直线,的位置关系是.20. 已知函数,,.对任意都有,且是增函数,则.二、解答题21. 已知,,.求证:,中至少有一个不小于.22. 设函数中,均为整数,且均为奇数.求证:无整数根.23. 设平面四边形的内角分别为,,,.求证:,,,中至少有一个角大于等于.24. 用反证法证明:如果一个三角形的两条边不相等,那么这两条边所对的角也不相等.25. 若,求证:,,不可能都是奇数.26. 已知,,,证明:,,都大于零.27. 已知直线与直线和分别交于,且,求证:过,,有且只有一个平面.28. 若,且,求证:与中,至少有一个成立.29. 用反证法证明:"在同圆中,如果两条弦不等,那么它们的弦心距也不等."30. 已知数列和是公比不相等的两个等比数列,.求证:数列不是等比数列.31. 实数,,,满足,.求证:,,,中至少有一个是负数.32. 求证:当关于的方程有两个不相等的非零实数根时,.33. 已知,且,.求证:,,,中至少有一个是负数.34. 已知,为夹在两个平行平面,间的线段,,分别为线段,中点,求证:平面.35. 已知的三边长,,的倒数成等差数列,求证:.36. 在中,,,的对边分别为,,,若,,三边的倒数成等差数列,求证:.37. 证明:,,不可能是同一等差数列中的三项.38. 已知函数,证明方程没有负数根.39. 求证:一元二次方程()至多有两个不相等的实数根.40. 证明:对于直线,不存在这样的实数,使得直线与双曲线的交点,关于直线(为常数)对称.答案第一部分1 假设三角形的内角中没有钝角2 如果,那么3 假设三角形的三个内角都不大于4 假设与不平行5 假设直线平面6 假设,,都是奇数7 ,,都不是偶数8 一个三角形至多有一个锐角9 自然数,,都是奇数,或至少有两个偶数10 ③①②11 假设成立12 关于的方程无解或至少两解13 ,都不能被整除14 全是负数15 且16 存在一个三角形,其外角至多有一个钝角17 假设方程有整数根18 或19 异面20第二部分21 假设,都小于,即,,则有.而.这与假设得出的结论相矛盾,故假设不成立.所以原结论成立.22 假设有整数根,则.而,均为奇数,即为奇数,为偶数.则同时为奇数或同时为偶数,为奇数.当为奇数时,为偶数;当为偶数时,也为偶数.即为奇数,与矛盾.所以无整数根.23 假设,,,四个角均小于.则.这与四边形内角和等于矛盾.所以,,,中至少有一个角大于等于.24 假设这两边所对的角相等,那么这两条边就相等.这与已知矛盾.故原命题成立;25 假设,,都是奇数,则,,都是奇数,因此为偶数,而为奇数.即,与矛盾,所以假设不成立.原命题成立.26 假设,,不都大于,不妨设,因为,所以,由,得,所以,与已知矛盾.又若,则与矛盾,所以必有.同理可证,.所以,,都大于零.27 因为,所以过,有一个平面.又,,所以,,所以,,又,,所以.所以过,,有一个平面.假设过,,还有一个异于平面的平面,则,,,这与,过,有且只有一个平面相矛盾.因此,过,,有且只有一个平面.28 证明:假设都不成立,即,成立.因为,所以,,所以所以,与已知矛盾,所以假设不成立,所以原结论成立.29 证明:假设在同圆中,两条弦不等而它们的弦心距相等,即,则、中,即与已知矛盾,所以假设不成立,原命题成立.30 假设是等比数列,则,,成等比数列.设,的公比分别为和,且,则,,,.因为,,成等比数列,所以,即.所以.所以.所以.所以.所以,与已知矛盾.所以不是等比数列.31 假设,,,都是非负数.则,即.这与已知矛盾,所以假设不成立.故,,,中至少有一个是负数.32 假设.(i)若,,方程变为;则是方程的两根,这与方程有两个不相等的实数根矛盾.(ii)若,,方程变为;但,此时方程无解,与有两个不相等的非零实数根矛盾.(iii)若,,方程变为,方程的根为,,这与方程有两个非零实根矛盾.综上所述,可知.33 假设,,,都是非负数,,..这与>矛盾.所以假设不成立,即,,,中至少有一个负数.34 ()若,在同一平面内,则平面与平面,的交线为,.因为,所以,又,为,的中点,所以.又在平面内,不在平面内,所以.()若,不共面,如图所示,过作交于,取中点,连接,,.由,可知,确定平面.平面与平面,的交线分别为,,因为,所以.又,为,的中点,所以,.在中,,是,的中点,从而,,所以平面,又在平面内,所以.35 解法1:由已知,,成等差数列,所以,假设不成立,则,即是最大的内角,所以,,从而,,所以,这与矛盾.所以假设不成立,因此.