杨辉三角 小学数学 精品
最新杨辉三角课件精品课件
B
由此看来,杨辉三角与纵横(zònghéng)路线图问题有天然的联系
第十六页,共24页。
五、小结 (xiǎojié)
1、杨辉三角蕴含(yùn hán)的基 本性质
2、杨辉三角蕴含的数字(shùzì)排 列规律
第十七页,共24页。
杨辉三角的其它(qítā) 规律
第十八页,共24页。
杨辉三角中若第P行除去(chúqù)1外,P整
C C r1
r
n1
n1
第n行1 Cn1 Cn2
…
Cnr
…
…… … … 第十九页,共24页。
C n2
n1 1
C n1 n
1
练习 ((l0i4à.n上x海í)春1季: 高考)如图,在由二项式系数
(xìshù)所构成的杨辉三角形中,第3_4____行中从
左至右第14与第15个数的比为 2 :.3
第二十一页,共24页。
C a b r kr r k
C
k k
bk
则当n=k+1时,(a b)k1 (a b)k (a b)
(Ck0ak Ck1ak1b1 Ckrakrbr Ckk ak )(a b)
Ck0a k1
C k1a k b
C
r k
1a
k
r
bb1
C
k k
ab
k
C k0a k b
C
r k
a
k
r
b
r
1
C kk 1ab k
研究性课题(kètí):
杨辉三角
第一页,共24页。
杨辉三角
第0行
1
第1行
11
第2行
第3行 第4行
杨辉三角课件
1 33 1
1 4641
第5行--
C
0 5
C
1 5
C
2 5
C
3 5
C
4 5
C
5 5
1 5 10 10 5 1
第6行-
C
0 6
C
1 6
C
2 6
C
3 6
C
4 6
C
5 6
C
6 6
1 6 15 20 15 6 1
知识探究3:
(a+b)1
(a+b)2
C10 C11
C
0 2
C12
C
2 2
11 121
(a+b)3
…
)
也就是说, (1+x)n的展开式中的各个
二项式系数的和为2n,且奇数项的二
项式系数和等于偶数的二项式系数和
赋值法
课堂练习:
1、在(a+b)20展开式中,与第五项二项式系数相同
的项是( C ).
A.第15项 B.第16项 C.第17项 D.第18项
2、在(a+b)11展开式中,二项式系数最大的项( C ).
C
5 5
C
0 6
C
1 6
C
2 6
C
3 6
C
4 6
C
5 6
C
6 6
总结提炼2:
C = C m
n-m
n
n
与首末两端“等距离”的两个二项式系数相等
第1行———
C
10C
1 1
第2行——
C
0 2
C
1 2
C
2 2
第3行—-
C
数学课件:1.3.2 杨辉三角
间两项,这两项的二项式系数相等并且最大,最大为C������2 = C������2 .
题型一 题型二 题型三 题型四
题型一 杨辉三角的应用
【例1】 在“杨辉三角”中,每行的两端都是1,其余每个数都是它 “肩上”两个数的和,“杨辉三角”开头几行如图所示.
(1)利用“杨辉三角”展开(1-x)6; (2)在“杨辉三角”中哪一行会出现相邻的三个数,它们的比是
12
【做一做2-2】 在(1-x)6的展开式中,含x的奇数次幂的项的系数 和为( )
A.32 B.-32 C.0 D.-64 解析:由 Tr+1=C6������ (-x)r=(-1)rC6������ xr 可知,含 x 的奇数次幂的项的系数 和为-(C61 + C63 + C65)=-32. 答案:B
=
4 5
,
化简得
3 4 4 5
= =
������
������+1-������
������+1 ������-������
,
,
1.理解杨辉三角的意义. 2.掌握二项式系数的性质并会应用.
12
1.杨辉三角 关于(a+b)n展开式的二项式系数,当n取正整数时可以单独列成下 表的形式:
上面的二项式系数表称为“杨辉三角”或“贾宪三角”,在欧洲称为 “帕斯卡三角”.
12
名师点拨 解决与杨辉三角有关的问题的一般方法:观察——分 析——试验——猜想结论——证明.要得出杨辉三角中数的诸多排 列规律,取决于我们的观察能力,观察的方法:横看、竖看、斜看、 连续看、隔行看,从多角度观察.
