中职数学立体几何知识分享
(完整版)立体几何知识点总结完整版
立体几何知识点【考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。
2、 空间两条直线的三种位置关系,并会判定。
3、 平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线 平行及角相等的方法。
4、 异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范 围,会求异面直线的所成角。
5•理解空间向量的概念,掌握空间向量的加法、减法和数乘;了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算 ;掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6•了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念•掌握棱柱,棱锥的性质,并会灵活应用,掌握球的表面积、体积公式;能画出简单空间图形的三视图, 能识别上述的三视图所表示的立体模型, 会用斜二测法画出它们的直观图•7•空间平行与垂直关系的论证 •8.掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题 ,进一步掌握异面直线所成角的求解方法,熟练解决有关问题9•理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转 化法、向量法)•对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离。
【知识络构建】<— 翅MJL 何体的峯构特征一袞间几何怀的表面锲和体枳 —I 吩间儿何体的三视图和吒现图 空何向話的槪念线性运算空间向园数呈积理和坐标运算【重点知识整合】1. 空间几何体的三视图专间儿何体空问点仁n线、平面ft置关系宀VIHI向虽与<体儿何(1) 正视图:光线从几何体的前面向后面正投影得到的投影图;(2) 侧视图:光线从几何体的左面向右面正投影得到的投影图;(3) 俯视图:光线从几何体的上面向下面正投影得到的投影图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.2. 斜二测画水平放置的平面图形的基本步骤(1) 建立直角坐标系,在已知水平放置的平面图形中取互相垂直的Ox, Oy,建立直角坐标系;(2) 画出斜坐标系,在画直观图的纸上(平面上)画出对应的Ox', Oy',使/ x Oy = 45。
空间几何体(棱柱、棱锥、圆柱、圆锥、球)中职
2.已知正四棱锥的底面边长和侧棱长为2.求正四棱锥的侧
面积和体积.
3.已知正三棱锥的底面边长为3,高为2.求该三棱锥的
表面积和体积;
练习
3
3
3
7.2旋转体—圆柱
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
例2 已知圆柱底面直径为6,高为10,求圆柱的表面积与
体积.
解 由题可知: = 3,高ℎ = 10,
∴ S底 = r 2 = 32 =9 cm 2 ,
S侧 =2 rh 2 3 10 60 cm 2 ,
例3 如图所示,正四棱锥锥 − 的底面边长是4,斜高锥
= 2 5 ,求该正四棱锥的表面积和体积.
解 ∵ 正四棱锥 − 的底面边长是4,
∴ 底 = 4 × 4 = 16(2 ),
又∵
∴
斜高 = 2 5 .
1
1
S侧 = c PE 16 2 5 16 5 cm2 ,
概念辨析
判断下列几何体的类型:
6
2
1
4
3
5
多
面
体
多面体由点、线、面组成;
围成多面体的各个多边形叫做多边形的面;
两个面的交线叫做多面体的棱,棱与棱的交
点叫做多面体的顶点。
观察以下多面体,可以分成几类?
2
1
3
4
5
6
观察以下多面体,可以分成几类?
棱柱
棱锥
棱
柱
:
记作:
ABC-A'B'C'
ABCD-A'B'C'D'
(2)侧面都是全等的矩形;
职高数学——立体几何
平面的基本性质一、高考要求:理解平面的基本性质、二、知识要点:1、平面的表示方法:平面就是无限延展的,就是没有边界的、通常用平行四边形表示平面,平面一般用希腊字母α、β、γ、…来命名,还可以用表示平行四边形的对角顶点的字母来命名、2、平面的基本性质:(1)如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内、这时我们说,直线在平面内或平面经过直线、用符号语言表示为:如果A∈a,B∈a,且A∈α,B∈α,则a⊂α、(2)经过不在同一条直线上的三点,有且只有一个平面、也可简单地说成,不共线的三点确定一个平面、它有三个推论:推论1:经过一条直线与直线外的一点,有且只有一个平面;推论2:经过两条相交直线,有且只有一个平面;推论3:经过两条平行直线,有且只有一个平面、(3)如果两个平面有一个公共点,那么它们就有另外的公共点,并且这些公共点的集合就是经过这个点的一条直线、这时我们称这两个平面相交、用符号语言表示为:如果A∈α,A∈β,则α∩β= ,且A∈ 、3、有关概念:如果空间内的几个点或几条直线都在同一平面内,那么我们就说它们共面;如果构成图形的所有点都在同一平面内,则这类图形叫做平面图形;如果构成图形的点不全在同一平面内,则这类图形叫做立体图形、直线与平面都就是空间的子集,直线又就是平面的子集、三、典型例题:例1:已知E、F、G、H分别就是空间四边形ABCD各边AB、AD、BC、CD上的点,且EF与GH 相交于点P、求证:点B、D、P在同一直线上、证明: ∵E∈AB, F∈AD又AB∩AD=A∴E、F∈平面ABD∴EF⊂平面ABD同理GH⊂平面CBD∵EF与GH相交于点P∴P∈平面ABD,P∈平面CBD, 又平面ABD∩平面ABD=BD∴P∈BD即点B、D、P在同一直线上、例2:如图,已知直线a∥b,直线m与a、b分别交于点A、B,求证:a、b、m三条直线在同一平面内、证明:∵a ∥b ∴a 、b 可以确定一个平面α、∵m ∩α=A,m ∩β=B, ∴A ∈α,B ∈α又A ∈m,B ∈m∴m ⊂α、 ∴a 、b 、m 三条直线在同一平面内、四、归纳小结:1、证明点共线问题常用方法有二:(1)证明这些点都就是某两个平面的公共点;(2)由其中两点确定一条直线再证明其它点在这条直线上、2、共面问题证明常用“纳入平面法”一般分为两点:(1)确定平面;(2)证明其余点、线在确定的平面内,解题中应注意确定平面的条件、五、基础知识训练:(一)选择题:1、下列说法正确的就是( )A 、平面与平面只有一个公共点B 、两两相交的三条直线共面C 、不共面的四点中,任何三点不共线D 、有三个公共点的两平面必重合2、在空间,下列命题中正确的就是( )A 、对边相等的四边形一定就是平面图形B 、四边相等的四边形一定就是平面图形C 、有一组对边平行的四边形一定就是平面图形D 、有一组对角相等的四边形一定就是平面图形3、过空间一点作三条直线,则这三条直线确定的平面个数就是( )A 、1个B 、2个C 、3个D 、1个或3个4、空间四点,其中三点共线就是这四点共面的( )A 、充分条件B 、必要条件C 、充要条件D 、既非充分也非必要条件(二)填空题:5、空间三条直线互相平行,但不共面,它们能确定 个平面,三条直线相交于一点,它们最多可确定 个平面、6、检查一张桌子的四条腿的下端就是否在同一个平面内的方法就是 、(三)解答题:7、已知A 、B 、C 就是平面α外三点,且AB 、BC 、CA 分别与α交于点E 、F 、G,求证:E 、F 、G 三点共线、8、已知1 ∥2 ∥3 ,且m ∩1 =A 1,m ∩2 = A 2,m ∩3 =A 3,求证: 1 、2 、3 、m 四线共面、直线与直线的位置关系一、高考要求:1、掌握两直线的位置关系、掌握空间两条直线的平行关系、平行直线的传递性;2、了解异面直线概念、了解异面直线的夹角、垂直与距离的概念、二、知识要点:1、两条直线的位置关系有三种:(1)平行:没有公共点,在同一平面内;(2)相交:有且仅有一个公共点,在同一平面内;(3)异面:没有公共点,不同在任何一个平面内、2、平行直线的传递性:空间三条直线,如果其中两条直线都平行于第三条直线,那么这两条直线也互相平行、3、异面直线的夹角、垂直与距离的概念:经过空间任意一点,分别作与两条异面直线平行的直线,这两条直线的夹角叫做两条异面直线所成的角、成90º角的两条异面直线叫做相互垂直的异面直线,异面直线a与b垂直,记作a⊥b、与两条异面直线都垂直相交的直线叫做两条异面直线的公垂线,对任意两条异面直线有且只有一条公垂线,两条异面直线的公垂线夹在异面直线间的部分叫做这两条异面直线的公垂线段,公垂线段的长度叫做两条异面直线的距离、三、典型例题:例1:已知空间四边形ABCD,E、F、G、H分别就是AB、BC、CD、DA的中点,求证:EFGH就是平行四边形、思考:如果AC=BD,四边形EFGH的形状就是 ;如果AC⊥BD, 四边形EFGH的形状就是 ;如果AC=BD且AC⊥BD,四边形EFGH的形状就是、例2:如图,长方体ABCD-A1B1C1D1中,已知AA1=1cm,AB=AD=2cm,E就是AA1的中点、(1)求证:AC1、BD1、CA1、DB1共点于O,且互相平分;(2)求证:EO⊥BD1,EO⊥AA1;(3)求异面直线AA1与BD1所成角的余弦值;(4)求异面直线AA1与BD1间的距离、四、归纳小结:1、平行线的传递性就是论证平行问题的主要依据;等角定理表明角在空间平行移动,它的大小不变、2、两条异面直线所成的角θ满足0º<θ≤90º,且常用平移的方法化为相交直线所成的角,在三角形中求解、五、基础知识训练:(一)选择题:1、在立体几何中,以下命题中真命题的个数为( )(1)垂直于同一直线的两直线平行; (2)到定点距离等于定长的点的轨迹就是圆;(3)有三个角就是直角的四边形就是矩形; (4)自一点向一已知直线引垂线有且只有一条、A、0个B、1个C、2个D、3个2、下列命题中,结论正确的个数就是( )(1)如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;(2)如果两条相交直线与另两条相交直线分别平行,那么这两组直线所成的锐角或直角相等;(3)如果一个角的两边与另一个角的两边分别垂直,那么这两个角相等或互补;(4)如果两条直线同平行于第三条直线,那么这两条直线互相平行、A、1个B、2个C、3个D、4个3、下列关于异面直线的叙述错误的个数就是( )(1)不同在任何一个平面内的两条直线就是异面直线;(2)既不平行也不相交的两条直线就是异面直线;(3)连结平面内一点与平面外一点的直线与这个平面内不经过该点的任意直线就是异面直线;(4)分别与两条异面直线同时相交的两条直线一定就是异面直线、A、0个B、1个C、2个D、3个4、下列命题中,结论正确的个数就是( )(1)若a∥b, a∥c,则b∥c; (2)若a⊥b, a⊥c,则b∥c;(3)若a∥b, a⊥c,则b⊥c; (4)若a⊥b, a⊥c,则b⊥c;A、1个B、2个C、3个D、4个5、教室内有一直尺,无论怎样放置,在地面总有这样的直线,它与直尺所在直线( )A、垂直B、平行C、相交D、异面6、设a、b、c为空间三条直线, a∥b, a、c异面,则b与c的位置关系就是( )A、异面B、相交C、不相交D、相交或异面7、设a、b、c为空间三条直线, 且c与a、b异面,若a与c所成的角等于b与c所成的角,则a与b的位置关系就是( )A、平行B、平行或相交C、平行或异面D、平行或相交或异面8、(2002高职-4)已知m,n就是异面直线,直线 平行于直线m,则 与n( )A、不可能就是平行直线B、一定就是异面直线C、不可能就是相交直线D、一定就是相交直线(二)填空题:9、平行于同一直线的两直线的位置关系就是 ;垂直于同一直线的两直线的位置关系就是、10、若a∥b,c⊥a,d⊥b,则c与d的关系为、11、空间两个角α与β,若α与β两边对应平行,当α=50º时,则角β= 、(三)解答题:12、、已知A、B与C、D分别就是异面直线a、b上的两点,求证:AC与BD就是异面直线(要求画出图形,写出已知,求证与证明过程)13、已知正方体ABCD-A1B1C1D1的棱长为1、(1)求直线DA1与AC的夹角;(2)求直线DA1与AC的距离、14、已知空间四边形OABC的边长与对角线长都为1,D、E分别为OA、BC 的中点,连结DE、(1)求证:DE就是异面直线OA与BC的公垂线;(2)求异面直线OA与BC的距离;(3)求点O到平面ABC的距离、直线与平面的位置关系一、高考要求:1.