弹塑性力学PPT幻灯片

合集下载

弹塑性力学-弹塑性本构关系ppt课件

弹塑性力学-弹塑性本构关系ppt课件

为非负,即有 0
功,即 0
(应变硬化和理想塑性材料)
(应变软化材料)
工程弹塑性力学·塑性位势理论
(2) 德鲁克塑性公设的表述
德鲁克公设可陈述为:对于处在某一状态下的稳定材 料的质点(试件),借助于一个外部作用在其原有应力状态 之上,缓慢地施加并卸除一组附加压力,在附加应力的施 加和卸除循环内,外部作用所作之功是非负的。
Ñ W
0 ij
ij
0 ij
d ij 0
Ñ 由于弹性应变εije在应力循环
中是可逆的,因而
( ij
0 ij
)
d
e
ij
0
0 ij
于是有:
Ñ WD WDp
( ij
0 ij
)d
p
ij
0
0 ij
工程弹塑性力学·塑性位势理论
(3) 德鲁克塑性公设的重要推论
Ñ WD WDp
( ij
0 ij
)d
势理论。他假设经过应力空间的任何一点M,必有一
塑性位势等势面存在,其数学表达式称为塑性位势函
数,记为:
g I1, J2, J3, H 0

g ij , H 0
式中, H 为硬化参数。
塑性应变增量可以用塑性位势函数对应力微分的表达
式来表示,即:
d
p ij
d
g
ij
工程弹塑性力学·塑性位势理论
不小于零,即附加应力的塑性功不出现负值, 则这种材料就是稳定的,这就是德鲁克公设。
工程弹塑性力学·塑性位势理论
在应力循环中,外载所作的 功为:
Ñ W
0 ij
ij
d ij
0
不论材料是不是稳定,上述 总功不可能是负的,不然, 我们可通过应力循环不断从 材料中吸取能量,这是不可 能的。要判断材料稳定必须 依据德鲁克公设,即附加应 力所作的塑性功不小零得出

弹塑性力学01ppt课件

弹塑性力学01ppt课件

第1章 绪论1-2
线性弹性力学的发展,出现了许多分支学科,
如薄壁构件力学、薄壳力学、热弹性力学、 粘弹性力学、各向异性弹性力学等。
37
弹性力学解法也得到不断发展
数值解法 微分方程的差分解 [迈可斯(1932)] 有限单元法 [1946年]
第1章 绪论1-2
复变函数(20世纪30年代)萨文和穆斯赫利什维利 作了大量的研究工作,解决了许多孔口应力集中等 问题。
14
固体材料的弹塑性简单 说明(简单拉伸性能)
弹性极限(屈服 极限)
比例极限
弹性 阶段
塑性阶段(强化)
第1章 绪论
卸加载 (弹性)
弹性应变 塑性应变
低碳钢试件简单拉伸试 验应力—应变曲线图
弹性应变
15
第1章 绪论
• “完全弹性”是对弹性体变形的抽象。
完全弹性使得物体变形成为一种理想模型。 完全弹性是指在一定温度条件下,材料的应力 和应变之间一一对应的关系。 这种关系与时间无关,也与变形历史无关。
38
钱伟长
钱学森
胡海昌 徐芝伦
39
§1-2 弹性力学中的几个基本概念
一、体力
分布在物体体积内的力(重力、惯性力) z
大小: 平均集度
体力
lim F f V 0 V
O
x
fz V
F f
fy
fx
P
y
图11a 40
§1-2 弹性力学中的几个基本概念
方向 f的方向就是ΔF的极限方向
矢量f在坐标轴x、y、z上的投影fx、 f y、 fz ,称为
材料的应力和应变关系通常称为 本构关系
——物理关系或者物理方程
• 线性弹性体和非线性弹性体

