动点变化中的最值问题

合集下载

动点最值问题归纳及解法

动点最值问题归纳及解法
将军饮马模型
在直线两侧找一点,使得到两定点的距离之和最短
作对称点,连接对称点与另一定点,与直线的交点即为所求
构造平行四边形
利用平移构造平行四边形,求最小或最大值
过一点作平行线,构造平行四边形,利用平行四边形的性质求解
相似三角形
利用相似三角形求解最值问题
根据题目条件,构造相似三角形,利用相似比求解
三角函数
利用三角函数求解最值问题
根据题目条件,构造直角三角形,利用三角函数求解
定圆到定圆
圆圆之间连心线截距最短(长)
连接两圆心,求两圆的位置关系(相交、相切、相离),再计算截距
动点路径待确定
动点路径不明确,需先确定路径
根据题目条件,利用几何性质或代数方法确定动点路径
动线(定点)位置需变换
动线或定点位置需通过变换求解
利用翻折、平移、相似、三角等变换方法,将问题转化为基本图形求解
最值问题归纳及解法
问题类型
归纳描述
解法
定点到定点
两点之间线段最短
直接连接两点求线段长度
定点到定线
点线之间垂线段最短
过点作线的垂线,求垂线段长度
ቤተ መጻሕፍቲ ባይዱ定点到定圆
点圆之间点心线截距最短(长)
连接圆心与点,利用勾股定理或相似三角形求解
定线到定圆
线圆之间心垂线截距最短
过圆心作线的垂线,求垂线段与圆的交点,再计算截距

初中数学动点最值问题19大模型+例题详解,彻底解决压轴难题

初中数学动点最值问题19大模型+例题详解,彻底解决压轴难题

动点最值问题永远都是中考最难的压轴类题目,很多同学都反应不知道该怎么下手寻找思路。

其实这类题目的题型有限,全部总结归纳就是这19种,希望同学们对每一种都能掌握技巧,再遇见类似的就能及时找到思路。

PS:可下载电子版打印高清版本,链接文末获取!
1、将军饮马模型(对称点模型)
2、利用三角形两边差求最值
3、手拉手全等取最值
4、手拉手相似取最值
5、平移构造平行四边形求最小
6、两点对称勺子型连接两端求最小
7、两点对称折线连两端求最小
8、时钟模型,中点两定边求最小值
9、时钟模型,相似两定边求最小值
10、转化构造两定边求最值
11、面积转化法求最值
12、相似转化法求最值
13、相似系数化一法求最值
14、三角函数化一求最值
15、轨迹最值
16、三动点的垂直三角形
17、旋转最值
18、隐圆最值-定角动弦
19、隐圆最值-动角定弦。

中考数学中关于动点的最值问题

中考数学中关于动点的最值问题

中考数学中关于动点的最值问题作者:邓昌滨来源:《中学数学杂志(初中版)》2008年第05期在平面几何问题中,当某点在给定条件运动时,求某几何量的最大值或最小值问题,即最值问题. 这类题综合性强,能力要求高. 它能全面的考查学生的实践操作能力、空间想象能力以及分析问题和解决问题的能力,对培养学生的思维品质和各种能力有更大的促进作用,本文仅以2008年江苏中考压轴题为例进行分析,供参考.1 利用函数的性质求最值图1例1 (2008年连云港)如图1,现有两块全等的直角三角形纸板Ⅰ、Ⅱ,它们两直角边的长分别为1和2. 将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上. 一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动. 当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H.(1)求直线AC所对应的函数关系式;(2)当点P是线段AC(端点除外)上的动点时,试探究:①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由.解(1)由直角三角形纸板的两直角边的长为1和2,知A,C两点的坐标分别为(1,2),(2,1). 易得直线AC所对应的函数关系式为y=-x+3.①点M到x轴的距离h与线段BH的长总相等. 因为点C的坐标为(2,1),所以,直线OC所对应的函数关系式为y=12x. 又因为点P在直线AC上,所以可设点P的坐标为(a,3-a). 过点M作x轴的垂线,设垂足为点K,则有MK=h. 因为点M在直线OC上,所以有M(2h,h). 因为纸板为平行移动,易得Rt△PHG∽△Rt△PFE,有GHPH=EFPF=12. 故GH=12PH=12(3-a). 所以OG=OH-GH=a-12(3-a)=32(a-1). 故G点坐标为(32(a-1),0). 又点P的坐标为(a,3-a),可得直线PG所对的函数关系式为y=2x+(3-3a). 将点M的坐标代入,得h=4h+(3-3a).解得h=a-1. 而BH=OH-OB=a-1,从而总有h=BH.②由①知,点M的坐标为(2a-2,a-1),点N的坐标为(a,12a).△-△-12OG×h=12×12a×a-12×3a-32×(a-1)=--34=-12(a-当a=32时,S有最大值,最大值为38.取最大值时点P的坐标为(32,32).评注解此类题的关键是分析运动变化的过程,用点P的横坐标a的代数式表示描述点的运动过程,把动点视为静点参与运算,列出关于a的函数关系式,证明线段相等,再根据二次函数的增减性求得最值问题.2 利用轴对称变换求最值图2例2 (2008年南通)如图2,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D 作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB•AF=CB•CD;(2)已知AB=15cm,BC=9cm,P是射线DE上的动点. 设DP=xcm(x>0),四边形BCDP 的面积为①求y关于x的函数的关系式;②当x为何值时,△PBC的周长最小,并求出此时y的值.证明(1)因为AD=CD,DE⊥AC,所以DE垂直平分AC,所以AF=CF,∠DFA=∠DFC=90°,∠DAF=∠DCF. 因为∠DAB=∠DAF+∠CAB=90°,∠CAB+∠B=90°,所以∠DCF=∠DAF=∠B,易得△DCF∽△ABC,所以CDAB=CFCB,即CDAB=AFCB. 所以AB•AF=CB•CD.解(2)①因为AB=15,BC=9,∠ACB=90°,所以--所以CF=AF=6,所以y=12(x+9)×6=3x+27(x>0).②因为BC=9(定值),所以△PBC的周长最小,就是PB+PC最小. 由(1)可知,点C 关于直线DE的对称点是点A,所以PB+PC=PB+PA,故只要求PB+PA最小. 显然当P、A、B 三点共线时PB+PA最小. 此时DP=DE,PB+PA=AB. 由(1),∠ADF=∠FAE,∠DFA=∠ACB=90°,得△DAF∽△ABC. EF∥BC,得AE=BE=12AB=152,EF=92,所以AF∶BC=AD∶AB,即6∶9=AD∶15,所以AD=10. Rt△ADF中,AD=10,AF=6,所以DF=8. 所以DE=DF+FE=8+92=252.所以当x=252时,△PBC的周长最小,此时y=1292.评注本题可转化为直线上一点到直线同侧两点的距离和最小问题,一般我们先用“对称”的方法化成两点之间的最短距离问题,然后根据“两点之间的线段最短”,从而找到所需的最短路线.3 利用动点的范围求最值例3 (2008年徐州)如图,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°.操作将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC交于点Q.探究1 在旋转过程中:(1)如图,当CEEA=1时,EP与EQ满足怎样的数量关系?并给出证明.(2)如图,当CEEA=2时,EP与EQ满足怎样的数量关系?并说明理由.(3)根据你对(1)、(2)的探究结果,试写出当CEEA=m时,EP与EQ满足的数量关系式为,其中m的取值范围是(直接写出结论,不必证明).图图图探究2 若CEEA=2,AC=30cm,连结PQ,设△EPQ的面积为在旋转过程中:(1)S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2)随着S取不同的值,对应△EPQ的个数有哪些变化?求出相应S的取值范围.解探究(1)作EM⊥AB于点M,作EN⊥BC于点N,连结BE,因为∠ABC=90°,所以∠MEN=90°. 因为AB=BC,CE=EA,所以BE为∠ABC的平分线,所以EM=EN. ①若点M、P重合,显然EP=EQ. ②若点M、P不重合,因为∠MEP=∠NEQ=90°-∠PEN,所以Rt△EMP≌Rt△ENQ. 所以(2)作EM⊥AB于点M,作EN⊥BC于点N,因为∠ABC=90°,所以EM∥BC,所以△EMP∽△ENQ,所以EMBC=AEAC=13. 同理ENAB=23. 因为AB=BC,所以EMEN=12. ①若点M、P重合,显然EPEQ=EMEN=12. ②若点M、P不重合,因为∠MEP=∠NEQ=90°-∠PEN,所以△EMP∽△ENQ,所以EPEQ=EMEN=12. 综上,EPEQ=12. 由上可得EPEQ=1m,设EF=x,则DE=AC=3x,当E在边AC上由C向A移动时,要确保EF与BC有交点Q,EQ最大时,EQ⊥BC,此时EQ=EF=x,EC=2x,EA=AC-EC=3x-2x,所以此时m=CEEA=2x3x-2x=6+2,故0探究(1)设EQ=x,则△其中102≤x≤103.故如图,当x=EN=102cm时,△取得最小值如图,当x=EF=103cm时,△取得最大值(2)如图,当x=EB=510cm时,△;故当50时图时图时图评注本题以学生熟悉的三角板为背景,通过学生观察、动手操作、猜想、验证等数学活动过程,激发了学生的学习兴趣,此题的关键是将所求问题转化为动点Q在BC上时EQ的最值问题,渗透了化归、分类、数形结合、特殊化诸多数学思想方法,全面考查了学生的空间想象能力,几何变换,探索问题和解决问题的能力.。

