均匀分布U[a, 0] - 描述统计
均匀分布
![均匀分布](https://img.taocdn.com/s3/m/fe61518d6edb6f1aff001ff7.png)
a
b
01 0 1
于是,均匀分布的分布函数为:
0 ,
x a;
F
(x)
x
b
a a
,
a x b;
1
1,
x ba, b ) 的子区间的概率与位置无 关,与子区间长度成正比。
即对于( c, d) (a, b ) ,有
∪
d1
d c
P ( c X d )
(
2 )3 3
(1)0 3
20
33
3
27
x
F ( x ) f ( t ) d t
x a:
x
F ( x ) f ( t ) d t
0
a
x
a xb:
F (x)
f (t)dt f (t)dt
a
0 x 1 d t x a
a ba
ba
b x :
a
b
x
F (x) f (t)dt f (t)dt f (t)dt
解:X的概率密度函数
设Y表示3次观测中,观测值大于3的次数
f
(x)
1
3
,
0,
x (2, 5) x (2, 5)
设A={ X>3 }, 则
P(A) P( X 3)
1
5
dx
2
P(Y
则
2)
Y~ B(3, 2/3), 因而有
P(Y 2) P(Y 3)
C32
(
2 )2 3
( 1 )1 3
C33
1 ba
a
b
阴影部分面积为 1
f (x)
(1) f (x) 0
( 2 )
f ( x)dx 1
[1,N]离散均匀分布样本最大值分布-描述统计
![[1,N]离散均匀分布样本最大值分布-描述统计](https://img.taocdn.com/s3/m/3f0d7c3a0b4c2e3f5727631a.png)
1,N 离散均匀分布样本最大值分布基于Wolfram Mathematica9,下表给出了 1,N 区间内离散均匀分布DU 1,N 样本最大值的概率密度(质量)函数、累积分布函数、累积分布函数、逆生存函数、风险函数(故障率)、矩母函数 MGF 、中心矩母函数 CMGF 、累积量母函数 CGF 、阶乘矩母函数 FMGF 、特征函数的计算和结果表达式,均值、中位值、众数、四分位数列表、q分位数、方差、标准差、一三四分位数间矩、偏度系数、峰度系数、四分偏度系数、r阶原点矩、r阶中心矩、r阶阶乘矩、r阶累积量、信息熵等描述性统计量的计算和结果表达式。
In[105]:=dist DiscreteUniformDistribution 1,N ;dist1 OrderDistribution dist,n ,n ;"1.概率密度(质量)函数:"PDF dist1,k"2.累积分布函数:"CDF dist1,k"3.生存(可靠性)函数:"SurvivalFunction dist1,k"4.逆生存函数:"InverseSurvivalFunction dist1,q"5.风险函数(故障率):"HazardFunction dist1,k"6.矩母函数 MGF :"MomentGeneratingFunction dist1,t"7.中心矩母函数 CMGF :"CentralMomentGeneratingFunction dist1,t"8.累积量母函数 CGF :"CumulantGeneratingFunction dist1,t"9.阶乘矩母函数 FMGF :"CharacteristicFunction dist1,t"10.特征函数:"CharacteristicFunction dist1,t"11.均值:"Mean dist1"12.中位值:"Median dist1"13.四分位数列表:"Quartiles dist1"14.q分位数:"Quantile dist1,q"15.方差:"Variance dist1"16.标准差:"StandardDeviation dist1"17.一、三四分位数间矩:"InterquartileRange dist1"18.偏度系数:"Skewness dist1"19.峰度系数:"Kurtosis dist1"20.四分偏度系数:"QuartileSkewness dist1"21.r阶原点矩矩:"Moment dist1,r"22.r阶中心矩:"CentralMoment dist1,r"23.r阶阶乘矩:"FactorialMoment dist1,r"24.r阶累积量:"Cumulant dist1,r"25.信息熵:"Sum PDF dist1,k Log PDF dist1,k , k,1,N Out[107]= 1.概率密度(质量)函数:Out[108]= 1NkN n k N n k 1&&k N 0 1 1 1N n k N 0&&k 1 0k N 0 k 1 1 1N n k 1&&k N 0 N n TrueOut[109]= 2.累积分布函数:Out[110]= Floor k N n1 k N1k N0True Out[111]= 3.生存(可靠性)函数:Out[112]=1k 11 1 N Floor kN n1 k N 0TrueOut[113]= 4.逆生存函数:Out[114]=ConditionalExpression Max 1,Ceiling N 1 q 1n 0 1 1 q 1n 1N1 1 q 1n 01True,0 1 q 1n 1Out[115]= 5.风险函数(故障率):2[1,N]离散均匀分布样本最大值分布-描述统计.nbOut[116]=1 k NN n1 k 2&&k N 0 1k 2 0 k N 11 k NN n 1 1 k N N n1 1 1 k NN n k 2&&k N 0 0TrueOut[117]= 6.矩母函数 MGF :Out[118]=MomentGeneratingFunctionOrderDistribution DiscreteUniformDistribution 1,N ,n ,n ,t Out[119]=7.中心矩母函数 CMGF :Out[120]=CentralMomentGeneratingFunctionOrderDistribution DiscreteUniformDistribution 1,N ,n ,n ,t Out[121]=8.累积量母函数 CGF :Out[122]=CumulantGeneratingFunctionOrderDistribution DiscreteUniformDistribution 1,N ,n ,n ,t Out[123]=9.阶乘矩母函数 FMGF :Out[124]=CharacteristicFunctionOrderDistribution DiscreteUniformDistribution 1,N ,n ,n ,t Out[125]=10.特征函数:Out[126]=CharacteristicFunctionOrderDistribution DiscreteUniformDistribution 1,N ,n ,n ,t Out[127]=11.均值:Out[128]=1 N N n BernoulliB 1 n,1 BernoulliB 1 n,1 N1 nOut[129]=12.中位值:Out[130]=ConditionalExpression Max 1,Ceiling 2 1 n N 0 2 1 n 112 1 n 0N True,0 2 1 n 1Out[131]=13.四分位数列表:[1,N]离散均匀分布样本最大值分布-描述统计.nb3Out[132]=ConditionalExpressionMax 1,Ceiling 4 1 n N 0 4 1 n 114 1 n 0N True,0 4 1 n 1 ,ConditionalExpressionMax 1,Ceiling 2 1 n N 0 2 1 n 112 1 n 0N True,0 2 1 n 1 ,ConditionalExpressionMax 1,Ceiling 341nN 0341n11 341n 0NTrue,0341n1Out[133]=14.q 分位数:Out[134]=ConditionalExpressionMax 1,Ceiling N q 1n 0 q 1n 11q 1n 0N True,0 q 1n 1Out[135]=15.方差:Out[136]=1 N 11 nN nBernoulliB 1 n,1 BernoulliB 1 n,1 N 2N nBernoulliB 1 n,1 BernoulliB 1 n,N 1 n2 BernoulliB 2 n,1 BernoulliB 2 n,N2 nBernoulliB 3 n,1 BernoulliB 3 n,N3 nOut[137]=16.标准差:Out[138]=1 N11 nNnBernoulliB 1 n,1 BernoulliB 1 n,1 N2N nBernoulliB 1 n,1 BernoulliB 1 n,N1 n2 BernoulliB 2 n,1 BernoulliB 2 n,N 2 nBernoulliB 3 n,1 BernoulliB 3 n,N3 nOut[139]=17.一、三四分位数间矩:4 [1,N]离散均匀分布样本最大值分布-描述统计.nbOut[140]=ConditionalExpressionN Max 1,Ceiling 341nN341n1&&41n 1N Max 1,Ceiling 4 1 n N341n 1&&41n 1Max 1,Ceiling 341n N Max 1,Ceiling 4 1 n N 341n 1&&41n 10True,0341n1&&0 4 1 n 1Out[141]=18.偏度系数:Out[142]=21 N11 nNnBernoulliB 1 n,1 BernoulliB 1 n,1 N33N n 1 N 11 nN n BernoulliB 1 n,1 BernoulliB 1 n,1 NBernoulliB 1 n,1 BernoulliB 1 n,N1 n2 BernoulliB 2 n,1 BernoulliB 2 n,N 2 nBernoulliB 3 n,1 BernoulliB 3 n,N3 nN nBernoulliB 1 n,1 BernoulliB 1 n,N1 n3 BernoulliB 2 n,1 BernoulliB 2 n,N 2 n3 BernoulliB 3 n,1 BernoulliB 3 n,N 3 nBernoulliB 4 n,1 BernoulliB 4 n,N4 n1 N 11 nNnBernoulliB 1 n,1 BernoulliB 1 n,1 N2N nBernoulliB 1 n,1 BernoulliB 1 n,N1 n2 BernoulliB 2 n,1 BernoulliB 2 n,N 2 nBernoulliB 3 n,1 BernoulliB 3 n,N3 n3 2[1,N]离散均匀分布样本最大值分布-描述统计.nb5Out[143]=19.