统计学 第2章 统计数据的描述
统计学之统计数据的描述
则必然取2,而不能取其他
离散系数
离散系数
(coefficient of variation)
1. 标准差与其相应的均值之比 2.对数据相对离散程度的测度 3.消除了数据水平高低和计量单位的影
响
4v.用 较于对不同组别数v据s 离散程xs度的比
【 例 】某管理局抽查了所属的8家企业 ,其产品销售数据如表。试比较产品销售 额与销售利润的离散程度
累积的收入百分比
绝对公平线
A B
累积的人口百分比
基尼系数
1. 20世纪初意大利经济学家基尼(G. Gini)根据
洛伦茨曲线给出了衡收入分配平均程度的指
标 基尼系数=
A
A B
2. A表示实际收入曲线与绝对平均线之间的面积 3. B表示实际收入曲线与绝对不平均线之间的面
积
A B
• 如果A=0,则基尼系数=0,表示收入绝对 平均
一般用x表示变量;用f表示频数(次数) 。
2.1.3 次数分配图
分组数据—直方图和折线图
Excel
用直方形的宽度和高度来表示次数分 布的图形。
绘制直方图时,横轴表示各组组限, 纵轴表示次数(一般标在左方)和比 率(或频率,一般标在右方)。
分组数据的图示
我一眼就看 出来了,销 售量在170~ 180之间的天 数最多!
1. 一组数据中可以自由取值的数据的个数
2. 当样本数据的个数为 n 时,若样本均值x 确定后,只有n-1个数据可以自由取值,其
中必有一个数据则不能自由取值
3.
例如,样
x3=9,则
本有
x
3个数值,即
= 5。当 x
x=1=52,确x定2=4后,,x
1
医学统计学-第二章 统计描述
1. 首先对资料作分布类型的判定; 2. 针对分布类型先用合适的指标描述:
均值、标准差;常记录为 X S
中位数、四分位间距; 常录为M(Ql, Qu)
一、集中趋势:用于描述一组计量资料的集中位置, 说明这种变量值大小的平均水平(average)表示。
频 数
身高(cm)
图3.1 某市100名8岁男童身高(cm)的频数分布
(三)频数表的用途:
1.揭示频数的分布特征
频 数
分布 特征
身高(cm)
图3.1 某市100名8岁男童身高(cm)的频数分布
集中趋势
(central tendency)
离散趋势
(tendency of dispersion)
集中趋势与离散趋势结合能全面反映频数的分布特征
2.揭示频数的分布类型
对称 分布
频数 分布
正偏
非对称 分布
负偏
集中部位在中部,两 端渐少,左右两侧的
基本对称,为对称 (正态)分布。
集中部位偏于较小 值一侧(左侧),较大 值方向渐减少,为
正偏态分布。
集中部位偏于较大 值一侧(右侧),较 小值方向渐减少,
为负偏态分布。
(2) 定量资料的描述指标
描述指标: 集中趋势:
累计频数 (4) 1 6 14 31 54 75 89 96 99 100 100
累计频率 (5) 0.01 0.06 0.14 0.31 0.54 0.75 0.89 0.96 0.99 1.00 1.00
频数分布图(frequency distribution figure) :
根据频数分布表,以变量值为横坐标,频数为纵坐 标,绘制的直方图。
【统计学】04 第二章 定量资料的统计描述
频率(%)
30
25
直条图
20
15
10
5
0
0
1
2
3
4
5
>5
产前检查次数
图2-1 1998年某地96名孕妇产前检查次数频率分布
8
二、连续型定量变量的频率分布
例2-2 抽样调查某地120名18~35岁健康男性居民血清铁含量(μmmo/L),数 据如下。试编制血清铁含量的频率分布表。
首先,分析资料类型? 定量数据---连续型
表211998年某地96名孕妇产前检查次数频率分布检查次数检查次数11频数频数22频率频率33累计频数累计频数44累计频率累计频率11132623124273115135271240125112235618496421152293656358751000合计961000图211998年某地96名孕妇产前检查次数频率分布1015202530离散型定量变量的频率分布图可用直条图表达以等宽直条的高度表示各组频率的多少直条图二连续型定量变量的频率分布例22抽样调查某地120名1835岁健康男性居民血清铁含量mmol数据如下
频数
25 20 15 10
5 0
0
20
40
60
80
100
120
140
滴度倒数
25
20
15
f 10
5
0
0
0.5
1
1.5
2
2.5
lgX
23
3、计算公式:直接法和频数表法。
(1)直接法 公式:
G n X1 X2 X3 Xn
对数的形式为
G lg 1 lg X1 lg X 2 lg X n lg 1 lg X
统计学 第2章 统计数据的描述
第2章统计数据的描述练习:2.1为评价家电行业售后服务的质量,随机抽取了由100家庭构成的一个样本。
服务质量的等级分别表示为:A.好;B.较好;C.一般;D.差;E.较差。
调查结果如下:B EC C AD C B A ED A C B C DE C E EA DBC C A ED C BB ACDE A B D D CC B C ED B C C B CD A C B C DE C E BB EC C AD C B A EB ACDE A B D D CA DBC C A ED C BC B C ED B C C B C(1) 指出上面的数据属于什么类型;(2)用Excel制作一张频数分布表;(3) 绘制一张条形图,反映评价等级的分布。