动点最值问题的常用解法

动点最值问题的常用解法

动点最值问题的常用解法动点最值问题是数学中一个很有趣的问题,它往往涉及到最大值或最小值的求解,难度并不小。

针对这种问题,数学家们提出了各种不同的解法,本文将介绍其中一些常用的方法。

一、拉格朗日乘数法拉格朗日乘数法是一种利用约束条件求函数的最值的方法。

其基本思路是利用不等式的等式条件,将约束条件和目标函数融合,建立拉格朗日函数,最后对其求导,解出最优解。

这种方法的优点是精度高,适用条件广。

但是,由于需要解方程组,所以计算量比较大。

举个例子,要求函数 $f(x,y)$ 在方程 $g(x,y) = 0$ 的限制下的最大值,我们可以建立拉格朗日函数:$$L(x,y,\lambda) = f(x,y)+\lambda g(x,y)$$其中 $\lambda$ 为拉格朗日乘数。

对拉格朗日函数分别对$x,y,\lambda$求偏导数,并使它们等于0,得到以下方程组:$$\begin{cases}\nabla f(x,y) + \lambda \nabla g(x,y) = 0\\g(x,y) = 0\end{cases}$$解出这个方程组,就可以得到函数 $f(x,y)$ 在 $g(x,y)=0$ 限制下的最优解了。

二、图像解法图像解法是一种简单直观的方法,适合于几何意义比较明显的问题。

它的基本思路是将问题转化为图像,然后利用图像来求解最值问题。

例如,要求函数 $f(x,y)$ 在直线 $y=kx$ 上的最大值,我们可以将其转化为函数 $g(x) = f(x,kx)$ 的最大值问题。

接下来,我们可以利用图像解法,通过观察函数$g(x)$ 在 $[a,b]$ 区间的图像,来确定它的最大值点。

显然,最大值点的横坐标为$x_0$,纵坐标为 $f(x_0,kx_0)$,即可得到函数 $f(x,y)$ 在 $y=kx$ 上的最大值。

三、证明解法证明解法也是一种常用的方法,它的基本思路是通过分析问题的性质,得到问题的最值解,并给出相应的证明过程。

动点问题最值

动点问题最值

GFD AEA C BD FBACDB动点问题最值最值问题有四种情形:定点到动点的最值,动点在圆上或直线上,就是点到圆的最近距离,和点到直线的最近距离;三角形两边之和大于第三边的问题,当两边成一直线最大;几条线段之和构成一条线段最小;还有就是对称点最小问题。

一、定点到动点所在圆的最大或最小值,动点在一个定圆上运动,其实质是圆外一点到圆的最大或最小距离,就是定点与圆心所在直线与圆的交点的两个距离。

方法:证明动点在圆上或者去找不变的特殊三角形,证明两个三角形相似,求出某些边的值。

1.如图,△ABC 、△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长的最小值是( ) A .32-B .13+C .2D .13-提示:点M 在以AC 为直径的圆上2.(2015•咸宁)如图,已知正方形ABCD 的边长为2,E 是边BC 上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG .下列说法:①AG >GE ;②AE =BF ;③点G 运动的路径长为π;④CG 的最小值为﹣1.其中正确的说法是 ②③ .(把你认为正确的说法的序号都填上)提示:G 在以AB 为直径的圆上:正确答案是:②④3、如图,正方形ABCD 的边长为4cm,正方形AEFG 的边长为1cm ,如果正方形AEFG 绕点A旋转,那么C 、F 两点之间的最小距离为 4、如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是 5、如图,等腰直角△ACB ,AC=BC=5,等腰直角△CDP ,且PB=2,将△CDP 绕C 点旋转.(1)求证:AD=PB(2)若∠CPB=135°,求BD ;(3)∠PBC= 时,BD 有最大值,并画图说明; ∠PBC= 时,BD 有最小值,并画图说明.分析:在△ABD 中有:BD ≤AB+AD ,当BD=AB+AD 时BD 最大,此时AB 与AD 在一条直线上,且AD 在BA 的延长线上,又△ACB 是等腰直角三角形,∠CAB=45°,由(1)知∠PBC=∠CAD=180°-45°=135° BD ≥AB-AD ,当BD=AB-AD 时BD 最小,此时,AB 与AD 在一条直线上,且AD 此时∠CAD=45°,所以∠PBC=∠CAD=45°6、如图,△ABC 和△ADE 都是等腰直角三角形,∠ACB=∠ADE=90°,∠BAE=135°,AD=1,2,F 为BE 中点.(1)求CF 的长(2)将△ADE 绕A 旋转一周,求点F 运动的路径长; (3)△ADE 绕点A 旋转一周,求线段CF 的范围.CO ABPE ABC DFD A BC EHGF DAEH G FDA Exy MCM 1M 2A PO B A提示:本题根据中点构造三角形相似,△BOF ∽△BAE,且122OF AE == 7、如图,AB=4,O 为AB 中点,⊙O 的半径为1,点P 是⊙O 上一动点,以点P 为直角顶点的等腰△PBC (点P ,B ,C 按逆时针方向排列)则线段AC 的取值范围 2≤AP ≤32 提示:发现定等腰直角△AOC 与等腰直角△OBE ,从而得到相似。