弹塑性力学第一章 PPT资料共54页

弹塑性力学第一章 PPT资料共54页

16.11.2019
10
§1-2 基本假设和基本规律
2.1基本假设
假设1:固体材料是连续的介质,即固体体积 内处处充满介质,没有任何间隙。
从材料的微观看此假设不正确。因为粒子 间有空隙,但从宏观上看作为整体进行力学分 析时,假设1是成立的。假设1的目的:变形体 的各物理量为连续函数(坐标函数)。
16.11.2019
11
§1-2 基本假设和基本规律
假设2:物体的材料是均匀的。认为物体内 各点的材料性质相同(力学特性相同),所 以从物体内任一部分中取出微元体进行研究, 它的力学性质代表了整个物体的力学性质。
16.11.2019
12
§1-2 基本假设和基本规律
假设3:小变形假设。物体在外因作用下,物 体产生的变形与其本身几何尺寸相比很小。
哑标如:
3
rr1e1r2e2r3e3 riei riei r j e j 3 i1
uu1e1u2e2u3e3 uiei uiei u j e j

i1

33


1e 1 1 e 11e 1 2 e 2 .. ..3.e 3 3 e .3 ie jie jie jie j
排列符号的作用可以简化公式书写,如: 1. 三阶行列式:
A11 A12 A13 AA21 A22 A23eijkAi1Aj2Ak3eijkA1iA2jA3k
A31 A32 A33
(共六项,三项为正,三项为负)。
16.11.2019
32
§1-5 笛卡尔坐标系下的矢量、 张量基本知识
2. 基向量的叉积:右手系
16.11.2019
弹塑性力学
授课教师:龙志飞 目录

弹塑性力学ppt_精简版本

弹塑性力学ppt_精简版本

卸载:指材料产生从塑性状态回到弹性状态的应力改变。
一 、理想材料的加卸载准则
理想材料的加载面与初始屈服面是一样的。
由于屈服面不能扩大,所以当应力点达到屈服面上, 应力增量 d 不能指向屈服面外,而只能沿屈服面切线。
d 加载
f(ij)0,
弹性状态
d
n
卸载
f 0
f (ij) 0,
)
1 (w v) 2 y z
w
z

• 几何方程张量表示
1 ij 2(ui,j uj,i)
u i, j

u i x j
位移梯度
相对位移矢量对称部分
应变张量是位移梯度的对称化
应变分量的坐标变换 [][][][]T
第四章 本构关系 4.5 常用的屈服条件
1. 最大剪应力条件 Tresca 屈服条件
T 1 2 + T 2 2 + T 3 3 - N 21 22 7 48 2
例1 如图所示,试写出其边界条件。
q
(1) x 0,

u v
s s
0 0
u 0, v 0 y x
h
hx
(2) xa, l 1,m0 X0,Y 0
l(x)s m(xy)s X
M Mi
M Mi
解: 处于弯扭作用下,杆内主应力为
1,321 2 242,
2 0
其中


My J
32M
d3


Mir J0
16dM3i
(1) 由最大剪应力条件(特雷斯卡)给出
并考虑安全系数
r31 30s
d0.10m 9
(2) 由最大畸变能条件(米泽斯)给出

弹塑性力学基础PPT课件

弹塑性力学基础PPT课件
第11页/共206页
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所 占有的全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内 部各点处,以及每一点处各个方向上的 物理性质相同。
(3)力学模型的简化假设: (A)完全弹性假设 ; (B)弹塑性假设。
第12页/共206页
aib jk cijk
(I-21)
◆ 张量乘法不服从交换律,但张量乘法服从分配
律和结合律。例如:
(aij bij )ck aijck bijck ; 或 (aijbk )cm aij (bk cm )
(I-22)
第24页/共206页
C、张量函数的求导:
◆ 一个张量是坐标函数,则该张量的每个分量都
第28页/共206页
一、应力的概念 应力状态的概念
1、应力的概念
◆ 应力:受力物体
内某点某截面上内 力的分布集度。
lim Fn A0 A
dFn dA
n
lim Fn A0 A
dFn dA
nt
第29页/共206页
应力
正应力 剪应力
必须指明两点: 1.是哪一点的应力; 2.是该点哪个微截面的应力。
(I-4) (I-5)
★ 关于求和标号,即哑标有:
◆ 求和标号可任意变换字母表示。
◆ 求和约定只适用于字母标号,不适用于数字标号。 ◆ 在运算中,括号内的求和标号应在进行其它运算前
优先求和。例:
aii 2 a121 a222 a323 (aii )2 (a11 a22 a33 )2
第21页/共206页
第16页/共206页
◆ 所有与坐标系选取无关的量,统称为物理恒量。