峰度系数:Out[144]=31 N 11 nNnBernoulliB 1 n,1 BernoulliB 1 n,1 N46Nn1 N11 nN nBernoulliB 1 n,1 BernoulliB 1 n,1 N 2BernoulliB 1 n,1 BernoulliB 1 n,N 1 n2 BernoulliB 2 n,1 BernoulliB 2 n,N2 nBernoulliB 3 n,1 BernoulliB 3 n,N3 n4N n 1 N 11 nN n BernoulliB 1 n,1 BernoulliB 1 n,1 NBernoulliB 1 n,1 BernoulliB 1 n,N 1 n3 BernoulliB 2 n,1 BernoulliB 2 n,N2 n3 BernoulliB 3 n,1 BernoulliB 3 n,N3 nBernoulliB 4 n,1 BernoulliB 4 n,N4 nN n BernoulliB 1 n,1 BernoulliB 1 n,N1 n4 BernoulliB 2 n,1 BernoulliB 2 n,N2 n6 BernoulliB 3 n,1 BernoulliB 3 n,N3 n4 BernoulliB 4 n,1 BernoulliB 4 n,N4 nBernoulliB 5 n,1 BernoulliB 5 n,N5 n1 N 11 nNnBernoulliB 1 n,1 BernoulliB 1 n,1 N2N nBernoulliB 1 n,1 BernoulliB 1 n,N1 n2 BernoulliB 2 n,1 BernoulliB 2 n,N2 n26 [1,N]离散均匀分布样本最大值分布-描述统计.nbBernoulliB 3 n,1 BernoulliB 3 n,N3 n2 Out[145]=20.四分偏度系数:Out[146]=ConditionalExpression 1 34 Indeterminate 34 ComplexInfinity 34N Max 1,Ceiling 34 1n N 2Max 1,Ceiling 2 1 n NN Max 1,Ceiling 34 1n N341 342N Max 1,Ceiling 34 1n N Max 1,Ceiling 4 1 n NMax 1,Ceiling 34 1n N Max 1,Ceiling 4 1 n N34N 2Max 1,Ceiling 2 1 n N Max 1,Ceiling 4 1 n NN Max 1,Ceiling 4 1 n N 34Max 1,Ceiling 34 1n N2Max 1,Ceiling 2 1 n N Max 1,Ceiling 4 1 n NMax 1,Ceiling 34 1n N Max 1,Ceiling 4 1 n NTrueOut[147]=21.r阶原点矩矩:Out[148]=Moment OrderDistribution DiscreteUniformDistribution 1,N ,n ,n ,rOut[149]=22.r阶中心矩:Out[150]=CentralMoment OrderDistribution DiscreteUniformDistribution 1,N ,n ,n ,rOut[151]=23.r阶阶乘矩:Out[152]=FactorialMoment OrderDistribution DiscreteUniformDistribution 1,N ,n ,n ,rOut[153]=24.r阶累积量:Out[154]=Cumulant OrderDistribution DiscreteUniformDistribution 1,N ,n ,n ,rOut[155]=25.信息熵:[1,N]离散均匀分布样本最大值分布-描述统计.nb7Out[156]=k 1NLog1Nk N n k Nnk 1&&k N 01 1 1Nn k N 0&&k 10k N 0 k 1 11Nn k 1&&k N 0 N nTrue1Nk N n k Nnk 1&&k N 01 1 1Nn k N 0&&k 10k N 0 k 1 11Nn k 1&&k N 0 N nTrue8 [1,N]离散均匀分布样本最大值分布-描述统计.nb。
[1,N]离散均匀分布样本中位数分布-描述统计
![[1,N]离散均匀分布样本中位数分布-描述统计](https://img.taocdn.com/s3/m/29d455cfd5bbfd0a7956731a.png)
1,N 离散均匀分布样本中位数分布基于Wolfram Mathematica9,下表给出了 1,N 区间内离散均匀分布DU 1,N 样本中位数的概率密度(质量)函数、累积分布函数、累积分布函数、逆生存函数、风险函数(故障率)、矩母函数 MGF 、中心矩母函数 CMGF 、累积量母函数 CGF 、阶乘矩母函数 FMGF 、特征函数的计算和结果表达式,均值、中位值、众数、四分位数列表、q分位数、方差、标准差、一三四分位数间矩、偏度系数、峰度系数、四分偏度系数、r阶原点矩、r阶中心矩、r阶阶乘矩、r阶累积量、信息熵等描述性统计量的计算和结果表达式。
dist DiscreteUniformDistribution 1,N ;dist1 OrderDistribution dist,2n 1 ,n 1 ;"1.概率密度(质量)函数:"PDF dist1,k"2.累积分布函数:"CDF dist1,k"3.生存(可靠性)函数:"SurvivalFunction dist1,k"4.逆生存函数:"InverseSurvivalFunction dist1,q"5.风险函数(故障率):"HazardFunction dist1,k"6.矩母函数 MGF :"MomentGeneratingFunction dist1,t"7.中心矩母函数 CMGF :"CentralMomentGeneratingFunction dist1,t"8.累积量母函数 CGF :"CumulantGeneratingFunction dist1,t"9.阶乘矩母函数 FMGF :"CharacteristicFunction dist1,t"10.特征函数:"CharacteristicFunction dist1,t"11.均值:"Mean dist1"12.中位值:"Median dist1"13.四分位数列表:"Quartiles dist1"14.q分位数:"Quantile dist1,q"15.方差:"Variance dist1"16.标准差:"StandardDeviation dist1"17.一、三四分位数间矩:"InterquartileRange dist1"18.偏度系数:"Skewness dist1"19.峰度系数:"Kurtosis dist1"20.四分偏度系数:"QuartileSkewness dist1"21.r阶原点矩矩:"Moment dist1,r"22.r阶中心矩:"CentralMoment dist1,r"23.r阶阶乘矩:"FactorialMoment dist1,r"24.r阶累积量:"Cumulant dist1,r"25.信息熵:"Sum PDF dist1,k Log PDF dist1,k , k,1,N 1.概率密度(质量)函数:BetaRegularized 1N kN,1 n,1 n BetaRegularized kN,1 n,1 n k 1&&k N 01 BetaRegularized 1 1N,1 n,1 n k 1&&k N 0BetaRegularized 1N,1 n,1 n k 1&&k N 0 0True2.累积分布函数:BetaRegularized Floor kN,1 n,1 n 1 k N1k N0True3.生存(可靠性)函数:1k 1BetaRegularized N Floor kN,1 n,1 n 1 k N0True4.逆生存函数:ConditionalExpression Max 1,Ceiling N 1 InverseBetaRegularizedq,1 n,1 nInverseBetaRegularizedN InverseBetaRegularized 1True5.风险函数(故障率):2[1,N]离散均匀分布样本中位数分布-描述统计.nb1 BetaRegularized k N N,1 n,1 n1 k 2&&k N 01k 2 0 k N 1 BetaRegularized k N N,1 n,1 nBetaRegularized 1 k NN,1 n,1 nBetaRegularized 1 k N N ,1 n,1 nk 2&&k N 0True6.矩母函数 MGF :MomentGeneratingFunctionOrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n ,t 7.中心矩母函数 CMGF :CentralMomentGeneratingFunctionOrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n ,t 8.累积量母函数 CGF :CumulantGeneratingFunctionOrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n ,t 9.阶乘矩母函数 FMGF :CharacteristicFunctionOrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n ,t 10.特征函数:CharacteristicFunctionOrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n ,t 11.均值:Mean OrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n 12.中位值:ConditionalExpressionMax 1,Ceiling N InverseBetaRegularized 12,1 n,1 nInverseBetaRegularized1InverseBetaRegularized NTrue13.四分位数列表:[1,N]离散均匀分布样本中位数分布-描述统计.nb3ConditionalExpression Max 1,Ceiling N InverseBetaRegularized 14,1 n,1 nInverseBetaRegularized1InverseBetaRegularized N TrueConditionalExpression Max 1,Ceiling N InverseBetaRegularized 12,1 n,1 nInverseBetaRegularized1InverseBetaRegularized N TrueConditionalExpression Max 1,Ceiling N InverseBetaRegularized 34,1 n,1 nInverseBetaRegularized1InverseBetaRegularized N True14.q分位数:ConditionalExpression Max 1,Ceiling N InverseBetaRegularized q,1 n,1 nInverseBetaRegularized1InverseBetaRegularized N True15.方差:Variance OrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n16.标准差:StandardDeviationOrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n17.