初中动点最值问题题型

初中动点最值问题题型

初中动点最值问题题型1. 什么是动点最值问题?初中数学中的动点最值问题是指给定一个动点在某个区域内移动的情况,我们需要找出在这个过程中,某个量的最大值或最小值。

这个问题涉及到数学中的函数、图像和变量的运动等概念。

2. 动点最值问题的解决思路要解决动点最值问题,我们需要经过以下几个步骤:步骤一:明确问题首先,我们需要明确问题,确定要求解的量是什么。

常见的量包括距离、时间、面积等。

步骤二:建立模型接下来,我们需要建立一个数学模型来描述动点的运动情况。

这通常涉及到函数和变量的运用。

可以根据具体情况选择直角坐标系或极坐标系来建立模型。

步骤三:求解最值通过对模型进行分析和计算,可以得到函数表达式。

然后使用数学方法求解该函数的最大值或最小值。

常见的求解方法有导数法、平方差法等。

步骤四:验证答案得到答案后,我们需要验证它是否符合实际情况。

可以通过数学推导、图像观察等方式进行验证。

3. 动点最值问题的例子下面以一个具体的例子来说明动点最值问题的解决思路:例子:一个人在河边沿着一条弯曲的小路行走,他从A点出发,经过B、C、D三个点,最后到达E点。

小路的形状如下图所示:我们需要求解以下两个问题:1.从A点到E点的最短距离是多少?2.从A点到E点经过的路径是什么?步骤一:明确问题1.最短距离2.路径步骤二:建立模型我们可以将小路看作一个连续函数,使用直角坐标系来建立模型。

假设小路的函数表达式为y = f(x)。

步骤三:求解最值1.最短距离:我们需要求解函数f(x)在区间[AB]、[BC]、[CD]和[DE]上的最小值。

2.路径:根据求解出来的最小值,可以确定经过哪些点构成了最短路径。

步骤四:验证答案1.最短距离:通过计算和比较,可以验证最小值是否正确。

2.路径:通过观察图像和计算距离,可以验证路径是否正确。

4. 总结初中动点最值问题是数学中常见的一类问题,需要运用函数、图像和变量的概念来建立模型,并通过数学方法求解最大值或最小值。

中考数学动点最值问题归纳及解法

中考数学动点最值问题归纳及解法

中考数学动点最值问题归纳及解法最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。

利用一次函数和二次函数的性质求最值。

动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

“坐标几何题”(动点问题)分析动点个数两个一个两个问题背景特殊菱形两边上移动特殊直角梯形三边上移动抛物线中特殊直角梯形底边上移动考查难点探究相似三角形探究三角形面积函数关系式探究等腰三角形考点①菱形性质②特殊角三角函数③求直线、抛物线解析式④相似三角形⑤不等式①求直线解析式②四边形面积的表示③动三角形面积函数④矩形性质①求抛物线顶点坐标②探究平行四边形③探究动三角形面积是定值④探究等腰三角形存在性特点①菱形是含60°的特殊菱形;△AOB是底角为30°的等腰三角形。

②一个动点速度是参数字母。

③探究相似三角形时,按对应角不同分类讨论;先画图,再探究。

④通过相似三角形过度,转化相似比得出方程。

⑤利用a、t范围,运用不等式求出a、t的值。

①观察图形构造特征适当割补表示面积②动点按到拐点时间分段分类③画出矩形必备条件的图形探究其存在性①直角梯形是特殊的(一底角是45°)②点动带动线动③线动中的特殊性(两个交点D、E是定点;动线段PF长度是定值,PF=OA)④通过相似三角形过度,转化相似比得出方程。

⑤探究等腰三角形时,先画图,再探究(按边相等分类讨论)近几年共同点:①特殊四边形为背景;②点动带线动得出动三角形;③探究动三角形问题(相似、等腰三角形、面积函数关系式);④求直线、抛物线解析式;⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。

初中数学动点最值问题19大模型+例题详解

初中数学动点最值问题19大模型+例题详解

初中数学动点最值问题19⼤模型+例题详解
动点最值问题是中考最难的压轴类题⽬,很多同学都反应不知道该怎么下⼿。

其实这类题⽬的题型有限,总结归纳有19种,希望同学们对每⼀种都能掌握技巧。

1、对称点模型
2、利⽤三⾓形两边差求最值
3、⼿拉⼿全等取最值
4、⼿拉⼿相似取最值
5、平移构造平⾏四边形求最⼩
6、两点对称勺⼦型连接两端求最⼩
7、两点对称折线连两端求最⼩
8、时钟模型,中点两定边求最⼩值
9、时钟模型,相似两定边求最⼩值
10、转化构造两定边求最值
11、⾯积转化法求最值
12、相似转化法求最值
13、相似系数化⼀法求最值
14、三⾓函数化⼀求最值
15、轨迹最值
16、三动点的垂直三⾓形
17、旋转最值
18、隐圆最值-定⾓动弦
19、隐圆最值-动⾓定弦。