《工程弹塑性力学》PPT课件

《工程弹塑性力学》PPT课件
工程弹塑性力学
(有限元、塑性力学部分)
演示稿
h
1
第0章 平面问题的有限单元法
0.1 概述、基本量及基本方程的矩阵表示 0.2 有限单元法的概念 0.3 位移模式与解答的收敛性 0.4 单元刚度矩阵 0.5 等效结点荷载 0.6 整体刚度矩阵 0.7 单元划分应注意的问题
h
2
0.1 概述、基本量及基本方程的矩阵表示
y
j
(2) i
(1)
m x
▲相邻单元之间:uij(1)=uij(2)?vij(1)=vij(2) ?
ij边的方程:y=ax+b,则
uij=a1+a2 x+a3(ax+b)= cx+d
uij(1)、uij(2)均为坐标的线性函数,故可由i、j两
点的结点位移唯一确定。
h
12
0.4 单元刚度矩阵
建立: {F}e=[k]{d}e
如 k25: • [k]的性质:
(1) 对称性: kpq= kqp (2) 奇异性;
y vj
j
vi , (Vi) i ui , (Ui)
单元刚度矩阵:
[k][B]T[D ]B []dxdyt
y vj j
vi , (Vi) i ui , (Ui)
uj
vm
m um
x
结点位移 位移 应变
应力 结点力
{d}e ——{f} ——{} ——{} —— {F}e
位移模式 几何方程 物理方程 虚功方程
{f }=[N]{d}e
{}=[B]{d}e {}=[S]{d}e ,[S]= [D][B] {F}e=[k]{d }e,[k]= [B]T [D] [B]tA

【全版】绪论弹塑性力学内容推荐PPT

【全版】绪论弹塑性力学内容推荐PPT
几何连续规律:要求变形前连续的物体,变形后仍为连续物 体,由这个规律建立几何方程或变形协调方程,均为微 分方程。
物理(本构)关系:应力 (内力)与应变 (变形)之间的关系,根据 材料的不同性质来建立,最常见的为各向同性材料。
平衡方程和几何方程都与材料无关,塑性 力学与弹性力学的主要区别在于本构方程
哈工大 土木工程学院
在研究方法上的不同。材料力学为简化计算,对构件的应 力分布和变形状态作出某些假设,因此得到的解答是粗略 和近似的;而弹塑性力学研究通常不引入上述假设,从而 所得结果比较精确,并可验证材料力学结果的精确性。
哈工大 土木工程学院
6 / 27
01 绪 论
第2节 基本假设和基本规律
弹塑性力学的定义:弹塑性力学是固体力学的一个重要分支,是研究弹性体和弹塑性体在载荷作用下应力分布规律和变形规律的一门
学◆科新。理论-实损伤际、混问沌等题; 由多方面因素构成,分析极为复杂。应按照物体
的性质,以及求解范围,忽略一些暂时可不考虑的因素, 混合法(同时以应力和位移为未知量)
19世纪70年代,建立了各种能量原理,并提出了这些原理的近似计算方法。
第混2合节法(基同本使时假以设我应和力基们和本位规研移律为究未知的量)问题限定在一个方便可行的范围内。
对工科来说,弹性力学的任务,和材料力学、结构力学 的任务一样,是分析各种结构物或其构件在弹性阶段的应 力和应变,校核它们是否具有所需的强度、刚度和稳定性, 并寻求或改进它们的计算方法。
哈工大 土木工程学院
2 / 27
01 绪 论
弹塑性力学是根据固体材料受外因作用时所呈现的弹性与 塑性性质而命名。它们是固体材料变化过程的两个阶段。
(2)在研究问题的过程中可以略去相关的二次及二 次以上的高阶微量;