掌握直线与平面的位置关系、2.了解直线与平面平行的判定与性质,理解平行投影概念、掌握空间图形在平面上的表示方法、3.掌握直线与平面垂直的判定与性质、理解正射影与三垂线定理及其逆定理、掌握直线与平面所成的角及点到平面距离的概念、二、知识要点:1.直线与平面的位置关系有以下三种:(1)直线在平面内:有无数个公共点;(2)直线与平面相交:有且只有一个公共点;(3)直线与平面平行:没有公共点、2.直线与平面平行的判定:如果平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行、用符号语言表述为:如果a∥b,b⊂α,a α,那么a∥α、直线与平面平行的性质:如果一条直线平行于一个已知平面,且过这条直线的平面与已知平面相交,那么这条直线就与交线平行、用符号语言表述为:如果a∥α,a⊂β,α∩β=b,那么a∥b、3.当直线或线段不平行于投射线时,平行射影具有下述性质:(1)直线或线段的平行射影仍就是按或线段;(2)平行线的平行射影仍就是平行线;(3)在同一直线或平行直线上,两条线段平行射影的比等于这两条线段的比、4.表示空间图形的平面图形,叫做空间图形的直观图、画直观图通常用斜二测画法、5.直线与平面垂直的判定:如果一条直线垂直于平面内两条相交直线,那么这条直线就垂直于这个平面、用符号语言表述为:如果 ⊥a, ⊥b, a⊂α,b⊂α,a∩b=P,那么 ⊥α、直线与平面垂直的性质:如果两条直线同垂直于一个平面,那么这两条直线互相平行、用符号语言表述为:如果a⊥α, b⊥α,那么a∥b、6.斜线及其在平面内的射影:一条直线与一个平面相交但不与它垂直,这条直线称为平面的斜线,斜线与平面的交点称为斜足、从平面外一点向平面引垂线与斜线,从这点到斜足间的线段长,称为从这点到平面间的斜线的长,斜足与垂足之间的线段称为斜线在平面内的射影、这点到垂足的距离称为这个点到平面的距离、斜线与它在平面内的射影所成的角称为这条斜线与平面所成的角、定理:从平面外一点向平面引垂线与斜线、(1)如果两斜线的射影的长相等,那么两斜线的长相等,射影较长的斜线也较长、(2)如果两斜线长相等,那么射影的长也相等,斜线较长的射影也较长、7.三垂线定理及其逆定理:三垂线定理:平面内的一条直线,如果与一条斜线在这个平面内的射影垂直,那么这条直线也与这条斜线垂直、用符号语言叙述为:如果PO与PA分别就是平面α的垂线与斜线,AO就是斜线PA在平面α上的射影,而直线a⊂α,且a⊥AO,那么a⊥PA、三垂线逆定理:平面内的一条直线,如果与在这个平面的一条斜线垂直,那么这条直线也与这条斜线在平面内的射影垂直、用符号语言叙述为:如果PO与PA分别就是平面α的垂线与斜线,AO就是斜线PA在平面α上的射影,而直线a⊂α,且a⊥PA,那么a⊥AO、三、典型例题:例1:已知PA⊥矩形ABCD所在平面,M、N分别就是AB、PC的中点、(1)求证:MN∥平面PAD;(2)求证:MN⊥CD;(3)若∠PDA=45º,求证:MN⊥平面PCD、例2: AD、BC分别为两条异面直线上的两条线段,已知这两条异面直线所成的角为30º, AD =8cm,AB⊥BC,DC⊥BC,求线段BC的长、例3:(99高职-22)(本题满分10分)已知平面α,A∈α、B∈α、P α、 ⊂α,在以下三个关系中:AB⊥ ,PA⊥α,PB⊥ ,以其中的两个作为条件,余下的一个作为结论,构造一个真命题(用文字语言表述,不得出现字母及符号,否则不得分),并予以证明、四、归纳小结:1、在直线与平面的位置关系中,注意掌握通过“线线平行”去判定“线面平行”,反过来由“线面平行”去判定“线线平行”;通过“线线垂直”去判定“线面垂直”,反过来由“线面垂直”去判定“线线垂直”、2、平行射影的性质就是假定已知线段或直线不平行于投射线得出的、如果平行于投射线,则线段或直线的像就是一个点、3、由直线与平面垂直的判定定理可推出许多关于“垂直”的重要性质,其中最重要的有两个:一个就是,到两点距离相等的点的轨迹就是连结这两点的线段的垂直平分面;另一个就是,三垂线定理及其逆定理、这个定理就是判定空间线线垂直的一个重要方法,就是计算空间中两条直线的夹角与线段长度等有关问题的重要基础、它的证明的思想方法十分重要、4、在直线与平面所成的角中要重点掌握公式:cosθ=cosθ1cosθ2、在公式的基础上得到了“斜线与它在平面内的射影所成的角就是斜线与这个平面内所有直线所成的角中最小的角”的结论、直线与平面所成的角θ满足0º≤θ≤90º、五、基础知识训练:(一)选择题:1、如图,PO⊥平面ABC,O为垂足,OD⊥AB,则下列关系式不成立的就是( )A 、 AB ⊥PD B 、 AB ⊥PCC 、 OD ⊥PC D 、 AB ⊥PO2、直线 与平面α成3π的角,直线a 在平面α内,且与直线 异面,则 与a 所成角的取值范围就是( )A 、⎪⎭⎫⎢⎣⎡32,0π B 、⎪⎭⎫⎢⎣⎡32,3ππ C 、 ⎪⎭⎫⎢⎣⎡2,3ππ D 、⎥⎦⎤⎢⎣⎡2,3ππ 3、由距离平面α为4cm 的一定点P 向平面α引斜线PA 与平面α成30º的角,则斜足A 在平面α内的轨迹图形就是( )A 、半径为34cm 的圆B 、半径为24cm 的圆C 、半径为334cm 的圆 D 、半径为22cm 的圆 4、设a 、b 就是两条异面直线,在下列命题中正确的就是( )A 、有且仅有一条直线与a 、b 垂直B 、有一个平面与a 、b 都垂直C 、过直线a 有且仅有一个平面与b 平行D 、过空间任一点必可作一条直线与a 、b 都相交5、下列命题中正确的就是( )A 、若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B 、若一条直线垂直于一个平面内的无数条直线,则这条直线必定垂直于这个平面C 、若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D 、若一条直线平行于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面6、两条直线a 、b 与平面α成的角相等,则a 、b 的关系就是( )A 、平行B 、相交C 、异面D 、以上三种情况都有可能7、PA,PB,PC 就是从P 引出的三条射线,每两条的夹角都就是60º,则直线PC 与平面PAB 所成角的余弦值为( )A 、21 B 、36 C 、33 D 、23 8、直线a 就是平面α的斜线,b ⊂α,当a 与b 成60º的角,且b 与a 在α内的射影成45º角时,a 与α所成的角就是( )A 、60ºB 、45ºC 、90ºD 、135º9、矩形ABCD,AB=3,BC=4,PA ⊥ABCD 且PA=1, P 到对角线BD 的距离为( )A 、513B 、517 C 、921 D 、12951 10、在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC,PA=8,则P 到BC 的距离为( )A 、5B 、52C 、53D 、5411、在直角三角形ABC 中, ∠B=90º,∠C=30º,D 就是BC 边的中点,AC=2,DE ⊥平面ABC,且DE=1,则E 到斜边AC 的距离就是( )A 、25B 、27C 、211D 、419 12、已知SO ⊥平面α,垂足O, △ABC ⊂α,点O 就是△ABC 的外心,则( )A 、 SA=SB=SCB 、 SA ⊥SB,且SB ⊥SCC 、∠ASB=∠BSC=∠CSAD 、 SA ⊥BC(二)填空题:13、如图,C 为平面PAB 外一点,∠APB=90º,∠CPA=∠CPB=60º,且PA=PB=PC=1,则C 到平面PAB 的距离为 、14、在空间四边形ABCD 中,如果AB ⊥CD,BC ⊥AD,那么对角线AC 与BD 的位置关系就是 、15、两条直线a 、b 在同一个平面上的射影可能就是 、(三)解答题:16、证明直线与平面平行的判定定理、17、从平面外一点P 向平面引垂线PO 与斜线PA,PB 、(1)如果PA=8cm,PB=5cm,它们在平面内的射影长OA:OB=4:3,求点P 到平面的距离;(2)如果PO=k,PA 、PB 与平面都成30º角,且∠A PB=90º,求AB 的长;(3)如果PO=k,∠OPA=∠OPB=∠A PB=60º,求AB 的长、18、一个正三角形的边长为a,三角形所在平面外有一点P 、(1)P 到三角形三顶点的距离都就是332a,求这点到三角形各顶点连线与三角形所在平面成的角的大小以及这点到三角形所在平面的距离;(2)P 到三角形三条边的距离都就是66a,求这点到三角形各边所作垂线与三角形所在平面成的角的大小以及这点到三角形所在平面的距离、19、已知直角△ABC 在平面α上, D 就是斜边AB 的中点, DE ⊥α,且DE=12cm,AC=8cm,BC=6cm,求EA,EB,EC 的长、20、如图,平面α∩β=CD,EA ⊥α,EB ⊥β,且A ∈α,B ∈β、求证:(1)CD ⊥平面EAB;(2)CD ⊥直线AB 、21、已知PO ⊥平面ABO,PB ⊥AB,又知∠PAB=α,∠PAO=β,∠OAB=γ、求证:cos α=cos βcos γ、22、 已知正方体ABCD-A 1B 1C 1D 1、(1)求直线DA 1与AC 1的夹角;(2)求证:AC 1⊥平面A 1BD 、平面与平面的位置关系一、高考要求:1.掌握平面与平面的位置关系、2.了解平面与平面的判定与性质,理解二面角概念,掌握平面与平面垂直的判定与性质、二、知识要点:1.平面与平面有以下两种位置关系:(1)平行:没有公共点;(2)相交:有一条公共直线、2.平面与平面平行的判定:如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面互相平行、用符号语言表述为:如果a∩b≠Φ, a⊂α,b⊂α,且a∥β,b∥β,那么α∥β、平面与平面平行的性质:如果两个平行平面同时与第三个平面相交,则它们的交线平行、用符号语言表述为:如果α∥β,γ∩α=a,γ∩β=b,那么a∥b、3.二面角:由一条直线引两个半平面所组成的图形称为二面角,这条直线称为二面角的棱,构成二面角的两个半平面称为二面角的面、在二面角的棱上任取一点,过这点在二面角的两个半平面内分别作棱的垂线,这两条垂线相交所成的角称为二面角的平面角、二面角的大小可用它的平面角来度量、平面角就是直角的二面角叫做直二面角、4.平面与平面垂直的判定:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直、用符号语言表述为:如果直线AB⊂平面α,AB⊥β,垂足为B,那么α⊥β、平面与平面垂直的性质:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面、用符号语言表述为:如果α⊥β, α∩β=CD,AB⊂α, AB⊥CD,B为垂足,那么AB⊥β、三、典型例题:例1:试证明:如果两个平面垂直,那么在一个平面内,垂直于它们交线的直线垂直于另一个平面、例2:已知二面角α- -β的平面角就是锐角θ,若点C∈α,C到β的距离为3,C到棱AB的距离为4,试求sin2θ的值、例3:已知平面β⊥平面α,平面γ⊥平面α,且平面β∩平面γ=a,求证:a⊥α、四、归纳小结:1.