初中几何动点最值问题难题集锦

初中几何动点最值问题难题集锦

初中几何动点最值问题难题集锦初中几何动点最值问题是初中数学中的一道难题类型。

动点最值问题考察动点在几何形状内运动时,某一量的最大值或最小值的求解方法。

下面是一些初中几何动点最值问题的难题集锦。

1.【问题描述】在一个矩形ABCD中,点P动态地沿着矩形的边移动,求线段AP的最长长度。

【解答】假设矩形ABCD的边长为a和b(a<b),点P动态地沿着矩形的边移动。

我们可以观察到,当点P处于矩形的顶点A或D时,线段AP的长度为a;当点P处于矩形的顶点B或C时,线段AP的长度为b。

因此,线段AP的最长长度为b。

2.【问题描述】在一个圆形O内,点P动态地沿着圆的周长移动,求线段OP的最长长度。

【解答】设圆的半径为r,点P动态地沿着圆的周长移动。

根据三角形的性质,可以知道线段OP的长度最长时,点P应该位于圆的周长上的与点O相对的点,即直径上的点。

因此,线段OP的最长长度为2r。

3.【问题描述】在一个正方形ABCD内,点P动态地沿着正方形的边移动,求线段BP的最长长度。

【解答】设正方形ABCD的边长为a,点P动态地沿着正方形的边移动。

由于线段BP的长度等于点P距离B点的距离,所以线段BP的最长长度为正方形的对角线长度,即√2a。

4.【问题描述】在一个等腰直角三角形ABC中,点P动态地沿着三角形的边移动,求线段AP的最长长度。

【解答】设等腰直角三角形ABC的等腰边长为a,点P动态地沿着三角形的边移动。

可以观察到,当点P处于顶点B或C 时,线段AP的长度为a;当点P处于顶点A时,线段AP的长度为0。

因此,线段AP的最长长度为a。

5.【问题描述】在一个梯形ABCD中,点P动态地沿着梯形的边移动,求线段CP的最长长度。

【解答】设梯形ABCD的上底长为a,下底长为b(a>b),点P动态地沿着梯形的边移动。

可以观察到,当点P处于梯形的底端点C或顶端点D时,线段CP的长度为0;当点P处于梯形的上底端点A时,线段CP的长度为ab。

动点问题最值

动点问题最值

v1.0 可编辑可修改动点问题最值最值问题有四种情形:定点到动点的最值,动点在圆上或直线上,就是点到圆的最近距离,和点到直线的最近距离;三角形两边之和大于第三边的问题,当两边成一直线最大;几条线段之和构成一条线段最小;还有就是对称点最小问题。

一、定点到动点所在圆的最大或最小值,动点在一个定圆上运动,其实质是圆外一点到圆的最大或最小距离,就是定点与圆心所在直线与圆的交点的两个距离。

方法:证明动点在圆上或者去找不变的特殊三角形,证明两个三角形相似,求出某些边的值。

1.如图,△ABC、△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.33-2-B.13+C.2D.1提示:点M在以AC为直径的圆上2.(2015•咸宁)如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD 于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为﹣1.其中正确的说法是②③.(把你认为正确的说法的序号都填上)提示:G在以AB为直径的圆上:正确答案是:②④3、如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm,如果正方形AEFG绕点AAB 旋转,那么C、F两点之间的最小距离为4、如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是5、如图,等腰直角△ACB,AC=BC=5,等腰直角△CDP,且PB=2,将△CDP绕C点旋转.(1)求证:AD=PB(2)若∠CPB=135°,求BD;(3)∠PBC= 时,BD∠PBC= 时,BD分析:在△ABD中有:BD≤AB+AD,当BD=AB+AD时BD最大,此时AB与AD在一条直线上,且AD在BA的延长线上,又△ACB是等腰直角三角形,∠CAB=45°,由(1)知∠PBC=∠CAD=180°-45°=135°CABAACCBD ≥AB-AD ,当BD=AB-AD 时BD 最小,此时,AB 与AD 在一条直线上,且AD 在线段AB 上,此时∠CAD=45°,所以∠PBC=∠CAD=45°6、如图,△ABC 和△ADE 都是等腰直角三角形,∠ACB=∠ADE=90°,∠BAE=135°,AD=1, ,F 为BE 中点. (1)求CF 的长(2)将△ADE 绕A 旋转一周,求点F 运动的路径长; (3)△ADE 绕点A 旋转一周,求线段CF 的范围.提示:本题根据中点构造三角形相似,△BOF ∽△BAE,且227、如图,AB=4,O 为AB 中点,⊙O 的半径为1,点P 是⊙O 上一动点,以点P 为直角顶点的B ,C 按逆时针方向排列)则线段AC提示:发现定等腰直角△AOC 与等腰直角△OBE ,从而得到相似。

动点最值问题方法+经典例题

动点最值问题方法+经典例题

动点最值问题方法+经典例题
动点最值是初中数学的难点内容,它考察的知识点很多,动点最值有很多类型,本次课程我们不仅总结了解决最值问题的基本方法,还给大家准备了经典例题基本方法
1最经济问题2利用三角形两边差求最值
3转化垂直求最值4平移构造平行四边形求最值5勺子形连两端求最值6对称连两端求最值
7构造两定边求最值8转化构造两定边求最值
9面积转化法求最值10相似转化法求最值
11系数化一法求最值12胡不归原理13轨迹最值14三动点的最值三角形15费马点今天就讲到这儿,还有很多内容我一下子没办法讲完,只能一点点讲。

