同济大学高等数学泰勒公式共25页文档
同济高等数学公式大全
高等数学公式导数公式:根本积分表:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππx x arshx e e e e chx shx thx e e chx ee shx x xxx xx xx ++=+-==+=-=----1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:·倍角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹〔Leibniz 〕公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
同济高等数学公式大全
高等数学公式导数公式:基本积分表:三角函数的有理式积分:一些初等函数: 两个重要极限: 三角函数公式: ·诱导公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='·和差角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式: ·半角公式: ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:定积分的近似计算: 定积分应用相关公式:空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:多元函数的极值及其求法: 重积分及其应用:柱面坐标和球面坐标: 曲线积分: 曲面积分: 高斯公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω∑∑∑∑∑Ω∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂dsA dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n ndiv )cos cos cos (...,0div ,div )cos cos cos ()(成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系: 常数项级数: 级数审敛法:绝对收敛与条件收敛: 幂级数:函数展开成幂级数: 一些函数展开成幂级数: 欧拉公式: 三角级数: 傅立叶级数:周期为l 2的周期函数的傅立叶级数: 微分方程的相关概念: 一阶线性微分方程: 全微分方程: 二阶微分方程:求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
同济大学高等数学7.泰勒公式
注意到 f (n1) ( ) e 代入公式,得
ex 1 x x2 xn e xn1
2!
n! (n 1)!
(在x与0之间).
由公式可知
ex 1 x x2 xn
2!
n!
估计误差 (设 x 0)
Rn (x)
e xn1 (n 1)!
ex xn1(0
(n 1)!
x).
取x 1, e 1 1 1 1
于是(i) Rn (x)与f (x)有相同的连续性,可导性;
(ii )
Rn (x0 )
Rn (x0) Rn(x0)
R(n) n
(
x0
)
0.
lim x x0
Rn (x) (x x0 )n
lim
x x0
Rn (x) n(x x0 )n1
lim
Rn( x)
xx0 n(n 1)( x x0 )n2
a2.
P2 (x)
f (x0 )
f (x0 )(x x0 )
f
( x0 2
)
(
x
x0
)
2
P2(x)近似f (x)的误差:
f
(x) P2 (x) (x x0 )2
0
(x x0 )
f (x)
f
(x0 )
f (x0 )(x x0 )
f
(x0 2
)
(
x
x0
)2
o(x x0 )2.
)
f
(x2 )
2
2
证:不妨设 x1
x2 ,记
x0
x1
x2 2
,有
f (x)
f (x0 )
f (x0 )(x x0 )
同济大学高等数学第六版上册第三章第三节Taylor泰勒公式
o
x0
x
LL LL
假设
0
Pn( k ) ( x0 ) = f ( k ) ( x0 ) k = 1,2,L, n
a = f ( x ),
1 ⋅ a = f ′( x ),
1 0
2!⋅a = f ′′( x )
2 0
L L , n!⋅a n = f ( n ) ( x 0 ) 1 (k ) 得 ak = f ( x0 ) ( k = 0,1,2,L , n ) k!
f ( x ) = f ( x 0 ) + f ′(ξ )( x − x 0 ) (ξ在x 0与x之间)
2.取 x 0 = 0, ξ 在0 与 x 之间,令ξ = θx
(0 < θ < 1) f ( n + 1) (θx ) n + 1 x 则余项 Rn ( x ) = ( n + 1)!
四、简单的应用
即 Rn ( x ) = o[( x − x0 )n ].
M ≤ ( x − x0 )n+1 (n + 1)!
皮亚诺形式的余项
∴ f ( x) = ∑
k =0
n
f
(k )
( x0 ) ( x − x0 )k + o[( x − x0 )n ] k!
注意:
1. 当 n = 0 时,泰勒公式变成拉氏中值公式
(n + 1) !