2.2某行业管理局所属40个企业2002年的产品销售收入数据如下(单位:万元):152 124 129 116 100 103 92 95 127 104105 119 114 115 87 103 118 142 135 125117 108 105 110 107 137 120 136 117 10897 88 123 115 119 138 112 146 113 126(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率;(2)如果按规定:销售收入在125万元以上为先进企业,115万~125万元为良好企业,105万~115万元为一般企业,105万元以下为落后企业,按先进企业、良好企业、一般企业、落后企业进行分组。
2.3某百货公司连续40天的商品销售额如下(单位:万元):41 25 29 47 38 34 30 38 43 4046 36 45 37 37 36 45 43 33 4435 28 46 34 30 37 44 26 38 4442 36 37 37 49 39 42 32 36 35根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
统计学PPT第二章:描述资料
▪ 众数不一定存在,也不一定唯一 ▪ 事实上,连续型变量很难精确地找到众数
▪ 分布
众数位置
8
6
frequency
4
2
7
13 17 20 23 26 29 32 35 38 42
49
61
james
众数
▪ 位置:最多分布为9 ▪ 众数:33
xj 25, xd 33
分位数
▪ q分位数:观测值从小到大排序后,q等分,处 于分界点上的数
• 二分位数(中位数) • 三分位数(tertiles) • 四分位数(quartiles) • 五分位数(quintiles) • 六分位数(sextiles) • 十分位数(deciles) • 十二分位数(duo-deciles) • 二十分位数(vigintiles) • 百分位数(percentiles) • 千分位数(permilles)
右偏
正态分布(normal distribution)
▪ 也叫高斯分布(gaussian distribution)是一 种完美的、对称的钟型分布,可以用函数精确 地表达出来
▪ 实践中大量的变量逼近正态分布,换而言之, 一个变量大约成正态分布才是正常(normal) 的
杜兰特
10 15 20 25 30
詹姆斯
60
50
40
james
30
20
10
0
20
40
60
80
100
no
杜兰特
50
40
durant
30
20
0
20
40
60
80
100
统计数据的描述(统计学)
可以添加误差线来表示数据的波动范 围。
适用于展示定类变量和定比变量的数 据,如示时间序列数 据的变化趋势,便于 观察数据随时间的变 化规律。
可以添加趋势线来预 测未来的发展趋势。
适用于展示定比变量 的数据,如某品牌在 不同年份的销售数据。
饼图
用以展示分类数据的占比关系, 便于比较不同类别之间的比例大
在统计学中,许多随机变量遵循正态分布,例如人类的身高、考试分数 等。
偏态分布
偏态分布是指数据分布不对称的情况, 即数据偏向某一方向。
偏态分布的原因可能是数据本身的特性 偏态分布的描述需要使用中位数、均值
或测量误差。
和众数等统计量来全面了解数据特征。
峰态分布
峰态分布是指数据分布的形状 较为尖锐或平坦的情况。
峰态分布的判断可以使用峰 度系数来衡量,该系数描述 了数据分布的陡峭程度。
在峰态分布中,数据值在均值 附近较为集中,远离均值的数 据较少,形成较为尖锐或平坦
的分布形状。
05
数据的异常值处理
识别异常值的方法
统计检验法
通过统计检验,如Z分数、IQR等方 法,识别出异常值。
经验判断法
根据业务经验和专业知识,判断某些 数据是否异常。
小。
适用于展示定类变量的数据,如 某公司各部门的销售额占比。
可以添加图例来解释各部分所代 表的含义。
散点图
用以展示两个变量之间的相关 关系,便于发现变量之间的关 联和趋势。
适用于展示定比变量的数据, 如广告投入与销售额之间的关 系。
可以添加回归线来表示变量之 间的线性关系。
03
统计数据的数值描述
THANKS
感谢观看
统计数据的描述(统 计学)
统计学第二章计量资料的统计描述
02
统计数据整理与展示方法
数据清洗与预处理技巧
80%
缺失值处理
根据数据的分布情况和实际背景 ,选择合适的缺失值填充方法, 如均值、中位数、众数等。
100%
异常值处理
采用箱线图、散点图等方法识别 异常值,并根据实际情况选择删 除、替换或保留。
分类
根据测量水平的不同,计量资料可分为离散型和连续型两类。离 散型数据只能取整数值,如人口数、医院床位数等;连续型数据 则可以取实数范围内的任何值,如身高、体重等。
计量资料特点分析
数值性
计量资料以数值形式表示,具有数量化的特点,便 于进行数学运算和统计分析。
连续性