解法2:由已知,,成等差数列,所以,,根据余弦定理,所以.36 假设不成立,即,从而是的最大角,是的最大边,即,.,,相加得,这与矛盾.故不成立..37 假设,,是同一等差数列中的三项,不妨设此等差数列的公差为,则存在自然数,,使得,,从而,于是有,为无理数,这与为有理数相矛盾,所以假设不成立.故,不可能是同一等差数列中的三项.38 假设是方程的负数根,则,且.因为,所以,即,解得,这与矛盾,所以假设不成立,故方程没有负数根.39 假设方程()至少有三个不相等的实数根,,,则得因为,所以同理化简得得因为,所以,这与相矛盾.所以一元二次方程()至多有两个不相等的实数根.40 假设存在实数,使得,关于直线对称,设,,则有直线与直线垂直;点在直线上;线段的中点在直线上,所以由得由得由知,代入并整理得,这与矛盾.所以假设不成立,故不存在实数,使得,关于直线对称.。
高中数学各类题型解题技巧
一、选择填空题选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。
二、解答题专题一:三角变换与三角函数的性质问题1.解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2.构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二:解三角形问题1.解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2.构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
《教材帮》帮你全面总结知识点,再也不用担心公式知识点记不住了!专题三:数列的通项、求和问题1.解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2.构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
高二数学填空题答题技巧
高二数学填空题答题技巧高二数学填空题答题技巧一、直接法这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
它是解填空题的最基本、最常用的方法。
使用直接法解填空题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法。
二、特殊化法当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。
这样可大大地简化推理、论证的过程。
三、数形结合法“数缺形时少直观,形缺数时难入微。
”数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。
我们要将抽象、复杂的数量关系,通过形的形象、直观揭示出来,以达到"形帮数"的目的;同时我们又要运用数的规律、数值的计算,来寻找处理形的方法,来达到"数促形"的目的。
对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
四、等价转化法通过"化复杂为简单、化陌生为熟悉",将问题等价地转化成便于解决的问题,从而得出正确的结果。
高中数学填空题答题技巧1.剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2.特特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
3.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
高中数学技巧填空题方法
高中数学技巧填空题方法
1、正确把握题目意思:首先,要认真阅读题目,把握题意,从而更好的完成题目;
2、总结使用的知识点:在完成填空题之前,可以通读一下题目中出现的知识点,以便更好的利用熟悉的知识点完成题目;
3、确定填空方式:解答填空题时一定要确定填空的方式,诸如算法推到或概念论证等;
4、依靠先验知识:运用已有知识,利用推导规律填空;
5、分析各空格功能:在填空时要分析清楚各个空格功能,便于运用已有知识;
6、熟悉句子结构:解填空题除了知识点作用之外,句子结构也有重要的作用,从而利用句子结构的联系推出空格的具体内容;
7、密切关注所填空:要认真密切关注空格所填内容,注意填空的合理性;
8、速查空余空格:完成了前面的空格后,可根据前面空余内容来确定后面空格填写的内容;
9、尝试多种方法:当面对一些比较难答的题时,尝试用多种理论方法