一、三四分位数间矩:4[1,N]离散均匀分布样本中位数分布-描述统计.nbConditionalExpression 1 N InverseBetaRegularized14,1 n,1 n 1&&InverseBetaRegularized1 N InverseBetaRegularized14,1 n,1 n 0&&InverseBetaRegularized1Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n0 InverseBetaRegularized14,1 n,1 n 1&&InverseBetaRegularizedNMax 1,Ceiling N InverseBetaRegularized14,1 n,1 n0 InverseBetaRegularized14,1 n,1 n 1&&InverseBetaRegularized1Max 1,Ceiling N InverseBetaRegularized34,1 n,1 nInverseBetaRegularized0&&0 InverseBetaRegularize34,1 n,1 n 1NMax 1,Ceiling N InverseBetaRegularized34,1 n,1 nInverseBetaRegularized1&&0 InverseBetaRegularize34,1 n,1 n 1Max 1,Ceiling N InverseBetaRegularized14,1 n,1 nMax 1,Ceiling N InverseBetaRegularized34,1 n,1 n0 InverseBetaRegularized14,1 n,1 n 1&&0 InverseBetaRegularized34,1 n,1 n 10True0 InverseBetaRegularized 34,1 n,1 n 118.偏度系数:Skewness OrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n19.峰度系数:Kurtosis OrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n20.四分偏度系数:1 InverseBetaRegularized1&&InverseBetaRegularize14,1 n,1 n &&InverseBetaRegularized,1 n,1 n 1InverseBetaRegularized0&&InverseBetaRegularize1,1 n,1 n &&[1,N]离散均匀分布样本中位数分布-描述统计.nb54,1 n,1 n &&InverseBetaRegularized12,1 n,1 n Indeterminate InverseBetaRegularized1&&InverseBetaRegularize12,1 n,1 n &&InverseBetaRegularized,1 n,1 n 1InverseBetaRegularized0&&InverseBetaRegularize12,1 n,1 n &&InverseBetaRegularized34,1 n,1 n1 InverseBetaRegularized1&&InverseBetaRegularize12,1 n,1 n &&InverseBetaRegularized,1 n,1 n 1InverseBetaRegularized0&&InverseBetaRegularize12,1 n,1 n &&InverseBetaRegularized34,1 n,1 n ComplexInfinity InverseBetaRegularized1&&InverseBetaRegularize14,1 n,1 n &&InverseBetaRegularized,1 n,1 n 1InverseBetaRegularized0&&InverseBetaRegularize14,1 n,1 n &&InverseBetaRegularized3 4,1 n,1 n1 2N Max 1,Ceiling N InverseBetaRegularized 14,1 n,1 n 1 Max 1, Ceiling N InverseBetaRegularized1 4,1 n,1 n0 InverseBetaRegularized14,1 n,1 n 1&&InverseBetaRegularized0&&InverseBetaRegularized2 N Max 1,Ceiling N InverseBetaRegularized 1,1 n,1 n N Max 1,0 InverseBetaRegularized14,1 n,1 n 1&& InverseBetaRegularized1&&6[1,N]离散均匀分布样本中位数分布-描述统计.nbConditionalExpression4,1 n,1 n N Max 1,Ceiling N InverseBetaRegularized14,1 n,1 nInverseBetaRegularized1&&InverseBetaRegularized11 N 1 N 2Max 1,Ceiling N InverseBetaRegularized12,1 n,1 nInverseBetaRegularized14,1 n,1 n 1&&InverseBetaRegularized0&&0 InverseBetaRegularize12,1 n,1 n 1 11 N 1 N 2Max 1,Ceiling N InverseBetaRegularized12,1 n,1 nInverseBetaRegularized14,1 n,1 n 0&&InverseBetaRegularized1&&0 InverseBetaRegularize12,1 n,1 n 11 Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n 2Max 1,Ceiling N InverseBetaRegularized12,1 n,1 n 1 Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n0 InverseBetaRegularized14,1 n,1 n 1&&InverseBetaRegularized0&&0 InverseBetaRegularize12,1 n,1 n 1N Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n 2Max 1,Ceiling N InverseBetaRegularized12,1 n,1 n N Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n0 InverseBetaRegularized14,1 n,1 n 1&&InverseBetaRegularized1&&0 InverseBetaRegularize12,1 n,1 n 11 2N Max 1,Ceiling N InverseBetaRegularized34,1 n,1 n 1 Max 1,Ceiling N InverseBetaRegularized34,1 n,1 nInverseBetaRegularized0&&0 InverseBetaRegularize34,1 n,1 n 1&&InverseBetaRegularized 2 N Max 1,Ceiling N InverseBetaRegularized34,1 n,1 n N Max 1,Ceiling N InverseBetaRegularized34,1 n,1 nInverseBetaRegularized1&&0 InverseBetaRegularize34,1 n,1 n 1&&InverseBetaRegularized 2 Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n Max 1,Ceiling N InverseBetaRegularized0 InverseBetaRegularized14,1 n,1 n 1&&0 InverseBetaRegularized3,1 n,1 n 1&&[1,N]离散均匀分布样本中位数分布-描述统计.nb7Ceiling N InverseBetaRegularized34,1 n,1 n Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n Max 1,Ceiling N InverseBetaRegularized 34,1 n,1 n4,1 n,1 n 1&&InverseBetaRegularized2N Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n Max 1,Ceiling N InverseBetaRegularized 34,1 n,1 n Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n Max 1,Ceiling N InverseBetaRegularized 34,1 n,1 n0 InverseBetaRegularized14,1 n,1 n 1&&0 InverseBetaRegularized 34,1 n,1 n 1&&InverseBetaRegularized1 2Max 1,Ceiling N InverseBetaRegularized12,1 n,1 n Max 1,Ceiling N InverseBetaRegularized 34,1 n,1 n1 Max 1,Ceiling N InverseBetaRegularized34,1 n,1 nInverseBetaRegularized0&&0 InverseBetaRegularize34,1 n,1 n 1&&0 InverseBetaRegularized12,1 n,1 n 1N 2Max 1,Ceiling N InverseBetaRegularized12,1 n,1 n Max 1,Ceiling N InverseBetaRegularized 34,1 n,1 nN Max 1,CeilingN InverseBetaRegularized34,1 n,1 nInverseBetaRegularized1&&0 InverseBetaRegularize34,1 n,1 n 1&&0 InverseBetaRegularized12,1 n,1 n 1Max 1,Ceiling N InverseBetaRegularized 14,1 n,1 n 2Max 1,Ceiling N InverseBetaRegularized12,1 n,1 n Max 1,Ceiling N InverseBetaRegularized34,1 n,1 n Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n Max 1,Ceiling N InverseBetaRegularized34,1 n,1 nTrue&&8 [1,N]离散均匀分布样本中位数分布-描述统计.nb0 InverseBetaRegularized 12,1 n,1 n 1&&0 InverseBetaRegularized 34,1 n,1 n 121.r 阶原点矩矩:Moment OrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n ,r 22.r 阶中心矩:CentralMomentOrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n ,r 23.r 阶阶乘矩:FactorialMomentOrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n ,r 24.r 阶累积量:Cumulant OrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n ,r 25.信息熵:k 1NLogBetaRegularized 1Nk N ,1 n,1 n BetaRegularized k N,1 n,1 n k 1&&k1 BetaRegularized 11N,1 n,1 n k 1&&k BetaRegularized 1N,1 n,1 n k 1&&k 0True[1,N]离散均匀分布样本中位数分布-描述统计.nb9。