在平面与平面的位置关系中,注意掌握通过“线面(或线线)平行”去判定“面面平行”,反过来由“面面平行”去判定“线线平行”;通过“线线垂直”去判定“线面垂直”,反过来由“线面垂直”去判定“线线垂直”、2.二面角θ满足0º≤θ≤180º、求二面角的大小分两步:(1)找出二面角的平面角;(2)在三角形中求解平面角、五、基础知识训练:(一)选择题:1.设a、b、c表示直线,α、β、γ表示平面,下面四个命题中,;①若a⊥c, b⊥c,则a∥b ②若α⊥γ,β⊥γ,则α∥β③若a⊥c, b⊥α,则a∥α④若a⊥α, a⊥β,则α∥βA、①与②B、③与④C、②D、④2.如图,木工师傅在检查工件相邻的两个面就是否垂直时,常用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动一下,观察尺边就是否与这个面密合就可以了、这种检查方法的依据就是( )A、平面的基本性质B、三垂线定理C、平面与平面垂直的判定定理D、直线与平面垂直的判定定理3.已知直线 ⊥平面α,直线m⊂平面β,有下面四个命题:①α∥β⇒ ⊥m;② ∥m ⇒α⊥β;③α∥β⇒ ∥m;④ ⊥m⇒α∥β、其中正确的两个命题就是( )A、①与②B、③与④C、②与④D、①与③4.如果直线 ,m与平面α、β、γ满足: =β∩γ, ∥α,m⊂α与m⊥γ,那么必有( )A、α⊥γ且 ⊥mB、α⊥γ且m∥βC、 m∥β且 ⊥mD、α∥β且α⊥γ5.对于平面α、β与直线 、m,则α⊥β的一个充分条件就是( )A、 ⊥m, ∥α,m∥βB、 ⊥m,α∩β= ,m⊂αC、 ∥m, m⊥β, ⊂αD、 ∥m, ⊥α,m⊥β6.若异面直线a、b, a⊂α, b⊂β,则平面α、β的位置关系一定就是( )A、平行B、相交C、平行或相交D、平行或相交或重合7.下列命题中,正确的就是( )(1)平行于同一直线的两平面平行 (2)平行于同一平面的两平面平行(3)垂直于同一直线的两平面平行 (4)垂直于同一平面的两平面平行A、(1)(2)B、(2) (3)C、(3)(4)D、(2)(3)(4)8.过平面外一点P,(1)存在无数个平面与平面α平行 (2)存在无数个平面与平面α垂直(3)存在无数条直线与平面α垂直 (4)只存在一条直线与平面α平行其中正确的有( )A、1个B、2个C、3个D、4个4,PA⊥平面AC,若PA=12,则二面角P-BD-C的大小为( ) 9.设正方形ABCD的边长为6A 、3πB 、4πC 、2πD 、32π (二)填空题:10. 已知二面角就是60º,在它的内部有一点到这个二面角的两个半平面的垂线段长都就是a,则两个垂足间的距离就是 、11. 在二面角的一个面内有一个已知点A,它到棱的距离就是它到另一个面的距离的2倍,则这个二面角的度数就是 、12. 有如下几个命题:①平面α与平面β垂直的充分必要条件就是α内有一条直线与β垂直; ②平面α与平面β平行的一个必要而不充分的条件就是α内有无数条直线与β平行; ③直线a 与平面β平行的一个充分而不必要的条件就是β内有一条直线与直线a 平行、 其中正确命题的序号就是 、13. 设m 、 为直线,α、β为平面,给出下列命题: ① 垂直于α内的两条相交直线,则 ⊥α;②若m ∥α,则m 平行于α内的所有直线;③若 ⊥α,α∥β,则 ⊥β;④若m ⊂α, ⊂β,且 ⊥m,则α⊥β;⑤若m ⊂α, ⊂β,且α∥β,则m ∥ 、其中正确的命题就是(只写序号) 、14. 已知直线 与平面α、β,给出三个论断:① ⊥α,② ∥β,③α⊥β,以其中的二个论断作为条件,余下的一个作为结论,写出您认为正确的一个命题 、15. α、β就是两个不同的平面,m 、n 就是平面α及β之外的两条不同直线,给出四个论断: ①m ⊥n;②α⊥β;③n ⊥β;④m ⊥α,以其中三个论断作为条件,余下一个论断作为结论,写出您认为正确的一个命题: 、16. 设X,Y,Z 就是空间不同的直线或平面,对下面四种情形,使“X ⊥Z 且Y ⊥Z ⇒X ∥Y ”为真命题的就是 、①X,Y,Z 就是直线; ②X,Y 就是直线,Z 就是平面; ③X,Y 就是平面,Z 就是直线; ④X,Y,Z 就是平面、设两个平面α、β相交于m,且直线a ∥α,a ∥β则直线a 与m 的关系就是 、17. 如图,直线AC 、DF 被三个平行平面α、β、γ所截,AC=15cm,DE=5cm,AB:BC=1:3,则AB 的长就是 ,EF 的长就是 、18. 二面角α- -β的度数为θ(0≤θ≤2π),在α面内有△ABC, △ABC 在β内的正射影为△A ´B ´C ´, △ABC 的面积为S,则△A ´B ´C ´的面积S ´= 、(三)解答题:19. 已知一个二面角就是60º,在它的内部一点到这个二面角的两个半平面的距离都就是3,求两个垂足间的距离、20. 已知:在60º二面角的棱上,有两个点A 、B,AC 、BD 分别在这个二面角的两个面内,且垂直于线段AB,且AB=4cm,AC=6cm,BD=8cm,求CD 的长、翻折问题一、高考要求:掌握立体几何中图形翻折问题的解法、二、知识要点:解决翻折问题要求:①根据题意作出折叠前、后的图形; ②分析折叠前、后边、角及其之间的关系哪些发生变化,哪些未发生变化;③寻找解决问题的方法并正确解答问题、三、典型例题:例1:已知△ABC 中,AB=AC=2,且∠A=90º(如图(1)所示),以BC 边上的高AD 为折痕使∠BDC=90º、(如图(2)所示)①求∠BAC;②求点C 到平面ABD 的距离;③求平面ABD 与平面ABC 所成的二面角的正切值、例2:已知等腰梯形ABCD,AB ∥CD,上底=4,下底=6,高=3,沿它的对角线AC 折成60º的二面角,求B 、D 两点之间的距离、四、归纳小结:1、折叠前一般就是平面图形,用平面几何知识解答即可,折叠后就是立体图形,要用立体几何知识解答;2、未发生变化的量可在折叠前的图形中解答,发生变化的量在折叠后的图形中解答、五、基础知识训练:(一)选择题:1. 以等腰直角△ABC 斜边BC 上的高AD 为折痕,折叠时使二面角B-AD-C 为90º,此时∠BAC 为( )A 、30ºB 、45ºC 、60ºD 、90º2. 把边长为a 的正△ABC 沿高AD 折成60º的二面角,则点A 到BC 的距离就是( ) A 、a B 、a 26 C 、a 33 D 、a 415 3. 已知边长为a 的菱形ABCD,∠A=60º,将菱形沿对角线BD 折成120º的二面角,则AC 的长为( )A 、a 22B 、a 23C 、a 23 D 、a 2 (二)填空题:4. E 、F 分别就是正方形ABCD 的边AB 与CD 的中点,EF 交BD 于O,以EF 为棱将正方形折成直二面角,则∠BOD= 、5. 如图,ABCD 就是正方形,E 就是AB 的中点,如将△DAE 与△CBE 分别沿虚线DE 与CE 折起,使AE 与BE重合,记A 与B 重合后的点为P,则面PCD 与面ECD所成的二面角为 度、(三)解答题:6.一个直角三角形的两条直角边各长a与b,沿其斜边上的高h折成直二面角,试求此时a与b两边夹角α的余弦、7.把长宽各为4与3的长方形ABCD沿对角线AC折成直二面角,试求顶点B与D的距离、8.已知等腰梯形ABCD,AB∥CD,上底=4,下底=6,高=3,沿它的对角线AC折成90º的二面角,求B、D两点之间的距离、空间图形性质的应用一、高考要求:掌握空间图形的性质在测量与实际问题中的应用、二、知识要点:1、空间图形的性质在测量中的应用;2、空间图形的性质在实际问题中的应用、三、典型例题:例1:如图,道路 旁有一条河,对岸有一铁塔CD高a米,如果您手中只有测角器与皮尺(刻度米尺),不渡河能否测量出塔顶C与道路的距离、请说出您的测量方法,并求出该距离、例2:斜坡平面α与水平平面β相交于坡脚 ,且成30º的二面角,在平面α内沿一条与 垂直的小路上坡,每前进100米升高多少米?如果沿一条与坡脚 成45º角的小路上坡,仍升高这么高,前进了多少米?四、归纳小结:空间图形的性质在测量与实际问题中的应用,重点在于理解题意,画好能正确表示题意的图形,并运用空间图形的性质解题、五、基础知识训练:(一)填空题:1.正方体的棱长为a,有一小虫,在正方体的表面上从顶点A爬到顶点C´,则小虫爬行的最短距离就是、2.在一长方体形的木块的面A1C1上,有一点P,过点P在平面A1C1内画一条直线与CP垂直、(二)解答题:3.如图,所测物体BB´垂直于水平面α于点B´,底端B´不能到达、在α内取一点A,测得∠BAB´=θ1,引基线AC,使∠B´AC=θ2,在AC上取一点D,使BD⊥AC,又测得AD=a,求物体BB´的高度、。
中职数学立体几何复习要点
中职数学立体几何复习要点展开全文1.多面体、旋转体的相关概念及公式定义表面积计算公式体积计算公式多面体棱柱棱锥棱台圆柱圆锥圆台球2.斜棱柱直棱柱正棱柱平行六面体直平行六面体长方体正方体正棱锥的斜高正棱台正棱台的斜高斜棱柱3.平面的基本性质平面的基本性质平面的基本性质三.4. 平面基本性质的推论推论 1 :.推论 2 :.推论 3 :5. 空间中两条直线的位置关系位置关系定义共面情况公共点相交平行异面6. 平行公理(平行的传递性)7. 异面直线定理:.线所成的角:异面直.所成的角的范围:异面直线. 8.空间中直线与平面的位置关系位置关系平面与平面相交平面与平面平行公共点符号表示图形表示9.直线与平面平行的判定定理:10.直线与平面平行的性质定理11.直线与平面垂直的判定定理:12.直线与平面垂直的判定定理的推论:13.直线与平面垂直的性质定理:15.平面的斜线与平面所成的角的概念:16.平面的斜线与平面所成的角的范围:17.平面与平面的位置关系位置关系直线在平面内直线与平面相交直线与平面平行公共点符号表示图形表示18.平面与平面平行的判定定理14. 平行于平面的直线到平面的距离:20.平面与平面平行的性质定理21.两个平行平面间的距离:. 22.二面角的平面角的概念:. 23.二面角的大小范围:.24.平面与平面垂直的判定定理:25.平面与平面垂直的性质定理:26._____________________________27.若点,点,则________________________________ ;__________________ ;是线段的中点,则的坐标是28.假定,且向量与三个坐标轴都不平行时,有。
中职数学教学立体几何 ppt课件
放到不同 位置的本
桌子
动脑思考 探索新知
两个平面平行的性质: 如果一个平面与两个平行平面相交, 那么它们的交线平行. 如图所示,如果 // ,平面 与 、 都相交,交线分别为m、n,那么
m∥n.
运用知识 强化练习
画出下列各图形: (1)两个水平放置的互相平行的平面. (2)两个竖直放置的互相平行的平面. (3)与两个平行的平面相交的平面.
创设情境 兴趣导入
将铅笔放到与桌面平行的位置,用矩形
硬纸片的面紧贴铅笔,矩形硬纸片的一边
铅笔
紧贴桌面(如图),观察铅笔及硬纸片与桌面
的交线,发现它们是平行的.
创设情境 兴趣导入
直线与平面的三种位置关系
动脑思考 探索新知
直线与平面平行的性质: 如果一条直线与一个平面平行,并且经过这条直线的一个平面 和这个平面相交,那么这条直线与交线平行. 如图所示,设直线 l 为平面 与平面 的交线,直线m在平面 内且m ∥ 则 m ∥ l .
B
A
C
四.平面的性质 性质3:不在同一条直线上的三个点,可以确定一个平面。
“确定一个平面”指 的是“存在着一个平面, 并且只存在着一个平面” .
