实数平方根立方根
人教版七年级实数平方根与立方根

平方根与立方根 知识点一:算术平方根1.定义一般地,如果一个正数x 的平方等于a ,那么这个正数x 叫做a 的__________.2.表示方法a 的算术平方根记为__________,读作“根号a ”,a 叫被开方数.3.算术平方根的性质①正数a a②0的算术平方根是00=__________;③负数没有算术平方根.④a a 是非负数,即a ≥0a a ≥0.【例1-1】求下列各数的算术平方根.①10 ②25 ③6449 ④0.01 ⑤23【例1-2】设3-a 是一个数的算术平方根,那么( ).A .a ≥0B .a >0C .a >3D .a ≥3【例1-3】算术平方根等于它本身的数有__________.【例1-4】13-m 的算术平方根是2,16-+n m 的算术平方根是3,求n m 29+的算术平方根.举一反三1. 16的算术平方根是________.2. 已知正方形的边长为 a ,面积为 S ,下列说法中:①a S =;①S a =;①S 是a 的算术平方根;①a 是S 的算术平方根.正确的是( )A .①①B .①①C .①①D .①①3. 12+x 的算术平方根是2,则x =________.4. 已知,()132++-=b a y ,当b a ,取不同的值时,y 也有不同的值.当y 最小时,求a b 的非算术平方根.知识点二:平方根1. 平方根的概念一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的________或二次方根.【注意】在这里,a 是x 的平方数,它的值是正数或零,因为任何数的平方都不可能是负数,即a ≥0.2. 平方根的性质①一个正数a 有_______个平方根,其中一个是“a ”,另一个为“a -”,它们互为相反数; ②0的平方根是0;③负数没有平方根.3. 开平方的概念求一个数a 的平方根的运算,叫做__________.4. 利用平方根的定义解方程将各式转化为等号的左边是含x 的一个式子的平方式,右边是一个非负数的形式,如m x =2或()()02≥=+m m b ax ,然后利用平方根的定义得到m x ±=或m b ax ±=+,进而得到原方程的解.5.平方根与算术平方根的区别①定义不同;②个数不同,一个正数有两个平方根,它们互为相反数,而一个正数的算术平方根只有一个; ③表示方法不同,正数a 的平方根表示为a a a ;④取值范围不同,正数的算术平方根一定是正数,正数的平方根为一正一负.【例2-1】25的平方根是( ).A .5B .-5C .5±D .±5【例2-2】 下列说法正确的( ). ①2-是2的一个平方根;②4-的算术平方根是2;③16的平方根是±2;④0没有平方根.A .①②③B .①④C .①③D .②③④【例2-3】求下列各式的值: ①144 ②81.0- ③196121±④256【例2-4】 求下列各式中的x .x 2=17 0491212=-x 【例2-5】若一个正数的算术平方根是a ,则比这个数大3的正数的平方根是( ). A .32+a B .32+-a C .32+±a D .3+±a举一反三1. ()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.492. 下列说法中正确的是( )A .81的平方根是3±B .1的立方根是±1C .11±=D .5-是5的平方根的相反数3. 计算.=412___________ =±169___________ =-2894___________ 4. 求下列各式中x 的值. ()16142=-x ()011242=-+x5. 已知9的算术平方根是a ,b 的平方是25,求ab 的值.知识点三:立方根1.立方根的定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的__________或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.2. 表示方法:一个数a 的立方根,用符号3a 表示,读作:“三次根号a ”,其中a 是被开方数,3是根指数.注:互为相反数的两数的立方根也互为相反数.3.开立方求一个数的立方根的运算,叫做__________. 性质:①正数的立方根是正数,负数的立方根是__________,0的立方根是0;33a a -= ③3333()a a =a .开立方是一种运算,正如开平方与平方互为逆运算一样,开立方与立方也互为__________.开立方所得的结果就是立方根.4.平方根和立方根的区别和联系①被开方数的取值范围不同 在a a 是非负数,即a ≥03a 中,被开方数a 是任意数.②运算后的数量不同一个正数有两个平方根,负数没有平方根,而一个正数有一个正的立方根,负数有一个负的立方根.【例3-1】 -64的立方根是( ).A .-4B .4C .±4D .不存在【例3-2】 下列计算中,错误的是( ).A 30.125B 3273644-=-C 3313182=D .3821255-=-【例3-3】若83-=a ,则a =__________.【例3-4】已知,一个正数的平方根是12-a 与a -2,求a 的平方的相反数的立方根.【例3-5】 已知12-a 的平方根是3±,13-+b a 的立方根是4,求b a +的平方根.举一反三 1. 33(1)- ).A .-1B .0C .1D .±1 2. 求下列各式的值:(130.001 (23343125- (3)327191--.3. 求下列各式中的x .012583=+x ()2733=+x4. 若32+a 和12-a 是数m 的平方根,求m 的值.5. 已知12+x 1362-+y x 的立方根是2.(1)求y x ,的值;(2)求xy 3的平方根.知识点四:非负性的运用非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。
八年级上数学实数平方根与立方根