概率论和数理统计试题及答案
![概率论和数理统计试题及答案](https://img.taocdn.com/s3/m/b894c0807fd5360cbb1adb22.png)
概率论和数理统计试题及答案一、填空题:1 11、 设 A 与 B 相互独立,P(A) = , P(B)=,贝U P (B-A)=.3 2 ----------------11 1解: P(B _A)二 P(B)[1 _P(A)](1 ): 23 32、 设 X~U[1,3](均匀分布),则 E(X 2)=, D(2X)二 ______________.E(5X _2) = ___________________ ,解: E(X)二 2;D(X) =1/ 3E(X 2) = D(X) E(X)2 =13/3 D( 2X 4D (X =)4 / 3E(5X - 2)= 5E X ) 2 102Y~ P(3),Z ~ N(3,2 ),且 X , Y,Z 相互独立,则3、设随机变量X 服从指数分布,即X ~ E(2),定义随机变量2,X 3 Y £,X =3-1,X :3解:F Y (Y)=P(Jy)二 P(丫 乞 一1) = P(X :: 3)2e'x dx = -e^x 0F Y (Y)二 P(Y D二 P(—1 :: 丫 乞1) = P(X 空 3)3=2e "dx =-e'xF Y (Y)二 P(丫 乞 y)二 P(1 :: Y ^2) = P(X 3)则Y 的分布列为二 1 —e ■6 -2C其中二是与y 无关的量2e"dx _ -e^x4、设 X ~ B(200,0.1)E(2X -3Y -Z 5) = , D(2X -3Y -Z 5)二 ____________________2XE(D(2X -3Y -Z 5) =4D(X) 9D(Y) D(Z) =72 27 4 =10325、设总体X ~ N(j 匚),X i, X2, X3 为来自X 的样本,二0.5/ • 0.1X2 - ax 3 是未知参数丄的无偏估计,则a =。
解:因为是无偏估计所以E(?)=E(0.X+ 0.x1— ax =) 0E5x 什)E.2X-( aJEj x ()= (0.5 0.-1 E)X(=)( 0.5- 01"口二)(0.5 0•中=)1a ~ -0. 46、设X〜N(叫,打),Y~N(」2,/),X与丫相互独立,且X与丫分别为X,Y的样2 2本均值,样本容量分别为n i,n2。
概率论与数理统计考点
![概率论与数理统计考点](https://img.taocdn.com/s3/m/9ed4d0fc770bf78a652954f2.png)
《概率论与数理统计》 第一章 随机事件与概率事件之间的关系: 事件之间的运算: 运算法则:交换律A ∪B=B ∪A A ∩B=B ∩A结合律(A ∪B)∪C=A ∪(B ∪C) (A ∩B)∩C=A ∩(B ∩C) 分配律(A ∪B)∩C=(AC)∪(BC) (A ∩B)∪C=(A ∪C)∩(B ∪C) 对偶律 A ∪B ‾‾ =A ‾∩B ‾ A ∩B ‾‾ =A ‾∪B ‾ 古典概型: 概率公式:求逆公式 P(A ‾)=1- P(A)加法公式 P(A ∪B)=P(A)+P(B)-P(AB)P(A ∪B ∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) 求差公式:P(A-B)=P(A)-P(AB); 当A ⊃B 时,有P(A-B)=P(A)-P(B)注意: A-B = A B ‾ = A-AB = (A ∪B)-B条件概率公式:P(A|B)=P(AB)P(B); (P(B)>0)P(A|B)表示事件B 发生的条件下,事件A 发生的概率。
乘法公式:P(AB)=P(A)P(B|A)= P(B)P(A|B) (其中P(A)>0, P(B)>0) 一般有P(ABC)=P(A)P(B|A)P(C|AB) (其中P(AB)>0)全概率公式:P(A)= ∑i=1nP(A|B i )P(B i ) 其中B 1,B 2,…,B n 构成Ω的一个分斥。
贝叶斯公式:P(A k |B)= P(B|A k )P(A k )P(B) = P(B|A k )P(A k )∑i=1nP(B|A i )P(A i )(由果溯因)概论的性质:事件的独立性:如果事件A 与事件B 满足P(AB)=P(A)P(B),则称事件A 与事件B 相互独立。
结论:1. 如果P(A)>0,则事件A 与B 独立⇔2. 事件A 与事件B 独立⇔事件A 与事件B ‾独立⇔事件A ‾与事件B 独立⇔事件A ‾与事件B ‾独立贝努里概型:指在相同条件下进行n 次试验;每次试验的结果有且仅有两种A 与A ‾;各次试验是相互独立;每次试验的结果发生的概率相同P(A)=p, P(A‾)=1-p 。
数理统计作业答案
![数理统计作业答案](https://img.taocdn.com/s3/m/1863c51b4b7302768e9951e79b89680203d86bfb.png)
数理统计作业答案1、设总体X 服从正态分布),(2σµN ,其中µ已知,2σ未知,n X X X ,,,21 为其样本,2≥n ,则下列说法中正确的是( D )。
(A )∑=-ni i X n122)(µσ是统计量(B )∑=ni i X n122σ是统计量(C )∑=--ni iX n 122)(1µσ是统计量(D )∑=ni iX n12µ是统计量2、设两独⽴随机变量)1,0(~N X ,)9(~2χY ,则YX 3服从( C )。
服从( C )。
4、设n X X ,,1 是来⾃总体X 的样本,且µ=EX ,则下列是µ的⽆偏估计的是( A ). 5、设4321,,,X X X X 是总体2(0,)N σ的样本,2σ未知,则下列随机变量是统计量的是( B ).(A )3/X σ;(B )414ii X=∑;(C )σ-1X ;(D )4221/ii Xσ=∑6、设总体),(~2σµN X ,1,,n X X 为样本,S X ,分别为样本均值和标准差,则下列正确的是( C ).7、设总体X 服从两点分布B (1,p ),其中p 是未知参数,15,,X X 是来⾃总体的简单随机样本,则下列随机变量不是统计量为( C ) ( A ) . 12X X +( B ) {}max,15i X i ≤≤( C ) 52X p + ( D ) ()251X X -8、设1,,n X X 为来⾃正态总体2(,)N µσ的⼀个样本,µ,2σ未知。
则2σ的最⼤似然估计量为( B )。
(A )∑=-n i i X n 12)(1µ (B )()211∑=-n i i X X n (C )∑=--n i i X n 12)(11µ(D )()∑=--n i i( D )分布.10、设1,,n X X 为来⾃正态总体2 (,)N µσ的⼀个样本,µ,2σ未知。
概率论与数理统计03-第三章作业及答案
![概率论与数理统计03-第三章作业及答案](https://img.taocdn.com/s3/m/ea9747d559f5f61fb7360b4c2e3f5727a5e924c1.png)
概率论与数理统计03-第三章作业及答案习题3-1⽽且12{0}1P X X ==. 求1和2的联合分布律.解由12{0}1P X X ==知12{0}0P X X ≠=. 因此X 1和X 2的联合分布于是根据边缘概率密度和联合概率分布的关系有X 1和X 2的联合分布律(2) 注意到12{0,0}0P X X ===, ⽽121{0}{0}04P X P X =?==≠, 所以X 1和X 2不独⽴.2. 设随机变量(X ,Y )的概率密度为(,)(6),02,24,0,.f x y k x y x y =--<<<其它求: (1) 常数k ; (2) {1,3}P X Y <<; (3) { 1.5}P X <; (4) {4}P X Y +≤.解 (1) 由(,)d d 1f x y x y +∞+∞-∞, 得2424222204211d (6)d (6)d (10)82y k x y x k y x x y k y y k =--=--=-= , 所以 18k =. (2) 31201,31{1,3}d (6)d 8(,)d d x y P X Y y x y x f x y x y <<<<==--??1322011(6)d 82y x x y =--321113()d 828y y =-=?. (3) 1.51.5 { 1.5}d (,)d ()d X P X x f x y y f x x +∞-∞-∞-∞<==??4 1.521d (6)d 8y x y x --=22011(6)d 82y x x y =--?421633()d 882y y =-? 2732=. (4) 作直线4x y +=, 并记此直线下⽅区域与(,)0f x y ≠的矩形区域(0,2)(0,4)?的交集为G . 即:02,0G x y <<<≤4x -.见图3-8. 因此{P X Y +≤4}{(,)}P X Y G =∈(,)d d Gf x y x y =??44201d (6)d 8x y x y x -=--??4422011(6)d 82xy x x y -=--?42211[(6)(4)(4)]d 82y y y y =----? 42211[2(4)(4)]d 82y y y =-+-? 423211(4)(4)86y y =----?23=. 图3-8 第4题积分区域3. ⼆维随机变量(,)X Y 的概率密度为2(,),1,01,0,f x y kxy x y x =≤≤≤≤其它.试确定k , 并求2{(,)},:,01P X Y G G x y x x ∈≤≤≤≤. 解由2111401(,)d d d (1)d 26xk k f x y xdy x kxy y x x x +∞+∞-∞-∞====-??,解得6=k .因⽽ 2112401{(,)}d 6d 3()d 4x xP X Y G x xy y x x x x ∈==-=. 4. 