连续型计量资料在实数范围内可以取任意值,数据 分布的连续性使得统计推断更为精确。
06
统计图表在数据可视化中应用
常见统计图表类型介绍
条形图(Bar Chart)
用于展示分类数据之间的比较,横轴表示分类,纵轴表示数量或比例。
折线图(Line Chart)
用于展示时间序列数据或连续性数据的趋势变化,横轴表示时间或类 别,纵轴表示数量或比例。
散点图(Scatter Plot)
用于展示两个变量之间的关系,横轴和纵轴分别表示两个变量,点的 位置表示变量的取值。
一组观察值中出现次数最多的数。
计算方法
应用场景
中位数计算需先将数据排序,然后取中间 位置的数;众数计算则是统计各数值出现 的次数,取出现次数最多的数。
适用于各种类型的数据,尤其适用于偏态 分布数据。中位数和众数对极端值不敏感 ,因此能较好地反映数据的集中趋势。
不同集中趋势指标比较
算术平均数、中位数和 众数都是描述数据集中 趋势的指标,但各有特 点。
统计学第二章
按性别分组 男生 女生 合计
人数 30 20 50
百分比 % 60 40 100
三、按数量标志分组
按照数量或数值等定量指标分组,称为按数量 标志分组。
(1)单变量分组:一个变量值为一组,适合离散 变量,且变量值较少。步骤是先排序再分组。 (2)组距分组:
将全部变量值划分为若干区间,并将这一区间的变量值 作为一组,适用于连续变量或变量值较多的情况。 需要遵循“不重不漏”的原则,可采用等距分组,也可 采用不等距分组。
2.1 统计数据的整理
2.1.0 2.1.1 2.1.2 2.1.3 2.1.4 数据的预处理 统计数据的分组 次数分配 次数分配直方图 洛伦茨曲线
2.1.0 数据的预处理
一、数据的审核 对原始数据,审核完整性和准确性。前者指 调查单位是否遗漏、项目是否齐全等;后者 指数据是否真实、是否错误等。方法是逻辑 检查和计算检查。 对二手数据审核完整性和准确性外,着重审 核数据的适用性和时效性。前者应清楚数据 的来源、口径和背景,后者应注意数据的时 间,使用最新的数据。
当f-1=f+1时如图(a),当f-1>f+1时如图(b), 当f-1<f+1时如图(c)。
(a)
(b)
(c)
②公式计算:
上限公式
f f 1 M0 U ( f f 1) ( f f f f 1 M0 L ( f f 1) ( f f
1
2.1.2 次数分配
对于例2-1采用组距分组,计算组数K=1+1g30/ 1g2=5(组),组距 =(128-84)/ 5=8.8,组距取10件,整理成频数分布表2-3。
统计学习题1
第2章统计数据的描述练习:2.1为了确定灯泡的使用寿命(小时),在一批灯泡中随机抽取100只进行测试,所得结果如下:700 716 728 719 685 709 691 684 705 718706 715 712 722 691 708 690 692 707 701708 729 694 681 695 685 706 661 735 665668 710 693 697 674 658 698 666 696 698706 692 691 747 699 682 698 700 710 722694 690 736 689 696 651 673 749 708 727688 689 683 685 702 741 698 713 676 702701 671 718 707 683 717 733 712 683 692693 697 664 681 721 720 677 679 695 691713 699 725 726 704 729 703 696 717 688(1)利用计算机对上面的数据进行排序;(2)以组距为10进行等距分组,整理成频数分布表,并绘制直方图;(3)绘制茎叶图,并与直方图作比较。
2.2某百货公司6月份各天的销售额数据如下(单位:万元):257 276 297 252 238 310 240 236 265 278271 292 261 281 301 274 267 280 291 258272 284 268 303 273 263 322 249 269 295(1)计算该百货公司日销售额的均值、中位数和四分位数;(2)计算日销售额的标准差。
2.3在某地区抽取的120家企业按利润额进行分组,结果如下:按利润额分组(万元)企业数(个)200~300 19300~400 30400~500 42500~600 18600以上11合计120计算120家企业利润额的均值和标准差。
统计学教案统计数据的描述与分析
统计学教案统计数据的描述与分析主题:统计学教案——统计数据的描述与分析引言:统计学是一门研究如何收集、分析和解释数据的学科。
在现代社会中,统计学在各个领域都起着重要作用,帮助我们了解和解释各种现象。
本教案将介绍统计学中数据的描述和分析方法,以及如何运用这些方法进行实际问题的解决。
一、数据的描述在统计学中,我们经常需要描述数据的特征,以便更好地理解和分析数据。
以下是几种常用的描述统计量:1. 平均数:平均数是数据的总和除以观测次数的结果。
它是最直观也是最常用的描述统计量。
2. 中位数:中位数是将数据按照大小顺序排列后,位于中间位置的数值。
3. 众数:众数是数据中出现次数最多的数值。
4. 极差:极差是数据最大值与最小值之间的差异。