6.1平方根立方根一、知识要点:1、平方根的意义:如果一个数的平方等于a,这个数就叫做a的平方根(或二次方根)。
注意:这样的数常常有两个。
2、平方根的性质:(1)一个正数有两个平方根,它们互为相反数;如9的平方根是±3。
(2)0的平方根是0本身;(3)负数没有平方根。
3.平方根的表示方法:正数a的平方根表示为“± ”4.算术平方根:正数a的正的平方根也叫做a的算术平方根。
记作。
0的平方根0,也叫做0的算术平方根。
5. ≥0(当 a<0时, 无意义)。
到此为止,我们已学完三个非负数:|a|、a2和(a≥0)。
6.立方根和开立方同平方根开平方的概念类似。
二.易犯错误:1.算术平方根与平方根混淆,例如出现100的平方根等于10的错误.2. 表示的正数a的平方根。
蕴含条件a≥0。
三.例题分析:例1.求下列各数的平方根,算术平方根:(1)121 (2)0.0049 (3) (4)4 (5)|a|2解:(1)∵(±11)2=121∴121的平方根是±11,算术平方根是11;即± =±11, =11。
(2)∵(±0.07)2=0.0049 ∴0.0049的平方根是±0.07,算术平方根是0.07,即,±=±0.07, =0.07。
(3)∵(± )2= ∴ 的平方根是± ,算术平方根是, 即±=± , = 。
(4)要先把带分数化成假分数,即4∵(± )2= ∴4 的平方根为± ,算术平方根为。
即,± 。
(5) ∵(±|a|)2=|a|2,而±|a|=±a。
∴|a|2的平方根是±a,算术平方根为|a|。
说明:通过例1,我们看到必须熟记1-20的平方数,和1-10的立方数,才能很好地做这部分习题。
例2.求下列各式的值:(1)3 =3× = (2)± =± (3)=8(4)± =± (5)- (带分数要先化成假分数)(6)3× =3×7=21(7)(8) ×0.6+ ×0.9=0.3+0.3=0.6(9) (a<b)= ∵a<b,∴原式=-(a-b)=b-a。
第3讲 实数的有关概念及性质

第3讲 实数的有关概念及性质【学习目标】掌握算术平方根、平方根、立方根、实数的概念及性质【教学重难点】算术平方根、平方根、立方根、实数的概念及性质考点1:平方根知识点与方法技巧梳理:1.平方根:一个数x 的平方等于a ,即x2=a (a ≥0),那么这个数x 叫做a 的平方根. 2.平方根的表示方法:①当a ≥0时,a 的平方根记为±a(特别地,0=0); ②当a <0时,a 没有平方根. 3.平方根的性质:①一个正数a 有两个平方根,一个是a 的算术平方根a,另一个是-a,它们互为相反数; ②0有一个平方根,它就是0本身; ③负数没有平方根.【例1】判断下列说法是否正确: (1)25的平方根是±5( ) (2)|-9|的平方根是3( ) (3)-8是64的平方根( ) 【变式】填空:(1)0.04的平方根是_________.(2)若a 是x 的一个平方根,则x 的另一个平方根是_________. (3)若a2=(-7)2,则a =_________. (4)平方根是它本身的数是_________. 【例2】求下列各数的平方根:(1)1.44 (2)2249(3)10-4 (4)|-3116| (5)292-202【变式】求下列各数的平方根:(1)2.89 (2)3625(3)0.000001 (4)|-24164| (5)852-362考点2:算术平方根知识点与方法技巧梳理:1.算术平方根:①正数a 的正的平方根,叫做a 的算术平方根,记作a; ②特别地,0的算术平方根是0.2.算术平方根的性质:非负数的算术平方根是非负数,即当a ≥0时,a≥0.3.(1)(a)2=a (a ≥0);(2)a2=| a |=⎩⎪⎨⎪⎧a (a >0)a (a =0)-a (a <0)【例1】判断下列说法是否正确:(1)361=±19;( ) (2)27是(-27)2的算术平方根;( )(3)4的算术平方根是2.( )【变式1】下列说法错误的是( )A .4是16的平方根B .1的平方根是1C .(-3)2的平方根是±3 D .10-100的算术平方根是10-50 【变式2】填空:(1)49的平方根是_________,225的算术平方根是_________. (2)若a 2=m ,则a =_________. (3)(a)2=_________(a ≥0); a 2=_________.(4)算术平方根是它本身的数是________;________的算术平方根等于它的平方根.(5x +11的平方根是_________,算术平方根是_________. (6)a2的算术平方根是_________,(3-π)2的算术平方根是_________.(73b +=0,则20172017a b +=_________.(8)若4a +1的平方根是±5,则a2的算术平方根是__________. 【例2】求下列各数的算术平方根:(1)179(2)(-35)2 (3)8-2 (4)64(5)0.01 (6)262-102【变式】求下列各数的算术平方根:(1)3625(2)-(-19)3 (3)14-4 (4)81(5)1210- (6)372-122考点3:平方根和算术平方根的运用 知识点与方法技巧梳理:1.开平方:①求一个非负数a 的平方根的运算,叫做开平方,其中a 叫被开方数.开平方和平方互为逆运算. ②开平方与加、减、乘、除、乘方一样,都是一种运算. ③平方与开平方互为逆运算.2.被开方数的小数点向右或者向左移动2位,它的平方根的小数点就相应地向右或者向左移动1位. 【例1】计算:(1)(-7)2(2)(5.7)2【变式】计算:(1)1 40.64-1 5100(2) 2.56×25 64【例2】利用平方根解方程:(1)16( x 2+1 )=41 (2)( 5x -1)2=49【变式】利用平方根解方程:(1)25(x2+2)=86 (2)(3x -2)2=(-7)2【例3】若|2x +3|+4x -y=0,求x 、y 的值.【变式】已知|3a -2|+2a +3b=0,求a +b 的值.考点4:无理数知识点与方法技巧梳理:无理数:无限不循环小数叫做无理数,如3、π.【例】在①0,②10,③-π5,④32,⑤3.14中,是无理数的有____________.【变式】下列各数中,是无理数的是( )A .47B .225C .3πD .4925考点5:立方根知识点与方法技巧梳理:1.立方根的概念:如果x3=a ,则x 叫做a 的立方根(也叫做三次方根) 2.立方根的性质:①正数有一个立方根,仍为正数.如:64的立方根是44;0;③负数有一个立方根,仍为负数,如:-8的立方根为-22=-.任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数. 【例1】下列说法正确的是( )A -2B .1的立方根是±1C .若x <0xD .0没有立方根【变式】下列说法正确的是( )A .-4没有立方根B .8的立方根是±2C .136的立方根是16D .-5的立方根是【例2】求下列各数的立方根: ①-216 ②0.125 ③61164- ④9【变式】求下列各数的立方根:①343 ②-0.216 ③-1558④3(11)-考点6:立方根的运算知识点与方法技巧梳理:1.开立方:①求一个数a的立方根的运算,叫做开立方,其中a叫被开方数.②正如开平方是平方的逆运算一样,开立方运算也是立方运算的逆运算.2.=②3a=③a=第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题.3.被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.【例1】求下列各式的值:【变式】求下列各式的值:①【例2】0.30.03,则x∶y=_________.【变式1】a__________m=.【例3】利用立方根解方程:①27x3=-64 ②(-3+x)3=216=-5 ④64(x+1)3+125=0【变式】利用立方根解方程:①334364x-=0 ②(4x+3)3=-8-6 ④1000-27(x-2)3=0考点7:实数知识点与方法技巧梳理:1.实数:有理数和无理数统称为实数.2.实数的分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧无限不循环小数负无理数正无理数无理数小数数有限小数或无限循环小正分数、负分数分数正整数、零、负整数整数有理数实数)()()(3.实数大小的比较:在数轴上表示的两个实数,右边的数总比左边的数大.4.实数和数轴上点的对应关系:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的关系.5.实数的几个概念:①相反数;②倒数;③绝对值都和有理数范围内的概念相同. 【例1】把下列各数分别填入相应的集合中:2,1311,8,π2,-2,-7.77,00.121221222……(相邻两个1之间的2的个数逐次增加1)【变式】请把例1中的各数填入相应的集合中:正实数集合:{____________________________________________________…};分数集合{____________________________________________________…}.【例2【变式A .-1和0之间 B .0和11和2之间D .2和3之间【变式2】比较下列各组数的大小:(1(2)-π______-【变式3】3--【例4】实数a 、b 在数轴上的对应点的位置如图所示,则的大小关系为____________. 【变式】如图,在数轴上表示2、3的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 表示的实数为____________.【家庭作业】1a __________m =__________;2.若正数A 的平方根是3x -2和x -6,求x A 的算术平方根.3.已知有理数a 、b 满足a2+2b +2b =17-42,求a +b 的值.4.已知实数a 、b 满足条件b .(1)求a 、b 的值;(2)求1111(1)(1)(2)(2)(2017)(2017)ab ab a b a b ++++++++++的值. C 0 A B有理数集合 无理数集合。
人教版七年级下册第六章实数平方根、立方根(教案)