设⼆维随机变量(X , Y )概率密度为4.8(2),01,0,(,)0,.y x x y x f x y -=??≤≤≤≤其它求关于X 和Y 边缘概率密度.解 (,)X Y 的概率密度(,)f x y 在区域:0G ≤x ≤1,0≤y ≤x 外取零值.因⽽, 有24.8(2)d ,01,()(,)d 0,2.4(2),01,0,x X y x y x f x f x y y x x x +∞-∞-<<==-<<=其它.其它. 124.8(2)d ,01,()(,)d 0,2.4(34),01,0,yY y x x y f y f x y x y y y y +∞-∞-<<==-+<<=其它.其它.5. 假设随机变量U 在区间[-2, 2]上服从均匀分布, 随机变量 1,1,1,1,U X U --=>-??若≤若 1,1,1, 1.U Y U -=>??若≤若试求:(1) X 和Y 的联合概率分布;(2){P X Y +≤1}.解 (1) 见本章第三节三(4).(2){P X Y +≤1}1{1}P X Y =-+>1{1,1}P X Y =-==13144=-=. 习题3-21. 设(X , Y )的分布律为求: (1) 在条件X =2下Y 的条件分布律;(2) {22}P X Y ≥≤.解 (1) 由于6.02.01.003.0}2{=+++==X P ,所以在条件X =2下Y 的条件分布律为216.03.0}2{}1,2{}2|1{========X P Y X P X Y P ,06.00}2{}2,2{}2|2{========X P Y X P X Y P ,616.01.0}2{}3,2{}2|3{========X P Y X P X Y P ,316.02.0}2{}4,2{}2|4{========X P Y X P X Y P ,{P Y ≤2}{1}{2}P Y P Y ==+==0.10.3000.20.6++++=. ⽽{2,2}{2,1}{2,2}{3,1}{3,2}P X Y P X Y P X Y P X Y P X Y ===+==+==+==≥≤0.3000.20.5=+++=.因此{2,2}{22}{2}P X Y P X Y P Y =≥≤≤≥≤0.550.66==. 2. 设⼆维随机变量(X , Y )的概率密度为(,)1,01,02,0,.f x y x y x =<<<其它求:(1) (X , Y )的边缘概率密度(),()X Y f x f y ;(2)11{}.22P Y X ≤≤ 解 (1) 当01x <<时,20()(,)d d 2xX f x f x y y y x +∞-∞===?;当x ≤0时或x ≥1时, ()0X f x =.故 2,01,()0,其它.X x x f x <<=??当02()(,)d d 12y Y y f y f x y x x +∞-∞===-;当y ≤0时或y ≥2时, ()0Y f y =.故 1,02,()20,.Y yy f y -<<=其它 (2) 当z ≤0时,()0Z F z =; 当z ≥2时,1)(=z F Z ;当0z f x y x y -=≤2x12202-2d 1d d 1d zxz x zx y x y =?+24z z =-.故 1,02,()20,.()其它Z zzz f z F z -<<'== (3) {}{}11311322161122442≤,≤≤≤≤P X Y P Y X P X ===. 3. 设G 是由直线y =x , y =3,x =1所围成的三⾓形区域, ⼆维随机变量(,)X Y 在G 上服从⼆维均匀分布.求: (1) (X , Y )的联合概率密度;(2) {1}P Y X -≤;(3) 关于X 的边缘概率密度.解 (1)由于三⾓形区域G 的⾯积等于2, 所以(,)X Y 的概率密度为∈=.),(,0,),(,21),(G y x G y x y x f (2)记区域x y y x D -=|),{(≤}1与G 的交集为0G ,则{1}P Y X -≤0011113d d (2)22224G G x y S ===-=??. 其中0G S 为G 0的⾯积.(3) X 的边缘概率密度()(,)d X f x f x y y +∞-∞=?. 所以,当]3,1[∈x 时, 311()d (3)22X xf x y x ==-?. 当1x 时, 0)(=x f X .因此∈-=.,0],3,1[),1(21)(其它x x x f X习题3-31. 设X 与Y 相互独⽴, 且分布律分别为下表:求⼆维随机变量(,)X Y 的分布律.解由于X 与Y 相互独⽴, 所以有}{}{},{j i j i y Y P x X P y Y x X P =?====,6,5,2,0;0,21,1=--=j i .因此可得⼆维随机变量(,)X Y 的联合分布律2. 设(X , Y )的分布律如下表:问,αβ为何值时X 与Y 相互独⽴? 解由于边缘分布满⾜23111,1i j i j p p ??====∑∑, ⼜X , Y 相互独⽴的等价条件为p ij = p i . p .j (i =1,2; j =1,2,3).故可得⽅程组 21,3111().939αβα++==?+解得29α=,19β=.经检验, 当29α=,19β=时, 对于所有的i =1,2; j =1,2,3均有p ij = p i .p .j 成⽴. 因此当29α=,19β=时, X 与Y 相互独⽴..3. 设随机变量X 与Y 的概率密度为()e (,)0,.,01,0,x y b f x y x y -+=?<<>?其它 (1) 试确定常数b .(2) 求边缘概率密度()X f x , ()Y f y . (3) 问X 与Y 是否相互独⽴?解 (1) 由11()101(,)d d e d d e d e d (1e )x y y x f x y x y b y x b y x b +∞+∞+∞+∞-+----∞-∞====-?,得 111e b -=-.(2) ()(,)d X f x f x y y ∞-∞=?1e ,01,1e 0,xx --<<=-??其它.()(,)d Y f y f x y x ∞-∞=?e ,0,0,y y ->=其它.(3) 由于(,)()()X Y f x y f x f y =?,所以X 与Y 相互独⽴.4. 设X 和Y 是两个相互独⽴的随机变量, X 在(0, 1)上服从均匀分布, Y 的概率密度为21e ,0,()20Y yy f y y ->=,≤0.(1) 求X 和Y 的联合概率密度.(2) 设关于a 的⼆次⽅程为220a Xa Y ++=, 试求a 有实根的概率.解 (1) 由题设知X 和Y 的概率密度分别为1,01,()0,X x f x <<=??其它, 21e ,0,()20,.yY y f y ->=其它因X 和Y 相互独⽴, 故(X , Y )的联合概率密度为21e ,01,(,)()()20,.yX Y x y f x y f x f y -<<>==其它 (2) ⽅程有实根的充要条件是判别式⼤于等于零. 即244X Y ?=-≥20X ?≥Y .因此事件{⽅程有实根}2{X =≥}Y .下⾯计算2211221(,)d d e d (1e)d 2yxx Df x y xdy x y x --===-2121ed 12[(1)(0)]0.1445xx πΦΦ-=-=--≈?.图3-3 第6题积分区域习题3-41. 设⼆维随机变量(X ,Y )的概率分布为YX 0 10 0.4 a 1 b 0.1若随机事件{X =0}与{X +Y =1}相互独⽴, 求常数a , b .解⾸先, 由题设知0.40.11a b +++=. 由此得0.5a b +=. 此外,{0}0.4P X a ==+,{1}{0,1}{1,0}0.5P X Y P X Y P X Y a b +====+===+=, {0,1}{0,1}P X X Y P X Y a =+=====. 根据题意有{0,1}{0}{1}P X X Y P X P X Y =+===+=,即(0.4)0.5a a =+?. 解得0.4,0.1a b ==.2. 设两个相互独⽴的随机变量X ,Y 的分布律分别为求随机变量Z = X + Y 的分布律.解随机变量Z = X + Y 的可能取值为7,5,3.Z 的分布律为18.06.0.03}2,1{}3{=?=====Y X P Z P , {5}{1,4}{3,2}0.30.4070.60.54P Z P X Y P X Y ====+===?+?=,28.04.07.0}4,3{}7{=?=====Y X P Z P ,或写为3. 设X 和Y 是两个相互独⽴的随机变量, 且X 服从正态分布N (µ, σ2 ), Y 服从均匀分布U (-a , a )( a >0), 试求随机变量和Z =X +Y 的概率密度.解已知X 和Y 的概率密度分别为22()2()x X f x µσ--=,),(+∞-∞∈x ;-?-∈=).,(,0),,(,21)(a a y a a y ay f Y .由于X 和Y 相互独⽴, 所以22()21()()()d d 2z y a Z X Y f z f z y f y y y a µσ---+∞=1[()()]2z µa z µa ΦΦa σσ-+---. 4. 设随机变量X 和Y 的联合分布是正⽅形G={(x,y )|1≤x ≤3, 1≤y ≤3}上的均匀分布, 试求随机变量U=|X -Y|的概率密度f (u ).解由题设知, X 和Y 的联合概率密度为111,3,3,(,)40,.x y f x y =≤≤≤≤其它记()F u 为U 的分布函数, 参见图3-7, 则有当u ≤0时,(){||F u P X Y =-≤u }=0; 当u ≥2时,()1F u =;当0< u <2时, 图3-7 第8题积分区域||(){}(,)d d x y uF u P U u f x y x y -==≤≤21[42(2)]412u =-?- 211(2)4u =--.故随机变量||U X Y =-的概率密度为1(2),02,()20,u u p u -<<=其它..总习题三1. 设随机变量(X , Y )的概率密度为<<<=.,0,10,||,1),(其它x x y y x f 求条件概率密度)|()|(||y x f x y f Y X X Y 和.解⾸先(,)其它X x x f x f x y dy +∞-∞<<==??1,01,()1,10,0,(,)≤其它.Y y y f y y y f x y dx +∞-∞-<<==+-图3-9第1题积分区域当01y <<时, |1,1,1(|)0,X Y y x y f x y x <<-=??取其它值.当1y -<≤0时, |1,1,1(|)0,X Y y x y f x y x -<<+=??取其它值.当10<,||,(|)20,Y X y x f y x x y <=取其它值.2. 设随机变量X 与Y 相互独⽴, 下表列出⼆维随机变量(,)X Y 的分布律及关于X 和关于Y 的边缘分布律中部分数值, 试将其余数值填⼊表中空⽩处 .解⾸先, 由于11121{}{,}{,}P Y y P X x Y y P X x Y y ====+==, 所以有24P X x Y y P Y y P X x Y y ====-===-=.在此基础上利⽤X 和Y 的独⽴性, 有11111{,}124{}1{}46P X x Y y P X x P Y y =======.