同学们,下课。

动点产生的几何最值问题大全

动点产生的几何最值问题大全

动点产生的几何最值问题大全
动点产生的几何最值问题是数学中一类比较有挑战性的问题,通常涉及到几何图形中的动点以及与之相关的最值情况。

以下是一些常见的动点产生的几何最值问题类型:
1. 最短路径问题:在给定的几何图形中,寻找动点到某个点或线段的最短路径。

这可以涉及到直线、圆、多边形等图形。

2. 最大面积问题:确定动点在几何图形中移动时,如何使形成的图形面积最大。

例如,求动点构成的三角形、矩形等的最大面积。

3. 最长线段问题:找到在特定条件下,动点所形成的最长线段。

4. 最短时间问题:考虑动点在移动过程中,如何以最短时间到达目标点。

5. 最优位置问题:确定动点在几何图形中的最优位置,使得某个目标函数达到最大或最小值。

6. 角度最值问题:探究动点在运动过程中,相关角度的最大或最小值。

7. 对称问题:利用对称性质来解决与动点相关的最值问题。

这些只是一些常见的类型,实际问题可能更加复杂和多样化。

解决动点产生的几何最值问题通常需要结合几何学的知识、定理和方法,以及对运动轨迹和约束条件的分析。

具体的解决方法会根据问题的具体情况而有所不同。

中考数学复习:专题9-9 探究动点背景下的线段最值问题

中考数学复习:专题9-9 探究动点背景下的线段最值问题

探究动点背景下的线段最值问题【专题综述】图形运动问题是中考数学命题的热点题型,其中有一类动点背景下线段长度的最值问题,常常使学生感到比较为难.本文谈谈破解这类问题的方法. 动点背景下线段长度的最值问题一般有两种解法:1、代数解法.通过设未知量,建立函数关系或列方程列不等式等,用函数最值、二次方程判别式、解不等式来求解.2、几何方法.常通取特殊点,如线段中点、端点;与动点的特殊位置相关的特殊线段,如三角形的高、中线、圆的直径等;特殊图形,如直角三角形、等边三角形、矩形等,用几何公理、定理来求解. 一般而言,用几何方法抓住特殊情形处理,比代数方法更有独特魅力. 【方法解读】一、从动点所在特殊位置入手图形中动点的运动有一定的范围,其较为特殊的位置有:线段上动点的两端点、线段中点等;若点在线段外运动,则与某线段共线就是特殊位置.这些特殊位置正是产生最值的关键点.例1 如图1,在四边形ABCD 中,90A ∠=︒,33AB =,3AD =,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为. 分析 DM ,MN 的长度随点M ,N 分别在线段BC ,AB 上运动而变化,点E ,F 分别为DM ,MN 的中点却保持不变.题设中EF 与不变量A ∠,AB ,AD 无直接数量关系,但连结DN ,则由三角形的中位线定理可知12EF DN =,如图1所示,从而可知DN 最大时,EF 最大.因为N 在线段AB 上,当点N 与其端点B 重合时DN 最大,如图2所示.此时,由勾股定理知6BD =,所以EF 长度的最大值为3.例2 如图3,在⊙O 中,直径6AB =,BC 是弦,30ABC ∠=︒,点P 是BC 上的一个动点,点Q 在⊙O 上,且OP PQ ⊥.求PQ 长的最大值.分析 点P 在BC 运动时,OP ,PQ 的位置和大小都变化,但OP PQ ⊥,圆的半径不变,连结OQ ,则OPQ ∆保持直角三角形不变.在Rt OPQ ∆中,22223PQ OQ OP OP =-=-,所以OP 最小时PQ 的长的最大.由垂径定理知,此时点P 正好是CB 的中点,如图4所示,Q 点与C 点重合.分析 连结OQ . ∵OP PQ ⊥,∴OPQ ∆为直角三角形. 又∵OP CB ⊥,132OB AB ==,30ABC ∠=︒, ∴32OP =由勾股定理,得223333()22PQ =-=即PQ 长的最大值332. 二、从动点产生的特殊线段入手在图形中,点的运动会引起相应线段位置和长度大小的变化,位置的变化会使线段成为具有某种特殊性质抓住这些线段变化的特殊性:如三角形的高、中线、圆的直径等,往往会找到最值的答案.例3 如图5,在直角ABC ∆中,90C ∠=︒,3AC =,4BC =,P 为AB 上(不与AB 重合)一动点,过点P 分别作PE AC ⊥于点E ,PF BC ⊥与F ,则EF 的最小值 .分析 因为点P 在AB 上运动时,PE AC ⊥于点E ,PF BC ⊥与F ,90C ∠=︒,所以四边形CFDE 是矩形,且这些关系不变.连结PC ,则EF CP =,要求EF 的最小值,就是求CP 的最小值.显然当CD AB ⊥,即CD 是斜边AB 的高时,CD 最小.又由勾股定理,得5AB =,根据三角形面积不变,得AC BC CD AB ⨯=⨯,解得125CP =,所以EF 的最小值为125. 例4 如图6,在圆O 上有定点C 和动点P 位于直径AB 的异侧,过点C 作CP 的垂线,与PB 的延长线交于点G .已知:圆O 半径为52,4tan 3ABC ∠=,则CG 的最大值是(). (A)5 (B)154(C)253(D)203分析 点P 在AB 上运动时,PC 的位置和大小会随之变化,但CAB CPG ∠=∠,90ACB PCG ∠=∠=︒保持不变,故有ABCPGC ∆∆,∴BC AC CG PC =,即BC CG PC AC=,由3tan 4AC ABC PC ∠==,知43CG PC =,当PC 最大时,CQ 取到最大值易知,当PC 经过圆心,即PC 为圆O 的直径时,PC 最大(此时CG 是圆O 的切线). ∵圆O 半径为52, ∴PC 的最大值为5,∴315544CG =⨯=. ∴CG 的最大值154,故选B.三、抓住动点问题的特性,从构造特殊图形入手某些动点问题中,难以找到图形变化时与相关线段最值的特殊情形若要用几何解法,应联系整个问题所含条件添加辅助线,构造特殊图形,然后借助特殊图形的性质将问题进行有效转化.例5 如图7,ABC ∆中,45B ∠=︒,60BAC ∠=︒,22AB =. D 是BC 上的一个动点以AD 为直径画圆与AB ,AC 相交于E ,F 两点,求EF 的最小值.分析 点D 在BC 上运动,AD 的位置改变引起圆O 的位置和大小变化,而所求EF 的 值与不变量B ∠,BAC ∠以及AB 的关系不明显.连结OE ,OF ,构造含120︒角的特殊等腰三角形,如图8所示,过O 点作OH EF ⊥垂足为H ,由圆周角定理可知1602EOH EOF BAC ∠=∠=∠=︒.在Rt EOH ∆中,由垂径定理可知23EF EH OE ==.所以当OE 最小时,EF 的值最小,而12OE AD =,由垂线段的性质可知,当AD 为ABC ∆的边BC 上的高时,直径AD 最短,此时线段EF 最小.