5. 方差:方差表示数据的离散程度,是各个观测值与平均数之差的平方的平均值。
6. 标准差:标准差是方差的平方根,用于度量数据分布的广度。
二、数据的分析数据分析是统计学的核心内容,通过分析数据可以得出结论和推断。
以下是几种常用的数据分析方法:1. 频率分析:频率分析是按照某个变量的取值进行分类,然后统计每个分类的频数。
2. 相关分析:相关分析用于判断两个变量之间的关系和相关性。
常用的相关分析方法有皮尔逊相关系数和斯皮尔曼相关系数。
3. 回归分析:回归分析用于研究一个或多个自变量对因变量的影响程度和方向。
4. 置信区间:置信区间是用来估计未知参数真值区间的统计量。
通过计算得出的置信区间可以帮助我们对未知参数进行推断。
小结:统计学作为一门重要的学科,提供了丰富的工具和方法来描述和分析数据。
数据的描述能够帮助我们理解数据的特征,数据的分析则能够帮助我们得出结论和推断。
通过学习统计学,我们可以更好地应用这些知识解决实际问题,提高数据分析的准确性和效率。
参考文献:1. 劳伦斯·S.沃尔斯(2013),《统计学导论》。
2. 陈忠进,王洪敏(2017),《应用统计学》。
注:本教案属于纯粹的学术内容,与任何政治、色情等不相关。
医学统计学 第二章 计量资料的统计描述
肌红蛋白含量
人数
0~
2
5~
3
10~
7
15~
9
20~
10
25~
22
30~
23
35~
14
40~
9
45~50
2
18
人数
25 20 15 10
5 0
2.5 12.5 22.5 32.5 42.5 52.5 血 清 肌 红 蛋 白(μg / m L)
图 2-3 101 名 正 常 人 血 清 肌 红 蛋 白 的 频 数 分 布
医学统计学 第二章 计量资料的统计 描述
计量资料(定量资料、数值变量资料) 总体:有限或无限个(定量)变量值 样本:从总体随机抽取的n个变量值:
X1,X2,X3,……,Xn
n为样本例数(样本大小、样本含量)
2
统计描述——描述其分布规律 1、用频数分布表(图)
要求:大样本 如 n〉30
2、用统计指标 描述 集中趋势 离散趋势
6
➢制表步骤 了解分布
1. 求极差(range) 极差也称全 距,即最大值和最小值之差,记作R。 本例
R 5 .7 1 2 .3 5 3 .3 6 ( m m o l/L )
7
2.确定组距(i) :
组段数通常取组 10-15组 本例组距
i 3 .3 6 /1 0 0 .3 3 6 0 .3 0
累计频率(%) (4)
0
402
402
35.80
1
330
732
65.18
2
232
964
85.84
3
118
1082
96.35
4
27
统计学第2章 统计数据的描述(1)
(4)组中值:上下限之间中点的值。
组中值=(上限+下限)/2=上限-组距/2 =下限+组距/2
“××以上”、“××以下”这样的组叫开口组。一般假 定开口组的组距与其相邻组的组距相等。其组中值计算如下: 缺下限最小组的组中值=上限-相邻组组距/2 缺上限最大组的组中值=下限+相邻组组距/2 见第37页的表2.15
第三节 统计整理
一、统计整理的概念和步骤
概念:统计整理是根据统计研究的目的和要求,把统计调查 从而得到反映事物总体特征资料的过程。
步骤: 第一,统计资料审核。包括及时性(整个工作期限、搜 集资料的时间、资料所属的时间);准确性(事实求地反映 实际情况、计算正确);完整性(规定应调查的总体单位、 每个调查单位应调查的内容)等方面的审核。 第二,统计分组 第三,统计汇总 第四,编制统计表或绘制统计图
提供统计数据的部分政府网站
美国政府机构 人口普查局 联邦储备局 预算编制办公室 商务部 网 址 数据内容
人口和家庭等 http://www.bog.frb.fed. 货币供应、信誉、 us 汇率等 http://www.whitehouse. 财政收入、支出、 gov/omb 债券等 商业、工业等
统计数据的来源主要有两个: 一是直接来源,即来源于直接的调查和科学试验, 得到第一手数据。 二是间接来源,即来源于别人调查或试验的数 据,得到第二手数据。
见第8-9页
一、统计数据的直接来源 1、普查
(1)概念 为了某一特定目的而专门组织的一次性全面调查。 (2)特点 ①具有一次性和周期性。
“一次性”是指调查现象在某一时点上的数据。
(1)对称分布:以变量值的中点为对称轴的对称分布。
(2)偏态分布:
卫生统计学课件 第二章 计量资料的统计描述(共33张PPT)
●计算公式: 13cm之间的占该地7岁男童的百分 比。
∑f · X=1638
双侧界值:P 2.5 ~ P 97..5 定义:又称参考值范围,是指特定健康人群的解剖、生理、生化等各种数据的波动范围。
特征: ∑(X- X)=0 估计误差之和为0。
估计的方法: 1、正态分布法
2、百分位数法
28
1.正态分布法
应用条件:正态分布或近似正态分布资料 ●计算 (双侧) 95% 正常值(医学参考值)范围公式:
(x1.96 · S,x1.96 · S )
即(x±1.96 · S ) 例:
1.96 × 3.79 )
即(156.41 cm , 171.27 cm )
1998年100名18岁健康女大学生身高的频数分布
数。 (3) 估计该地7岁男童身高在107.