于是 2113{}1{}144P X x P X x ==-==-=.再次, 利⽤X 和Y 的独⽴性, 有12211{,}18{}1{}24P X x Y y P Y y P X x =======. 于是 312111{}1{}{}1623P Y y P Y y P Y y ==-=-==--=.最后, 利⽤X 和Y 的独⽴性, 有2222313{,}{}{}428P X x Y y P X x P Y y ======?=; 2323311{,}{}{}434P X x Y y P X x P Y y ======?=; 1313111{,}{}{}43123.(34)e (,)0,.,0,0,x y k f x y x y -+=?>>??其它(1) 求常数k ;(2) 求(X ,Y )的分布函数;(3) 计算{01,02}P X Y <<≤≤; (4) 计算(),x f x ()y f y ;(5) 问随机变量X 与Y 是否相互独⽴?解 (1)由3401(,)d d e d e d 12xy kf x y x y k x y +∞+∞+∞+∞---∞-∞===,可得12=k .(2) (X ,Y )的分布函数(,)(,)d d x y F x y f u v x y -∞-∞=??.当x ≤0或y ≤0时,有 0),(=y x F ;当,0>>y x 时,34340(,)12e d e d (1e )(1e )x即 34(1e )(1e ),0,0,(,)0,.其它x y x y F x y --?-->>=??(3) {01,02}P X Y <<≤≤38(1,2)(0,0)(1e )(1e )F F --=-=--.(4) (34)012ed ,0,()(,)d 0,其它.x y X y x f x f x y y +∞-++∞-∞>==所以 33e ,0,()0,其它.x X x f x -?>=??类似地, 有44e ,0,()0,其它.y Y y f y -?>=?显然2),(),()(),(R y x y f x f y x f Y X ∈??=, 故X 与Y 相互独⽴. 4.解已知),(Y X 的分布律为注意到41260}1{}1{=++====Y P X P , ⽽0}1,1{===Y X P ,可见P{X=1, Y=1}≠P{X=1}P{Y=1}. 因此X与Y不相互独⽴.(2) Z X Y =+的可能取值为3, 4, 5, 6, 且316161}1,2{}2,1{}3{=+===+====Y X P Y X P Z P , }1,3{}2,2{}3,1{}4{==+==+====Y X P Y X P Y X P Z P 3 112161121=++=, 3(3) V =21}2,2{}1,2{}2,1{}2{===+==+====Y X P Y X P Y X P V P , 2 1}2{1}3{==-==V P V P . 即max(,)V X Y =的分布律为(4) min{U =}3,1{}2,1{}1{==+====Y X P Y X P U P}1,2{}1,3{==+==+Y X P Y X P 21=, 21}1{1}2{==-==U P U P .即min{,}U X Y =的分布律为(5) W U =+31}1,2{}2,1{}2,1{}3{===+=======Y X P Y X P V U P W P ,。
【练习】Matlab概率论与数理统计
![【练习】Matlab概率论与数理统计](https://img.taocdn.com/s3/m/db17bb9748d7c1c709a14561.png)
【关键字】练习Matlab 概率论与数理统计一、matlab基本操作1.画图【例01.01】简单画图【例01.02】填充,二维均匀随机数2.排列组合C=nchoosek(n,k):,例nchoosek(5,2)=10, nchoosek(6,3)=20.prod(n1:n2):从n1到n2的连乘【例01.03】至少有两个人生日相同的概率二、随机数的生成3.均匀分布随机数rand(m,n); 产生m行n列的(0,1)均匀分布的随机数rand(n); 产生n行n列的(0,1)均匀分布的随机数【练习】生成(a,b)上的均匀分布4.正态分布随机数randn(m,n); 产生m行n列的标准正态分布的随机数【练习】生成N(nu,sigma.^2)上的正态分布三、一维随机变量的概率分布1.离散型随机变量的分布率(1)0-1分布(2)均匀分布(3)(4)(5)几何分布:geopdf (x,p),则(6)2.概率密度函数(1)(2)(3)(4)(5)t分布:tpdf(x,n),(6)3.【例03.01】求正态分布的积累概率值4.逆分布函数,临界值,,称之为临界值【例03.02】求标准正态分布的积累概率值【例.【练习1.1】二项分布、泊松分布、正态分布(1)对二项分布,画出的分布律点和折线;(2)对,画出泊松分布的分布律点和折线;(3)对,画出正态分布的密度函数曲线;(4)调整,观察折线与曲线的变化趋势。
【练习1.2】股票价格的分布已知某种股票现行市场价格为100元/股,假设该股票每年价格增减是以呈20%与-10%两种状态,(1)求年后该股票价格的分布,画出分布律点和折线;(2)求年之后的平均价格,画出平均价格的折线。
a=[1.2,1.2^2,1.2^3,1.2^4,1.2^5,1.2^6,1.2^7,1.2^8,1.2^9,1.2^10];b=[0.9^10,0.9^9,0.9^8,0.9^7,0.9^6,0.9^5,0.9^4,0.9^3,0.9^2,0.9];x=100*a.*b;m=1:10;n=10;p=0.4;y=binopdf(m,n,p);plot(x,y,'b-',x,y,'r.')x2=x.*yx3=geomean(x2)x4=[x3,x3];y4=[0,0.3];hold onplot(x4,y4,'b-')【练习1.3】 条件密度函数设数X 在(0,1)上随机取值,当观察到,(01)X x x =<<时,数Y 在区间(,1)x 上随机取值,(1)求Y 的密度函数()Y f y ,画出密度函数曲线;(2)模拟该过程,产生10000n =个随机数X ,在根据每个X 的值,产生一个随机数Y (共有10000n =),画出Y 的样本密度曲线。
自考_概率论与数理统计(经管类)__真题及答案详解分析
![自考_概率论与数理统计(经管类)__真题及答案详解分析](https://img.taocdn.com/s3/m/f07eae2216fc700abb68fc60.png)
1【解析】因为,所以,而,所以,即;又由集合的加法公式P(AB)=P(A)+P(B)-P(A∪B)=0.5+0.4-0.6=0.3,所以=0.5-0.3=0.2,故选择B.[快解] 用Venn图可以很快得到答案:【提示】1. 本题涉及集合的运算性质:(i)交换律:A∪B=B∪A,AB=BA;(ii)结合律:(A∪B)∪C=A∪(B∪C),(AB)C=A(BC);(iii)分配律:(A∪B)∩C=(A∩C)∪(B∩C),(A∩B)∪C=(A∪C)∩(B∪C);(iv)摩根律(对偶律),.2.本题涉及互不相容事件的概念和性质:若事件A与B不能同时发生,称事件A与B互不相容或互斥,可表示为A∩B=,且P(A∪B)=P(A)+P(B).2.【答案】C【解析】根据分布函数的性质,选择C。
【提示】分布函数的性质:① 0≤F(x)≤1;② 对任意x1,x2(x1<x2),都有P{x1<X≤x2}=F(x2)-F(x1);③ F(x)是单调非减函数;④ ,;⑤ F(x)右连续;⑥ 设x为f(x)的连续点,则F‘(x)存在,且F’(x)=f(x).3【答案】D【解析】由课本p68,定义3-6:设D为平面上的有界区域,其面积为S且S>0. 如果二维随机变量(X,Y)的概率密度为,则称(X,Y)服从区域D上的均匀分布.本题x2+y2≤1为圆心在原点、半径为1的圆,包括边界,属于有界区域,其面积S=π,故选择D.【提示】课本介绍了两种二维连续型随机变量的分布:均匀分布和正态分布,注意它们的定义。
若(X,Y)服从二维正态分布,表示为(X,Y)~.4.【答案】A【解析】因为随机变量X服从参数为2的指数分布,即λ=2,所以;又根据数学期望的性质有 E(2X-1)=2E(X)-1=1-1=0,故选择A.【提示】1.常用的六种分布(1)常用离散型随机变量的分布:A. 两点分布① 分布列② 数学期望:E(X)=P③ 方差:D(X)=pq。
数理统计试题及答案
![数理统计试题及答案](https://img.taocdn.com/s3/m/93262aa0a1116c175f0e7cd184254b35effd1a78.png)
一、 (满分12分)X X X n ,,,12是总体X 的随机样本, X 的密度函数为)( ⎩≥⎨=><<∞⎧-λλλx f x e x x 0,0()0,0(1) 求X 的特征函数;(2) 利用X 的特征函数,求EX D X ,(); (3) 求∑==S X k k n1的概率密度函数. 二、(满分8分))(>X X X n n ,,,1122是总体μσN (,)2的随机样本,记 ,∑∑∑∑+--===-=-=-==+==+S S n n n n Y X Y X S X Y S X Y Z n Y Y k k n k k n k k k k n n n n 11,,(),()1111()121111*2*212112212*22*2222求统计量Z 的分布.三、 (满分14分)总体X 服从均匀分布θU (0,), X X X n ,,,12为其样本,(1) 证明,==+=+θθθn X n X X n n ,(1)2ˆˆˆ11()2(1)3都是未知参数θ的无偏估计; (2) 比较这三个估计量的优劣性.四、(满分14分)测得两批电子器材的电阻值(单位:Ω)分别为:A 批: 30, 32, 34, 36, 38, 42, 48, 52, 52, 56B 批: 31, 33, 37, 42, 46, 48, 53, 55, 56, 59设A 批器材的电阻μσX N ~(,),112B 批器材的电阻μσY N ~(,)222,而且总体相互独立.在显著性水平=α0.05下,能否认为两批器材的电阻的分布相同? 五、(满分14分)X X X n ,,,12是总体X 的随机样本,X 的密度函数为他其)( ⎩⎪⎨=>⎪<<⎧-θθθθf x x x 0,(;)0,01111(1)求未知参数θ的极大似然估计量θˆ; (2)证明θˆ是未知参数θ的UMVUE .六、(满分8分)将一颗骰子掷了120次,所得结果如下: 点数i 1 2 3 4 5 6 出现次数νi232718221416试在显著性水平=α0.05下,检验一颗骰子是否均匀、对称?七、 (满分16分)假定在某种产品表面进行腐蚀刻线试验,得到腐蚀深度y 与腐蚀时间x 对应的数据如下:x s / 1 2 3 4 5 6 7 8 9 10 μy m /7101316182123252730应用线性模型⎩⎨⎧=++εσεεεεN y a bx n ~(0,),,,,212为其样本.(1) 求a 和b 的最小二乘估计及回归方程;(2) 在显著性水平=α0.05下,检验原假设=H b :00;(3)预测腐蚀时间为=x s 6.50时,腐蚀深度y 0的范围-=a (10.95); (4) 若要使腐蚀深度在20-26μm 之间,腐蚀时间应该如何控制(=α0.05).八、 (满分14分) 某种型号的电池4批,分别为四个工厂所生产.