弹塑性力学-弹塑性本构关系ppt课件

弹塑性力学-弹塑性本构关系ppt课件

d
p
|
cos
0
此式限制了屈服面的形状: 对于任意应力状态,应力增量方向
与塑性应变向量之间所成的夹角不应 该大于90°
稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
ij
0 ij
(b) 不满足稳定 材料的屈服面
/2
工程弹塑性力学·塑性位势理论
2 塑性应变增量向量与屈服面法向平行
d 必p 与加载面的外法线
p
ij
0
0 ij
WD
(ij
adij
0 ij
)d
p
ij
0
1 a 1 2

0 ij
时,略去无穷小量
ij
( ij
0 ij
)d
p ij
0

0 ij
ij时,
d
ij
d
p ij
0
屈服面的外凸性
塑性应变增量方向 与加载曲面正交
工程弹塑性力学·塑性位势理论
1 屈服曲面的外凸性
( ij
0 ij
)dijp
|
A0 A||
不小于零,即附加应力的塑性功不出现负值, 则这种材料就是稳定的,这就是德鲁克公设。
工程弹塑性力学·塑性位势理论
在应力循环中,外载所作的 功为:
Ñ W
0 ij
ij
d ij
0
不论材料是不是稳定,上述 总功不可能是负的,不然, 我们可通过应力循环不断从 材料中吸取能量,这是不可 能的。要判断材料稳定必须 依据德鲁克公设,即附加应 力所作的塑性功不小零得出
弹塑性力学本构关系
1
工程弹塑性力学·塑性位势理论
(1) 稳定材料与非稳定材料

弹塑性力学(浙大课件)_图文

弹塑性力学(浙大课件)_图文
物体的速度、加速度
在讨论力学问题时,仅引进标量和矢量的概念是不够的
如应力状态、应变状态、惯性矩、弹性模量等
张量
关于三维空间,描述一切物理恒量的 分量数目可统一地表示成:
M=rn=3n
标量:n=0,零阶张量 矢量:n=1,一阶张量 应力,应变等:n=2,二阶张量
二阶以上的张量 已不可能在三维 空间有明显直观 的几何意义。
(a)
显然,方向余弦l1,l2,l3将由式(a)中
的任意两式和l12+l22+l32=1所确定。
若设偏应力状态 :
由于:
主方向的方向余弦为l1’,l2’,l3’,则由式(1.9)同样得
(b)
显然,方向余弦l1’,l2’,l3’将由式(b)中
的任意两式和l1’2+l2’2+l3’ 2=1所确定

可见式(a)与式(b)具有相同的系数, 且已知l12+l22+l32= l1’2+l2’2+l3’ 2=1
I2’应用较广,又可表达为:
(1.52)
1.3 应变张量
等效应变(应变强度):
(1.54)
等效剪应变(剪应变强度):
(1.55)
1.4 应变速率张量
一般来说物体变形时,体内任一点的变形不但与坐标有关,
而且与时间也有关。如以u、v、w表示质点的位移分量,则:
设应变速率分量为:
质点的运动速度分量
1.4 应变速率张量
斜截面外法线n的方向余弦:
令斜截面ABC 的面积为1
(1.3)
(1.4)
i :自由下标;j为求和下标 (同一项中重复出现)。
1.1 应力张量
斜截面OABC上的正应力:

弹塑性力学(浙大通用课件)通用课件

弹塑性力学(浙大通用课件)通用课件

塑性力学
研究材料在塑性状态下应 力和应变行为的科学。
塑性力学的基本假 设
塑性变形是连续的,且不改变物质的性质。 塑性变形过程中,应力和应变之间存在单值关系,且该关系是连续的。 塑性变形过程中,材料内部的应力状态是稳定的,不会出现应力振荡或波动。
塑性力学的基本方程
应力平衡方程
在塑性状态下,物体的内部应力场满 足平衡方程,即合力为零。
应变协调方程
本构方程
在塑性状态下,应力和应变之间的关 系由本构方程描述,该方程反映了材 料的塑性行为特性。
在塑性状态下,物体的应变状态满足 应变协调方程,即应变是连续的。
塑性力学的边值问题
01
塑性力学中的边值问题是指给定 物体的边界条件和初始条件,求 解物体内部的应力和应变状态的 问题。
02
边值问题可以通过求解微分方程 或积分方程来解决,具体方法取 决于问题的具体形式和条件。
04
材料弹塑性性质
材料弹性性质
弹性模量
材料在弹性变形阶段所表现出的 刚度,反映了材料抵抗弹性变形
的能力。
泊松比
描述材料在受到压力时横向膨胀 的程度,反映了材料在弹性变形
阶段的横向变形特性。
弹性极限
材料在弹性变形阶段所能承受的 最大应力,超过该应力值材料将
发生不可逆的塑性变形。
材料塑性性 质
屈服点
解析法的优点是精度高、理论严 谨,但缺点是适用范围较窄,对
于复杂问题难以得到解析解。
有限元法
有限元法是一种将连续的求解域离散化为有限个小的单元,通过求解这些小单元的 解来逼近原问题的求解方法。
它适用于各种复杂的几何形状和边界条件,能够处理大规模的问题,并且可以方便 地处理非线性问题。

弹塑性力学 Microsoft PowerPoint

弹塑性力学 Microsoft PowerPoint

J 2 = s 2 13=2s
(1) 管的两端是自由的;
应力状态为,z = 0, = pR/t,r=0,zr=r=z=0
J2 = =
1 [(zr)2+(r)2+(z)2+6( 2 2 2z )] zr r 6
1 1 2]= [2(pR/t) (pR/t)2 3 6
z
2
z 2
2 z = s
将其展开后得
z f2 = 2
z 2 2 z ( s ) =0 2
2
2 f 2 = s z s z z s2 = 0
2
从(5.4-4)式可知,弯矩 M 与曲率 k 呈线形关系,且
M k= EI z
将它代入式 x = E = Eky
式(5.4-5)与材料力学的结果完全一样,表明应力 x
My x = Iz
(5.4-5)
在梁的横截面呈线性分布,即与 y 成比例,且随着弯矩 M 的增加,梁的上下最外层最先达到屈服应力,对应的弯矩称为弹性 极限弯矩,记为 M e 。由(5.4-5)式可得弹性极限弯矩为
压应力 y 主要由载荷 q 产生的, 现因 q 为常数, 所以,可以假定,对于不
6 z = s 7
将该式微分,得
时达到屈服.
( s )d z ( s z )d 2 z d z = 0
1 d z d 2 d z = d ( s ) E
1 d d z 2 d = d ( s z ) E
对AB面
f1 d = d1 = d1 1 f1 p d 2 = d1 = d1 2 f d 3p = d1 1 = 0 3