(1 + θ x)α −n−1 x n+1 (0 < θ < 1)
(5) f ( x) = ln(1 + x) ( x > −1) k −1 ( k − 1) ! (k ) (k = 1, 2 ,L) 已知 f ( x) = (−1) k (1 + x) 类似可得 x 2 x3 xn n −1 ln(1 + x) = x − − L + (−1) + + Rn (x) 2 3 n
同济高数(第七版)--第三章
第三章:泰勒公式以及导数运用1.泰勒公式(注意:麦克劳林公式是特殊的泰勒公式,即00=x )(1))(!!212x xxe n nx o n x +++= 证:令e x x f =)(,e f x n x x f x f x f ='''=''=')()()()()( ,那么就有1)0()0()0()0()(='''=''='f n f f f ,而根据带有佩亚诺余项的麦克劳林的公式则有)(!)0()0()0()(x x fennn xo n x f f +'+==)(!!212x xxn no n x +++ (2))()!12(!5!3sin 121253)1(x xxxm m mo m x x ++++++-=- 证:令x x f sin )(=,)2sin()()(π⋅+=n x x f n ,故 2,1,0,12,2,02sin )0()1()(=⎪⎩⎪⎨⎧+===⋅=-m m n m n n mn f π,而根据带有佩亚诺余项的麦克劳林的公式则有)(!)0()0()0()()(x x fn nn o n x f f x f +'+= ,故)()!12(!5!3)(121253)1(x xxxm m mo m x x f ++++++-=- (3))()!2(!4!21cos 2242)1(x xx x m mm o m x +++-=- 证:令x x f cos )(=,)2cos()()(π⋅+=n x x f n ,故 2,1,0,12,02,2cos )0()1()(=⎪⎩⎪⎨⎧+===⋅=-m m n mn n m n f π,而根据带有佩亚诺余项的麦克劳林的公式则有)(!)0()0()0()()(x x fn nn o n x f f x f +'+=,故)()!2(!4!21)(2242)1(x xxxm mmo m x f +++-=- (4))(!)1()1(!2)1(12)1(x x x x n n o n n x ++--+-++=+ααααααα 证:令)1()(x x f +=α,)1()1()1()()(x fnn n x +-+--=αααα ,故)1()1()0()(+--=n f n ααα ,而根据带有佩亚诺余项的麦克劳林的公式则有)(!)0()0()0()()(x x fn nn o n x f f x f +'+=,故)(!)1()1(1)(x x n no n n x x f ++--++=αααα(5))(3!2)1ln()1(132x x x x n nn o nx x ++-=+-- 证:令)1ln()(x x f +=,)1()1()!1()(1)(x f nn n n x +--=-,故)!1()0()1(1)(-⋅=--n n n f,而根据带有佩亚诺余项的麦克劳林的公式则有)(!)0()0()0()()(x x fn nn o n x f f x f +'+=,故)(3!2)()1(132x x x x n nn o nx x f +++-=-- (6)按(4-x )的幂展开多项式435)(234+-+-=x x f x x x 由32154)(23-+-='x x f x x ,23012)(2+-=''x x f x ,3024)(-='''x x f ,24)()4(=x f ,)5(0)()(≥=n x f n ,而21)4(='f ,74)4(=''f ,66)4(='''f ,根据泰勒公式得!)4()4)(4()4()()4()(n x f f x f x fnn -+-'+=(未带有余项),故)4()3()4(4321137)4(2156)(---+++-+-=x x x x x f 解:x x f 2121)(-=',x x f 2341)(--='',x x f 2583)(-=''',x f x 27)4(1615)(--=,故41)4(='f ,321)4(-=''f ,2563)4(='''f ,ξ27)4(1615)(--=f,故根据带有拉格朗日余项的泰勒公式则有)!1()(!)4()4)(4()4()()4()4(1)1()(+++-'+=--++n n x f f x f x fx f n n nn ξ)4()4()4(42732384155121641)4(412)(-----+--+=⇒x x x x x f ξ(ξ在x 与4之间)(8)求函数x x f ln )(=按)2(-x 的幂展开的带有佩亚诺余项的n 阶泰勒公式解:xf n n n n x 1)!1()()1(1)(-=--2)1(1)!1()2(1)(n n n n f -=⇒--,故根据带有佩亚诺余项的泰勒公式则有][!)2()2)(2()2()()2()2()(--+++-'+=⇒x x fnnn o n x f f x f ][81)2(212ln )()2()2()1()2(12----+⋅+--+=⇒-x x x nnnn o n x x f解:⇒=+-xfn nn n x 1)(1!)()1()1()1(1)(1!)1(--+=-n nn n f)1()1(!)1()(++-=-⇒x x fnnn n ,故根据带有拉格朗日余项的泰勒公式得)!1()(!)1()1)(1()1()()1()1(1)1()(++-+-'+-=++++n n x f f x f x fx fn n n n ξξ2112)1()1()1()1()1(1)(++++-+++--+--=⇒n n n nx x x x x f ξ在1-与x 之间。
高等数学-第三章-泰勒公式-同济大学
代入⑹式, 得
ex 1 x 1 x2 2!