各随机抽取5只电池样品,得它们的寿命如下:A 140 48 40 42 45 A 2 26 34 30 28 32 A 339 40 41 50 50 A 43634404035试在显著性水平=α0.05下,检验各批电池的平均寿命有无显著性的差异. 附注:计算中可能用到的数据如下:,,,,,,)(======Φ===χF F F r F t t (99) 4.03(1,8) 5.32,(3,16) 3.24.511.071(8)0.6319(99) 3.18(1.96)0.975,(18) 2.101,(8) 2.306,0.9750.950.950.950.050.9520.9750.975一、(满分12) 解:(1)X 的特征函数为())1)00()()|1()it xitxit xX e itt f x e dx edx it λλλφλλλ---∞∞---∞-∞====---⎰⎰(((2)21222222221()1(0)(0)222()1(0)(0)1()X X X X X X i it i t EX i it t EX i DX EX EX φφφλλλλφφφλλλλλ----⎛⎫'''=-=== ⎪⎝⎭--⎛⎫''''''=-=== ⎪⎝⎭=-=,,;,,;.(3)S 的特征函数为S ()[()](1/)n n X t t it φφλ-==-所以),(λn Γ~ S ,其密度函数为.0,00,!1)(1S ⎪⎩⎪⎨⎧≤>-=--y y n e y y f yn n )(λλ 二、(满分8)解:根据抽样分布定理得,*2*22222121222*2*21212(1)(1)11~(,),~(,),~(1)~(1),,n S n S Y N Y N n n n n Y Y S S μσμσχχσσ----,并且,,相互独立.于是,212*2*212*2*2122~(0,)~(0,1)(1)(1)2~(22)21)(1)2Y Y N N n n S n S n n S n S σχσσ--+---+-,,相互独立. 由t 分布的定义得 ,~(16)~(22)t Z t n =-,即. 三、(满分14分)解: (1)X 的密度函数为X 的分布函数为 0,0(),01,x F x x x x θθθθ≤⎧⎪=<<⎨⎪≥⎩;)(n X 的密度函数为()11,0()[()]()0,n n n nX n x x f x n F x f x θθθθ--⎧<<⎪==⎨⎪⎩;;其他 ()1()01ˆ.1nn n nx n n EX n dx E E X n n θθθθθ+⎡⎤====⎢⎥+⎣⎦⎰, (1)X 的密度函数为(1)11(),0()[1()]()0,n n n X n x x f x n F x f x θθθθθ--⎧-<<⎪=-=⎨⎪⎩;;其他 1(1)2(1)0()ˆ(1)1n nx x EX n dx E E n X n θθθθθθ--⎡⎤===+=⎣⎦+⎰,. 3ˆ(2)2E E X EX θθ===. 所以,1()2(1)31ˆˆˆ,(1),2n n X n X X nθθθ+==+=都是θ的无偏估计量. 2)122222()()()()2()()2(2)(1)n n n n n nx n n EXn dx D X EX EX n n n θθθθ+===-=+++⎰, ()2122222(1)(1(1)(1)2()2()(2)(1)(2)(1)n nx x n EX n D X EX EX n n n n θθθθθ--===-=++++⎰,.10()0,x f x θθθ⎧<<⎪=⎨⎪⎩,;其他()()2221()2(1)31ˆˆˆ()()()(1)()2(2)23n n n D D X D D n X D D X n n n n nθθθθθθ+===+===++,,所以,当1n >,132ˆˆˆ()()()D D D θθθ<<, 132ˆˆˆθθθ最有效,次之,效果最差. 四、(满分14)解:首先检验 2222012112:,:H H σσσσ=≠ 当0H 成立时, *21*22~(9,9)S F F S =拒绝域为 0,975(9,9) 4.03F F ≥= 或0.0251(9,9)0.2484.03F F ≤== 得 *2*21242,88,46,99.3333x S y S ====*21*220.8859S F S ==由于0.2480.8859 4.03F <=<,所以接受0H ,即认为两批器材的电阻的方差没有显著性差异.在此基础上检验012112:,:H H μμμμ=≠ 当0H 成立时,~(18)t t =拒绝域为 0.975||(18) 2.101t t ≥= 计算可得0.9242t ==- 由于||0.9242 2.101t =<,所以接受0H ,即认为两批器材的电阻的均值没有显著性的差异.综合以上,可以认为两批器材的电阻的分布相同. 五、(满分14分)解:(1) 11111()(;)()0nnk kn k k L f x x θθθθθ-====>∏∏,取对数得,11ln ()ln 1ln nk k L n x θθθ=⎛⎫=-+- ⎪⎝⎭∑令211ln ()ln 0n k k d n L x d θθθθ==--=∑ 解得 =11ˆln nkk x n θ=-∑ 所以,未知参数θ的极大似然估计量 11ˆln n k k X n θ-=-∑. (2) :(;)0f x θθ>{}=(0,1)与未知参数θ无关.[]11101211222202111(ln )ln 1(ln )ln 2ln 11ˆˆln ,()ln ttn nk k k k tE X xx dx e dt t E X xx dx e dt D X E E X D D X n n n θθθθθθθθθθθθθθθ--∞--∞==-===-===-=⎡⎤⎡⎤=-==-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰∑∑,,,,,2223222121ln 21);(ln )(θθθθθθθθ=+-=⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡∂∂-=X E X f E I 由于 21ˆ()()D nnI θθθ==, 所以,=11ˆln nkk X n θ=-∑是未知参数θ的有效估计量,也是未知参数θ的UMVUE . 六、(满分8分)解: 0111:(1,2,,6),:(1,2,,6)66i i H p i H p i ===不全是当0H 成立时, 26221()(5).k k k k np np νχχ=-=∑近似服从 拒绝域为 22210.95(5)=(5)11.071αχχχ-≥=经计算得 2621() 5.911.071k k k knp np νχ=-==<∑ 所以接受0H ,可以认为这个骰子是均匀、对称的. 七、(满分16)解:(1)21112111155,()82.5,19,()512,205.n nn k xx k k k k k n nyy k xy k k k k x x L x x y y n n L y y L x y nx y ========-====-==-⨯=∑∑∑∑∑.设a 和b 的最小二乘估计分别为aˆ和b ˆ,则 205ˆˆˆ 5.3333, 2.484882.5xy xx L ay bx b L =-==== 回归方程为 ˆˆˆ 5.3333 2.4848ya bx x =+=+. (2)0:,0:10≠=b H b H当0H 成立时, )2(~ˆˆ-=n t L bt xx e σ拒绝域为 1-/20.975||(2)(8) 2.306t t n t α≥-==计算可得,ˆ0.570839.541e t σ====,由于||39.541 2.306t =>,所以,拒绝0H ,认为回归效果显著.(3)当0 6.5x =时,ε++=00bx a y ,00ˆˆˆ21.4848y a bx =+= 由于, )2(~)(11ˆˆ2000--++-=n t Lxxx x n y yt e σ得到, αα-=-<-1)}2(|{|21n tt P所以,成本0y 的置信水平为α-1的预测区间为120012ˆˆˆˆ(2)(2).yt n y t n αασσ--⎛--+- ⎝代入数据计算可得,001122ˆ20.1ˆˆˆ((22.870e e y t n y t n αασσ----+-=,所以,当06x =.5,腐蚀深度0y 的置信水平为95.0的预测区间为20.10,22.87().(4)当腐蚀深度在20-26m μ之间,近似地有0.97511ˆˆ'(')(200.5708 1.96 5.3333) 6.35ˆ 2.4848e x y u a b σ=+-=+⨯-=0.97511ˆˆ''('')=(260.5708 1.96 5.3333)7.87ˆ 2.4848e x y u a bσ=---⨯-= 所以,腐蚀时间控制6.35~7.87s ,可以使腐蚀深度在20-26m μ之间. 八(满分14)、解:20,5,44321======n n n n n r)4,,2,1(:,:143210 ====k H H k μμμμμ不全相同.当0H 成立时, ),1(~1r n r F rn S r S F e A----=拒绝域为 10.95(1,)(3,16) 3.24F F r n r F α-≥--== . 计算可得,1122111111111143,()48n n k k k k x x n S x x n =====-=∑∑2222222222112130,()40n n kk k k x xn S x x n =====-=∑∑3322333333113144,()122n n k k k k x x n S x x n =====-=∑∑4422444444114137,()32n n kk k k x xn S x x n =====-=∑∑24212==∑=rk kk e S n S 42211()5()625rA k k k k k S n x x x x ===-=-=∑∑由于 113.77 3.24Ae S r F S n r-==>-,所以拒绝0H ,即认为不同厂家的电池的平均寿命有显著性差异.。
概率论与数理统计总复习知识点归纳
![概率论与数理统计总复习知识点归纳](https://img.taocdn.com/s3/m/f1d6709485254b35eefdc8d376eeaeaad0f3164c.png)
D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)
概率论与数理统计总复习知识点归纳
![概率论与数理统计总复习知识点归纳](https://img.taocdn.com/s3/m/3e98a81bc850ad02de80418f.png)
例1 设甲、乙、丙三 人的命中率分别为0.3,
P(Ai)—— 先验概率
0.2,0.1。现三人独立地 向目标各射击一次,结果
A1
A2 ........ An
有两次命中目标,试求丙
P(B/Ai)
P(Ai /B ) 后验概率
没有命中目标的概率。
B P(B )
解 记A、B、C分别为甲、乙、丙命中目标,D 为
P(ABC ) P(D )
0.30.20.90.587 0.092
法二 用Bayes公式:
0.1
0.9
P (C) = 0.1, P(C)0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D/C)0.3*0.2.