1.理论介绍:首先,我们要了解平方根和立方根的基本概念。平方根是一个数的平方等于给定数的非负数解,立方根则是一个数的立方等于给定数的解。它们在解决实际问题,如面积、体积计算中有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们需要计算一个边长为2的正方形的面积,这时我们就需要用到平方根的概念,即√(2^2)=2。
2.探索与问题解决:引导学生自主探究平方根、立方根的性质和求法,培养他们发现、分析和解决问题的能力。
3.空间观念与几何直观:将平方根、立方根与图形结合,培养学生的空间观念,提高几何直观能力。
4.数据观念与推理能力:通过实际问题的解决,让学生掌握数据处理方法,培养合情推理和演绎推理的能力。
5.数学交流与反思:鼓励学生在学习过程中积极与他人交流,分享解题思路,培养反思和总结的学习习惯。
五、教学反思
今天我们在课堂上探讨了实数平方根和立方根的概念及其应用。整体来看,学生们对这两个概念的理解有了明显的提升,但在教学过程中我也注意到了一些需要改进的地方。
首先,我发现部分学生在理解平方根和立方根的定义时存在困难。在今后的教学中,我需要更加注重从直观和生活实例出发,让学生们更好地感受到这两个概念的实际意义。例如,可以多举一些与面积、体积相关的例子,让学生在实际问题中体会平方根和立方根的应用。
-立方根的求法:学会计算简单实数的立方根。
举例:讲解平方根时,强调正数平方根的互为相反数性质,如√9=3和√9=-3,但通常情况下我们默认平方根为正数。在立方根方面,举例计算∛8,得出∛8=2,强调立方根的结果唯一性。
2.教学难点
-平方根的理解:学生容易混淆平方根与算术平方根的概念,难以理解负数没有平方根。
3.重点难点解析:在讲授过程中,我会特别强调平方根和立方根的概念及其求法这两个重点。对于难点部分,我会通过具体例子和图形来帮助大家理解。
八年级上册数学《实数》平方根和立方根 知识点整理

加速度学习网 我的学习也要加速平方根和立方根有疑问的题目请发在“51加速度学习网”上,让我们来为你解答51加速度学习网 整理一、本节学习指导平方根是学习实数的准备知识,是以后学习一元二次方程等知识的必备基础,也是中考的必考内容之一,此节我们要掌握平方根和立方根的概念。
本节有配套免费学习视频。
二、知识要点1、平方根:如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,)0(2≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。
因此:① 当0=a 时,它的平方根只有一个,也就是0本身;② 当0>a 时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a x ±=。
③ 当0<a 时,也即a 为负数时,它不存在平方根。
2、算术平方根(1)如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a ”,其中,a 称为被开方数。
特别规定:0的算术平方根仍然为0。
(2)算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。
(3)算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。
加速度学习网 我的学习也要加速例1 求下列各数的算术平方根 (1)64;(2)2)3(-;(3)49151. 分析:根据算术平方根的定义,求一个数a 的算术平方根可转化为求一个数的平方等于a 的运算,更具体地说,就是找出平方后等于a 的正数.解:(1)因为6482=,所以64的算术平方根是8,即864=;(2)因为93)3(22==-,所以2)3(-的算术平方根是3,即3)3(2=-; (3)因为496449151=,又4964)78(2=,所以49151的算术平方根是78,即7849151=. 注意:这类问题应按算术平方根的定义去求.要注意2)3(-的算术平方根是3,而不是3.另外,当这个数是带分数时,应先化为假分数,然后再求其算术平方根,不要出现类似74149161=的错误.例2 求下列各式的值(1)81±; (2)16-; (3)259; (4)2)4(-. 分析:±81表示81的平方根,故其结果是一对互为相反数;-16表示16的负平方根,故其结果是负数;259表示259的算术平方根,故其结果是正数;2)4(-表示2)4(-的算术平方根,故其结果必为正数.解:(1)因为8192=,所以±81=±9. (2)因为1642=,所以-416-=.(3)因为253⎪⎭⎫ ⎝⎛=259,所以259=53.(4)因为22)4(4-=,所以4)4(2=-.加速度学习网 我的学习也要加速例(1)64的立方根是(2)下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±。
平方根与立方根及实数知识点总结