12
【做一做1】 如图所示,在由二项式系数所构成的杨辉三角中,第
杨辉三角(小学版)
1.两条斜边都是由数字1组成,其余的数则是等于上一行左右两个数字之和. 2.每行数字左右对称,由1开始逐渐变大,然后变小,最后再回到1. 3.第n行的数字个数为n个。 4.n行中第i个数是斜行i-1中前n-1个数之和。
杨辉三角计算演示
杨辉三角的应用 Ⅰ
杨辉三角可以用来帮助解决11的几次方的问题
杨辉三角
Chinese triangle
四年级(4)班
什么是杨辉三角?
杨辉是南宋时期杭州人。在
他1261年所著书中,记录了右边图所 示的三角形数表,这三角形就被称为 杨辉三角。在欧洲直到1623年以后, 法国数学家帕斯卡才发现了同样规律, 因此欧洲人又称这个三角为“帕斯卡三 角”。但是大家从杨辉发现这个规律的 年代与帕斯卡发现这个规律年代相比 就会知道,我国的杨辉发现此规律比 帕斯卡早了300多年。近年来国外也逐 渐承认这项成果属于中国,开始称这 个三角是“中国三角形”。(Chinese triangle)。
大家可以看出11的几次方,也就是n个11连乘答案正好是杨辉三角所 对应的第n行的数字,
很神奇吧!
杨辉三角的应用 Ⅱ
大家请看一下下面的表格能发现什么吗?
对,这就是杨辉三角的又一个应用: 2的n次方也就是第 n行数字之和,很有意思对吧?
概括
杨辉三角除了以上两个应用,我
们还可以在日常生活中来用它来计算最近的 路径问题以及弹子游戏中弹子掉落的概率等 许多问题。 古老的杨辉三角, 即使在我们现代生活中 也能得到充分的利用, 我们中国人的祖先在几 百年前就能最先发现这 个有用的规律,是不是 令我们由衷地为我们中 国灿烂的古代文明心生 自豪之情呢?
杨辉三角上课用PPT课件
(a+b)6…1 6 15 20 15 6 1
观察每一行的第一个和最后一个数有什么特点?
(1)对称性: Cn0 1,Cnn 1
与首末两端“等距离”的两个二项式系数相等.
这就是组合数的性质
1: Cnm
C nm n
第2页/共32页
(a性+b质)1…………… 1 1
(2)递推性:
除(a1+以b)外2…的…每…一个…数…都1等2于它1肩上两个数的和.
第15页/共32页
题型 证明不等式
例20.证明: 当n N*且n 1 2 (1 1)n 3
n
证明 (1
1 )n n
1 Cn1
1 n
Cn2
1 n2
11 Cn2
1 n2
2
通项
Cnk
1 nk
n(n
1)
k
(n !
k
1)
1 nk
nk k!
1 nk
1 k!
(1
1)n n
1
C
1 n
1 n
Cn2
1,1,2,3,5,8,13,21,34,...
第21页/共32页
探究:横行规律
第0行
1 2 3
4 5 6 7
8 9 10 11 12 13 14
15
1)杨辉三角中的第1,3,7,15,…行,即第 2n-1行的 各个数字为奇数?
则第2n行的数字有什么特点?除两端的1之外都是偶数.
第22页/共32页
解:?1二项式系数之和为C90 C91 C92 C99 29 512.
解 : 设2x 3y9 a0x9 a1x8y a2x7y2 a9y9. 2令x y 1得各项系数之和为a0 a1 a2 a9 21 319 1.
课件6:1.3.2 杨辉三角
考点二 二项展开式中各项的系数和
例 2 设(1-2x)2 014=a0+a1x+a2x2+…+a2 014·x2 014(x∈R). (1)求 a0+a1+a2+…+a2 014 的值. (2)求 a1+a3+a5+…+a2 013 的值. (3)求|a0|+|a1|+|a2|+…+|a2 014|的值.
和为( )
A.2n+1
B.2n-1
C.2n+1-1
D.2n+1-2
【解析】令 x=1,则 2+22+…+2n=2n+1Байду номын сангаас2. 【答案】D
4.已知(1+2x-x2)7=a0+a1x+a2x2+…+a13x13+a14x14. (1)求 a0+a1+a2+…+a14; (2)求 a1+a3+a5+…+a13.
x
2
n
的展开式中,各项系数和与它的
二项式系数和的比为 32.
(1)求展开式中二项式系数最大的项;
(2)求展开式中系数最大的项.