1.直线与这条直线外的一点可以确定一个平面. 2.两条相交直线可以确定一个平面. 3.两条平行直线可以确定一个平面.
A
(1)
(2)
(3)
例 在长方A体 BCDA1B1C1D1中,画出 A、 由C、D1
创设情境 兴趣导入
将铅笔放在桌面上,此时铅笔与桌面有无数多个公共点; 抬起铅笔的一端,此时铅笔与桌面只有1个公共点;把铅笔放到 文具盒(文具盒在桌面上)上面,铅笔与桌面就没有公共点了.
动脑思考 探索新知
立体几何知识点归纳
一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,球的结构特征 1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1.4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222coscos cos 2αβγ++=,222sin sin sin 1αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h为棱柱的高) 2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式:S 圆柱侧=2rh π;S 圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高) 3.棱锥3.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
立体几何知识点归纳总结
立体几何知识点归纳总结立体几何是数学中研究三维空间中几何形状和它们之间关系的学科。
它不仅在数学理论中占有重要地位,而且在工程、建筑、物理学等多个领域都有广泛的应用。
以下是立体几何的一些关键知识点的归纳总结:1. 空间直线与平面:立体几何的基础是理解空间中的直线和平面。
直线是一维对象,而平面是二维对象。
在空间中,直线与平面可以相交、平行或位于同一平面内。
2. 空间角:立体几何中的空间角包括直线与直线之间的角度、直线与平面之间的角度以及平面与平面之间的角度。
这些角度的测量是立体几何中的重要内容。
3. 多面体与多边形:多面体是空间中由多条边和多个面组成的封闭形状,如立方体、四面体等。
多边形是平面上的封闭形状,如三角形、矩形等。
立体几何中研究多面体的面、边、顶点以及它们之间的关系。
4. 体积与表面积:计算立体图形的体积和表面积是立体几何中的核心问题。
对于规则的几何体,如立方体、球体、圆柱体等,有固定的公式来计算它们的体积和表面积。
5. 向量:向量是具有大小和方向的量,它在立体几何中用于描述空间中的位置、运动和力。
向量运算,如向量加法、标量乘法和点积,是解决立体几何问题的重要工具。
6. 坐标系:在立体几何中,通常使用笛卡尔坐标系来确定空间中点的位置。
通过三个坐标轴(通常是x、y和z轴),可以精确地描述空间中的任何一点。
7. 对称性:立体几何中的对称性包括反射对称、旋转对称和滑移对称。
对称性是理解几何形状和它们的性质的关键。
8. 投影:在立体几何中,投影是将三维对象映射到二维平面上的过程。
这在工程图纸和建筑设计中非常重要。
9. 锥体与柱体:锥体和柱体是常见的立体几何形状。
它们由一个底面和连接底面各点到一个共同顶点的线段组成。
锥体和柱体的体积和表面积的计算是立体几何中的重要内容。
10. 曲面:曲面是立体几何中的二维表面,它们可以是平面的,也可以是弯曲的。
曲面的研究包括曲面的方程、曲面的几何性质以及曲面上的路径等。
中职-第九章 立体几何知识点归纳总结
立体几何知识点归纳总结一、立体几何知识点归纳第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥, 球的结构特征1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 ②四棱柱 底面为平行四边形且侧棱垂直于底面 直平行六面体 底面为矩形长方体 底面为正方形 正四棱柱 侧棱与底面边长相等 正方体1.3棱柱的性质:①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形;1.4侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.1.5面积、体积公式:2S c h S c h S S h =⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h为棱柱的高)2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形.2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.2.4面积、体积公式:S 圆柱侧=2rh π;S 圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高)3.棱锥3.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
中职数学基础模块知识点、典型题目系列---9.立体几何(适合打印,经典)
第九章立体几何第1节平面及其基本性质一、平面的概念平面:平坦、光滑并且可以无限延展的图形.平面的表示方法:(1)平面αβγ、、、(2)平面ABCD (3)平面AC或平面BD.平面的画法:①水平面画成平行四边形,锐角画成45,横边是邻边的2倍长②竖直面画成长方形③平面有时也表示成三角形、圆、多边形等2.平面的基本性质平面的性质1:如果直线l上的两个点都在平面α内,那么直线l上的所有点都在平面α内.此时称直线l在平面α内或平面α经过直线l.记作lα⊆平面的性质2:如果两个平面有一个公共点,那么它们还有其他公共点,并且所有公共点的集合是过这个点的一条直线。
记作lαβ=【说明】“确定一个平面”的意思是有且只有一个平面平面的性质3:不在同一条直线上的三个点,可以确定一个平面(举例:照相机的三脚架)推论: 1.直线与这条直线外的一点可以确定一个平面.2.两条相交直线可以确定一个平面. 3.两条平行直线可以确定一个平面【试说明】工人常用两根平行的木条来固定一排物品;营业员用彩带交叉捆扎礼品盒.【练习】 1.说明梯形是平面图形。
2.已知A、B、C是直线l上的三个点,D不是直线l上的点.判断直线AD、BD、CD是否在同一个平面内.第2节空间中的平行一、线线平行2.判定:平行于同一条直线的两条直线平行.图9−51.位置关系平行共面相交异面:既不平行,也不相交二、线面平行2.判定:线(平面外)线(平面内)平行则线面平行。
性质:线面平行则线线(交线)平行。
三、面面平行2.判定:性质:面面平行则线.(交线)线.(交线)平行 【习题】1.如图,M,N 分别为AB,AD 的中点,说明MN//平面BCD 。
B例1.垂直于同一直线的两条直线,下列说法不正确的是 ( )A 、垂直于同一直线的两条直线互相平行B 、垂直于同一直线的两条直线互相垂直C 、垂直于同一直线的两条直线或异面或相交D 、垂直于同一直线的两条直线或平行或异面或相交第3节 空间角一、线线角 两条异面直线所成的角:平移使两条直线相交后形成的最小正角。
职高立体几何知识点
职高立体几何知识点9.1 平面的基本性质1.在立体几何中,有三种语言可以用来描述点、直线和平面之间的位置关系:图形语言、文字语言和符号语言。
2.根据位置关系,可以用不同的语言描述点、直线和平面之间的位置关系,例如点A在直线a上、点B在直线a外、直线a在平面α内等等。
3.符号语言可以用符号来表示位置关系,例如XXX表示点A在直线a上,a∥b表示直线a和直线b平行等等。
9.2 空间图形的位置关系1.空间直线的位置关系可以分为相交、平行和异面三种情况。
2.平行线的传递公理指出,平行于同一直线的两条直线相互平行。
3.异面直线是指不在任何一个平面内的两条直线。
可以通过连平面内的一点与平面外一点的直线与这个平面内不过此点的直线来判定异面直线。
4.异面直线所成的角的范围是(0°,90°],可以通过平移法来作异面直线成角的方法。
9.3 直线与平面的位置关系1.直线和平面的位置关系可以分为直线在平面内、相交和平行三种情况。
2.等角定理指出,如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。
3.线面平行的定义是指平面外的直线与平面无公共点,可以通过判定定理来判断。
4.线面垂直的定义是指一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面,可以通过判定定理和性质定理来判断。
5.面面平行的定义是指空间两个平面没有公共点,可以通过判定定理来判断。
推论:如果一个平面内的两条相交直线分别与另一个平面的两条线段平行,那么这两个平面是平行的。
判定定理2:如果有两个平面垂直于同一条直线,那么这两个平面互相平行。
面面平行的性质定理:如果两个平面互相平行,那么它们之间的平行线段长度相等。
面面垂直的定义:如果两个平面的二面角的平面角为90°,那么这两个平面是垂直的。
判定定理:如果一个平面与另一个平面的一条垂线相交,那么这两个平面是垂直的。
面面垂直的性质定理:如果两个平面是垂直的,那么它们之间的二面角的平面角为90°。
职高数学_立体几何.doc
平面的基本性质一、高考要求:理解平面的基本性质.二、知识要点:1.平面的表示方法 : 平面是无限延展的 , 是没有边界的 . 通常用平行四边形表示平面 , 平面一般用希腊字母α、β、γ、来命名, 还可以用表示平行四边形的对角顶点的字母来命名.2. 平面的基本性质:(1) 如果一条直线上的两点在一个平面, 那么这条直线上的所有点都在这个平面. 这时我们说, 直线在平面或平面经过直线. 用符号语言表示为: 如果 A∈ a,B ∈ a, 且 A∈α ,B ∈α , 则 a? α.(2)经过不在同一条直线上的三点 , 有且只有一个平面 . 也可简单地说成 , 不共线的三点确定一个平面 . 它有三个推论 :推论 1: 经过一条直线和直线外的一点, 有且只有一个平面;推论 2: 经过两条相交直线, 有且只有一个平面;推论 3: 经过两条平行直线, 有且只有一个平面.(3)如果两个平面有一个公共点 , 那么它们就有另外的公共点 , 并且这些公共点的集合是经过这个点的一条直线. 这时我们称这两个平面相交.用符号语言表示为: 如果A∈α ,A ∈β , 则α∩β = , 且 A∈.3.有关概念: 如果空间的几个点或几条直线都在同一平面, 那么我们就说它们共面; 如果构成图形的所有点都在同一平面 , 则这类图形叫做平面图形 ; 如果构成图形的点不全在同一平面 ,则这类图形叫做立体图形. 直线和平面都是空间的子集, 直线又是平面的子集.三、典型例题:例 1: 已知 E、 F、 G、 H 分别是空间四边形 ABCD各边 AB、 AD、 BC、CD上的点 , 且 EF 与 GH相交于点 P. 求证 : 点 B、 D、 P 在同一直线上 .证明 :∵ E∈ AB, F∈AD又AB∩ AD=A∴E、 F∈平面 ABD∴E F? 