去推空,可以帮助更好的解答题目;
10、复习题目:在解答完题目后,要及时把前面完成的题目复习一遍,从而加深印象。
高中数学填空题解题技巧与填空题十大经典解题方法
高中数学填空题解题技巧与填空题十大经典解题方法随着高中学习的深入,数学填空题也逐渐成为考试中不可避免的一部分。
但是,填空题相比于选择题,存在一定的挑战性,需要掌握一些解题技巧和经典解题方法,才能在考试中得心应手。
一、解题技巧1. 首先,仔细审题,理解题意。
根据题目所给出的条件和要求,确定需要求解的未知量或者表达式。
2. 采用代数变量的方式,将需要求解的未知量表示出来,并根据已知条件列出方程。
3. 善于利用等式变形,将复杂的方程转化为易于解题的形式。
4. 熟练掌握一些基本的数学知识和公式,比如三角函数、面积公式、勾股定理等,能够大大提高解题的速度和效率。
5. 在解题过程中,要注意排除干扰项,多进行合理的推理和阐述,以避免出现无效的解。
二、十大经典解题方法1. 利用通分的方式将分数化成整数,便于进行计算。
2. 将多项式分解因式,简化方程组和分式的计算。
3. 对于无理数可能出现的情况,利用近似值或者计算结果进行判断。
4. 根据题目中所给出的统计数据,进行排列组合的计算,确定可能的结果。
5. 利用曲线图像、图形变换和轨迹运动的特性,确定某些未知量的值。
6. 将复杂的图形拆分成简单的几何形状,快速计算其面积或者周长。
7. 利用相似、对称和平移的特性,确定几何图形在坐标系中的位置和大小。
8. 针对方程中出现的复杂函数,利用数学知识进行分析和化简。
9. 考虑多种不同的解法,找到最快、最简单的解法,能够快速给出正确答案。
10. 根据所给条件,确定可能的范围和取值区间,帮助解决较为复杂的问题。
以上是高中数学填空题解题技巧与填空题十大经典解题方法。
我们可以通过多数学题的练习和经验积累,不断提高自己的数学能力和解题水平。
同时,也要注重对数学知识的掌握和理解,建立科学的数学思维方式,才能在考试中取得优异的成绩。
高考数学填空题十大解题技巧
高考数学试卷中,填空题排在第二大题,选择题之后,包含4道题目,共20分。
填空题是只要求写出结果不要求计算过程的客观性试题。
填空题跟选择题有许多的共同点:小巧灵活,结构简单运算量不大等特点,考察的知识点范围比较广,根据填空时所填写的内容形式,可以将填空题分成以下几种类型:(1)定量型:要求考生填写数值、数集或数量关系,如方程的解、不等式的解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等;(2)定性型:要求填写的是具有某种性质的对象或者填写给定数学对象的某种性质,如填写给定二次曲线的焦点坐标,离心率等.解答填空题时,由于不反映过程,只要求结果,故对正确性的要求比解答题更高、更严格.因此,我们在复习备考时,要理解各个题型所包含的知识点,只有把各个数学知识点掌握住以后才能熟悉做题技巧。
要有合理的分析和判断,要求推理、运算的每一步少算多思将是快速、准确地解答填空题的基本前提。
解答填空题的基本策略是准确、快速、整洁。
这跟做选择题是差不多的,只不过选择题中我们还有选项支可以做参考,填空题更要求我们对知识的灵活运用!因此,研究填空题的解题技巧非常有必要。
准确是解答填空题的先决条件,填空题不设中间分,一步失误,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于填空题的答题时间,应该控制在不超过20分钟左右,速度越快越好,要避免"超时失分"现象的发生;整洁是保住得分的充分条件,只有把正确的答案整洁的书写在答题纸上才能保证阅卷教师正确的批改,在网上阅卷时整洁显得尤为重要。
高考数学填空题一般是基础题或中档题,且绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。
小数老师在这里给大家用几个例题来讲一下解题技巧,高考路上祝大家一臂之力!直接法跟选择题一样,填空题有些题目也是可以通过套用公式定理性质直接求解的,拿到题目后,直接根据题干提供的信息通过变形、推理、运算等过程,直接得到结果。
数学填空题解题技巧常用方法与答题思路
数学填空题解题技巧常用方法与答题思路数学填空题是高中数学考试中常见的题型之一,要求我们根据给定的条件,填写合适的数值或表达式,完成题目。
为了提高解题效率和准确度,我们需要掌握一些常用的解题技巧和思路。
本文将介绍数学填空题的解题方法,以帮助读者更好地应对考试。