解:令 x=1,
则展开式中各项系数和为(1+3)n=22n.
又展开式中二项式系数和为 2n,
∴222nn=2n=32,n=5.
(1)∵n=5,展开式共 6 项,
∴二项式系数最大的项为第三、四两项,
方法小结
二项式系数的有关性质的形成过程体现了观察—— 归纳——猜想——证明的数学方法,并且在归纳证明的过 程中应用了函数、方程等数学思想.大致对应如下:
一点通 解决与杨辉三角有关的问题的一般思路: (1)观察:对题目要横看、竖看、隔行看、连续看,多角 度观察; (2)找规律:通过观察,找出每一行的数之间、行与行之 间的数据的规律.
题组集训
1.如图是一个类似杨辉三角的图形, 则第 n 行的首尾两个数均为________.
杨辉三角优质课件
n 1 n
C
n n
倒序相加法
思考3.在(3x -2y)20的展开式中,求:(1)二项 式系数最大的项;(2)系数绝对值最大的项;(3) 系数最大的项; 解:(2)设系数绝对值最大的项是第r+1项. 则 r 20 r r r 1 19 r r 1
C 20 3 C 3
r 20
2 C 20 3 2 C
r r 1 20
2
20 r
3
21 r
2
r 1
即
3(r+1)>2(207 r8 5 5
8
所以当r=8时,系数绝对值最大的项为 8 12 8 12 9 20
T C 3 2 x y
即
3(r+1)>2(20-r)
令a=1,b=-1得
C C C C
0 n 2 n 1 n 3 n
1答案 2答案
2 n
启示:在二项式定理中,对a,b赋予一些特定的值, 是解决二项式有关问题的一种重要方法——赋值法。
0 2 1 2 2 2 n 2 n ) (C n ) (C n ) (C n ) C2 思考2求证: (Cn n. 略证:由(1+x)n(1+x)n=(1+x)2n,两边展开 后比较xn的系数得:
m m m 1 C C 这就是组合数的性质 2: C n 1 n n
可运用函数的观点,结合“杨辉三角”和函数图象, 研究二项式系数的性质. f( r ) 20 n (a+b) 展开式的二项式系数是
C , C , C , , C , , C .
0 n
1 n
杨辉三角PPT优秀课件
B 1
1 1 4
A
1 1 3
1
3
2
1
1
A
6 4 1 5 10 5 10 15 20 15 35 35 B70
2、杨辉三角的对称性:
C C .
r n
nr n
3、杨辉三角的第 n行就是二项式 (a b) 的展开式的系数,即:
n
(a b) C a C a b
n r 0 n n 1 n
2.1杨辉三角(1)
杨辉最重要的著作是《详解九章算法》. 为了使《九章算术》便于自学,杨辉对 该书的246个问题中较难的80题作了详解, 并增添了“图解、乘除算法和纂类”三卷. “详解”包括三个方面:一是“解题”,即解 释题意、名词术语,校勘文字,并对题目 作出评注;二是“细草”,即详细的解题过 程及必要的图示;三是“比类”,即增选与 原题算法相同或类似的例题进行对照分析. “纂类”是把《九章算术》中的全部问题按 解题方法由浅入深的顺序重新整理分类.
杨辉三角与“纵横路线图” “纵横路线图”是数学中的一类有趣 的问题.图 1 是某城市的部分街道 图,纵横各有五条路,如果从 A 处 走到 B 处 ( 只能由北到南,由西向 东 ) ,那么有多少种不同的走法?
我们把图顺时针转 45 度,使 A 在 正上方, B 在正下方,然后在交叉 点标上相应的杨辉三角数.有趣的 4 是, B 处所对应的数 C 8 =70 , 正好是答案 ( 70) . 一般地 , 每个交点上的杨辉三角数, 就是从 A 到达该点的方法数.由此 看来,杨辉三角与纵横路线图问题 有天然的联系.
n1
Ca
r n
n r
b C b
n n n
请用数学归纳法证明这一性质 。
《杨辉三角》_精品教学PPT人教版1
《 杨辉三 角》优 品教学P PT人教 版1-精 品课件 ppt(实 用版)
解析:
由图1我们能发现,第1行中的数是 C10,C11 第2行中的数是 C02,C12,C22 第3行中的数是 C03,C13,C32,C33 则第n行中的数是 Cn0,C1n,Cn2, ,Cnn 设第n行中从左到右第14与第15个数的比为2 : 3
则 C1n3·C1n4 = 2 : 3 ,解得 n = 34
《 杨辉三 角》优 品教学P PT人教 版1-精 品课件 ppt(实 用版)
《 杨辉三 角》优 品教学P PT人教 版1-精 品课件 ppt(实 用版)
2.(1-x3)•(1+x)10的展开式中含x4的项的系数 2为00_____(用数字作答).