第四章-弹塑性断裂力学PPT课件

第四章-弹塑性断裂力学PPT课件

a* 2a
18
3.材料加工硬化的修正
考虑材料加工硬化,当 s 200 ~ 400MPa 时,低
碳钢取
f
1 2
(
s
b)
代替 s 。其中 f
为流变应力。
b 为材料的抗拉强度。
综合考虑上述3部分内容
D-B模型的计算公式
8 f a* ln sec[ (M )]
E
2 f
19
§4.5 J积分的定义和特性
主要包括COD理论和J积分理论.
3
§4.1 小范围屈服条件下的COD 一.COD
COD(Crack Opening Displacement) 裂纹张开位移。 裂纹体受载后,裂纹尖端附近的塑性区导致裂纹尖端表面 张开——裂纹张开位移:表达材料抵抗延性断裂能力
c —COD准则
裂纹失稳扩展的临界值
第四章 弹塑性断裂 力学
线弹性断裂力学 脆性材料或高强度钢所发生的脆性断裂 小范围屈服:塑性区的尺寸远小于裂纹尺寸
弹塑性断裂力学 大范围屈服:端部的塑性区尺寸接近或超过裂纹尺寸,
如:中低强度钢制成的构件. 全面屈服:材料处于全面屈服阶段,如:压力容器的
接管部位.
2
弹塑性断裂力学的任务:在大范围屈服下,确定能定 量描述裂纹尖端区域弹塑性应力,应变场强度的参量.以 便利用理论建立起这些参量与裂纹几何特性、外加载荷之 间的关系,通过试验来测定它们,并最后建立便于工程应 用的断裂准则。
( 12
x1
22
x2
)
u2 x1
11
2u1 x12
12
2u2 x12
21
2u1 x1x2
22
2u2 x1x2
)]dx1dx2

《弹塑性断裂力学》课件

《弹塑性断裂力学》课件

断裂判据
03
应力强度因子、能量释放率。
03
弹塑性断裂力学分析方法
线弹性断裂力学分析方法
适用于裂纹张开位移较小 的裂纹扩展
裂纹扩展时,裂纹尖端应 力场不变
裂纹尖端附近应力场呈奇 异性
裂纹扩展时,裂纹尖端应 力场呈奇异性
弹塑性断裂力学分析方法
适用于裂纹张开位移较大的 裂纹扩展
裂纹尖端附近应力场呈奇异 性
复合材料的断裂分析
01
复合材料的断裂分析是弹塑性断裂力学在工程中的另一个重要应用。
02
复合材料由多种材料组成,其断裂行为较为复杂,需要考虑不同材料 之间的界面效应和应力传递机制。
03
复合材料的断裂分析主要应用于航空航天、汽车、船舶、建筑等领域 的结构强度和寿命评估。
04
复合材料的断裂分析方法包括实验测试、数值模拟和理论分析等,其 中数值模拟方法包括有限元分析和离散元分析等。
高分子材料的断裂分析
高分子材料的断裂分析是另一 个重要的应用领域。
高分子材料具有粘弹性和韧性 ,其断裂行为较为复杂,需要 考虑高分子链的取向、结晶度
、温度等因素。
高分子材料的断裂分析主要应 用于塑料、橡胶、纤维等材料 的强度和耐久性评估。
高分子材料的断裂分析方法主 要包括实验测试和数值模拟, 其中数值模拟方法包括有限元 分析和分子动力学模拟等。
和规律,为复合材料的设计和应用提供理论支持。
高分子材料的冲击断裂分析
总结词
高分子材料在冲击作用下会发生断裂,其断 裂行为受到分子链结构、温度、应变速率等 因素的影响。
详细描述
高分子材料的冲击断裂分析主要研究高分子 材料在受到冲击作用时的断裂行为和机理。 高分子材料在冲击作用下会发生断裂,其断 裂行为受到分子链结构、温度、应变速率等 因素的影响。通过实验和数值模拟,可以深 入了解高分子材料冲击断裂行为的机理和规 律,为高分子材料的设计和应用提供理论支