“平方根”与“立方根”知识点小结一、知识要点 1、平方根:⑴、定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。
⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
⑶、算术平方根:正数a 的正的平方根叫做a 的算术平。
2、立方根:⑴、定义:如果x 3=a ,则x 叫做a 的立方根,记作(a 称为被开方数)。
⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。
二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。
2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。
3有意义的条件是a ≥0。
4、公式:⑴)2=a (a ≥0)=(a 取任何数)。
5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。
例1 求下列各数的平方根和算术平方根 (1)64;(2)2)3(-; (3)49151; ⑷ 21(3)- 例2 求下列各式的值(1)81±; (2)16-; (3)259; (4)2)4(-.(5)44.1,(6)36-,(7)4925±(8)2)25(-例3、求下列各数的立方根:⑴ 343; ⑵ 10227-; ⑶ 0.729二、巧用被开方数的非负性求值. 大家知道,当a ≥0时,a 的平方根是±a ,即a 是非负数. 例4、若,622=----y x x 求y x的立方根.练习:已知,21221+-+-=x x y 求y x 的值.三、巧用正数的两平方根是互为相反数求值.我们知道,当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若32+a 和12-a 是数m 的平方根,求m 的值.四、巧解方程例6、解方程(1)(x+1)2=36 (2)27(x+1)3=64五、巧用算术平方根的最小值求值.我们已经知道0≥a ,即a=0时其值最小,换句话说a 的最小值是零.例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a的非算术平方根.练习①已知233(2)0x y z -+-++=,求xyz 的值。
沪科版七年级下册数学教学课件 第6章 实数 6-1 平方根、立方根 立方根

课堂小结
立方根的概念及性质
立方根
开立方及相关运算
七年级数学下(HK) 教学课件
第6章 实 数导入新课
讲授新课
当堂练习
课堂小结
学习目标
情境引入
1.了解立方根的概念,会用根号表示一个数的立方根. (重点) 2.能用开立方运算求某些数的立方根,了解开立方和
立方互为逆运算.(重点,难点)
导入新课
情境引入
某化工厂使用半径为1米的一种球形储气罐储藏 气体,现在要造一个新的球形储气罐,如果要求它 的体积必须是原来体积的8倍,那么它的半径应是原 来储气罐半径的多少倍?
因为(
1 2
)3
=0.125,所以0.125的立方是(
1 2
);
因为( 0)3 =0,所以0的立方根是(0 );
因为 (-2 )3 =-8,所以-8的立方根是(-2 );
因为(
2 3
)3
= 8
27
,所以 8
27
的立方(
2 3
).
知识要点
立方根的性质
一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零.
体会:对于任何数a , 3 a3 _a__
探究2 求下列各式的值:
3 8 3 _8__
3
3 27 2__7_
( 3 8)3 _-_8_
3 27 3 -_2_7_
3 0 3 _0__
3
体会:对于任何数a , 3 a _a__
探究3 求下列各式的值: (1) 3 0.008 ; -0.2
讲授新课
一 立方根的概念及性质 问题:要做一个体积为27cm3的正方体模型(如图), 它的棱长要取多少?你是怎么知道的?
数学自学指南 实数之平方根、立方根