平面 ABD同理 GH? 平面 CBD∵E F 与 GH相交于点 P∴P∈平面 ABD,P∈平面 CBD, 又平面 ABD∩平面 ABD=BD∴P∈ BD即点 B、 D、P 在同一直线上 .例 2: 如图 , 已知直线 a∥ b, 直线 m与 a、b 分别交于点 A、B,求证 :a 、 b、 m三条直线在同一平面 .证明 : ∵ a∥b∴ a、b可以确定一个平面α.∵m∩α =A,m∩β =B,∴ A∈α ,B∈α又A∈ m,B∈ m∴m? α .∴ a、b、m三条直线在同一平面.四、归纳小结:1. 证明点共线问题常用方法有二:(1)证明这些点都是某两个平面的公共点;(2)由其中两点确定一条直线再证明其它点在这条直线上.2.共面问题证明常用“纳入平面法”一般分为两点 :(1) 确定平面 ;(2) 证明其余点、线在确定的平面 , 解题中应注意确定平面的条件 .五、基础知识训练:(一)选择题:1. 下列说确的是( )A. 平面和平面只有一个公共点C. 不共面的四点中, 任何三点不共线B.D.两两相交的三条直线共面有三个公共点的两平面必重合2. 在空间, 下列命题中正确的是( )A. 对边相等的四边形一定是平面图形C. 有一组对边平行的四边形一定是平面图形B.四边相等的四边形一定是平面图形D. 有一组对角相等的四边形一定是平面图形3.过空间一点作三条直线 , 则这三条直线确定的平面个数是 ( )A.1 个B.2个C.3个D.1个或3个4.空间四点 , 其中三点共线是这四点共面的 ( )A. 充分条件B.必要条件C.充要条件D.既非充分也非必要条件(二)填空题:5. 空间三条直线互相平行 , 但不共面 , 它们能确定个平面 , 三条直线相交于一点, 它们最多可确定个平面 .6. 检查一桌子的四条腿的下端是否在同一个平面的方法是.(三)解答题:7.已知 A、 B、C 是平面α外三点 , 且 AB、 BC、 CA分别与α交于点 E、 F、 G,求证 :E 、F、 G三点共线 .8. 已知 1 ∥ 2 ∥ 3 ,且m∩1=A1,m∩ 2 = A2,m∩3 =A3,求证: 1 、2、3、m四线共面.直线与直线的位置关系一、高考要求:1.掌握两直线的位置关系 . 掌握空间两条直线的平行关系、平行直线的传递性;2.了解异面直线概念 . 了解异面直线的夹角、垂直和距离的概念.二、知识要点:1.两条直线的位置关系有三种 :(1) 平行 : 没有公共点 , 在同一平面 ;(2) 相交 : 有且仅有一个公共点 , 在同一平面 ;(3) 异面 : 没有公共点 , 不同在任何一个平面 .2.平行直线的传递性 : 空间三条直线 , 如果其中两条直线都平行于第三条直线 , 那么这两条直线也互相平行 .3.异面直线的夹角、垂直和距离的概念 : 经过空间任意一点 , 分别作与两条异面直线平行的直线, 这两条直线的夹角叫做两条异面直线所成的角. 成 90o 角的两条异面直线叫做相互垂直的异面直线 , 异面直线 a 与 b 垂直 , 记作 a⊥ b. 和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线 , 对任意两条异面直线有且只有一条公垂线,两条异面直线的公垂线夹在异面直线间的部分叫做这两条异面直线的公垂线段, 公垂线段的长度叫做两条异面直线的距离.三、典型例题:例 1: 已知空间四边形 ABCD,E、F、G、H 分别是 AB、BC、CD、DA的中点 , 求证 :EFGH是平行四边形 .思考:如果AC=BD,四边形EFGH的形状是; 如果AC⊥BD, 四边形EFGH的形状是;如果AC=BD且AC⊥BD,四边形EFGH的形状是.例 2: 如图 , 长方体 ABCD-A1B1C1D1中 , 已知 AA1=1cm,AB=AD=2cm,E是 AA1的中点 .(1)求证 :AC1、 BD1、 CA1、DB1共点于 O,且互相平分 ;(2)求证 :EO⊥ BD1,EO⊥ AA1;(3)求异面直线 AA1和 BD1所成角的余弦值 ;(4)求异面直线 AA1和 BD1间的距离 .四、归纳小结:1. 平行线的传递性是论证平行问题的主要依据; 等角定理表明角在空间平行移动, 它的大小不变 .2.两条异面直线所成的角θ满足 0o <θ≤ 90o , 且常用平移的方法化为相交直线所成的角 , 在三角形中求解 .五、基础知识训练:(一)选择题:1.在立体几何中 , 以下命题中真命题的个数为 ( )(1) 垂直于同一直线的两直线平行; (2)到定点距离等于定长的点的轨迹是圆;(3)有三个角是直角的四边形是矩形 ; (4) 自一点向一已知直线引垂线有且只有一条.A.0 个B.1个C.2个D.3个2.下列命题中 , 结论正确的个数是 ( )(1)如果一个角的两边与另一个角的两边分别平行, 那么这两个角相等 ;(2)如果两条相交直线和另两条相交直线分别平行, 那么这两组直线所成的锐角或直角相等;(3)如果一个角的两边和另一个角的两边分别垂直, 那么这两个角相等或互补 ;(4)如果两条直线同平行于第三条直线, 那么这两条直线互相平行 .A.1 个B.2 个C.3 个D.4 个3. 下列关于异面直线的叙述错误的个数是( )(1) 不同在任何一个平面的两条直线是异面直线;(2) 既不平行也不相交的两条直线是异面直线;(3) 连结平面一点与平面外一点的直线和这个平面不经过该点的任意直线是异面直线;(4) 分别和两条异面直线同时相交的两条直线一定是异面直线.A.0 个B.1 个C.2 个D.3 个4.下列命题中 , 结论正确的个数是 ( )(1) 若 a∥ b, a ∥ c, 则 b∥ c; (2) 若 a⊥ b, a ⊥ c, 则 b∥c;(3) 若 a∥ b, a ⊥ c, 则 b⊥ c; (4) 若 a⊥ b, a ⊥ c, 则 b⊥c;A.1 个B.2 个C.3 个D.4 个5.教室有一直尺 , 无论怎样放置 , 在地面总有这样的直线 , 它与直尺所在直线 ( )A. 垂直B. 平行C. 相交D. 异面6. 设 a、 b、 c 为空间三条直线, a ∥ b, a 、 c 异面 , 则 b 与 c 的位置关系是 ( )A. 异面B. 相交C. 不相交D. 相交或异面7.设 a、 b、 c 为空间三条直线 , 且 c 与 a、 b 异面 , 若 a 与 c 所成的角等于 b 与 c 所成的角 , 则 a 与 b 的位置关系是( )A. 平行B.8.(2002高职-4)已知A. 不可能是平行直线平行或相交 C.m,n 是异面直线 , 直线B.一定是异面直线平行或异面 D.平行或相交或异面平行于直线m,则和n()C.不可能是相交直线D.一定是相交直线(二)填空题:9. 平行于同一直线的两直线的位置关系是;垂直于同一直线的两直线的位置关系是.10. 若 a∥ b,c ⊥ a,d ⊥ b, 则 c 与 d 的关系为.11. 空间两个角α和β, 若α和β两边对应平行, 当α=50o时 , 则角β = .(三)解答题:12.. 已知A、B 和C、D 分别是异面直线a、 b 上的两点, 求证:AC 和BD是异面直线( 要求画出图形 , 写出已知, 求证和证明过程)13.已知正方体 ABCD-A1B1C1D1的棱长为 1.(1) 求直线 DA1与 AC的夹角 ;(2) 求直线 DA1与 AC的距离 .14.已知空间四边形 OABC的边长和对角线长都为 1,D、 E 分别为 OA、 BC的中点 , 连结 DE.(1) 求证 :DE 是异面直线 OA和 BC的公垂线 ;(2) 求异面直线 OA和 BC的距离 ;(3) 求点 O到平面 ABC的距离 .直线与平面的位置关系一、高考要求:1. 掌握直线与平面的位置关系.2.了解直线与平面平行的判定和性质, 理解平行投影概念 . 掌握空间图形在平面上的表示方法.3. 掌握直线与平面垂直的判定和性质. 理解正射影和三垂线定理及其逆定理. 掌握直线与平面所成的角及点到平面距离的概念.二、知识要点:1.直线与平面的位置关系有以下三种:(1) 直线在平面 : 有无数个公共点 ;(2) 直线与平面相交 : 有且只有一个公共点;(3) 直线与平面平行: 没有公共点.2.直线与平面平行的判定: 如果平面外一条直线与平面一条直线平行, 那么这条直线与这个平面平行.用符号语言表述为: 如果a∥ b,b ? α ,a α, 那么a∥α .直线与平面平行的性质: 如果一条直线平行于一个已知平面, 且过这条直线的平面和已知平面相交 , 那么这条直线就和交线平行.用符号语言表述为: 如果 a∥α ,a ? β , α∩β =b, 那么 a∥ b.3.当直线或线段不平行于投射线时, 平行射影具有下述性质 :(1)直线或线段的平行射影仍是按或线段;(2)平行线的平行射影仍是平行线 ;(3) 在同一直线或平行直线上, 两条线段平行射影的比等于这两条线段的比.4.表示空间图形的平面图形 , 叫做空间图形的直观图 . 画直观图通常用斜二测画法 .5.直线与平面垂直的判定 : 如果一条直线垂直于平面两条相交直线, 那么这条直线就垂直于这个平面 .用符号语言表述为: 如果⊥a,⊥ b, a ?α ,b ?α ,a∩b=P,那么⊥α .直线与平面垂直的性质: 如果两条直线同垂直于一个平面, 那么这两条直线互相平行 .用符号语言表述为: 如果 a⊥α , b ⊥α , 那么 a∥ b.6.斜线及其在平面的射影: 一条直线和一个平面相交但不和它垂直, 这条直线称为平面的斜线,斜线和平面的交点称为斜足 . 从平面外一点向平面引垂线和斜线 , 从这点到斜足间的线段长 , 称为从这点到平面间的斜线的长, 斜足和垂足之间的线段称为斜线在平面的射影.这点到垂足的距离称为这个点到平面的距离. 斜线和它在平面的射影所成的角称为这条斜线与平面所成的角.定理 : 从平面外一点向平面引垂线和斜线.(1) 如果两斜线的射影的长相等, 那么两斜线的长相等, 射影较长的斜线也较长.(2) 如果两斜线长相等 , 那么射影的长也相等 , 斜线较长的射影也较长 .7.三垂线定理及其逆定理 :三垂线定理 : 平面的一条直线, 如果和一条斜线在这个平面的射影垂直这条斜线垂直.用符号语言叙述为: 如果 PO和 PA分别是平面α的垂线和斜线上的射影 , 而直线 a? α , 且 a⊥AO,那么 a⊥ PA.三垂线逆定理: 平面的一条直线, 如果和在这个平面的一条斜线垂直条斜线在平面的射影垂直.用符号语言叙述为: 如果 PO和 PA分别是平面α的垂线和斜线上的射影 , 而直线 a? α , 且 a⊥PA, 那么 a⊥ AO., 那么这条直线也和,AO 是斜线 PA在平面α, 那么这条直线也和这,AO 是斜线 PA在平面α三、典型例题:例 1: 已知 PA⊥矩形 ABCD所在平面 ,M、 N分别是 AB、 PC的中点 .(1)求证 :MN∥平面 PAD;(2)求证 :MN⊥ CD;(3)若∠ PDA=45o , 求证 :MN⊥平面 PCD.例 2: AD 、 BC分别为两条异面直线上的两条线段=8cm,AB⊥ BC,DC⊥ BC,求线段 BC的长 ., 已知这两条异面直线所成的角为30o , AD例 3:(99高职-22)(本题满分10 分 ) 已知平面α ,A ∈α、 B∈α、 Pα、? 