确定组段:第一组段包括最小值,如本例为154 89 cm 取整数 2 cm 应用:单位不同的多组数据比较
13cm之间比的。占该地7岁男频童的数百分表(频数分布):表示各组及它们对
注意:合理分组,才能求均数,否则没有意义。
96 ·S,x 1. Q = Qu 一 Ql
单侧 上界: P 95
单侧 下界: P 5
31
习题:
1.各观察值加同一数后: A.均数不变,标准差改变 B.均数改变,标准差不
变
2.用均数和标准差可全面描述:
3.正态分布曲线下,从均数u 到u 的面积为; A.95% B.45% C. 97.5% D.47.5%
19
相关概念:离均差、离均差平方和、方差(2 S2 ) 标准差的符号: S
《医学统计学》第二章定量数据的统计描述
累积频数
(3) 27
196 363 457 538 580 608 622 626 629 630
-
累积频率(%)
(4) 4.29 31.11 57.62 72.54 85.40 92.06 96.51 98.73 99.37 99.84 100.00
资料如表,试计算其中位数。
某地630名正常女性血清甘油三酯含量(mmol/L)
甘油三酯(mmol/L)
(1) 0.10~ 0.40~ 0.70~ 1.00~ 1.30~ 1.60~ 1.90~ 2.20~ 2.50~ 2.80~ 3.10~
合计
频数
(2) 27 169 167 94 81 42 28 14 4 3 1
练习
例 8名食物中毒患者的潜伏期分别为1,4,3,3,2,5,8,16小时,
求中位数。
n=8,为偶数
M
1
2
(
x (
8 2
)
x (
8
1)
)
2
1 2 ( x4
x5 )
1 3 4
2
3.5(小时)
例 某传染病11名患者的潜伏期(天)分别为1,3,2,2,3,7,5,6,
4,7,9,求中位数。
n=11,为奇数 M xn1 2 x(111) x6 4(天 ) 2
偏态分布
正偏态 负偏态
正偏态:集中位置偏向数值小的一侧 负偏态:集中位置偏向数值大的一侧
医学统计学(第7版)
正 态 分 布
医学统计学(第7版)
正偏态
集中位置偏向 数值小的一侧
负偏态
集中位置偏向 数值大的一侧
(麻疹年龄分布)
(肺癌年龄分布)
统计学(第四版)袁卫 庞皓 贾俊平 杨灿 (02)第2章 统计数据的描述(袁卫)
n
2. 各变量值与平均数的离差平方和最小
(x
i 1
5 - 36
i
x ) min
2
统计学
STATISTICS
几何平均数
统计学
STATISTICS
几何平均数
(geometric mean)
n 个变量值乘积的 n 次方根 2. 适用于对比率数据的平均 3. 主要用于计算平均增长率 4. 计算公式为
QM
25%
QU
2. 不受极端值的影响 3. 主要用于顺序数据,也可用于数值型数据, 但不能用于分类数据
5 - 27
统计学
STATISTICS
四分位数
(位置的确定)
n 1 QL 位置 4 Q 位置 3(n 1) U 4 n QL 位置 4 Q 位置 3n U 4
去掉大小两端的若干数值后计算中间数 据的均值 2. 在电视大奖赛、体育比赛及需要人们进行 综合评价的比赛项目中已得到广泛应用 3. 计算公式为
1.
x
5 - 41
x( n 1) x( n 2) x( n n ) n 2 n
1 2
n 表示观察值的个数;α表示切尾系数,0
f
i
i i
样本平均数
5 - 34
f
i 1
i
统计学
STATISTICS
加权平均数 (例题分析)
x
x f
i 1 k
k
i i
f
i 1
i
3110 103.67 (件) 30
5 - 35
统计学
STATISTICS
平均数
统计学第三版书后答案第二章
第2章统计数据的描述●9.某百货公司6月份各天的销售额数据如下(单位:万元):257 276 297 252 238 310 240 236 265 278271 292 261 281 301 274 267 280 291 258272 284 268 303 273 263 322 249 269 295(1)计算该百货公司日销售额的均值、中位数和四分位数;(2)计算日销售额的标准差。
解:(1)将全部30个数据输入Excel表中同列,点击列标,得到30个数据的总和为8223,于是得该百货公司日销售额的均值:(见Excel练习题2.9)x=xn∑=822330=274.1(万元)或点选单元格后,点击“自动求和”→“平均值”,在函数EVERAGE()的空格中输入“A1:A30”,回车,得到均值也为274.1。
在Excel表中将30个数据重新排序,则中位数位于30个数据的中间位置,即靠中的第15、第16两个数272和273的平均数:M e=2722732+=272.5(万元)由于中位数位于第15个数靠上半位的位置上,所以前四分位数位于第1~第15个数据的中间位置(第8位)靠上四分之一的位置上,由重新排序后的Excel表中第8位是261,第15位是272,从而:Q L=261+2732724-=261.25(万元)同理,后四分位数位于第16~第30个数据的中间位置(第23位)靠下四分之一的位置上,由重新排序后的Excel表中第23位是291,第16位是273,从而:Q U=291-2732724-=290.75(万元)。
(2)未分组数据的标准差计算公式为:s =302 1()1iix xn=--∑利用上公式代入数据计算是个较为复杂的工作。
手工计算时,须计算30个数据的离差平方,并将其求和,()再代入公式计算其结果:得s=21.1742。