《弹塑性力学》幻灯片

《弹塑性力学》幻灯片

弹塑性力学根本方程
• 弹塑性力学的根本方程是: • 〔1〕平衡方程; • 〔2〕几何方程。 • 〔3〕本构方程。 • 前两类方程与材料无关,塑性力学与弹性力学的主要
区别在于第三类方程
1.2 弹塑性力学开展历史
• 1678年胡克〔R. Hooke〕提出弹性体的变形和 所受外力成正比的定律。
• 19世纪20年代,法国的纳维〔C. I. M. H. Navier 〕、柯西〔A. I. Cauchy〕和圣维南〔A. J. C. B. de Saint Venant〕等建立了弹性理论
M r F
2.2.4 三重积
• 三重标量积:
u1 u2 u3 U(VW)v1 v2 v3 (UV)W
w1 w2 w3
• 称为三重标量积或框积,是以U、V、W 为边的平行六面体的体积或体积的负值。 可用[U,V,W]来表示。
U ( V W ) ( U W ) V ( U V ) W
2.2.5 标量场和矢量场
• 函数 (x1,x2,x3)c 称为一个标量场,
梯度 grade1x1e2x2e3x3 (,,)
x1 x2 x3
• 构成矢量场, 垂直于 =常数的外表。
• 矢量的散度:
Vv1v2v3 x1 x2 x3
• 矢量的旋度:
e1
e2
e3
Vcurl/V x1 /x2 /x3
v1
v2
v3
2.3 张量
• 1.3.1 指标记法和求和约定 • 1.3.2 ij 符号〔Kronecker符号〕 • 1.3.3 ijk 符号〔交织张量〕 • 1.3.4 坐标变换 • 1.3.5 笛卡尔张量 • 1.3.6 张量性质
2.3.1 指标记法和求和约定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
(1) 受力分析及静力平衡条件 (力的分析)
对一点单元体的受力进行分析。若物体受力作用,处于 平衡状态,则应当满足的条件是什么?(静力平衡条件)
(2) 变形分析及几何相容条件 (几何分析)
材料是连续的,物体在受力变形后仍应是连续的。固体 内既不产生“裂隙”,也不产生“重叠”。则材料变形时, 对一点单元体的变形进行分析,应满足的条件是什么?(几 何相容条件)
17
应用领域:航空、土木、机械、材料生命、微电 子技术等。
(3) 力与变形间的本构关系 (物理分析)
固体材料受力作用必然产生相应的变形。不同的材料,不 同的变形,就有相应不同的物理关系。则对一点单元体的受力 与变形间的关系进行分析,应满足的条件是什么?(物理条件 ,也即本构方程。)
8
2、弹塑性力学研究问题的基本方法
◆ 材料力学研究问题的基本方法:
选一维 构件整 体为研 究对象
单元体的变形—— 变形几何理论;
单元体受力与变形
间的关系——本构理 论;
建立起普 遍适用的理 论与解法。
1、涉及数学理论较复杂,并以其理论与解法的严 密性和普遍适用性为特点;
2、弹塑性力ቤተ መጻሕፍቲ ባይዱ的工程解答一般认为是精确的; 3、可对初等力学理论解答的精确度和可靠进行度
量。
10
3、工程力学一般研究方法
工程力学解决问题的一般研究方法类似于一 般科学研究的普遍方法,可归纳为:
15
◆ 法国科学家库伦(C.A.Corlomb1773年)、 屈雷斯卡(H.Tresca1864年)、 圣文南和莱 ( M.Levy ) 波兰力学家胡勃(M.T.Houber 1904年)、 米塞斯(R.von Mises1913年)、 普朗特(L.Prandtl 1924) 罗伊斯(A.Reuss 1930)、享奇 (H.Hencky)、 纳戴(A.L.Nadai) 、伊留申(A.A.Ииьющин)
◆ 固体力学:研究对象是可变形固体。研究材料
变形、流动和断裂时的力学响应。其分支学科有: 材料力学、结构力学、弹性力学、 塑性力学、 弹塑性力学、断裂力学、流变学、疲劳等。