关系中 :AB ⊥,PA ⊥α ,PB ⊥, 以其中的两个作为条件, 余下的一个作为结论命题 ( 用文字语言表述, 不得出现字母及符号, 否则不得分 ), 并予以证明 . α , 在以下三个, 构造一个真四、归纳小结:1.在直线与平面的位置关系中 , 注意掌握通过“线线平行” 去判定“线面平行” ,反过来由“线面平行”去判定“线线平行” ; 通过“线线垂直”去判定“线面垂直” ,反过来由“线面垂直”去判定“线线垂直” .2. 平行射影的性质是假定已知线段或直线不平行于投射线得出的. 如果平行于投射线, 则线段或直线的像是一个点.3. 由直线和平面垂直的判定定理可推出许多关于“垂直”的重要性质, 其中最重要的有两个 : 一个是 , 到两点距离相等的点的轨迹是连结这两点的线段的垂直平分面;另一个是 ,三垂线定理及其逆定理 . 这个定理是判定空间线线垂直的一个重要方法, 是计算空间中两条直线的夹角和线段长度等有关问题的重要基础. 它的证明的思想方法十分重要 .4. 在直线和平面所成的角中要重点掌握公式:cos θ =cosθ1cos θ2. 在公式的基础上得到了“斜线和它在平面的射影所成的角是斜线和这个平面所有直线所成的角中最小的角”的结论. 直线与平面所成的角θ满足0o ≤θ≤ 90o .五、基础知识训练:(一)选择题:1. 如图 ,PO⊥平面 ABC,O为垂足 ,OD⊥ AB,则下列关系式不成立的是 ( )A. AB ⊥PDB. AB ⊥ PCC. OD⊥ PCD. AB ⊥ PO2. 直线与平面α成的角 , 直线 a 在平面α , 且与直线异面,则与 a 所成角的取值围是3( )2B. , 2, D. ,A. 0, C.3 33 3 3 2 23.由距离平面α为 4cm 的一定点 P 向平面α引斜线 PA与平面α成 30o 的角 , 则斜足 A 在平面α的轨迹图形是 ( )A. 半径为 4 3 cm的圆B. 半径为 4 2 c m的圆C. 半径为 4 3cm的圆 D. 半径为 2 2 cm 的圆34.设 a、 b 是两条异面直线 , 在下列命题中正确的是 ( )A. 有且仅有一条直线与a、 b 垂直B.有一个平面与a、 b 都垂直C. 过直线 a 有且仅有一个平面与 b 平行D.过空间任一点必可作一条直线与a、 b 都相交5.下列命题中正确的是 ( )A. 若一条直线垂直于一个平面的两条直线, 则这条直线垂直于这个平面B.若一条直线垂直于一个平面的无数条直线, 则这条直线必定垂直于这个平面C.若一条直线平行于一个平面 , 则垂直于这个平面的直线必定垂直于这条直线D.若一条直线平行于一个平面 , 则垂直于这条直线的另一条直线必垂直于这个平面6. 两条直线a、 b 与平面α成的角相等,则a、 b 的关系是 ( )A. 平行B.相交C.异面D.以上三种情况都有可能7.PA,PB,PC 是从 P 引出的三条射线, 每两条的夹角都是60o , 则直线 PC与平面 PAB所成角的余弦值为 ( )A.1B.6C.3D.3 233 28. 直线 a 是平面α的斜线 ,b ? α, 当 a 与 b 成 60o 的角 , 且 b 与 a 在α的射影成 45o 角时 ,a 与α所成的角是 ( )A.60 oB.45o C.90o D.135 o 9. 矩形 ABCD,AB=3,BC=4,PA ⊥ABCD 且 PA=1, P 到对角线 BD 的距离为 ( )A.13B.17 C.1 9 D.1 129 552510. 在△ ABC 中 ,AB=AC=5,BC=6,PA ⊥平面 ABC,PA=8,则 P 到 BC 的距离为 ( ) A. 5 B. 2 5C.3 5D.4 511. 在直角三角形 ABC 中 ,∠B=90o , ∠ C=30o ,D 是 BC 边的中点 ,AC=2,DE ⊥平面 ABC,且 DE=1,则 E 到斜边 AC 的距离是 ( )5 B.7 C.11 D.19A.224212. 已知 SO ⊥平面α , 垂足 O, △ ABC? α , 点 O 是△ ABC 的外心 , 则 ( )A. SA=SB=SCB. SA⊥ SB, 且 SB ⊥ SCC. ∠ ASB=∠ BSC=∠ CSAD. SA⊥ BC(二)填空题:13. 如图 ,C 为平面 PAB 外一点 , ∠ APB=90o , ∠ CPA=∠CPB=60o , 且 PA=PB=PC=1,则 C 到平面 PAB 的距离为 .14. 在空间四边形ABCD 中 , 如果 AB ⊥ CD,BC ⊥ AD, 那么对角线 AC 与 BD 的位置关系是.15. 两条直线 a 、 b 在同一个平面上的射影可能是 .(三)解答题:16. 证明直线与平面平行的判定定理 .17. 从平面外一点 P 向平面引垂线 PO 和斜线 PA,PB.(1) 如果 PA=8cm,PB=5cm,它们在平面的射影长OA:OB=4: 3 , 求点 P 到平面的距离 ;(2) 如果 PO=k,PA 、 PB 与平面都成 30o 角 , 且∠ A PB=90o , 求 AB 的长 ;(3) 如果 PO=k,∠ OPA=∠ OPB=∠ A PB=60o , 求 AB 的长 .18. 一个正三角形的边长为 a, 三角形所在平面外有一点 P.(1)P到三角形三顶点的距离都是2 3a,求这点到三角形各顶点连线与三角形所在平面3成的角的大小以及这点到三角形所在平面的距离;(2)P到三角形三条边的距离都是6a,求这点到三角形各边所作垂线与三角形所在平面6成的角的大小以及这点到三角形所在平面的距离.19. 已知直角△ ABC在平面α上 , D是斜边AB的中点, DE⊥α,且DE=12cm,AC=8cm,BC=6cm, 求 EA,EB,EC 的长 .20.如图 , 平面α∩β =CD,EA⊥α ,EB ⊥β , 且 A∈α ,B ∈β .求证 :(1)CD ⊥平面 EAB;(2)CD⊥直线 AB.21. 已知 PO⊥平面 ABO,PB⊥ AB,又知∠ PAB=α , ∠ PAO=β , ∠ OAB=γ .求证 :cos α=cos β cosγ .22.已知正方体 ABCD-A1B1C1D1.(1) 求直线 DA1与 AC1的夹角 ;(2) 求证 :AC1⊥平面 A1BD.平面和平面的位置关系一、高考要求:1. 掌握平面和平面的位置关系.2.了解平面与平面的判定与性质 , 理解二面角概念 , 掌握平面与平面垂直的判定与性质.二、知识要点:1.平面和平面有以下两种位置关系:(1) 平行 : 没有公共点 ;(2) 相交 : 有一条公共直线 .2. 平面与平面平行的判定: 如果一个平面的两条相交直线都平行于另一个平面, 那么这两个平面互相平行 .用符号语言表述为: 如果 a∩ b≠Φ , a ? α,b ? α , 且 a∥β ,b ∥β , 那么α∥β .平面与平面平行的性质: 如果两个平行平面同时与第三个平面相交, 则它们的交线平行 .用符号语言表述为: 如果α∥β , γ∩α =a, γ∩β =b, 那么 a∥ b.3. 二面角 : 由一条直线引两个半平面所组成的图形称为二面角, 这条直线称为二面角的棱 , 构成二面角的两个半平面称为二面角的面. 在二面角的棱上任取一点, 过这点在二面角的两个半平面分别作棱的垂线, 这两条垂线相交所成的角称为二面角的平面角. 二面角的大小可用它的平面角来度量. 平面角是直角的二面角叫做直二面角.4. 平面与平面垂直的判定: 如果一个平面经过另一个平面的一条垂线, 那么这两个平面互相垂直 .用符号语言表述为: 如果直线 AB? 平面α ,AB⊥β , 垂足为 B, 那么α⊥β .平面与平面垂直的性质: 如果两个平面互相垂直 , 那么在一个平面垂直于它们交线的直线垂直于另一个平面 .用符号语言表述为: 如果α⊥β , α∩β =CD,AB? α , AB⊥ CD,B为垂足 , 那么 AB⊥β .三、典型例题:例 1: 试证明 : 如果两个平面垂直 , 那么在一个平面 , 垂直于它们交线的直线垂直于另一个平面.例 2: 已知二面角α - - β的平面角是锐角θ离为 4, 试求 sin2 θ的值 . , 若点C∈α ,C 到β的距离为3,C 到棱AB 的距例 3: 已知平面β⊥平面α, 平面γ⊥平面α, 且平面β∩平面γ=a, 求证 :a ⊥α .四、归纳小结:1.在平面与平面的位置关系中 , 注意掌握通过“线面 ( 或线线 ) 平行”去判定“面面平行”,反过来由“面面平行”去判定“线线平行”; 通过“线线垂直”去判定“线面垂直” ,反过来由“线面垂直”去判定“线线垂直”.2. 二面角θ满足0o ≤θ≤ 180o . 求二面角的大小分两步:(1)找出二面角的平面角;(2)在三角形中求解平面角.五、基础知识训练:(一)选择题:1.设 a、 b、 c 表示直线 , α、β、γ表示平面 , 下面四个命题中 ,;①若a⊥ c, b ⊥ c, 则 a∥ b ②若α⊥γ, β⊥γ, 则α∥β③若a⊥ c, b ⊥α , 则a∥α④若a⊥α , a ⊥β , 则α∥βA. ①和②B. ③和④C. ②D. ④2.如图 , 木工师傅在检查工件相邻的两个面是否垂直时, 常用曲尺的一边紧靠在工件的一个面上 , 另一边在工件的另一个面上转动一下, 观察尺边是否和这个面密合就可以了. 这种检查方法的依据是( )A. 平面的基本性质B. 三垂线定理C. 平面和平面垂直的判定定理D. 直线和平面垂直的判定定理3.已知直线⊥平面α , 直线 m? 平面β,有下面四个命题 :①α∥β? ⊥ m;②∥ m ? α⊥β; ③α∥β? ∥ m;④⊥ m? α∥β. 其中正确的两个命题是( )A. ①与②4. 如果直线A. α⊥γ且B.③与④C.,m 与平面α、β、γ满足: =β∩γ⊥m B.α⊥γ且m∥β C. m②与④ D., ∥α ,m? α和∥β且⊥ m①与③m⊥γ , 那么必有 (D.α∥β且α⊥γ)5. 对于平面α、β和直线、 m,则α⊥β的一个充分条件是( )A. ⊥m, ∥α ,m∥βB. ⊥ m,α∩β=,m? αC. ∥ m, m⊥β , ? αD. ∥ m, ⊥α ,m⊥β6. 若异面直线 A. 平行a、 b, a ?B.α , b ?相交β , 则平面α、β的位置关系一定是( )C.平行或相交D.平行或相交或重合7.下列命题中 , 正确的是 ( )(1)平行于同一直线的两平面平行(2)平行于同一平面的两平面平行(3)垂直于同一直线的两平面平行(4)垂直于同一平面的两平面平行A.(1)(2)B.(2) (3)C.(3)(4)D.(2)(3)(4)8.过平面外一点 P,(1) 存在无数个平面与平面α平行(2)存在无数个平面与平面α垂直(3) 存在无数条直线与平面α垂直(4)只存在一条直线与平面α平行其中正确的有 ( )A.1 个B.2 个C.3 个D.4 个9. 设正方形 ABCD的边长为4 6 ,PA ⊥平面 AC,若 PA=12,则二面角 P-BD-C 的大小为 ( )A. B. C. D. 24 2 33(二)填空题:10. 已知二面角是 60o , 在它的部有一点到这个二面角的两个半平面的垂线段长都是a, 则两个垂足间的距离是.11. 在二面角的一个面有一个已知点A, 它到棱的距离是它到另一个面的距离的 2 倍, 则这个二面角的度数是.12. 有如下几个命题 : ①平面α与平面β垂直的充分必要条件是α有一条直线与β垂直;②平面α与平面β平行的一个必要而不充分的条件是α有无数条直线与β平行;③直线 a 与平面β平行的一个充分而不必要的条件是β有一条直线与直线 a 平行 .