(见Excel练习题2.9)我们可以利用Excel表直接计算标准差:点选数据列(A列)的最末空格,再点击菜单栏中“∑”符号右边的小三角“▼”,选择“其它函数”→选择函数“STDEV”→“确定”,在出现的函数参数窗口中的Number1右边的空栏中输入:A1:A30,→“确定”,即在A列最末空格中出现数值:21.17412,即为这30个数据的标准差。
医学统计学统计描述
缺点:仅考虑两端数据的差异,未考虑其它数据的变异情 况,不能全面反映一组资料的离散程度,受样本含量n的 影响较大,且不稳定,易受极端值的影响。
四分位数间距(inter-quartile range)
▪ 定义:把全部变量值值分为四等分的分位数,其
分位数。它是一个位置指标。 Px ▪ 中位数是第50百分位数,用P50表示。 ▪ 第25,第75,第95百分位数记为P25, P75, P95
是统计学上常用的指标。
百分位数(percentile)
▪ 百分位数(percentile)
X%
PX
(100-X)%
▪ 50%分位数就是中位数 ▪ 25%,75%分位数称四分位数(quartile)
方差(variance)
▪ 定义:离均差平方和的均数 ▪ 表示法:总体方差用2表示;样本方差用
S2表示
▪ 计算公式:
▪ 意义: 方差值越大,说明变异程度越大。
▪ 特点:包括了每个变量值与均值的差异,
但该指标的单位为平方。
标准差(standard deviation, sd) :
▪ 定义:方差开平方,取平方根的正值,每
▪ 例 对于某项风险较高的新手术术后的生存 时间进行跟踪,共调查了7人, 6人死亡之 前分别生存了5天、6天、10天、16天、25 天、29天,还有一人术后30天随访时仍存 活。
▪ 本资料属于“开口”资料。
▪ 本例数据已经按从小到大的升序排列,n=7, 为奇数,其中位数为16天。
2. 频数表法(n较大,已编成频数表)
62.05
1 3 1
79.00 72.25
409.75 4.06(mmol / L) 101
统计学(贾俊平第八版)课后思考题及答案
统计学(贾俊平第八版)课后思考题及答案第一章:统计学基本概念和方法思考题1:什么是统计学?统计学的研究对象是什么?统计学是从观察数据的现象和规律出发,运用数理统计方法进行概括、分析和推断的科学。
统计学研究的对象是数据的概括和整体行为特征,即基本统计量和统计分布。
答案:统计学是一门应用数学的学科,其研究范围包括数据的收集、整理、描述、分析和推断等方面。
统计学通过运用数理统计方法,帮助我们从观察到的数据中发现其中的规律和趋势,从而对现象和问题作出合理的判断和推断。
统计学的研究对象主要包括两个方面。
一方面,统计学关注数据的概括和整体行为特征,例如对数据集的中心趋势(平均数、中位数)和离散程度(标准差、方差)进行描述和分析,这些统计量可以帮助我们对数据进行概括和比较。
另一方面,统计学研究数据的统计分布,即数据的分布形状和特征,例如正态分布、偏态分布等,这些分布有助于我们根据数据的特点进行进一步的推断和推测。
第二章:统计学的数据描述思考题2:试举例说明数据分为哪些类型?数据分为定性数据和定量数据两种类型。
答案:数据可以分为定性数据和定量数据两种类型。
定性数据是指不能用数字表示的数据,其特征主要是描述性的,例如性别、喜好等。
定性数据通常采用文字或符号进行记录和表达。
定量数据是指可以用数字表示的数据,其特征主要是数量性的,例如身高、体重等。
定量数据可以进行数学运算和统计分析。
举例来说,一个学生调查问卷中的“性别”以及“对某个电影的评价(好、中、差)”是属于定性数据;而问卷中的“年龄”和“观看该电影的次数”则是属于定量数据。
第三章:概率与概率分布思考题3:什么是概率?请以一个例子来解释。
概率是指某个事件发生的可能性。
它在统计学中用于描述随机现象的规律性和不确定性。
答案:概率是描述某个事件发生的可能性的数值。
概率可以从0到1之间的任何一个数值,其中0表示不可能发生,1表示肯定会发生。
举个例子来说明,假设有一个标准的骰子,每个面上有1到6的数字。
《统计学》2数据的描述
第二章统计数据的描述【说明】(一)统计数据的分类、表达形式1.按数据的计量尺度不同划分•分类数据---列名尺度、定类尺度、名义尺度的计量结果对事物进行分类的结果,数据表现为类别,用文字来表述⏹表现为类别,用文字来表述⏹•顺序数据----定序尺度的计量结果对事物类别顺序的测度⏹数值型数据----定距尺度、定比尺度的计量结果⏹对事物的精确测度⏹结果表现为具体的数值⏹2.按采集方法划分1、观测数据(observational data)2、试验数据(experimental data)3.按时间状况划分•截面数据(cross-sectional data)在相同或者近似相同的时间点上采集的数据⏹描述现象在某一时刻的变化情况⏹•时间序列数据(time series data)在不同时间上采集到的数据⏹描述现象随时间变化的情况⏹(二)数据的表现形式绝对数按其所反映的时间状况不同,划分为:时期数、时点数⏹(计量单位有实物单位、价值单位、复合单位)相对数包括:比例(Proportion)、比率(Ratio)⏹(计量单位有百分比、千分比)统计数据的描述过程一、第一个环节——统计数据的搜集(一)统计数据的来源(渠道)(二)统计数据的搜集方式、方法(三)统计数据的质量要求(评价标准)1. 精度:最低的抽样误差或者随机误差2. 准确性:最小的非抽样误差或者偏差3. 关联性:满足用户决策、管理和研究的需要4. 及时性:在最短的时间里取得并发布数据5. 一致性:保持时间序列的可比性6. 最低成本:以最经济的方式取得数据二、第二个环节——统计数据的整理【重点】数据的整理与显示的基本原则:要弄清所面对的数据类型,因为不同类型的数据,所采取的处理方式和方法是不同的;•对分类数据和顺序数据主要是进行分类整理;•对数值型数据则主要是进行分组整理;•适合于低层次数据的整理和显示方法也适合于高层次的数据;但适合于高层次数据的整理和显示方法并不适合于低层次的数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章统计数据的描述练习:2.1为评价家电行业售后服务的质量,随机抽取了由100家庭构成的一个样本。