自学资料一、平方根【知识探索】1.如果一个正数x的平方等于a,即,如果x2=a,那么这个正数x就叫做a的算术平方根(arithmetic square root).a的算术平方根记为“”,读作“根号a”,a叫做被开方数.【说明】规定:0的算术平方根是0.2.开平方与平方互为逆运算.【说明】(1)一个正数的平方根的平方等于这个数;(2)一个正(负)数的平方的正平方根等于这个数(这个数的相反数).3.正数a的两个平方根可以用“”表示,其中“”表示a的正平方根(又叫算数平方根),读作“根号a”;“”表示a的负平方根,读作“负根号a”.零的平方根记作“”,.【总结】(1)一个正数有两个平方根,它们互为相反数;(2)零的平方根是零;(3)负数没有平方根.【说明】负数没有平方根,或者说负数不能进行开平方运算,这个结论只是在实属范围内正确.【错题精练】例1.若(k是整数),则k=()第1页共10页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训A. 6B. 7C. 8D. 9【答案】D例2.已知m的平方根是a+3与2a﹣15,求m的值.【答案】解:当a+3与2a﹣15是同一个平方根时,a+3+2a﹣15=0,解得a=4,此时,m=49.例3.已知(2x+y)2+=0,求x﹣2y的平方根.【答案】例4.一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的算术平方根是()A. a+2B.C.D.【答案】C例5.求下列式子中的x28x2-63=0.第2页共10页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【答案】±【举一反三】1.下列计算正确的是()A.B. =﹣2C.D. (﹣2)3×(﹣3)2=72【解答】A、根据算术平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据立方根的定义即可判定;D、根据乘方运算法则计算即可判定.【答案】B2.一个正方形的面积是9平方单位,则这个正方形的边长是()长度单位A. 3B.C. ±D. ±【答案】A3.下列判断正确的是()A. 若,则B. 若,则C. 若,则D. 若,则第3页共10页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训【答案】B4.的平方根是()A.B.C.D.【答案】A5.已知边长为a的正方形的面积为8,则下列说法中,错误的是A. a是无理数B. a是方程x2﹣8=0的解C. a是8的算术平方根D. a满足不等式组【答案】D6.9的平方根是__________ ,9的算术平方根是__________【答案】±3|37.求x值:(x﹣1)2=25【答案】x=6,或x=﹣48.已知,则a﹣b的值是__________ .第4页共10页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【解答】【答案】9.观察数表:根据数阵排列的规律,第10行从左向右数第8个数是__________ .【解答】【答案】二、立方根【知识探索】1.任意一个数都有立方根,而且只有一个立方根.(1)正数的立方根是一个正数;(2)零的立方根是零;(3)负数的立方根是一个负数.2.一般地,如果一个数的立方等于a,那么这个数就叫做a的立方根(cube root)或三次方根.即,如果x3=a,那么x就叫做a的立方根.用“”表示,读作“三次根号a”.中的“a”叫做被开方数,“3”叫做根指数.【错题精练】例1.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;第5页共10页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训(2)若与互为相反数,求的值.【解答】【答案】见解析例2.一个正方体木块的体积是125cm3,现将它锯成8块同样大小的正方体小木块,求每个小正方体木块的表面积。
数学知识点平方根与立方根的计算

数学知识点平方根与立方根的计算平方根和立方根是数学中经常使用的概念,它们在计算和解决实际问题中起着重要的作用。
本文将介绍平方根和立方根的计算方法及其应用。
一、平方根的计算平方根是指一个数的平方等于该数的非负数根。
平方根的计算可以通过手动计算或使用计算器来完成。
1. 手动计算手动计算平方根可以使用牛顿迭代法、二分法等方法,但在实际应用中,最常用的是开方公式。
对于给定的非负实数x,它的平方根可表示为√x。
若x的平方根为a,则有a^2 = x。
因此,求平方根可以转化为求解方程a^2 - x = 0。
根据求解一元二次方程的公式,平方根可以表示为:a = ±√x其中,±表示两个相反的解,正数根和负数根。
在实际应用中,通常我们只考虑正数根。
2. 使用计算器对于较复杂的平方根计算,我们可以使用计算器来得到准确的结果。
大多数科学计算器和计算机的计算软件都提供了平方根计算的功能。
只需输入待计算的数值,并按下平方根按钮,即可得到结果。
二、立方根的计算立方根是指一个数的立方等于该数的非负数根。
立方根的计算可以通过手动计算或使用计算器来完成。
1. 手动计算手动计算立方根可以使用牛顿迭代法、二分法等方法,但在实际应用中,最常用的是开方公式。
对于给定的实数x,它的立方根可表示为³√x。
若x的立方根为a,则有a^3 = x。
因此,求立方根可以转化为求解方程a^3 - x = 0。
根据求解一元三次方程的公式,立方根可以表示为:a = x^(1/3)其中,^(1/3)表示计算x的1/3次方,并得到结果。
2. 使用计算器对于较复杂的立方根计算,我们可以使用计算器来得到准确的结果。
大多数科学计算器和计算机的计算软件都提供了立方根计算的功能。
只需输入待计算的数值,并按下立方根按钮,即可得到结果。
三、平方根与立方根的应用平方根和立方根的应用非常广泛,在数学、物理学、工程学等领域都有重要的作用。
1. 几何学中的应用平方根和立方根在几何学中经常用于计算长度、面积和体积。
实数

实数1、什么叫平方根及其三种情形如果有一个数r ,使得r 2=a ,那么我们就说r 是a 的一个平方根。
求平方根有三种情形 ⑴正实数的平方根有两个,它们互为相反数,其和为0,其中正平方根又叫算术平方根; ⑵0的平方根只有一个,就是0,也可以称算术平方根; ⑶负数没有平方根。
因而如果要求一个实数的平方根,这个实数一定要为非负数。
一个数的算术平方根是其本身的数0,-1。
2、什么叫立方根及其三种情形如果有一个数r ,使得r 3=a ,那么我们就说r 是a 的一个平方根。
求平方根有三种情形 ⑴正数的立方根正数; ⑵0的立方根是0; ⑶负数的立方根是负数。
因而每个实数都有立方根,且只有一个立方根。
一个数的立方根是其本身的数是0,±13、什么叫有理数、无理数、实数,无理数的三种情形整数和分数统称有理数,无限不循环小数叫无理数,有理数和无理数统称实数 无理数的三种情形:①π,②开方开不尽的数,③有规律但不循环的无限小数 所有分数都不是无理数。
4、直角边为1的等腰直角三角形的斜边为2,是个无理数,因而可以在数轴上这样表示221O5、绝对值一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0 的绝对值等于0,互为相反数的两个实数的绝对值相等。
用式子可以表示为()()()⎪⎩⎪⎨⎧-==0a a 0a 00a a a <>6、实数的大小比较。
会通过平方数比其大小(参见17面例6)。
0>b a -,则a >b ;a -b <0;则a <b ,a -b=0,则a=b7、有效数字从左边第一个不是零的数字起到精确到的数位止,所有的数字都叫这个数的有效数字 根据1996年统计,中国的淡水资源总量约为2793400立方千米,2793400立方千米保留两位有效数字约为2.8×106 8、平移与轴反射公式平移公式⎩⎨⎧='+='y y x 2(向右移2个单位) 轴反射公式⎩⎨⎧='-='yy x x (关于y 轴反射)关于原点反射,纵横坐标都取相反数。
人教版七年级下册第六章实数--平方根与立方根 复习