其中正确命题的序号是.13.设 m、为直线 , α、β为平面 , 给出下列命题 : ①垂直于α的两条相交直线 , 则⊥α ;②若 m∥α , 则 m平行于α的所有直线; ③若⊥α ,α∥β,则⊥β ;④若m?α ,? β ,且⊥ m,则α⊥β ; ⑤若m? α , ? β,且α∥β,则m∥. 其中正确的命题是( 只写序号).14.已知直线和平面α、β , 给出三个论断 : ① ⊥α , ② ∥β , ③α⊥β , 以其中的二个论断作为条件 , 余下的一个作为结论, 写出你认为正确的一个命题.15. α、β是两个不同的平面 ,m、n 是平面α及β之外的两条不同直线 , 给出四个论断 : ① m ⊥n;②α⊥β;③ n⊥β;④m⊥α , 以其中三个论断作为条件 , 余下一个论断作为结论 , 写出你认为正确的一个命题:.16.设 X,Y,Z 是空间不同的直线或平面 , 对下面四种情形 , 使“ X⊥ Z 且 Y⊥Z? X∥ Y”为真命题的是.① X,Y,Z 是直线 ; ② X,Y 是直线 ,Z 是平面 ; ③X,Y 是平面 ,Z 是直线 ; ④X,Y,Z 是平面 .设两个平面α、β相交于m,且直线 a∥α ,a ∥β则直线 a 与 m的关系是.17. 如图 , 直线 AC、 DF 被三个平行平面α、β、γ所截,AC=15cm,DE=5cm,AB:BC=1:3, 则 AB的长是,EF 的长是.18. 二面角α - - β的度数为θ (0 ≤θ≤), 在α面有△ ABC, △ ABC 在β的正射影为△A′2B′C′, △ABC的面积为 S, 则△ A′ B′C′的面积 S′ =.(三)解答题:19. 已知一个二面角是60o , 在它的部一点到这个二面角的两个半平面的距离都是3,求两个垂足间的距离 .20. 已知 : 在 60o 二面角的棱上 , 有两个点A、B,AC、BD分别在这个二面角的两个面, 且垂直于线段 AB,且 AB=4cm,AC=6cm,BD=8cm,求 CD的长 .翻折问题一、高考要求:掌握立体几何中图形翻折问题的解法.二、知识要点:解决翻折问题要求: ①根据题意作出折叠前、后的图形;②分析折叠前、后边、角及其之间的关系哪些发生变化, 哪些未发生变化; ③寻找解决问题的方法并正确解答问题. 三、典型例题:例 1: 已知△ ABC中 ,AB=AC=2,且∠ A=90o ( 如图 (1) 所示 ), 以 BC边上的高 AD为折痕使∠ BDC=90o .( 如图 (2) 所示 )①求∠ BAC;②求点 C 到平面 ABD的距离 ;③求平面ABD与平面 ABC所成的二面角的正切值.例 2: 已知等腰梯形ABCD,AB∥ CD,上底 =4, 下底 =6, 高 =3, 沿它的对角线求 B、 D 两点之间的距离. AC折成60o 的二面角,四、归纳小结:1.折叠前一般是平面图形 , 用平面几何知识解答即可 , 折叠后是立体图形 , 要用立体几何知识解答 ;2. 未发生变化的量可在折叠前的图形中解答, 发生变化的量在折叠后的图形中解答.五、基础知识训练:(一)选择题:1. 以等腰直角△A BC斜边 BC 上的高 AD 为折痕 , 折叠时使二面角B-AD-C 为 90o , 此时∠ BAC 为( )A.30 oB.45oC.60oD.90o2.把边长为 a 的正△ ABC沿高 AD折成 60o 的二面角 , 则点 A 到 BC的距离是 ( )A. aB. 6a C.3D.15 2a a3 43. 已知边长为 a 的菱形 ABCD,∠ A=60o , 将菱形沿对角线 BD 折成 120o 的二面角 , 则 AC 的长为( )A. 2aB.3 a C.3 a D.2a222(二)填空题:4. E 、F 分别是正方形 ABCD 的边 AB 和 CD 的中点 ,EF 交 BD 于 O,以 EF 为棱将正方形折成直二 面角 , 则∠ BOD=.5. 如图 ,ABCD 是正方形 ,E 是 AB 的中点 , 如将△ DAE 和△ CBE 分别沿虚线 DE 和 CE 折起 , 使 AE 与 BE 重合 , 记 A 与 B 重合后的点为 P, 则面 PCD 与面 ECD 所成的二面角为(三)解答题:6. 一个直角三角形的两条直角边各长a 与 b, 沿其斜边上的高 h 折成直二面角b 两边夹角α的余弦 .度 ., 试求此时 a 与7. 把长宽各为 4 与 3 的长方形 ABCD 沿对角线 AC 折成直二面角 , 试求顶点 B 与 D 的距离 .8. 已知等腰梯形 ABCD,AB ∥ CD,上底 =4, 下底 =6, 高 =3, 沿它的对角线 AC 折成 90o 的二面角 ,求 B 、 D 两点之间的距离 .空间图形性质的应用一、高考要求:掌握空间图形的性质在测量和实际问题中的应用.二、知识要点:1.空间图形的性质在测量中的应用;2. 空间图形的性质在实际问题中的应用.三、典型例题:例 1: 如图 , 道路旁有一条河米尺 ), 不渡河能否测量出塔顶, 对岸有一铁塔C与道路的距离CD高 a 米 , 如果你手中只有测角器和皮尺 . 请说出你的测量方法 , 并求出该距离.( 刻度例 2: 斜坡平面α与水平平面β相交于坡脚, 且成 30o 的小路上坡 , 每前进 100 米升高多少米?如果沿一条与坡脚么高 , 前进了多少米? 的二面角 , 在平面α沿一条与垂直成 45o 角的小路上坡, 仍升高这四、归纳小结:空间图形的性质在测量和实际问题中的应用, 重点在于理解题意, 画好能正确表示题意的图形 , 并运用空间图形的性质解题.五、基础知识训练:(一)填空题:1. 正方体的棱长为a, 有一小虫 , 在正方体的表面上从顶点A爬到顶点 C′ , 则小虫爬行的最短距离是.2.在一长方体形的木块的面 A1C1上, 有一点 P, 过点 P 在平面 A1C1画一条直线和 CP垂直 .(二)解答题:3.如图 , 所测物体 BB′垂直于水平面α于点 B′ , 底端 B′不能到达 . 在α取一点 A, 测得∠ BAB′ =θ1, 引基线 AC,使∠ B′AC=θ2, 在 AC上取一点 D, 使 BD⊥ AC,又测得 AD=a,求物体 BB′的高度 .。
立体几何知识点总结(全)
立体几何知识点总结(全)垂直直线:相交成直角的直线。
三.点与平面的位置关系点在平面上:点在平面内部;点在平面外:点在平面的一侧;点在平面上方或下方:只有在三维空间中才有,点在平面上方或下方的判断需要借助向量的概念。
四.直线与平面的位置关系直线在平面上:直线的每一个点都在平面上;直线与平面相交:有且只有一个交点;直线与平面平行:没有交点,且方向与平面的法向量垂直;直线与平面垂直:直线方向与平面的法向量相同或相反。
五.平面与平面的位置关系两个平面相交:有且只有一条公共直线;两个平面平行:没有公共直线;两个平面重合:所有点都相同。
改写:一。
空间几何体的三视图在空间几何体中,正视图是指光线从几何体的前面向后面正投影得到的投影图,反映了物体的高度和长度。
侧视图是指光线从几何体的左面向右面正投影得到的投影图,反映了物体的高度和宽度。
俯视图是指光线从几何体的上面向下面正投影得到的投影图,反映了物体的长度和宽度。
三视图中反应的长、宽、高的特点有“长对正”,“高平齐”,“宽相等”。
二。
空间几何体的直观图斜二测画法的基本步骤包括建立适当的直角坐标系xOy (尽可能使更多的点在坐标轴上)、建立斜坐标系x'O'y',使x'O'y'=45(或135)以及画对应图形。
在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半。
直观图与原图形的面积关系为S直观图= S原图/4.三。
空间几何体的表面积与体积圆柱侧面积为S侧面=2πr×l,圆锥侧面积为S侧面=πr×l,圆台侧面积为S侧面=πr×l+πR×l。
柱体的体积为V柱体=S×h,锥体的体积为V锥体=S×h/3,台体的体积为V台体=S上+S下+√S上×S下×h/3.球的表面积和体积分别为S=4πR2和V球=4πR3/3.正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥,正四面体是每个面都是全等的等边三角形的三棱锥。
中职数学教学课件:第9章立体几何
建筑空间规划
通过空间几何体的运用,建筑师 可以更好地规划和利用建筑空间, 以满足不同的使用需求,如住宅、
商业和工业建筑等。
建筑结构分析
在建筑结构分析中,空间几何体 可以用来描述和分析建筑的受力、 稳定性和抗震性能等,以确保建
筑计
在机械设计中,空间几何体被广泛应用于描述和分析各种 机械零件的形状、尺寸和位置等,以确保机械设备的正常 运转。
详细描述:在几何图形中,直线与平面的位置关系可以 通过图形的性质和定理来判断。例如,在长方体中,面 对角线所在的直线与过其顶点的平面垂直。
03
空间几何体的性质和分 类
空间几何体的性质
01
02
03
04
空间几何体具有三维空 间中的位置和大小。
空间几何体具有面、边 和顶点等基本元素。
空间几何体的面与面之 间存在相交或平行关系。
中职数学教学课件第9 章立体几何
目 录
• 立体几何简介 • 点、直线和平面的关系 • 空间几何体的性质和分类 • 空间几何体的表面积和体积 • 空间几何体的位置关系 • 空间几何体的应用
01
立体几何简介
立体几何的定义
立体几何是研究三维空间中图形和几 何对象的一门学科。它涉及到点、线 、面、体等基本元素,以及它们之间 的位置关系和度量性质。
图形分解法
将复杂的几何体分解为简单的几何 体,分别计算各部分的体积,然后 求和。
图形组合法
将两个或多个几何体组合在一起, 计算整个组合体的体积。
特殊空间几何体的表面积和体积
长方体的表面积和体积
长方体的表面积等于2ab+2bc+2ac, 体积等于长×宽×高。
正方体的表面积和体积
中职数学 第十四章 立体几何
图 14-15
第二节 平面及其性质
二、 平面的三条基本性质
在初中我们学过了点和直线的基本性质,即 (1)连接两点的线中,线段最短; (2)过两点有且只有一条直线. 几何中的点和直线都是抽象概念,所画出的点不考虑其 大小,所画出的直线也不考虑其粗细.同样,几何中的平面也 是抽象的概念,尽管在日常生活中大家知道什么样的物体表 面是平的,什么样的物体表面是凸凹不平的,但这只是我们 对平面形象的直观认识.人们在长期的观察和社会实践中,总 结出了关于平面的三条基本性质.
思考与讨论
长方体是四棱柱吗?直四棱柱是长方体吗?
第一节 空间几何体
棱柱按底面是三角形、四边形、五边形……可分别 叫作三棱柱、四棱柱、五棱柱……如图14-2(a)为三 棱柱,图14-2(b)为四棱柱,图14-2(c)为五棱柱.
棱柱用表示两底面的对应顶点的字母或用一条对角 线端点的两个字母来表示,如图14-2(b)所示的四棱 柱可表示为“棱柱ABCD-A1B1C1D1”或“棱柱AC1”. 棱柱又可分为直棱柱和斜棱柱.侧棱与底面垂直的棱柱 叫作直棱柱,侧棱与底面不垂直的棱柱叫作斜棱柱, 底面是正多边形的直棱柱叫作正棱柱.
(2)正三棱柱的体积.
图 14-4
第一节 空间几何体
3. 棱锥
第一节 空间几何体
(1)棱锥的结构特征. 观察图14-5所示的几何体.