在Rt ADB ∆中,45ABC ∠=︒,22AB =∴2AD BD ==,即此时圆的直径为2. 在Rt EOH ∆中,33sin 122EH OE EOH =∠=⨯= ∴23EF EH ==, 即EF 的最小值为3.四、从图形运动中相对保持不动的点入手若图形中的动点不止一个,这种情形相对单一动点问题要复杂一般会引起变化的量增加或整个图形发生运动,难以找到原图中保存不变的量,这时可着眼于图中的相对不变量.相对不变量是指在整个图形运动变化中,保持某种特性不变的量与动点下线段最值所对应的仍是图中特殊相对不变量透过图形运动的整体,抓住特殊相对不变量才是解题的关键.例6 如图9,在ABC ∆中,90ACB ∠=︒,3BC =,8AC =,点A ,C 分别在x 轴、y 轴的正半轴上.当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动中OB 的最大值是多少?分析 当点A 在x 轴上运动时,点C 随之在y 轴上运动,这样改变了ABC ∆的位置,点B 的位置也随之改变,OB 的长度随之发生变化.虽然BC 、AC 的长度不变,但些相对不变的量与OB 没有直接的关系. 仔细观察图9,AC 是Rt COA ∆的斜边,AC 长度不变,则点O 与其中点D 的连线段OD 的长度保持不变,这个隐含的相对不变的特殊量与OB 有关. 于是,连结DB ,则OB DB OD <+,所以,当O 、D 、B 三点共线时OB 值最大,即BO OD DB =+. 在Rt BCA ∆中,4CD =,3CB =,5DB =. 则OB 的最大值为549+=:.综上可知,解决动点背景下线段长度的最值问题时,一般可用几何方法从特殊情形出发考虑.1、在分析动点位置变化的同时,重点抓住图形中不变的量,不变的关系和性质,以不变应万变,动中求静.2、线段的最大值和最小值,常与下列知识相关:两点之间线段最短,垂线段最短,直径是圆中最大的弦,三角形中任意两边之和大于第三边,任意两边之差小于第三边等等.所以要抓住特殊情形,联系与问题相关的结论进行有效转化.【强化训练】1.(2017四川省内江市)如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=430,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且P A+AB+BQ 最小,此时P A+BQ= .2.(2017山东省东营市)如图,已知菱形ABCD的周长为16,面积为83,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.3.(2017山东省威海市)如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠P AB=∠ACP,则线段PB长度的最小值为.4. (2017甘肃省天水市)如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是.5.(2017贵州省贵阳市)如图,在矩形纸片ABCD 中,AB =2,AD =3,点E 是AB 的中点,点F 是AD 边上的一个动点,将△AEF 沿EF 所在直线翻折,得到△A ′EF ,则A ′C 的长的最小值是 .6.(2016山东省枣庄市)如图,把△EFP 放置在菱形ABCD 中,使得顶点E ,F ,P 分别在线段AB ,AD ,AC 上,已知EP =FP =6,EF =63,∠BAD =60°,且AB >63. (1)求∠EPF 的大小;(2)若AP =10,求AE +AF 的值;(3)若△E FP 的三个顶点E 、F 、P 分别在线段AB 、AD 、AC 上运动,请直接写出AP 长的最大值和最小值.7.(2016山东省枣庄市)如图,已知抛物线2y ax bx c =++(a ≠0)的对称轴为直线x =﹣1,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)若直线y =mx +n 经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴x =﹣1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴x =﹣1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.8.(2017山东省烟台市)如图1,抛物线22y ax bx =++与x 轴交于A ,B 两点,与y 轴交于点C ,AB =4,矩形OBDC 的边CD =1,延长DC 交抛物线于点E . (1)求抛物线的解析式;(2)如图2,点P 是直线EO 上方抛物线上的一个动点,过点P 作y 轴的平行线交直线EO 于点G ,作PH ⊥EO ,垂足为H .设PH 的长为l ,点P 的横坐标为m ,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l 的最大值;(3)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M ,使得以M ,A ,C ,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.9.(2016四川省眉山市)已知如图,在平面直角坐标系xOy 中,点A 、B 、C 分别为坐标轴上上的三个点,且OA =1,OB =3,OC =4.(1)求经过A 、B 、C 三点的抛物线的解析式;(2)在平面直角坐标系xOy 中是否存在一点P ,使得以以点A 、B 、C 、P 为顶点的四边形为菱形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)若点M 为该抛物线上一动点,在(2)的条件下,请求出当|PM ﹣AM |的最大值时点M 的坐标,并直接写出|PM ﹣AM |的最大值.10. (2016广西梧州市)如图,抛物线24y ax bx =+-(a ≠0)与x 轴交于A (4,0)、B (﹣1,0)两点,过点A 的直线y =﹣x +4交抛物线于点C . (1)求此抛物线的解析式;(2)在直线AC 上有一动点E ,当点E 在某个位置时,使△BDE 的周长最小,求此时E 点坐标; (3)当动点E 在直线AC 与抛物线围成的封闭线A →C →B →D →A 上运动时,是否存在使△BDE 为直角三角形的情况,若存在,请直接写出符合要求的E 点的坐标;若不存在,请说明理由.。