◆ 流体力学:研究对象是气体或液体。涉及到:
水力学、空气动力学等学科。
3
二、 弹塑性力学的研究对象
在研究对象上,材料力学的研究对象是固 体,且基本上是各种杆件,即所谓一维构件。
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定: (1)在弹塑性体产生变形后建立平衡方程时,可以
不考虑因变形而引起的力作用线方向的改变; (2)在研究问题的过程中可以略去相关的二次及二
次以上的高阶微量;
从而使得平衡条件与几何变形条件线性化。
14
六、弹塑性力学发展概况
◆ 1678年英国科学家虎克(R.Hooke)提出 了固体材 料的弹性变形与所受外力成正比——虎克定律。
◆ 19世纪20年代,法国科学家纳维叶 ( C.L.M.H.Navier )、柯西 ( A.L.Cauchy )和 圣文南 ( A.J.C.B.Saint Venant ) 等建立了 弹性力学的理论基础。
弹塑性力学研究对象也是固体,是不受 几何尺寸与形态限制的能适应各种工程技术 问题需求的物体。
造成两者间这种差异的根本原因是什么呢?
6
三、弹塑性力学的基本思路与研究方法
1、弹塑性力学分析问题的基本思路
弹塑性力学与材料力学同属固体力学的 分支学科,它们在分析问题解决问题的基本 思路上都是一致的,但在研究问题的基本方 法上各不相同。其基本思路如下:
阐明了应力、应变的概念和理论; 弹性力学和弹塑性力学的基本理论框架 得以确立。
16
七、现代力学的发展及其特点
1、现代力学的发展
材料与对象: 金属、土木石等 新型复合材料、 高分子材料、 结构陶瓷、功能材料。
尺 度:宏观、连续体 含缺陷体,细、微观、 纳米尺度。
实验技术: 电、光测试实验技术 全息、超声、 光纤测量,及实验装置的大型化。
12
五、 弹塑性力学的基本假设
1、物理假设:
(1)连续性假设:假定物质充满了物体所占有的 全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内部各点 处,以及每一点处各个方向上的物理性质相同。
(3)力学模型的简化假设: (A)完全弹性假设 ;(B)弹塑性假设。
13
2、几何假设——小变形条件
静力学:研究力系或物体的平衡问题,不涉及 物体运动状态的改变;如飞机停在地 面或巡航。
运动学:研究物体如何运动,不讨论运动与受 力的关系; 如飞行轨迹、速度、 加速度。
动力学:研究力与运动的关系。 如何提供加速度?
2
● 按研究对象分:
◆ 一般力学: 研究对象是刚体。研究力及其与
运动的关系。分支学科有理论力学,分析力学等。
提出问 题,选 择有关 的研究 系统。
对系统 进行抽 象与简 化,建 立力学 模型。
利用力 学原理 进行分 析、推 理,得 出结论
与已知 结论相 比较, 或由实 验进行 验证。
确认或 进一步 改善模 型,深 化认识
11
四、 弹塑性力学的基本任务
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
一、弹塑性力学及其学科分类 二、弹塑性力学的研究对象 三、弹塑性力学的基本思路与研究方法 四、弹塑性力学的基本任务 五、弹塑性力学基本假设 六、弹塑性力学发展概况 七、现代力学的发展及其特点 八、弹塑性力学基本理论及基本解法 九、张量概念及其基本运算
1
一、学科分类 ·弹塑性力学
1、学科分类
按运动与否分:
变形前,在某表 面绘制标志线; 变形后,观察总 结构件表面变形 的规律。
做出平截面 假设,经三 方面分析, 解决问题。
a、研究方法较简单粗糙;
b、涉及数学理论较简单;
c、材料力学的工程解答一般为近似解。
9
◆ 弹塑性力学研究问题的基本方法
以受力物 体内某一 点(单元 体)为研 究对象
单元体的受力—— 应力理论;
相关文档
最新文档