《 杨辉三 角》优 品教学P PT人教 版1-精 品课件 ppt(实 用版)
针对性练习
1. 如图1,在由二项式系数所构成的杨辉三 角中,第___3_4__行中从左到右第14与第15个数的 比为2:3 .
《 杨辉三 角》优 品教学P PT人教 版1-精 品课件 ppt(实 用版)
《 杨辉三 角》优 品教学P PT人教 版1-精 品课件 ppt(实 用版) 《 杨辉三 角》优 品教学P PT人教 版1-精 品课件 ppt(实 用版)
课堂小结
1.二项式系数的三条性质
(1)对称性; (2)增减性与最大值; (3)各二项式系数的和; (4)递推性(杨辉三角中).
《 杨辉三 角》优 品教学P PT人教 版1-精 品课件 ppt(实 用版)
《 杨辉三 角》优 品教学P PT人教 版1-精 品课件 ppt(实 用版)
杨辉三角 课件
二项式系数表
“杨辉三角”
杨辉三角
《
九
章
杨
算
辉
术
》
本积
商实
《 九
平方
章
立方
算
术
三乘
》 杨
四乘
辉
五乘
《详解九章算法》中记载的表
(a + b)n Cn0an Cn1an1b Cnranrbr Cnnbn
(a+b)1 (a+b)2 (a+b)3 (a+b)4 (a+b)5 (a+b)6
n
n1 n1
C C 当n是奇数时,中间的两项
2, 2 相等,
n
n
且同时取得最大值。
2 (4)二项式系数之和: n (由赋值法求得 )
2、 数学方法 : 赋值法 、归纳猜想
ቤተ መጻሕፍቲ ባይዱ
(a+b)1 (a+b)2 (a+b)3 (a+b)4 (a+b)5 (a+b)6
n 1时,C10 C11 2;
归纳猜想:Cn0 Cn1 Cn2 …+Cnn
? n 2时,C20 C21 C22 4;
n n 3时,C30 C31 C32 C33 8;
2 ……
n 6时,C60 C61 C62 C63 C64 C65 C66 64;
课堂练习:
1、在(x y)n展开式中只有第5项的二项式系数最大,
8 则n
2、在(x 1)n 展开式中,第3项的二项式系数与第5项
6 x
的二项式系数相等,则n
1 3、在(2x2 1)6展开式中,二项式系数和为 x
64
各项系数之和为
【数学课件】杨辉三角1
1ab
k
C
k k
bk
1
=
C k0a k
+1
+
(C
1 k
C
0 k
)a k b
+
+
(C
r k
+1
C kr
)a k r b b+1
+
+
(C
k k
C kk-1 )ab k
+
C
k k
bk
+1
利用组合数的两个重要性质可得
(a
b)k1
C a0 k1 k1
C a b 1 k 1 k 1
C a b r1 kr r1 k1
C bk1 k1 k 1
1、横行规律
第0行
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15
1)杨辉三角中的第1,3,7,15,…行,即2k—1行的各 个数字有什么特点? 都是奇数
则第2K行的数字有什么特点? 除两端的1之外都是偶数.
第0行
1 2 3 4 5 6 7
8 9 10 11 12 13 14
研究性课题:
杨辉三角 (一)
一、复习杨辉三角 (二项式系数表) 二项式(a+b)n展开式的二项式系数,当
n依次取1,2,3...时,列出的一张表. 因它形如三角形,南宋的杨辉对其有过
深入研究,所以我们又称它为杨辉三角
杨辉----杭州钱塘人。中 国南宋末年数学家,数学教育 家.
著作甚多,他编著的数学 书共五种二十一卷,著有《详 解 九 章 算 法 》 十 二 卷 ( 1261 年)、《日用算法》二卷、 《乘除通变本末》三卷、《田 亩比类乘除算法》二卷、《续 古摘奇算法》二卷.