一、常用方法与技巧1. 查漏补缺法有时候,题目给出的条件并不足以直接求解填空,这时我们可以通过查漏补缺法,从其他已知条件中联想,找到解题的线索。
例如,在解方程填空题时,如果只给出了一元一次方程的表达式,我们可以通过观察找到一些特殊值代入,然后通过计算得到其他项的值,从而求解填空。
2. 利用等式性质在填空题中,往往会给出一些等式或不等式的条件,我们可以利用这些等式性质来进行填空。
例如,在解三角函数填空题时,可以利用正弦、余弦等函数的周期性和对称性质来求解。
3. 利用特殊性质有些题目中会出现一些特殊的性质,我们可以利用这些性质来简化计算或者推导填空的解。
例如,在解几何填空题时,可以利用几何图形的对称性或者相似性质来求解。
4. 利用逆向思维有时候,我们可以利用逆向思维来解决填空题。
即从答案出发,反推回去寻找答案对应的条件。
例如,在解数列填空题时,可以从给出的答案逆推回去,得到数列的等差或者等比公式。
二、答题思路1. 仔细审题在解答数学填空题之前,我们必须仔细审题,理清题目的要求和条件。
特别需要注意的是,填空题通常会给出一些隐含条件,我们要善于发现这些条件,并且合理利用。
2. 分析解题条件在解答填空题时,我们要分析给出的条件,看是否可以通过已知条件直接求解填空。
如果无法直接求解,可以尝试利用已知条件与其他数学知识之间的联系,进行间接求解。
3. 使用合适的方法和技巧根据题目的不同特点,我们可以选择合适的解题方法和技巧进行求解。
比如,在解代数式填空题时,我们可以利用因式分解、配方法等技巧解题;在解几何填空题时,可以运用几何性质、相似三角形等方法。
4. 检查解答在填写答案之后,一定要仔细检查算式的正确性和合理性,确保填空的结果符合题目要求和已知条件。
高中数学填空题解题技巧
高中数学填空题解题技巧高中数学填空题解题技巧高中数学知识点复习高中数学填空题解题技巧。
数学填空题不同于数学大题,需要有完整的推演过程和清晰的思路,填空题只需要确保一个准确的结果就好,不必写出计算和推理过程,所以在解答填空题时,一对一家教名师提醒我们可以用用这些小诀窍,保证高三期中考试的拿高分。
高中数学填空题解题技巧填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题.解题时,要有合理地分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整.合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求.高中数学填空题解题技巧数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断.求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫.常用的方法有直接法、特殊化法、数形结合法、等价转化法等.方法一、高中数学填空题解题技巧直接法直接法就是从题设条件出发,运用定义、定理、公式、性质等,通过变形、推理、运算等过程,直接得出正确结论,使用此法时,要善于透过现象看本质,自觉地、有意识地采用灵活、简捷的解法.适用范围:对于计算型的试题,多通过计算求结果.方法点津:直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.方法二、高中数学填空题解题技巧特殊值法当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以从题中变化的不定量中选取符合条件的恰当特殊值(特殊函数、特殊角、特殊数列、特殊位置、特殊点、特殊方程、特殊模型等)进行处理,从而得出探求的结论.为保证答案的正确性,在利用此方法时,一般应多取几个特例.适用范围:求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.高中数学填空题解题技巧方法点津:填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值是适用此法的前提条件.方法三、高中数学填空题解题技巧数形结合法对于一些含有几何背景的填空题,若能以数辅形,以形助数,则往往可以借助图形的直观性,迅速作出判断,简捷地解决问题,得出正确的结果,如Venn图、三角函数线、函数的图象及方程的曲线、函数的零点等.适用范围:图解法是研究求解问题中含有几何意义命题的主要方法,解题时既要考虑图形的直观,还要考虑数的运算.