C 0.3*0.8+0.7*0.2
C
0.3*0.2
于是有
D
P (C /D )
第二、三章 随机变量及其分布
1.常用分布 B(n,p),P( ),U[a,b],E( ),N(, 2 );
二维均匀、二维正态
2.联合分布和边缘分布
pi• pij,fX(x)f(x,y)dy
j
3.概率的计算 (一维或二维C.R.V.:一重或二重积分)
4.随机变量函数的分布 作图、定限再计算、验证
5 随机变量的独立性
•正态分布的线性组合性质(含正态分布可加性)
若Xi ~ N( i,i 2), i=1,2,...n, 相互独立,则对任
何实数a1, a2, …, an, 有
n
n
n
a X 1 b~ N (a? 1 b,,a 2? 12 ),
aiXi ~N(
a?i i ,,
?a i2
① 分布函数法(C.R.V.):
概率论与数理统计综合测试1
![概率论与数理统计综合测试1](https://img.taocdn.com/s3/m/bb157288680203d8ce2f24f1.png)
中国地质大学(武汉)远程与继续教育学院概率论与数理统计课程综合测试1 学习层次:专升本 时间:90分钟一、 单项选择题(每小题4分,共32分)1.设,,A B C 为三个事件,则,,A B C 中至少有一个不发生的事件是( ).()A ABC()B A B C ()C A B C ()()D A B C2.对于任意两个事件A 和B ,均有()P A B -=( ).()()()A P A P B - ()()()()B P A P B P AB -+()()()C P A P AB - ()()()()D P A P B P AB +-3.设事件B A ,互不相容,且()0,()0,P A P B >> 则下列正确的是( ).()(|)()A P A B P A = ()(|)0B P B A > ()()()()C P AB P A P B = ()(|)0D P B A =4.袋中有5个球(3个新2个旧)每次取1个,无放回地取2次,则第二次取到新球的概率是( ) .3()5A 3()4B 2()4C 3()10D5. 设随机变量X 的概率密度为,01()0,C x x f x +<<⎧=⎨⎩其它,则C =( ).1()3A ()3B ()2C 1()2D 6.如下四个函数中哪个可以作为随机变量X 的分布函数( ).21()()1A F x x =+ 11()()arctan 2B F x x π=+ 1(1), 0()()20, 0xe x C F x x -⎧->⎪=⎨⎪≤⎩ , 0()(),(0)0, 0x e x D F x x λλλ-⎧>=>⎨≤⎩ 7.已知随机变量X 服从二项分布(100,0.1)B , 则X 的标准差为( ) .()3A ()9B ()10C ()100D8. 设X 服从均匀分布U(-a ,a ),(a>0)且已知1(1)3P X >=,则a =( ) . ()1A ()2B ()3C ()4D二、填空题(每小题4分,共24分)9. 在某书店购买图书.令事件A 表示“选购的为中文书”,事件B 表示“选购的为数学书”,事件C 表示“选购的为期刊”,则事件BC A 表示所购的图书为 .10.将C, C, E, E, I, N, S 等七个字母随机地排成一行,那么,恰好排成英文单词SCIENCE 的概率为 .11.一射手向同一目标独立地进行四次射击, 若至少命中一次的概率为80/81, 则该射手的命中率为 .12. 已知()0.5,()0.8P A P B ==,且(|)0.8 P B A =,则()P A B += .13.设X 服从泊松分布()P λ,0>λ,则)()(X E X D = . 14.已知E (X )=1-, D (X )=3,则E (3(X 22-))= .三、计算题(每小题9分,共36分)15.从0,1,2,…,9等十个数字中任意选出三个不同的数字, 试求下列事件的概率: 1A ={三个数字中不含0和5}; 2A ={三个数字中不含0或5}; 3A ={三个数字中含0但不含5}. 16.设随机变量X 服从(1,4)上的均匀分布,求{}5≤X P 和{}5.20≤≤X P . 17.袋中有5个球,分别标有号码1,2,3,4,5。
MATLAB产生各种分布的随机数
![MATLAB产生各种分布的随机数](https://img.taocdn.com/s3/m/19cbacd952ea551811a687a8.png)
MATLAB^生各种分布的随机数1, 均匀分布U (a,b):产生m*n阶[a, b]均匀分布U (a, b)的随机数矩阵:unifrnd (a,b,m, n)产生一个[a, b]均匀分布的随机数:unifrnd (a,b) 2, 0-1 分布U (0,1)产生m*n阶[0, 1]均匀分布的随机数矩阵:rand (m, n)产生一个[0,1]均匀分布的随机数:rand4,二类分布binornd(N,P,mm,nn) 女口binornd(10,0.5,mm,nn)即产生mm*nn均值为N*P的矩阵binornd(N,p)则产生一个。
而binornd(10,0.5,mm)则产生mm*mm 的方阵,军阵为N*p。
5,产生m*n阶离散均匀分布的随机数矩阵:unidrnd(N,mm,nn) 产生一个数值在1-N区间的mm*nn矩阵6,产生mm nn阶期望值为的指数分布的随机数矩阵:exprnd ( ,mm, nn)此外,常用逆累积分布函数表函数名调用格式函数注释norminv X=n ormi nv( P,m u,sigma) 正态逆累积分布函数expinv X=ex pinv(P,mu) 指数逆累积分布函数weib inv X=weibi nv(P, A,B) 威布尔逆累积分布函数log ninv X=log nin v( P,m u,sigma) 对数正态逆累积分布函数Chi2i nv X=ch i2inv(P AB) 卡方逆累积分布函数P分布逆累积分布函数Beta inv X=betai nv(P ,A,B)binornd(N,P) %N 、P 为二项分布的两个参数,返回服从参数为N、P 的二R =项分布的随机数,N、P 大小相同。
例4-1>> R=binornd(10,0.5)>> R=binornd(10,0.5,1,6)8 1 3 7 6 4>> R=binornd(10,0.5,[1,10])6 8 4 67 5>> R=binornd(10,0.5,[2,3])>>n = 10:10:60;>>r1 = binornd(n,1./n)4.1 随机数的产生4.1.1 二项分布的随机数据的产生命令参数为N,P 的二项随机数据函数binornd格式R = binornd(N,P,m) %m 指定随机数的个数,与R 同维数。
均匀分布U(θ1,θ2)的参数估计及优效性研究
![均匀分布U(θ1,θ2)的参数估计及优效性研究](https://img.taocdn.com/s3/m/14fbc8d4db38376baf1ffc4ffe4733687e21fce2.png)
所以分别是θ1的无偏估计.同理可证分别是θ2的无偏估计.
定理3 假设,则也分别是 θ1,θ2的无偏估计.
所以也分别是θ1的无偏估计
所以也分别是θ2的无偏估计.
定理4 ,分别是θ1,θ2的最小方差无偏估计.
比较D(),D()可知是θ2的最小方差无偏估计.同理可证是θ1的最小方差无偏估计.
【正文语种】中 文
【中图分类】O212.1
均匀分布U(θ1,θ2)是概率论与数理统计中最重要的分布之一[1-4].文献[5-7]研究了不同参数情况下的均匀分布问题及参数估计,得到了很多有意义的结论.文献[8-11]讨论了均匀分布中统计量的分布、估计及其相应性质.
本文研究一般均匀分布 U(θ1,θ2)的参数估计,讨论参数 θ1,θ2的优效性,给出参数 θ1,θ2的最小方差无偏估计.
[9] 谭毓澄.均匀分布三个统计量的概率分布[J].科技通报,2018,34(6):5-11.
[10] 郝玉芹.均匀分布场合下参数的极大似然估计[J].唐山学院学报,2015,28(6):17-18.
[11] 时凌,张琼,时义梅.椭圆域上均匀分布的参数估计及优效性[J].内蒙古民族大学学报(自然科学版),2018,33(2):128-133.
4 小结
讨论了均匀分布U(θ1,θ2)的参数估计,得到了参数的数学期望、方差、无偏估计和最小方差无偏估计等.下一步应该将均匀分布问题的研究推广到二维或者更高维的均匀分布问题.
参考文献:
【相关文献】
[1] 梁之舜,邓集贤,杨维权,等.概率论及数理统计(上、下册)[M].北京:高等教育出版社,2009.
[2] 盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高Байду номын сангаас教育出版社,2001.