数学探究杨辉三角的性质与应用课件
视察和实验
1
① ①
1
1
② ③
1
2
1
⑤ ⑧
1
3
3
1
⑬ ㉑
1 4 6 4 1㉞
5 将各条虚线上的数分别相加, 得到 1,1,2,3,5,8,13,21,…
1 5 10 10 5 1 1 6 15 20 15 6 1
斐波那契数列.
1
Crr
Cr r 1
Cr r2
Cr n1
C r1 n
推理和论证
猜性想质1 除了最外层1以外,其余的数都等于它肩上的两个数相加,即
证明:
递归性 Cnr
C r1 n1
Cnr1
C r 1 n 1
Cnr1
(n 1)! (n 1)! (r 1)!(n r)! r!(n r 1)!
(n 1)! r (n r)
1 3 6 78 364
应用: 1.堆垛问题:
求n层三角垛的圆球总个数:
1 (1 2) (1 2 3) (1 2 3 n)
1 11
1 3 6 n(n 1)
121
2
1331
C22 C32 C42 Cn21
14641
C3 n2
1 5 10 10 5 1 1 6 15 20 15 6 1
杨辉三角 第8 行
C80
C81
C82
C83
C84
C85
C86
C87
C88
1 8 28 56 70 56 28 8 1
第 10 行,第5个数
反过来,
C140 即120
数
形
杨辉三角(小学版)ppt课件
6
7
2
杨辉三角的规律
杨辉三角的主要特征是:
1.两条斜边都是由数字1组成,其余的数则是等于上一行左右两个数字之和. 2.每行数字左右对称,由1开始逐渐变大,然后变小,最后再回到1. 3.第n行的数字个数为n个。 4.n行中第i个数是斜行i-1中前n-1个数之和。
杨辉三角计算演示
3
杨辉三角的应用 Ⅰ
杨辉三角可以用来帮助解决11的几次方的问题
杨辉三角
Chinese triangle
四年级(4)班
1
什么是杨辉三角?
杨辉是南宋时期杭州人。在
他1261年所著书中,记录了右边图所 示的三角形数表,这三角形就被称为 杨辉三角。在欧洲直到1623年以后, 法国数学家帕斯卡才发现了同样规律, 因此欧洲人又称这个三角为“帕斯卡三 角”。但是大家从杨辉发现这个规律的 年代与帕斯卡发现这个规律年代相比 就会知道,我国的杨辉发现此规律比 帕斯卡早了300多年。近年来国外也逐 渐承认这项成果属于中国,开始称这 个三角是“中国三角形”。(Chinese triangle)。好是杨辉三角所
对应的第n行的数字,很神奇吧!
4
杨辉三角的应用 Ⅱ
大家请看一下下面的表格能发现什么吗?
对,这就是杨辉三角的又一个应用: 2的n次方也就是第 n行数字之和,很有意思对吧?
5
概括
杨辉三角除了以上两个应用,我
们还可以在日常生活中来用它来计算最近的 路径问题以及弹子游戏中弹子掉落的概率等 许多问题。
杨辉三角(小学版)讲解学习
杨辉三角的规律
杨辉三角的主要特征是:
1.两条斜边都是由数字1组成,其余的数则是等于上一行左右两个数字之和. 2.每行数字左右对称,由1开始逐渐变大,然后变小,最后再回到1. 3.第n行的数字个数为n个。 4.n行中第i个数是斜行i-1中前n-1个数之和。
杨辉三角计算演示
杨辉三角的应用 Ⅰ
杨辉三角可以用来帮助解决11的几次方的问题
古老的杨辉三角, 即使在我们现代生活中 也能得到充分的利用, 我们中国人的祖先在几 百年前就能最先发现这 个有用的规律,是不是 令我们由衷地为我们中 国灿烂的古代文明心生 自豪之情呢?
谢 谢 大 家!
大家可以看出11的几次方,也就是n个11连乘答案正好是杨辉三角所
对应的第n行的数字,很神奇吧!
杨辉三角的应用 Ⅱ
大家请看一下下面的表格能发现什么吗?
对,这就和,很有意思对吧?
概括
杨辉三角除了以上两个应用,我
们还可以在日常生活中来用它来计算最近的 路径问题以及弹子游戏中弹子掉落的概率等 许多问题。
杨辉三角
Chinese triangle
四年级(4)班
什么是杨辉三角?