立体几何的知识点总结
立体几何的知识点总结1. 三维几何常用的图形在立体几何中,我们经常接触到的几何图形包括:点、直线、平面、三角形、四边形、圆柱、圆锥、圆台、球体等。
下面分别介绍这些几何图形的特点及相关知识点。
1.1 点、直线、平面- 点:点是空间中没有长度、宽度和高度的几何图形,可以用来表示位置。
- 直线:直线是由一系列相邻点组成的几何图形,具有方向和长度。
- 平面:平面是由无数个点组成的, 恰好可以确定一次中画, 无终止点, 无法测量, 无体积的二维图形, 平面分为有界无界两类, 有界平面是指由一定个点所组成的平面, 无界平面是指由无数个点组成的平面。
1.2 三角形、四边形- 三角形:三角形是一个有三条边的多边形,具有三个顶点和三条边。
- 四边形:四边形是一个有四条边的多边形,具有四个顶点和四条边。
1.3 圆柱、圆锥、圆台、球体- 圆柱:圆柱是由两个平行圆面包围的几何图形,具有一个侧面和两个底面。
- 圆锥:圆锥是由一个圆锥面和一个顶点组成的几何图形。
- 圆台:圆台是由一个圆台面和一个底面组成的几何图形。
- 球体:球体是由无数个点组成的三维图形,所有点到球心的距离相等。
2. 立体的表面积和体积在立体几何中,我们经常需要计算物体的表面积和体积。
下面分别介绍立体的表面积和体积的计算公式及相关知识点。
2.1 立体的表面积- 点、直线、平面:这些几何图形没有表面积。
- 三角形:三角形的表面积可以通过计算三条边的长度和三个内角的大小来求得。
- 四边形:四边形的表面积可以通过计算四条边的长度和四个内角的大小来求得。
- 圆柱:圆柱的表面积等于两个底面的面积和侧面的面积之和,即S=2πr^2+2πrh。
- 圆锥:圆锥的表面积等于底面的面积加上一个生成圆的面积,即S=πr^2+πrl,其中l为斜高。
- 圆台:圆台的表面积等于底面的面积加上一个上面的面积和侧面的面积之和,即S=πr1^2+πr2^2+πr1l,其中r1和r2为上下底面的半径,l为斜高。
中职数学对口升学复习第九部分《立体几何》基础知识点归纳及山西历年真题汇编
第九部分立体几何【知识点1】平面及其表示方法1.定义:平面是指光滑并且可以无限延展的图形。
可以画出平面的一部分来表示平面。
2.表示方法:通常画平行四边形来表示平面,并用小写希腊字母αβγ、、等表示,也可以用平行四边形四个顶点的字母或两个相对顶点的字母来表示。
如平面ABCD ,或平面AC,平面BD.3.点、线、面的表示方法立体几何中,通常用大写字母A,B,C,......表示点,小写字母a,b,c,...,l,m,n...,表示直线。
点、线、面之间的位置关系可以用集合语言来描述如下:l l =l ;l ;;;;;A l A l A A l l l l m A l m A l A l A l l l l AB αααααβαβαααααααααααβαβαβαβα∈∉∈∉⋂⊂⊄⋂=⋂=⊥⊥ 点在直线上:A ;点不在直线上:A ;点在平面上:A ;点不在平面上:A ;平面与平面交线是l:;直线在平面内:直线不在平面内:直线与直线相交于点:直线与平面相交于点:直线与平面平行:直线与平面垂直:两平面与平行:;两平面垂直:;棱为,面为,的二面角:-AB -l .βαβ--或【知识点2】几何图形的直观图画法--斜二测画法1.几何图形的直观图几何图形可以用具有立体感的平面图形来表示,这种平面图形通常叫做直观图。
2.画平面图形直观图的步骤:(1)在平面图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴和y′轴,两轴交于点O′,且使∠x′O′y′=45°。
(2)原图形中平行于x轴的线段,直观图中画成平行于x′轴的线段且长度不变.(3)原图形中平行于y轴的线段,直观图中画成平行于y′轴的线段且长度为原来的一半.(4)连接有关线段。
例:【注意】:画两个平面相交的图形时,一定要画出交线,图形中被遮住的线段,要画成虚线或者不画。
如下图:图2【知识点3】平面的基本性质性质及推论内容图形性质1如果直线1上的两个点都在平面a 内,那么直线l 上的点都在平面内性质2如果两个平面有一个公共点,那么它们还有其他公共点,并且所有公共点的集合是过这个点的一条直线性质3不在同一条直线上的三个点,可以确定一个平面推论1直线与这条直线外的一点可以确定一个平面推论2两条相交直线可以确定一个平面推论3两条平行直线可以确定一个平面【知识点4】空间中的直线与平面1.空间两条直线的位置关系①相交直线:在一个平面内,有且只有一个公共点②平行直线:在一个平面内,没有公共点平行线的性质:平行与同一直线的两条直线平行,如果直线,,a b b c a c 则.αABαβAlBAαCαAααβ③异面直线:不在同一个平面,没有公共点2.异面直线:①定义:不同在任何一个平面内的两条直线②判定:连接平面内一点与平面外一点的直线和平面内不经过该点的直线是异面直线③异面直线的画法:αAαabαab④异面直线所成的角:αA'a 空间中两条异面直线a,b ,经过空间中任意点O 做直线'',a a b b ,''b a 与所成的锐角(或直角),叫作直线a,b 所成的角或夹角.【注意】:①如果两条直线平行,则它们所成的角(或称“夹角”)为0︒②如果两条异面直线所成的角是直角,则这两条直线互相垂直,记作a b ⊥.③异面直线所成角的范围:(0,90]︒︒【知识点5】空间中直线与平面的位置关系1.直线与平面的位置关系:(1)直线在平面内:有无数个公共点.(2)直线与平面相交:有且只有一个公共点'b O(3)直线与平面平行:没有公共点.2.直线与平面垂直:(1)线面垂直的定义:一条直线和平面内任何一条直线都垂直。
中职数学第九章立体几何知识点
立体几何一、 平面.定义:无限延展,没有边界(光滑、平坦) 平面的基本性质:定理1:如果直线l 上的两个点都在平面α 内,那么这条直线在这个平面内。
记作:l α⊆ 定理2:如果两个平面有公共点,那么有且仅有一条过该公共点的公共直线。
记作:p αβ∈ ⇒ ,l p l αβ=∈定理3:不在同一条直线上的三点确定一个平面. 结论1:直线与直线外一点可以确定一个平面 结论2:两条相交线可以确定一个平面 结论3:两条平行线可以确定一个平面二、空间直线.空间直线位置关系:相交、平行、异面 分类:㈠.1.定义:不同在任何一个平面内的两条直线,叫异面直线。
2.判定定理:一条直线与平面相交,该直线与平面内不过交点的直线是异面直线。
,,,a A b A b a b αα=⊆∉⇒ 是异面直线3.异面直线所成的角:经过空间任意一点分别作与两条异面直线平行的直线,这两条相交直线的夹角叫做两条异面直线所成的角。
范围:0,2π⎛⎤⎥⎝⎦当两条异面直线所成的角为直角时,称这两条异面直线垂直。
㈡平行:1.平行公理:平行于同一条直线的两条直线互相平行.2. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.12方向相同12方向不相同三、直线与平面1. 直线与平面的位置关系:相交、平行、在平面内(其中相交、平行统称在平面外) 记作:,a ,a a A ααα=⊆2.直线与平面平行:判定定理:如果平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行。
,,b a a b a ααα⊄⊆⇒性质定理:如果一条直线与一个平面平行,并且经过这条直线的一个平面和这个平面相交,那么这条直线与交线平行。
,,a a b a b αβαβ⊆=⇒3.直线与平面所成的角:斜线l 与它在平面α 内的射影的夹角,叫做直线与平面α所成的角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
航天轨道 ▼
▲
房屋设计图纸 ▲
衣服款式立体图形
立体几何
几何体的概念
立体几何
构成空间几何体的基本元素
最基本的图形 面与面相交形成 包围着体
立体几何
构成空间几何体的基本元素
以长方体为例,长方体由六个矩形 ( 包括内部 ) 围成 围成长方体的各个矩形叫做长方体的面 相邻两个面的公共边叫做长方体的棱 棱和棱的公共点叫做长方体的顶点 长方体有几个面?几条棱?几个顶点?
(1)反映了平面与平面的位置关系,只要“两面共一点”,就有 “两面共一线,且过这一点,线唯一”;
(2)从集合的角度看,对于不重合的两个平面,只要它们有公共点, 它们就是相交的位置关系,交集是一条直线.
9.1 平面的基本性质
平面的基本性质2的作用
(1)判定两个平面是否相交; (2)可以判定点在直线上. 点是某两个平面的公共点,线是这两个 平面的公共交线,则这点在线上. 因此它还是证明点共线或线共点,并 且作为画截面的依据.
9.1 平面的基本性质
例题
9.1 平面的基本性质
平面的基本性质3
观察下图,你能发现到什么?
9.1 平面的基本性表述: ABC三点不共线推断出有且只有一个平面α,使得A α,B α, C α
即A,B,C不共线 A,B,C确定一平面
文字表述: 过不在同一直线上的三点,有且只有一个平面 .
面唯一,“有且只有”强调平面存在并且唯一这两方面,这就表明这个图形是确定的,所 以也可以说成“确定一个”.
主讲--邓秋阳
立体几何
苏州博物馆新馆 路思义教堂
立体几何
卢浮宫
立体几何
香港中银大厦
立体几何
立体几何
有的同学会问道:老师,我们现在学习立体几何由有什么用处,完全是为了应付考试的吧! 了解它对我们有什么帮助?在生活中我们有运用到它了吗……
立体几何
学习立体几何会让你的立体感增强。以前看不出来的三维图形,现在都能看出来! 当你的立体感增强后,在思考问题时,能做到从多个角度立体地看问题! 你会发现实际中的应用实在是太多了,在我们生活中是随处可见的!
9.1 平面的基本性质
例题
如图中 Δ ABC,若 AB,BC在平面 α 内,判断AC是否在平面 α 内?
解: AB在平面α内, A点一定在平面α内.
又 BC在平面α内, C点一定在平面α内. 点A、点C都在平面α内, 直线AC在平面α内
9.1 平面的基本性质
平面的基本性质2
观察下图,你能发现到什么?
9.1 平面的基本性质
点、线、面之间的关系的集合语言
9.1 平面的基本性质
平面的基本性质1
观察下图:
9.1 平面的基本性质
平面的基本性质1
图形表述:
符号表述: Al, B l; A , B l (直线l在平面内或平面经过直线l)
文字表述: 如果一条直线上两点在一个平面内,那么这条直线上的所有的点都在这个平面内。 (即直线在平面内)
9.1 平面的基本性质
平面的基本性质1的作用
(1)作为判断和证明直线是否在平面内的依据,即只需要看直线 上是否有两个点在平面内就可以了;
(2)基本性质1可以用来检验某一个面是否为平面,检验的方法为: 把一条直线在面内旋转,固定两个点在面内后,如果其他点也在面内, 则该面为平面.
PS:将一把直尺置于桌面上,通过是否漏光就能检查桌面是否平 整。
9.1 平面的基本性质
平面的表示方法
平面可以用希腊字母表示,如α、β、γ等。也可以用代表表示平面的平行四边形的四个顶点 或相对的两个顶点字母表示,如平面ABCD,平面AC或平面BD。
9.1 平面的基本性质
例题
表示出长方体ABCD-A1B1C1D1的6个面。
平面AD1 平面AC 平面BC1 平面A1C1 平面DC1 平面AB1
立体几何
9.1 平面的基本性质
生活中有没有“平面”呢?
9.1 平面的基本性质
平面的概念
光滑的桌面、平整的纸张、平静的湖面等都是我们熟悉的平面形象, 数学中的平面概念是现实平面加以抽象的结果。
平面没有大小、厚薄和宽窄,平面在空间是无限延伸的。
9.1 平面的基本性质
平面的概念和性质
平面是一个只能描述而不定义的最基本的概念,它是从日常见到的具体的平面抽象 出来的理想化的模型 .
9.1 平面的基本性质
平面的画法
(3)在画图时,如果图形的一部分被另一部分遮住,可以把遮住部分画成虚线,也可以不画.
9.1 平面的基本性质
例题
判断下列说法是否正确? (1) 两个平面比一个平面厚 ; (2) 圆和平面多边形都可以表示平面 ; (3) 用平行四边形表示平面时,平行四边形的四边是这一平面的边界; (4) 任何一个平面图形都是一个平面 ;.
9.1 平面的基本性质
平面的基本性质3
(1)“不在一条直线上”和“三点”是基本性质3的重点字眼,如果没有前者,
那么只能说“有一个平面”,但不唯一。如果将“三点”改成“四点”那么过四点不一定 确定一个平面.由此可见“不在一条直线上的三点”是确定一个平面的恰到好处的条件。
(2) 深刻理解“有且只有”的含义,这里的“有”是说平面存在,“只有”是说平
9.1 平面的基本性质
平面的基本性质2
图形表述:
l
A ●
符号表述:
A, A l且Al
(平面与平面相交,交线为 l)
文字表述: 如果两个平面有一个公共点,那么它们一定还有其他公共点,并且所有公共点的 集合是过这个点的一条直线(即这两个平面相交)。
9.1 平面的基本性质
平面的基本性质2的理解
9.1 平面的基本性质
点、线、面之间的关系的集合语言
1、空间中最小的元素是 ?
2、我们可以把空间看作 面动成体;
的集合,从运动的观点来看,点动成线,线动成面,
3、直线与平面都可以看成是点的集合.可以用集合语言来描述点、直线和 平面之间的关系以及图形的性质.
9.1 平面的基本性质
点、线、面之间的关系的集合语言
1. 平 2. 无限延展 3. 不计大小 4. 不计厚薄
( 不是凹凸不平 ) ( 没有边界 ) ( 无所谓面积 ) ( 没有质量 )
9.1 平面的基本性质
平面的画法
(1)水平放置的平面:
(2)垂直放置的平面:
通常把表示平面的平行四边形的锐角画成 45 °,且横边长等于其邻边长的 2 倍。
画表示非水平非竖直放置的平面时,只要将 锐角画成不等于45°即可 .