实数第六章实数 平方根与立方根1. 算术平方根:一般地,如果一个正数x 的平方等于a ,那么这个正数x 叫做a 的算术平方根注:1)算术平方根是非负数,具有非负数的性质;2)若两数的平方根相等或互为相反数时,这两数相等;反之,若两非负数相等时,它们的平方根相等或互为相反数;3)平方根等于本身的数只有0,算术平方根等于本身的数有0、1.算术平方根的表示:_________________________________________________ 算术平方根的性质:2. 平方根:一般地,如果一个数x 的平方等于a ,那么这个数x 叫做a 的平方根 平方根的表示:______________________________________________________平方根的性质:A 一个正数有正、负两个平方根,它们互为相反数 B 零有一个平方根,它是零本身 C 负数没有平方根开平方:求一个非负数的平方根的运算叫做开平方。
例题:一个数的平方等于9,这个数是几呢?又如一个数的平方等于425,这个数是几呢?若x 2=a (x ≥0),那么x 叫做a 的__________________。
记作:_______________4.立方根的定义:如果x 3=a ,那么x 叫做a 的立方根,记作例如:8的立方根,记作任何数都有立方根:①正数的立方根是________数; ②负数的立方根是________数; ③ 0的立方根是________; 立方和开立方互为________运算. 综上所述,有a (a ≥0)2a =│a │=-a (a<0)两个重要的公式为任何数)为任何数)a a a a a (()a (3333==.x知识点1: 算术平方根,平方根的, 立方根的概念 求一个数的算术平方根,平方根,立方根 1.下列说法正确的有______个.①(−3)2的算术平方根是√3②81的算术平方根是9③a 2的算术平方根是a ④ -1的算术平方根是1 ⑤ 0的算术平方根是02.下列说法正确的有______个. ①√81=±9②0.01算术平方根是0.1 ③49的算术平方根是7 ④2是4的算术平方根 ⑤正数的算术平方根是正数3.下列说法错误的有______个. ①36的平方根是6 ②|−5|的平方根是5③(−4)2的平方根是±4 ④a 的平方根是±√a4.下列说法错误的是( )A 立方根等于它本身的数有-1,0,1B 立方根等于其绝对值的数只有0C 如果−∛a =b,那么a=−b3D 立方根等于平方根的数只有0 5.36的平方根是______;的平方根是_______;的平方根是_______;9的算术平方根是_______;16的算术平方根的平方根是____________.=________________;-________;知识点2. 算术平方根--求字母的值--被开方数的非负性--结果的非负性1.4的算术平方根为2m −2,则3m 的算术平方根等于___2.若y=x -1+1-x +4,则x+y=______.4.21++a 的最小值是________,此时a 的取值是________.知识点3:平方根的性质--求字母的值--解方程 平方根与算术平方根的区别与联系1.若一个正数的两个平方根为2m −6与3m+1,则这个数是______;若a+3与2a −15是x 的平方根,则x=______.2.若某一个数的正的平方根为2m+6,它的平方根为±(m −2),则这个数是_____3.已知13(1−2x)2+6=9.则x=_____(写过程)4.已知25(x+2)2﹣36=0,则x=_____(写过程)5.下列语句错误的有______个. ①36的平方根是6; ②±9的平方根是±3; ③√16=±4;④0.01是0.1的平方根; ⑤42的平方根是4; ⑥81的算术平方根是±96.下列语句正确的有______个.①4的算术平方根是±2②负数一定没有平方根③平方根等于它本身的数有0和1④0.9的算术平方根是0.3⑤任何数都有算术平方根⑥一个正数的平方根仍然是正数知识点4:立方根的性质--求相关式子的值--解方程平方根与立方根的区别与联系立方根与平方根的运算0,1,-1的平方根和立方根4.解方程:(1) (x-1)3=8;(2)8.平方根等于本身的数______立方根等于本身的数______知识点5.平方根,立方根--规律探究根据算术平方根的意义,被开方数的小数点每向左(或向右)移动两位,其结果的小数点也向左(或向右)移动一位如果被开方数的小数点向左(或向右)每移动三位,立方根的小数点就向左(或向右)移动一位.1. 若√3.2104≈1.792,√3210.4≈56.66,则√32104≈______;√32.104≈______.2. 若3√0.3670=0.7160,3√3.670=1.542,则3√367=______,3√−0.003670=______.33 3.8x-=答案卷1.a2.平方根有三种表示形式:±a,a,-a,它们的意义分别是在此处键入公式。
平方根与立方根的性质

平方根与立方根的性质平方根和立方根是数学中常见的运算,它们具有一些特殊的性质和应用。
在本文中,将介绍平方根和立方根的定义、计算方法以及它们在数学和实际生活中的应用。
一、平方根的性质1. 定义:对于非负实数a,它的平方根是一个非负实数x,称为平方根,记作√a。
即x = √a,其中x ≥ 0。
2. 计算方法:平方根的计算可以通过开平方运算得到。
求一个数a 的平方根,就是求出一个实数x,使得x * x = a。
3. 平方根的性质:(1) 非负实数的平方根是唯一的,即没有两个不同的非负实数的平方等于同一个非负实数。
(2) 平方根运算具有封闭性,即对于任意的非负实数a和b,如果a、b的平方根存在,则a + b的平方根也存在。
二、立方根的性质1. 定义:对于任意实数a,它的立方根是一个实数x,使得x * x * x = a。
记作x = ∛a。
2. 计算方法:立方根的计算可以通过开立方运算得到。
3. 立方根的性质:(1) 任意实数的立方根不一定是唯一的,即同一个实数可能有多个立方根。
(2) 立方根运算具有封闭性,即对于任意实数a和b,如果a、b的立方根存在,则a + b的立方根也存在。
三、平方根与立方根的应用1. 平方根的应用:(1) 平方根广泛应用于几何学中的勾股定理。
根据勾股定理,直角三角形的斜边长度等于其两条直角边长度的平方根。
(2) 平方根也常用于计算机科学中的图像处理和数据压缩等领域。
2. 立方根的应用:(1) 立方根常用于立方体的计算。
例如,立方体的体积等于边长的立方,可以通过立方根运算得到边长。
(2) 立方根还用于统计学中的均值和方差的计算,帮助分析数据的分布情况。
四、总结平方根和立方根是数学中常见的运算,它们具有一些特殊的性质和应用。
平方根的计算可以通过开平方运算得到,而立方根的计算则需要进行开立方运算。
平方根和立方根的运算都具有封闭性,可以进行加法和其他运算。
在几何学、计算机科学和统计学等领域,平方根和立方根有着广泛的应用。
平方根和立方根的概念