杨辉是南宋时期杭州人。在
他1261年所著书中,记录了右边图所 示的三角形数表,这三角形就被称为 杨辉三角。在欧洲直到1623年以后, 法国数学家帕斯卡才发现了同样规律, 因此欧洲人又称这个三角为“帕斯卡三 角”。但是大家从杨辉发现这个规律的 年代与帕斯卡发现这个规律年代相比 就会知道,我国的杨辉发现此规律比 帕斯卡早了300多年。近年来国外也逐 渐承认这项成果属于中国,开始称这 个三角是“中国三角形”。(Chinese triangle)。
20-21版:1.3.2 杨辉三角(步步高)
12345
2.若(x+3y)n的展开式中所有项的系数之和等于(7a+b)10的展开式的二项式系数之和,
则n的值为
A.15
B.10
C.8
√D.5
解析 令x=y=1,得(x+3y)n的展开式中所有项的系数和为4n,(7a+b)10的展开式中 所有项的二项式系数之和为210,故4n=210,即n=5.
12345
例2 设(2- 3 x)100=a0+a1x+a2x2+…+a100·x100,求下列各式的值. (1)a0; 解 令x=0,则展开式为a0=2100.
(2)a1+a2+a3+a4+…+a100;
解 令x=1,
可得 a0+a1+a2+…+a100=(2- 3)100,
①
所以 a1+a2+…+a100=(2- 3)100-2100.
1.二项式系数表及特征 当n依次取1,2,3,…时,(a+b)n展开式的二项式系数如图所示:
图中所示的表叫做二项式系数表,它有这样的规律: (1)每一行的两端都是 1 ; (2)除1以外的每一个数都等于 它肩上两个数的和 ,即Cmn+1= Cmn -1+Cmn .
2.二项式系数的性质
在(a+b)n展开式中,与首末两端“ 等距离 ”的两项的二项式系数 相等,即_C_mn_=__C_nn_-m_
12345
4.设(2x-3)4=a0+a1x+a2x2+a3x3+a4x4,则a0+a1+a2+a3的值为_-__1_5_.
解析 令x=1,得a0+a1+a2+a3+a4=1.
①
又 Tr+1=Cr4(2x)4-r(-1)r3r,
∴当r=0时,x4的系数a4=16.
②
由①-②,得a0+a1+a2+a3=-15.
(2)求二项式系数最大的项;
小学数学四年级杨辉三角与走最短路线课件
如果途中C点堵上了,从A点到B点共有几条
最短路线?
A
A
C B
C B
四年级数学名师课程
如果途中C点堵上了,从A点到B点共有几条 最短路线?
四年级数学名师课程
如果从A点必须经过C点再到B点,那又有 多少条最短路线呢?
A
C
B
四年级数学名师课程
如果从A点必须经过C点再到B点,那又有 多少条最短路线呢?
四年级数学名师课程
11
杨辉三角的神秘特性 1 1 3
121 6
第三层是三角数列 1 3 3 1 10
1 4 6 4 1 15
1 5 10 10 5 1 ……
1 6 15 20 15 6 1
……
四年级数学名师课程
1
杨辉三角的神秘特性 1 1
第三层是三角数列
1
1
1 4
3+26+=3+91=441 1
THANKS
B
A
四年级数学名师课程
标数法 列举画一画
标数找规律
1
2
1
四年级数学名师课程
标数法 列举画一画
标数找规律
1
3
1
2
1
四年级数学名师课程
标数法 ·找起点 ·定方向 ·标数字
B 1 36 ? 1 23 ?
A 111
四年级数学名师课程
标数法 ·找起点 ·定方向 ·标数字
B 1 3 6 10 1 23 4
1 1 6 5 15+1=022=50116015 5 6 1 1
……
四年级数学名师课程
杨辉三角的神秘特性
方数数列
……
1 4 9 16 25
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杨辉三角
人教版小学数学五年级下期第115页第10题,涉及著名的“杨辉三角”,
对此,教参中已有所介绍。
为了提高学生的学习兴趣,加深对“杨辉三角”的理解,增强学生的民族自豪感和爱国热情,下面推荐一个有趣的数学游戏。
老师出示一张图(有条件的可以使用多媒体):
宣布:“现在和同学们玩一个有趣的数学游戏。
请一位同学在这个图的最下面一行6个圆圈里任意各填一个一位数,我随即在顶端那个圆圈里写一个数。
然后,大家按照图中的连线,算出最下面那行相邻两个圆圈里的数的和,填入上一行的圆圈里。
自下而上照这样进行下去,直到算出顶端那个圆圈里应该填的数,一定跟我已经填好的数一样。
哪位同学愿意试一试?”