服务质量的等级分别表示为:A.好;B.较好;C.一般;D.差;E.较差。
调查结果如下:B EC C AD C B A ED A C B C DE C E EA DBC C A ED C BB ACDE A B D D CC B C ED B C C B CD A C B C DE C E BB EC C AD C B A EB ACDE A B D D CA DBC C A ED C BC B C ED B C C B C(1) 指出上面的数据属于什么类型;(2)用Excel制作一张频数分布表;(3) 绘制一张条形图,反映评价等级的分布。
2.2某行业管理局所属40个企业2002年的产品销售收入数据如下(单位:万元):152 124 129 116 100 103 92 95 127 104105 119 114 115 87 103 118 142 135 125117 108 105 110 107 137 120 136 117 10897 88 123 115 119 138 112 146 113 126(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率;(2)如果按规定:销售收入在125万元以上为先进企业,115万~125万元为良好企业,105万~115万元为一般企业,105万元以下为落后企业,按先进企业、良好企业、一般企业、落后企业进行分组。
2.3某百货公司连续40天的商品销售额如下(单位:万元):41 25 29 47 38 34 30 38 43 4046 36 45 37 37 36 45 43 33 4435 28 46 34 30 37 44 26 38 4442 36 37 37 49 39 42 32 36 35根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
2.4为了确定灯泡的使用寿命(小时),在一批灯泡中随机抽取100只进行测试,所得结果如下:700 716 728 719 685 709 691 684 705 718706 715 712 722 691 708 690 692 707 701708 729 694 681 695 685 706 661 735 665668 710 693 697 674 658 698 666 696 698706 692 691 747 699 682 698 700 710 722694 690 736 689 696 651 673 749 708 727688 689 683 685 702 741 698 713 676 702701 671 718 707 683 717 733 712 683 692693 697 664 681 721 720 677 679 695 691713 699 725 726 704 729 703 696 717 688(1)利用计算机对上面的数据进行排序;(2)以组距为10进行等距分组,整理成频数分布表,并绘制直方图;(3)绘制茎叶图,并与直方图作比较。
2.5下面是北方某城市1~2月份各天气温的记录数据:-3 2 -4 -7 -11 -1 7 8 9 -6 -7-14 -18 -15 -9 -6 -1 0 5 -4 -9 -3-6 -8 -12 -16 -19 -15 -22 -25 -24 -19 -21-8 -6 -15 -11 -12 -19 -25 -24 -18 -17 -24-14 -22 -13 -9 -6 0 -1 5 -4 -9 -3-3 2 -4 -4 -16 -1 7 5 -6 -5(1)指出上面的数据属于什么类型;(2)对上面的数据进行适当的分组;(3)绘制直方图,说明该城市气温分布的特点。
2.6下面是某考试管理中心对2002年参加成人自学考试的12000名学生的年龄分组数据:年龄18~19 21~21 22~24 25~29 30~34 35~39 40~44 45~59% 1.9 34.7 34.1 17.2 6.4 2.7 1.8 1.2(1)对这个年龄分布作直方图;(2)从直方图分析成人自学考试人员年龄分布的特点。
2.7下面是A、B两个班学生的数学考试成绩数据:A班:44 57 59 60 61 61 62 63 63 6566 66 67 69 70 70 71 72 73 7373 74 74 74 75 75 75 75 75 7676 77 77 77 78 78 79 80 80 8285 85 86 86 90 92 92 92 93 96B班:35 39 40 44 44 48 51 52 52 5455 56 56 57 57 57 58 59 60 6161 62 63 64 66 68 68 70 70 7171 73 74 74 79 81 82 83 83 8485 90 91 91 94 95 96 100 100 100(1)将两个班的考试成绩用一个公共的茎制成茎叶图;(2)比较两个班考试成绩分布的特点。