平方根和立方根的概念
平方根和立方根是数学中常用的两个概念,用来表示一个数的平方和立方的根。
平方根: 给定一个非负实数x,它的平方根是一个实数y,满足y的平方等于x。
平方根通常表示为√x,其中√符号称为根号。
例如,√4 = 2,因为2的平方是4。
同样地,√9 = 3,√16 = 4,以此类推。
立方根: 给定一个实数x,它的立方根是一个实数y,满足y的立方等于x。
立方根通常表示为³√x,其中³√符号表示立方根。
例如,³√8 = 2,因为2的立方是8。
同样地,³√27 = 3,³√64 = 4,以此类推。
需要注意的是,平方根和立方根可能为正数、负数或零,具体取决于被开方数的正负。
在一些情况下,我们可能会使用正数平方根(称为主方根)来代表平方根的解。
平方根和立方根在数学和实际应用中有广泛的应用,例如在几何学、物理学、工程学和计算机科学中。
它们帮助我们计算面积、体积、方程的解等。
平方根与立方根的比较

平方根与立方根的比较在数学中,平方根和立方根是两个常见的概念。
它们分别是一个数字的二次方根和三次方根。
在这篇文章中,我们将比较平方根和立方根,并讨论它们在数学和实际生活中的应用。
一、平方根平方根是一个数字的二次方根,表示为√x。
在数学中,平方根是使得它的平方等于给定数字的非负实数。
例如,√4 = 2,因为2的平方是4。
平方根可以是一个实数或一个复数。
平方根的应用广泛,特别是在几何学和物理学中。
在几何学中,平方根被用来计算图形的边长或对角线长度。
在物理学中,它用于计算物体的速度、加速度和其他与运动相关的量。
二、立方根立方根是一个数字的三次方根,表示为³√x。
在数学中,立方根是使得它的立方等于给定数字的实数。
例如,³√8 = 2,因为2的立方是8。
与平方根类似,立方根也可以是实数或复数。
立方根在数学、化学和物理学中都有着广泛的应用。
在数学中,它被用于解方程和计算立方体的体积和表面积。
在化学中,立方根可以用来计算溶液的浓度和反应速率。
在物理学中,立方根被用于计算某些物体的质量或体积。
三、虽然平方根和立方根都是求一个数字的根,但它们之间存在一些关键的区别。
首先,平方根表示的是一个数字的二次方根,而立方根表示的是三次方根。
这个区别导致了平方根和立方根的算术性质和应用领域的差异。
其次,平方根和立方根的计算方式也不同。
对于一个数字 x,平方根可以使用根号√x来表示和计算,而立方根则使用³√x来表示和计算。
对于非完全平方数或非完全立方数,平方根和立方根都是无理数,不能精确表示。
在实际生活中,平方根和立方根的应用也有所不同。
平方根通常用于测量长度、面积和速度等物理量,而立方根则更多地用于计算体积和浓度等三维量。
四、结论平方根和立方根都是数学中重要的概念,它们在几何学、物理学、化学等领域都有广泛的应用。
虽然它们的计算方式和应用略有不同,但都可以用来解决各种实际问题。
通过对平方根和立方根以及它们的比较进行分析,我们可以更好地理解它们的特点和应用。
平方根与立方根的计算

平方根与立方根的计算在数学中,平方根和立方根是常见的运算。
平方根是指一个数的平方等于该数的正数解,记作√x,其中x为非负实数。
立方根则是指一个数的立方等于该数的正数解,记作∛x,其中x可以是任意实数。
如何计算平方根和立方根,是我们在日常生活和学习中经常遇到的问题。
一、平方根的计算方法计算平方根有多种方法,其中较为常见的方法是借助算术平方根表及使用计算器。
下面将介绍这两种方法的具体步骤。
1. 基于算术平方根表的计算方法在没有计算器或电子设备的情况下,我们可以使用算术平方根表来计算平方根。
算术平方根表列出了0到100的数的平方根值。
具体计算步骤如下:(1)找到目标数在表中的范围。
例如,要计算√50,我们可以发现50位于7的平方49和8的平方64之间,因此√50的范围在7和8之间。
(2)根据目标数所在范围,估计出平方根的整数部分。
在本例中,√50的整数部分应该接近于7。
(3)利用平方根的整数部分与目标数的差值和表中的数值来得出更精确的结果。
在本例中,7.07的平方约等于49.84,而8.02的平方约等于64.32。
因此,我们可以得出结论,√50约等于7.07。
2. 基于计算器的计算方法在现代科技的帮助下,使用计算器是最直接和准确的计算平方根的方法。
计算器可以帮助我们迅速得出平方根的结果,无需繁琐的手动计算。
以下是使用计算器计算平方根的步骤:(1)打开计算器。
(2)输入要求平方根的数值,例如50。
(3)按下计算器上的平方根(√)按钮。
(4)计算器将立即显示出结果,例如√50≈7.07。
二、立方根的计算方法计算立方根也有多种方法,其中较为常见的方法是使用计算器和借助手算方法。
下面将介绍这两种方法的具体步骤。
1. 使用计算器的计算方法如同计算平方根时一样,计算器是计算立方根的最直接和快速的方法。
以下是使用计算器计算立方根的步骤:(1)打开计算器。
(2)输入要求立方根的数值,例如27。
(3)按下计算器上的立方根(∛)按钮。
实数 2.6实数 平方根与立方根的运算