等那位同学把最下面一行的6个数填好以后,老师迅速算出左起第三、四两个数的和的10倍,加上第二、五两个数的和的5倍,再加上第一、六两个数,得数就是顶端那个圆圈里应该填的数。
比如,从左到右,学生所填的数是4、1、8、6、2、3,老师就应该填10
×(8+6)+5×(1+2)+(4+3)=140+15+7=162。
这是为什么呢?原来,“杨辉三角”中的数是有规律的。
规律是:自上而下,每个圆圈里的数等于与它相连的,上一行圆圈里的数的和。
比如,第三行中间圆圈里的数之所以是2,就因为与它相连的第二行两个圆圈里的数都是1,1+1=2。
依此类推。
游戏相当于把上面的过程倒回去,所以要把圆圈里的数分别乘上1、5、10、10、5、1。
等玩过两三次以后,学生一定会急于知道老师是怎样做到未卜先知的,甚至有些爱动脑筋的学生,已经在开始探求其中的奥秘了。
这时,可以启发学生用学过的“用字母表示数”的方法,看看最下面那行所填的6个数,在整个计算过程中究竟各用了几次。
设:第六行所填的6个数依次为A、B、C、D、E、F。
第五行就是A+B、B +C、C+D、D+E、E+F;第四行就是A+2B+C、B+2C+D、C+2D+E、D+2E+F;第三行就是A+3B+3C+D、B+3C+3D+E、C+3D+3E+F;第二行就是A+4B+6C+4D+E、B+4C+6D+4E+F;顶端的数就是A+5B+10C+10D +5E+F,即10(C+D)+5(B+E)+(A+F)。
从而得出前面所总结出的方法。
“杨辉三角”在数学中有着重要作用,同时又具有直观形象的特点,对于培养学生的思维能力很有好处,值得给学生提供一个加深印象的机会。
杨辉三角
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
……
中还隐藏着许多奥秘:
请看这些斜线上的数:
自然数 1
三角形数 1 1
四面体数 1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
……
一、自然数:1,2,3,4,…
求前n个自然数的和,无需使用公式,答案就在第n个自然数的左下方。
比如,前4个自然数的和,就在第4个自然数4的左下方,是10。
前5个自
然数的和,就在第5个自然数5的左下方,是15。
依此类推。
二、三角形数:1,3,6,10,…
三角形数就是可以用点“排”成三角形的数。
最顶端1个点,下一排2个点,再下一排3个点,再下一排4个点,5个点,6个点……所以,三角形数依次是1,1+2=3,1+2+3=6,1+2+3+4=10,……即1,3,6,10,…
求前n个三角形数的和,无需使用公式,答案就在第n个三角形数的左下方。
比如,前4个三角形数的和,就在第4个三角形数10的左下方,是20。
前5个三角形数的和,就在第5个三角形数15的左下方,是35。
依此类推。
三、四面体数:1,4,10,20,…
四面体数就是可以用三角形数“垒”成四面体的数。
最顶端1个点,下一层3个点,再下一层6个点,再下一层10个点,15个点,21个点……所以,四面体数依次是1,1+3=4,1+3+6=10,1+3+6+10=20,……即1,4,10,20,…
求前n个四面体数的和,无需使用公式,答案就在第n个四面体数的左下方。
比如,前3个四面体数的和,就在第3个四面体数10的左下方,是15。
前4个四面体数的和,就在第4个四面体数20的左下方,是35。
依此类推。
最让人感到意外的是,“杨辉三角”竟然还与“菲波那契数列”有着密切的关系。
请看下图:(图中的斜线可以一直画下去)
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
……
斜线上数的和,依次是1,1,1+1=2,1+2=3,1+3+1=5,1+4+3=8,1+5+6+1=13,1+6+10+4=21,1+7+15+10+1=34,……
1,1,2,3,5,8,13,21,34,……不正是菲波那契数列吗?
“杨辉三角”真称得上是一个数学宝藏,它的这些奇妙之处都是后来陆续被发现的,究竟其中还隐藏着那些奥秘,仍然是一个未知数。
发掘宝藏,需要
兴趣和毅力,也许新的发现正在向你招手呢!。