1 n!
xn
e x
n 1!
xn1
0 1.
因而相应的近似表达式为
ex 1 x 1 x2 2!
1 xn. n!
当 x 0 时, 相应的误差估计式为
Rn x
e x xn1
n 1!
ex xn1,
n 1!
如果取 x 1, 即得到 e的近似表达式:
2!
f n 0 xn.
⑺
n!
上式称为函数 f x的n阶麦克劳林多项式. 而相应的误
差估计式为
Rn x
M
n 1!
x
n1 .
⑻
例2 求出函数 f x ex 的n 阶麦克劳林展开式.
解 因 f x f x f x f n x ex ,
所以: f 0 f 0 f 0 f n 0 1,
来近似表示 f x 并给出误差的具体表达式.
为了使所求出的多项式与函数 f x在数值与性质方 面吻合得更好, 进一步要求 Pn x 在点 x0处的函数值以 及它的n 阶导数值与 f x在 x0处的函数值以及它的n
阶导数值分别相等. 即
Pnk x0 f k x0 k 0,1, ,n.
e 11 1 1 . 2! n!
例3
求
y
x
x
1
在
x0
2 处的三阶泰勒展开式.
解因
y x 1 1 , y2 2,
x 1 x 1
y
x
1
12
,
y2 1, y2 2,
y
2
6,
y4
x
x
4!
15
,
y4 2 24 4!
同济第3版-高数-(3.3) 第三节 泰勒公式
(1) 泰勒中值定理及其意义
泰勒中值定理
如果函数 f( x )在含有 x 0 的某个开区间( a ,b )内具 有直到 n + 1 阶的导数,则对任一 x ( a ,b ),有
f x
f x0
f x0 x x0
1 2!
f x0 x x0 2 L
究竟有多小,即 R n( x )具体是( x - x 0 )的几阶无穷小。 由高阶无穷小阶的定义,就是要由极限
lim
xx0
Rn x x x0k
A0
去推断 k 的值有多大。
因此余项 R n( x )定量估计的问题最终归结为确定 k
的值。从计算精度考虑,自然希望 k 的值越大越好。
从形式上看
lim
于 x 和 0 之间,故可表为 = x ,0 < < 1 . 通常称此
时的泰勒公式为马克劳林公式,即
f x
f 0
f 0 x
1 2!
f 0 x 2 L
1 n!
f n 0 x n
f n1 x
n 1 !
x n1.