(1)
(2) ,其中b 。
【范例1】計算下列各式:
(1) (2) (3) (4)
练习1、计算下列各式:(1) (2)
由规则(1)知道, = 。因此,习惯上我们常将 其中a为正数。
最简根式如同平方根情形
【范例2】化简下列各式:
(1) (2) (3)
【范例3】化简下列各式:
(1) (2)
(3) (4)
【范例2】将下列根式化为最简根式:
(1) (2) (3)
同类方根:
【范例3】化简下列根式:
(1) (2) (3)
现在來看看如何做根式的乘积展开。事实上,我们常利用乘法公式
来展开形如
根式乘积的算式。
【范例4】化简下列根式:
(1)( )( )(2)( )( )
(3)( )( )(4)( )( )
【根式分母的有理化】
360= =(2 ) ,
再化简得到
= 。
当被开方数为有理数时,通常会将运算结果写成分母不含根号的形式。例如:我们会将平方根 改写成下列的形式: = (或 )
也就是说,习惯上我我们会将一个正有理数的平方根写成 或 的形式,其中 为最简分数,n为大于1的整数,并且不能被任何大于1的整数的平方整除,我们称这种形式的根式( 或 )为最简根式。例如: 和 都是最简根式;但 和 就不是最简根式。我们称平方根化成最简根式的过程为平方根化简。
有理化下列各式的分母:
(1) (2) (3) (4)
【双重根式的化简】
假设a、b为两个非负的数,而且a b。因为
所以
因此得到:
如果 (其中a b),則x=a+b、y=ab。
【范例7】化簡下列各式:
(1) (2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数(一)
一.基础知识
1、平方根
如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根
正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a
==a a 2 ;注意a 的双重非负性:
-a (a <0) a ≥0
3、立方根
如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
二.例题分析
1.36的平方根是 ;16的算术平方根是 ;
2.一个数的平方是9,则这个数是 ( ) , 一个数的立方根是1,则这个数是 ( ) ;
3.当x=__________ 时,13-x 有意义; 当x= _________ 时,3
25+x 有意义;
4.若164=x ,则x=_________ ;若
813=n ,则n= ________ 。
5.下列各式中,正确的是( )
(A)2)2(2-=- (B) 9)3(2
=- (C) 393-=- (D) 39±=±
6.使x +
1
x-2
有意义的x 的取值范围是( ) A.x ≥0 B.x ≠2 C.x>2 D.x ≥0且x ≠2
7.若|1-x|-x 2
-8x+16 =2x -5,则x 的取值范围是( ) A.x>1 B.x<4 C.1≤x ≤4 D.以上都不对 8.若n 为正整数,则
1
21+-n 等于( )
A 、-1
B 、1
C 、±1
D 、2n+1
9.若1<x <3;
10.求下列χ的值。
①16χ2-9=40 ②4)12=-x ( ③
8)12(3
-=-x
21.计算
⑴9144
144
49⋅
⑵49
4
⑶41613+- ⑷
187
8333
3
-+-
⑸
8
3
12
2
)
10
(
973
.0
12
3+
-
-
⨯
-
22.已知实数a、b、c满足,2-c+1
4
=0,,求a+b+c的值.
23.若
1
2
1
1
2-
-
+
-
=x
x
y,求xy的值。
24.若31
2-
a和33
1b
-互为相反数,求b
a
的值。
三.课后作业一、填空题:
1、144的算术平方根是_________ ,16的平方根是 _________ ;
2、3
27= ___________ , 64-的立方根是 ________ ;
3、7的平方根为 _________ ,21.1= __________ ;
4、平方数是它本身的数是 ( ) ; 平方数是它的相反数的数是 ( ) ;
5、若23
-=x ,则x= __________ ;
若
x -=3
64,则x =__________ ;
6、计算:38126427
3292531+-+= ______________ ;
二、选择题
7、若a x =2
,则( )
A 、x>0
B 、x ≥0
C 、a>0
D 、a ≥0
8、一个数若有两个不同的平方根,则这两个平方根的和为( ) A 、大于0 B 、等于0 C 、小于0 D 、不能确定 9、一个正方形的边长为a ,面积为b ,则( ) A 、a 是b 的平方根 B 、a 是b 的的算术平方根 C 、b a ±= D 、a b =
10、若a ≥0,则2
4a 的算术平方根是( ) A 、2a B 、±2a C 、a 2 D 、| 2a | 11. 若正数a 的算术平方根比它本身大,则( ) A 、0<a<1 B 、a>0 C 、a<1 D 、a>1
12、若a<0,则a a 22
等于( )
A 、21
B 、21-
C 、±21
D 、0
13、若x-5能开偶次方,则x 的取值范围是( ) A 、x ≥0 B 、x>5 C 、x ≥5 D 、x ≤5
三、计算题
14、49.0381003
⨯-⨯ 15、36662101010++
16、
914420045243
⨯⨯⨯ 17、)131
)(951()31(3
2--+
-
25、解方程:
0324)1(2
=--x
26、解方程:
x x 1225)32(2
-=-
27.若0|2|1=-++y x ,求x+y 的值。
28.已知:3+-y x 与1-+y x 互为相反数,求x+y 的算术平方根。