方法点津:图解法实质上就是数形结合的思想方法在解决填空题中的应用,利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果.方法四、高中数学填空题解题技巧构造法构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的`数学模型(如构造函数、方程或图形),从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决.高中数学知识点复习方法点津:构造法实质上是化归与转化思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题.本题巧妙地构造出正方体,而球的直径恰好为正方体的体对角线,问题很容易得到解决.。
解高中数学选填题的妙招
解高中数学选填题的妙招【摘要】高中数学选填题是高中数学考试中的一类题型,具有一定的难度和挑战性。
在解题过程中,我们需要注意理解题意、善用知识点、注重解题方法、多练习积累经验和灵活运用数学技巧,这些都是解答这类题目的妙招。
通过掌握这些方法,我们可以提高解答效率和准确性。
对于高中数学选填题,我们可以在解题过程中注重以上几个方面,多加练习和积累经验,从而更好地解决这类题型,提高我们的数学水平。
解高中数学选填题并不是一件困难的事情,只要我们掌握了方法和技巧,相信我们一定可以做到游刃有余。
【关键词】高中数学、选填题、解题方法、知识点、练习、经验积累、数学技巧、效率、准确性。
1. 引言1.1 介绍高中数学选填题高中数学选填题是高中数学考试中的一个重要部分,通常在选择题和填空题之间,要求考生根据题目的条件和要求,选择正确的答案填入空格中。
选填题在考察考生数学知识的也考察了考生的逻辑推理能力和解题技巧。
高中数学选填题可以帮助考生加深对各个知识点的理解,拓展解题思路,提高解题能力。
通过练习选填题,考生可以更全面地理解所学数学知识,进一步提高数学应用能力和解题技巧。
选填题还有助于考生培养灵活运用数学知识的能力,提高解题的准确性和效率。
1.2 选填题的特点高中数学选填题是高中数学考试中常见的一种题型,具有一定的难度和挑战性。
选填题的特点主要包括以下几个方面:1. 多样性:选填题的题目形式多样,既有计算题,又有证明题,还有应用题等等,需要考生灵活运用数学知识解答。
2. 考察深度:选填题往往涉及到数学知识的深层次和拓展应用,需要考生具备扎实的基础知识和逻辑推理能力。
3. 考查技巧:选填题常常需要考生善于观察题目细节,灵活运用数学技巧和方法解题,对解题的方法和步骤要求较高。
4. 提高解题效率:选填题在题量上往往较大,但是每道题可以选择性地解答,因此考生需要根据题目特点和自身情况合理选择答题顺序,提高解题效率。
5. 考验综合能力:选填题往往考察考生综合运用数学知识解决问题的能力,需要考生具备理解题意、分析问题、解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学填空题的常用解题方法
填空题是高考试卷中的三大题型之一,和选择题一样,属于客观性试题.它只要求写出结果而不需要写出解答过程.在整个高考试卷中,填空题的难度一般为中等.不同省份的试卷所占分值的比重有所不同。
1、填空题的类型
填空题主要考查学生的基础知识、基本技能以及分析问题和解决问题的能力,具有小巧灵活、结构简单、概念性强、运算量不大、不需要写出求解过程而只需要写出结论等特点.从填写内容看,主要有两类:一类是定量填写,一类是定性填写。
2、填空题的特征
填空题不要求写出计算或推理过程,只需要将结论直接的“求解题”.填空题与选择题也有质的区别:
第一,填空题没有备选项,因此,解答时有不受诱误干扰的好处,但也有缺乏提示之不足;
第二,填空题的结构往往是在一个正确的命题或断言中,抽出其中的一些内容(既可以是条件,也可以是结
论),留下空位,让考生独立填上,考查方法比较灵活。
从历年高考成绩看,填空题得分率一直不很高,因为填空题的结果必须是数值准确、形式规范、表达式最简,稍有毛病,便是零分。
因此,解填空题要求在“快速、准确”上下功夫,由于填空题不需要写出具体的推理、计算过程,因此要想“快速”解答填空题,则千万不可“小题大做”,而要达到“准确”,则必须合理灵活地运用恰当的方法,在“巧”字上下功夫。
3.解填空题的基本原则
解填空题的基本原则是“小题不能大做”,基本策略是“巧做”。
解填空题的常用方法有:直接法、数形结合法、特殊化法、等价转化法、构造法等.