动点问题中的最值问题

动点问题中的最值问题

动点问题中的最值问题动点问题中的最值问题,听起来是不是有点学术范儿?不过,别担心,今天咱们就像聊家常一样,轻松聊聊这个话题。

想象一下,一个小球在一个平面上自由地滚动,嘿,它的轨迹可能像一条蛇,弯弯曲曲的。

这小球一会儿高一会儿低,正是我们要寻找的“最值”。

说到最值,就是在这条曲线上,哪一点是最高的,哪一点又是最低的。

这就像咱们生活中的起起伏伏,有时候高兴得像个小鸟,有时候又低落得像被压扁的饼干。

我们来看看这个“动点”的概念。

动点就像是你我,都是在不断变化的,瞬息万变。

想象一下,你在操场上奔跑,身边的小伙伴们也是四处跑动,谁快谁慢,谁高谁低,哎,动点问题就是要把这种变化给抓住。

这其中有趣的是,动点的位置和速度总是有关系的。

速度快了,位置就变了,正如我们生活中,抓住机遇的时刻总是稍纵即逝。

所以,要想找到最值,就得对这个动点的路径进行深度剖析,像侦探一样,追踪它的每一个动作。

接着咱们聊聊这个最值问题。

最值就像是人生的巅峰,做的每一个选择都可能导致不同的结果。

有时候我们要爬上高峰,想要达到理想的状态;而嘿,低谷也未必是坏事。

回想一下,考试的时候,复习得特别认真,结果出来后,发现自己意外地得了高分,爽呆了。

但有时候明明准备得很充分,却还是不尽如人意。

最值问题在这里就像一根红线,把我们的经历串联起来,让我们明白如何在这条曲线中找到那个闪光点。

不过,要想在这条动点的曲线上找到最值,得掌握一些小窍门。

得会画图。

对,就是简单的画图。

用纸和笔把动点的轨迹给勾勒出来,像艺术家一样把心中的画卷展现出来。

你会发现,有些地方高得让人咋舌,有些地方则低得令人心痛。

就像在生活中,有些事情让人欢喜,另一些则让人唏嘘。

通过这种方式,我们就能在这幅图中,找出那个“最值”所在。

公式也是不可或缺的。

是的,公式听上去有点乏味,但它们就像调味料,给我们的分析添了不少风味。

比如说,导数的概念,简单来说,就是观察动点在某一点的变化率。

利用导数,我们就能找到那些极值点,找到动点在什么时候达到最高或最低的状态。

动点运动轨迹是直线的最值问题求解策略

动点运动轨迹是直线的最值问题求解策略

动点运动轨迹是直线的最值问题求解策略解题方法:(1)利用点到直线的距离即垂线段最短求最值;(2)利用三点共线即三角形三边关系求最值.一、利用点到直线的距离即垂线段最短求最值例1、(2019秋•武昌区期中)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=5,AC=,CB的反向延长线上有一动点D,以AD为边在右侧作等边三角形,连CE,CE最短为.解:在AC的右侧作等边△ACF,连接EF,则AC=AF=CF=AC=5,∠CAF=∠AFC═60°,∵△ADE是等边三角形,∴AD=AE,∠DAE=60°=∠CAF,∴∠CAD=∠FAE,在△DAC和△EAF中,,∴△DAC≌△EAF(SAS),∴∠ACD=∠AFE∵∠ACB=90°,∴∠ACD=90°,∴∠AFE=90°,∴∠CFE=90°﹣60°=30°,当CE⊥EF时,CE有最小值,∴CE的最小值=CF=.例2、如图,△ABC是等边三角形,且AB=1,点M为直线BC上的一个动点,连结AM,将线段AM绕A点顺时针旋转60°至AD,点N为线段AC上的一个动点,则D、N两点间距离的最小值为.例3、(2019•宿迁)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上,作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=,故答案为.例4、(2019秋•诸暨市期末)如图,菱形ABCD的边长为4,∠B=120°,E是BC的中点,F是对角线AC上的动点,连结EF,将线段EF绕点F按逆时针旋转30°,G为点E对应点,连结CG,则CG 的最小值为 .解:如图取CD的中点K,连接FK,KG,EK,延长KG交BC于J,作CH⊥JK于H.∵四边形ABCD是菱形,∴∠FCE=∠FCK,CE=CK,AB∥CD,∴∠DCB+∠B=180°,∵∠B=120°,∴∠DCB=60°,∵BE=EC,CK=KD,∴CK=CE,∴△ECK是等边三角形,∵CF=CF,∠FCK=∠FCE,CK=CE,∴△FCK≌△FCE(SAS),∴FK=FE,∵FG=FE,∴FE=FG=FK,∴∠EKG=∠EFG=15°,∵∠CKE=60°,∴∠CKJ=45°,∴点G在直线KJ上运动,根据垂线段最短可知,当点G 与H重合时,CG的值最小,在Rt△CKH中,∵∠CKH=45°,∠CHK=90°,CK=CD=2,∴CH=KH=,∴CG的最小值为.二、利用三点共线即三角形三边关系求最值例5、如图,Rt△ABC中,AB=AC=8,BO=AB,点M为BC边上一动点,将线段OM绕点O按逆时针方向旋转90°至ON,连接AN、CN,则AN+CN的最小值为 .解:如图,作OH⊥BC于H,NJ⊥OH于J.∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵OH⊥BC于H,∴OH=BH,∴OB=AB,AB=8,∴OB=2,∴OH=BH=,∵OM=ON,∠OHM=∠NJO=90°,∠NOJ=∠OMH,∴△OHM≌△NJO(AAS),∴JN=OH=,∴点N的运动轨迹是直线(该直线与直线OH平行,在OH的右侧,与OH的距离是)作点C关于该直线的对称点C′,连接AC′交该直线于N′,连接CN′,此时AN+CN的值最小为AC′,作AG⊥BC于G.在Rt△AGC′中,AC′==4,∴AN+CN的值最小为4.练习:1、(2019秋•东台市期中)如图,正方形ABCD中边长为6,E为BC上一点,且BE=1.5,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上,作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC==.2、如图,长方形 ABCD 中,AB=3,BC=4,E 为 BC 上一点,且 BE=2,F 为 AB 边上的一个动点,连接 EF,将 EF 绕着点 E 顺时针旋转 45˚到 EG 的位置,连接 FG 和 CG,则 CG 的最小值为.F解:由题意可知,点F 是主动点,点G 是从动点,点F 在线段上运动,点G 也一定在直线轨迹上运动, 将△EFB 绕点E 旋转45°,使EF 与EG 重合,得到△EFB ≌△EHG ,从而可知△EBH 为等腰直角三角形,点G 在垂直于HE 的直线HG上,作CM ⊥HG ,则CM即为CG 的最小值,作EN ⊥CM ,可知四边形HENM 为矩形,则CM =MN +CN =HE EC =12 3、(2019•南平模拟)如图,在矩形ABCD 中,AB =3,BC =4,P 是对角线AC 上的动点,连接DP ,将直线DP绕点P 顺时针旋转使∠DPG =∠DAC ,且过D 作DG ⊥PG ,连接CG ,则CG 最小值为解:如图,作DH ⊥AC 于H ,连接HG 延长HG 交CD 于F ,作HE ⊥CD 于H .∵DG ⊥PG ,DH ⊥AC ,∴∠DGP =∠DHA ,∵∠DPG =∠DAH ,∴△ADH ∽△PDG ,∴=,∠ADH =∠PDG ,∴∠ADP =∠HDG ,∴△ADP ∽△DHG ,∴∠DHG =∠DAP =定值, ∴点G 在射线HF 上运动,∴当CG ⊥HE 时,CG 的值最小,∵四边形ABCD 是矩形,∴∠ADC =90°,∴∠ADH +∠HDF =90°,∵∠DAH +∠ADH =90°,∴∠HDF =∠DAH =∠DHF ,∴FD =FH ,∵∠FCH +∠CDH =90°,∠FHC +∠FHD =90°,∴∠FHC =∠FCH ,∴FH =FC =DF =1.5, 在Rt △ADC 中,∵∠ADC =90°,AD =4,CD=3,∴AC ==5,DH ==, ∴CH ==,∴EH ==,∵∠CFG =∠HFE ,∠CGF =∠HEF =90°,CF =HF ,∴△CGF ≌△HEF (AAS ),∴CG =HE =,∴CG 的最小值为. 4、如图,菱形ABCD 的边长为8,∠A =120°,E 是BC 的中点,F 是对角线BD 上的一动点,连结EF ,将线段EF 绕点F 按逆时针旋转30°得到线段GF ,连结BG ,则BG 的最小值为 .BB解:如图取AB的中点H,连接FH,HG,EH,延长HG交BC于M,作BM⊥HM于N.可得△EBH是等边三角形,△FBE≌△FBH,∴FH=FE ,∵FG=FE,∴FE=FG=FH,∴H、G、E在圆F上,∴∠EHG=∠EFG=15°,∵∠BHE=60°∴∠BHN=45°,∴点G在直线HM上运动,根据垂线段最短可知,当点G与N重合时,BG的值最小。

动点问题最值

动点问题最值

GFD ABCEA'MCDABNPCB动点问题最值最值问题有四种情形:定点到动点得最值,动点在圆上或直线上,就就是点到圆得最近距离,与点到直线得最近距离;三角形两边之与大于第三边得问题,当两边成一直线最大;几条线段之与构成一条线段最小;还有就就是对称点最小问题。