2.81997年我国几个主要城市各月份的平均相对湿度数据如下表,试绘制箱线图,并分析月份北京长春南京郑州武汉广州成都昆明兰州西安1 49 70 76 57 77 72 79 65 51 672 41 68 71 57 75 80 83 65 41 673 47 50 77 68 81 80 81 58 49 744 50 39 72 67 75 84 79 61 46 705 55 56 68 63 71 83 75 58 41 586 57 54 73 57 74 87 82 72 43 427 69 70 82 74 81 86 84 84 58 628 74 79 82 71 73 84 78 74 57 559 68 66 71 67 71 81 75 77 55 6510 47 59 75 53 72 80 78 76 45 6511 66 59 82 77 78 72 78 71 53 7312 56 57 82 65 82 75 82 71 52 72资料来源:《中国统计年鉴1998》,中国统计出版社1998,第10页。
2.9某百货公司6月份各天的销售额数据如下(单位:万元):257 276 297 252 238 310 240 236 265 278271 292 261 281 301 274 267 280 291 258272 284 268 303 273 263 322 249 269 295(1)计算该百货公司日销售额的均值、中位数和四分位数;(2)计算日销售额的标准差。
2.10甲乙两个企业生产三种产品的单位成本和总成本资料如下:产品名称单位成本(元)总成本(元)甲企业乙企业ABC152030210030001500325515001500比较哪个企业的总平均成本高?并分析其原因。
2.11在某地区抽取的120家企业按利润额进行分组,结果如下:按利润额分组(万元)企业数(个)200~300 19300~400 30400~500 42500~600 18600以上11合计120计算120家企业利润额的均值和标准差。
2.12一项关于大学生体重状况的研究发现,男生的平均体重为60公斤,标准差为5公斤;女生的平均体重为50公斤,标准差为5公斤。
请回答下面的问题:(1)是男生的体重差异大还是女生的体重差异大?为什么?(2)以磅为单位(1公斤=2.2磅),求体重的平均数和标准差。
(3)粗略地估计一下,男生中有百分之几的人体重在55公斤到65公斤之间?(4)粗略地估计一下,女生中有百分之几的人体重在40公斤到60公斤之间?2.13对10名成年人和10名幼儿的身高(厘米)进行抽样调查,结果如下:成年组166 169 172 177 180 170 172 174 168 173幼儿组68 69 68 70 71 73 72 73 74 75(1)要比较成年组和幼儿组的身高差异,你会采用什么样的指标测度值?为什么?(2)比较分析哪一组的身高差异大?2.14一种产品需要人工组装,现有三种可供选择的组装方法。
为检验哪种方法更好,随机抽取15个工人,让他们分别用三种方法组装。
下面是15个工人分别用三种方法在相同的时间内组装的产品数量(单位:个):方法A 方法B 方法C164 129 125167 130 126168 129 126165 130 127170 131 126165 130 128164 129 127168 127 126164 128 127162 128 127163 127 125166 128 126167 128 116166 125 126165 132 125(1)你准备采用什么方法来评价组装方法的优劣?(2)如果让你选择一种方法,你会作出怎样的选择?试说明理由。
2.15在金融证券领域,一项投资的的预期收益率的变化通常用该项投资的风险来衡量。
预期收益率的变化越小,投资风险越低,预期收益率的变化越大,投资风险就越高。
下面的两个直方图,分别反映了200种商业类股票和200种高科技类股票的收益率分布。
在股票市场上,高收益率往往伴随着高风险。
但投资于哪类股票,往往与投资者的类型有一定关系。
(1)你认为该用什么样的统计测度值来反映投资的风险?(2)如果选择风险小的股票进行投资,应该选择商业类股票还是高科技类股票?(3)如果你进行股票投资,你会选择商业类股票还是高科技类股票?-30 0 30 60 -30 0 30 60收益率收益率(a)商业类股票(b) 高科技类股票2.16下图给出了2000年美国人口年龄的金字塔,其绘制方法及其数字说明与【例2.10】相同,试对该图反映的人口、政治、社会、经济状况进行分析。
频数25502550频数2000年美国人口年龄结构金字塔-20-10010200-4(96-00)5-9(91-95)10-14(86-90)15-19(81-85)20-24(76-80)25-29(71-75)30-34(66-70)35-39(61-65)40-44(56-60)45-49(51-55)50-54(46-50)55-59(41-45)60-64(36-40)65-69(31-35)70-74(26-30)75-79(21-25)80-84(16-20)85-89(11-15)90-94(06-10)95-99(01-05)年龄人数(百万)女男答案2.1 (1)属于顺序数据。