一、直接法
直接法就是从题设条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等,得出正确结论,使用此法时,要善于透过现象看本质,自觉地、有意识地采用灵活、简捷的解法。
思路解析:本题运用直接法,直接利用等差数列的通项公式判断出数列的项的符号,进而确定前几项的和最小,最后利用等差数列的求和公式求得最小值。
二、特殊值法
特殊值法在考试中应用起来比较方便,它的实施过程是从殊到一般,优点是简便易行.当暗示答案是一个“定值”时,就可以取一个特殊数值、特殊位置、特殊图形、特殊关系、特殊数列或特殊函数值来将字母具体
化,把一般形式变为特殊形式.当题目的条件是从一般性的角度给出时,特例法尤其有效。
思维启迪:题目中给出了△ABC的边和角满足的一个关系式,由此关系式来确定角C的大小,因此可考虑一些特殊的三角形是否满足关系式,如:等边三角形、直角三角形等,若满足,则可求出此时角C的大小。
思路解析:特殊值法的理论依据是:若对所有值都成立,么对特殊值也成立,我们就可以利用填空题不需要过只需要结果这一“弱点”,“以偏概全”来求值.在解决一些与三角形、四边形等平面图形有关的填空题
时,可根据题意,选择其中的特殊图形(如正三角形、正方形)等解决问题。
思维启迪:题目中过点K的直线是任意的,因此m和n 的值是变化的,但从题意看m+n的值是一个定值,故可取一条特殊的直线进行求解。
思路解析:本题在解答中,充分考虑了“直线虽然任意, 但m+n的值却是定值”这一信息,通过取直线的一个特殊位置得到了问题的解,显得非常简单,在求解这类填空题时,就要善于捕捉这样的有效信息,帮助我们解决问题.
三、图象分析法(数形结合法)
依据特殊数量关系所对应的图形位置、特征,利用图形直观性求解的填空题,称为图象分析型填空题,这类问题的几何意义一般较为明显。
由于填空题不要求写出解答过程,因而有些问题可以借助于图形,然后参照图形的形状、位置、性质,综合图象的特征,进行直观地分析,加上简单的运算,一般就可以得出正确的答案。
事实上许多问题都可以转化为数与形的结合,利用数形结合法解题既浅显易懂,又能节省时间。
利用数形结合的思想解决问题能很好地考查考生对基础知识的掌握程度及灵活处理问题的能力,此类问题为近年来高考考查的热点内容。
思路解析:本题是数列问题,但由于和方程的根有关系,故可借助数形结合的方法进行求解,因此在解题时,我们要认真分析题目特点,充分挖掘其中的有用信息,寻求最简捷的解法。
思路解析:与函数有关的填空题,依据题目条件,灵活地应用函数图象解答问题,往往可使抽象复杂的代数问题变得形象直观,使问题快速获解。
四、等价转化法
将所给的命题进行等价转化,使之成为一种容易理解的语言或容易求解的模式.通过转化,使问题化繁为简、化陌生为熟悉,将问题等价转化成便于解决的问题,从而得出正确的结果。
思维启迪:将问题转化为y=m与y=f(x)有三个不同的交点,再研究三个交点的横坐标之和的取值范围。
思路解析:等价转化法的关键是要明确转化的方向或者说转化的目标.本题转化的关键就是将研究x1+x2+x3的取值范围问题转化成了直线y=m与曲线y=f(x)
有三个交点的问题,将数的问题转化成了形的问题,从而利用图形的性质解决。
五、构造法
造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决。
它
规律方法总结
1.解填空题的一般方法是直接法,除此以外,对于带有一般性命题的填空题可采用特例法,和图形、曲线等
有关的命题可考虑数形结合法.解题时,常常需要几种方法综合使用,才能迅速得到正确的结果。
2.解填空题不要求求解过程,从而结论是判断是否正确的唯一标准,因此解填空题时要注意如下几个方面:(1)要认真审题,明确要求,思维严谨、周密,计算有据、准确;
(2)要尽量利用已知的定理、性质及已有的结论;
(3)要重视对所求结果的检验。
▍
▍ ▍
▍。