一、定点到动点所在圆得最大或最小值,动点在一个定圆上运动,其实质就是圆外一点到圆得最大或最小距离,就就是定点与圆心所在直线与圆得交点得两个距离。

方法:证明动点在圆上或者去找不变得特殊三角形,证明两个三角形相似,求出某些边得值。

1.如图,△ABC 、△EFG 均就是边长为2得等边三角形,点D 就是边BC 、EF 得中点,直线AG 、FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长得最小值就是( ) A .32-B .13+C .2D .13-提示:点M 在以AC 为直径得圆上2.(2015•咸宁)如图,已知正方形ABCD 得边长为2,E 就是边BC 上得动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG .下列说法:①AG >GE ;②AE =BF ;③点G 运动得路径长为π;④CG 得最小值为﹣1.其中正确得说法就是 ②③ .(把您认为正确得说法得序号都填上)提示:G 在以AB 为直径得圆上:正确答案就是:②④3、如图,正方形ABCD 得边长为4cm,正方形AEFG 得边长为1cm ,如果正方形AEFG 绕点A旋转,那么C 、F 两点之间得最小距离为 4、如图,在边长为2得菱形ABCD 中,∠A=60°,M 就是AD 边得中点,N 就是AB 边上一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度得最小值就是5、如图,等腰直角△ACB ,AC=BC=5,等腰直角△CDP ,且PB=2,将△CDP 绕C 点旋转、CABAAA GDDA E(1)求证:AD=PB(2)若∠CPB=135°,求BD ;(3)∠PBC= 时,BD 有最大值,并画图说明; ∠PBC= 时,BD 有最小值,并画图说明、PBC=∠AB 上,6、如图,△ABC 与△ADE °,AD=1,,F 为BE 中点、(1)求CF 得长(2)将△ADE 绕A 旋转一周,求点F 运动得路径长; (3)△ADE 绕点A 旋转一周,求线段CF 得范围、提示:本题根据中点构造三角形相似,△BOF ∽△BAE,且7、如图,AB=4,O 为AB 中点,⊙O 得半径为1,点P 得等腰△PBC (点P ,B ,C 按逆时针方向排列)则线段AC AOC 中,AE-CE ≤AC AE ∥BC 交⊙O 于E ADE9、AB=4,E 为形外一点,且∠点,求BF 连AC,取DC 中点中点H ,则△FGH ∽△∴12GH AD ==∠DEA=90°,∴点F 在以GH 小距离。

动点最值问题

动点最值问题

两条线段求最值PA+K*PB型1.PA+PB型1.1 两定一动(将军饮马)此类在学生学完对称后就可以适当进行讲解了出现一个动点的解题方法这类试题的解决方法主要是通过轴对称,将动点所在直线同侧的两个定点中的其中一个,映射到直线的另一侧。

当动点在这个定点的对称点及另一定点的线段上时,由“两点之问线段最短”可知线段和的最小值,最小值为定点线段的长。

引:如图在直线 l 上找一点 P 使 AP+BP 最短。

解:(1)如果两点在直线异侧,如图(1),连接 AB 交直线 l 于点 P,则点 P 为所示作的点;(2)如果两点在直线同侧,如图(2),可通过轴对称把问题转化为两点在直线异侧的情况。

证明:如下图所示,从 B 出发向河岸引垂线,垂足为 D,在 BD 的延长线上,取 B 关于河岸的对称点 B',连结 AB',与河岸线相交于 P,则 P 点就是所求作的点,只要从 A 出发,沿直线到 P,再由 P 沿直线走到 B,所走的路程就是最短的。

如果在河边的另外任一点 C, 则CB=CB’,但是,AC+CB=AC+CB'>AB'=AP+PB'=AP+PB。

可见,在 P 点外任何一点 C,它与 A、B两点的距离和都比 AP+PB 都长。

本质:两点之间,线段最短。

【牛刀小试】1.如图,正方形 ABCD 的边长为 2,E 为 AB 的中点,P 是 AC 上一动点.则PB+PE 的最小值是____________.2.如图所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P,使 PD+PE 的和最小,则这个最小值为__________.3.如图,MN 是半径为 1 的⊙O 的直径,点 A 在⊙O 上,∠AMN=30°,B 为AN 弧的中点, P 是直径MN 上一动点,则 PA + PB 的最小值为_________.4.如图,AB 是⊙O 的直径,AB=8,点 M 在⊙O 上,∠MAB=20°,N 是弧 MB的中点,P 是直径 AB 上的一动点.若 MN=1,则△PMN 周长的最小值为________.5.已知 A(-2,3),B(3,1),P 点在 x 轴上,若 PA+PB 长度最小,则最小值为____________.6.如图,在 Rt△ABC 中,∠C=90°,∠B=60°,点 D 是 BC 边上的点,CD=1,将△ABC 沿直线 AD 翻折,使点 C 落在 AB 边上的点 E 处,若点 P 是直线 AD 上的动点,则△PEB 的周长的最小值是__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段的最值问题
类型一
1、(2015成都中考)如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A 1MN ,连接A 1C ,则A 1C 长度的最小值是
3、如图,菱形ABCD 的边AB =8,,P 是AB 上一点,BP=3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点。


的长度最小时,CQ 的长为
N D
B
5、如图,点E 、F 是边长为4的正方形边AD 上的两个动点,AH ⊥BE 于点H ,连接FC 、FH ,求FC+FH 的最小值
6、若0
60=∠MAN ,AN=6,等边△DEF 的顶点D 、E 分别在射线AM 、AN 上运动,0为△DEF 的重心,在运动过程中,ON 的最小值为
类型二
1、已知边长为a 的正三角形ABC ,两顶点A B 、分别在平面直角坐标系的x 轴、y 轴的正半轴上滑动,点C 在第一象限,连结OC ,则OC 的最大值
2、正方形ABCD 外有一点P ,若PB=4,PA=3,则PC 的最大值为
D
P
A E
F
练习:
1、如图,在平面直角坐标中,已知OA=OB=4,△OCD 是等腰三角形,∠COD=90°,E 为OB 的中点,若点
2、如图,在Rt △ABC 中,∠A=90°,AB=3,AC=4,点D 为AC 的中点,P 为AB 上的动点,将点P 绕点D
3、如图,在平面直角坐标系中,已知矩形OABC 的顶点在坐标轴上,其中OA=4,OC=3,点D 为BC 边上一点,以AD 为边在点B 的同侧作正方形ADEF ,连接OE ,当点D 在BC 上运动时,OE 长的最小值为
4、(2014•达州)如图,折叠矩形纸片ABCD ,使点B 落在边AD 上,折痕EF 的两端分别在AB 、BC 上(含端点),且AB=6cm
,BC=10cm .则折痕EF 的最大值是
A B
C
1
x
5、图,△ABC 中,∠BAC=60°,∠ABC=45°,
AB=分别交AB ,AC 于E ,F ,连接EF .
(1)探究线段EF 长度为最小值时,点D 的位置,请画出图形; (2)求出该最小值.
类型2线段和最小
3、(2013•内江)已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM+PN 的最小值= .
(变式1、定点
M ) (变式2、无定点)
4、如图,在五边形ABCDE 中,∠BAE=1200,∠B=∠E=90
0,AB=BC ,AE=DE ,在BC ,DE 上分别找一点M 、N ,
C
B
5
、充分展开联想,运用数形结合思想,请你尝试解决下面问题:若y =值时,y 的值最小,并求出这个最小值。

6、(2013)如图, M 是正方形ABCD 的对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转
060得到BN ,AEB ∆是等边三角形,连接EN 、AM 、CM 。

(1)求证:ENB AMB ∆≅∆
(2)①当M 点在何处时,AM+CM 的值最小;②当点M 在何处时,AM+BM+CM 的值最小,并说明理
由。

(3)当CM BM AM ++的最小值为13+时,求正方形的面积
7、如图,点O 是直角三角形ABC 内一点,0
90=∠ABC ,若AB=1,3=BC ,求OA+OB+OC 的最小值.
E
C。

相关文档
最新文档