马克劳林公式形式简单,应用方便,且以马克劳
林公式对函数进行讨论并不会损失讨论的一般性。
(2) 多项式系数的选择及相应条件的设置 考虑在点 x = x0 的邻域内用多项式 P n( x )表示函数
f( x ),就是选择合当系数 a 0 ,a1,a 2,… , a n,使多项式 曲线 y = Pn( x )与函数曲线 y = f( x )尽可能“吻合”。
从理论和实际两个方面考虑,选择多项式 P n( x ) 的适当系数 a 0 ,a1,a 2,… , a n 在点 x 0 的邻域内表示函数 f( x )应满足两个基本要求: • 有较好的精度,使得 f( x ) P n( x ); • 能够估计误差,即能对误差 R n( x )= f( x )- P n( x )作
同济版《高等数学》 多元函数泰勒展开
同济大学的《高等数学》教材是一部经典的数学教材,其中关于多元函数的泰勒展开是数学学习者所必须掌握的重要内容。
本文将从多元函数泰勒展开的基本概念、公式推导和具体实例分析三个方面来详细介绍该内容。
一、多元函数泰勒展开的基本概念1.1 多元函数的概念多元函数是指自变量不止一个的函数,通常表示为$f(x_1, x_2,\cdots, x_n)$,其中$x_1, x_2, \cdots, x_n$为自变量,$f$为因变量。
在实际问题中,常常遇到多个自变量同时改变而导致因变量发生变化的情况,所以研究多元函数的泰勒展开对于理解函数的性质和应用具有重要意义。
1.2 泰勒展开的定义若函数$f(x)$在某点$x=a$处有各阶导数,那么$f(x)$在点$x=a$处可以展开为以$a$为中心的幂级数,即泰勒展开式:$$f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)(x-a)^2}{2!}+\cdots+\frac{f^{(n)}(a)(x-a)^n}{n!}+R_n(x)$$其中$R_n(x)$为泰勒余项。
1.3 多元函数的泰勒展开对于多元函数$f(x_1, x_2, \cdots, x_n)$,若其各阶偏导数在点$(a_1, a_2, \cdots, a_n)$处存在,那么可以利用多元函数的偏导数来推广泰勒展开式,得到多元函数的泰勒展开式:$$f(x_1, x_2, \cdots, x_n)=f(a_1, a_2, \cdots,a_n)+\sum_{i=1}^n\frac{\partial f}{\partial x_i}(a_1, a_2, \cdots, a_n)(x_i-a_i)$$$$+\sum_{i=1}^n\sum_{j=1}^n\frac{\partial^2 f}{\partialx_i\partial x_j}(a_1, a_2, \cdots, a_n)(x_i-a_i)(x_j-a_j)+\cdots+R_n(x)$$其中$R_n(x)$为多元函数的泰勒余项。
高等数学同济大学课件下第89二元泰勒公式
目录
二元泰勒公式的基本概念 二元泰勒公式的推导过程 二元泰勒公式的应用实例 二元泰勒公式的扩展与推广
二元函数的泰勒展开式
二元泰勒公式:将二元函数展开为幂级数的形式
展开式:f(x,y)=f(a,b)+(x-a)f'(a,b)+(y-b)f''(a,b)+(x-a)^2f'''(a,b)+(yb)^2f''''(a,b)+...
二元泰勒公式的扩展形式
二元泰勒公式的 定义:将二元函 数在某点附近的 局部近似为多项 式
二元泰勒公式的 扩展形式:将多 元函数在某点附 近的局部近似为 多项式
二元泰勒公式的 推广:将多元函 数在某点附近的 局部近似为多项 式,并可以推广 到更高维的情况
二元泰勒公式的 应用:在数学、 物理、工程等领 域都有广泛的应 用
收敛速度:泰勒公式的收敛速度与函数的光滑性有关
收敛性分析:通过分析泰勒公式的收敛性,可以判断泰勒公式的准确性和适用范 围
利用二元泰勒公式近似计算函数值
泰勒公式:将函数展开为多项式形式,便于计算 应用实例:计算sin(x)的近似值 计算方法:将sin(x)展开为泰勒级数,取前几项求和 误差分析:分析误差来源,提高计算精度
添加标题
二元泰勒公式在数学、物理、工程等领域有着广泛的 应用
二元泰勒公式的应用场景
数值分析:用于近似计算函数值,提高计算精度 优化问题:用于求解非线性优化问题,如最小二乘法 控制理论:用于控制系统的设计和分析,如PID控制 信号处理:用于信号的滤波、变换和压缩等处理
二元函数的泰勒级数展开式
同济高等数学公式大全
同济高等数学公式大全(总23页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高等数学公式导数公式:基本积分表:三角函数的有理式积分:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:x xarthx x x archx x x arshx e e e e chx shx thx e e chx ee shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谢谢!
25
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
▪
同济大学高等数学泰勒公式
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活—马卡 连柯(名 言网)
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华