大题专练训练29:圆锥曲线(探索性问题1)-2021届高三数学二轮复习
高考数学二轮复习专题六 第8讲 圆锥曲线的探索性问题

第8讲 探索性问题母题已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段A B 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝⎛⎭⎫m 3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由. (2)思路分析❶假设四边形OAPB 能为平行四边形 ↓❷线段AB 与线段OP 互相平分 ↓❸计算此时直线l 的斜率 ↓ ❹下结论(1)证明 设直线l :y =kx +b (k ≠0,b ≠0), A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入9x 2+y 2=m 2得 (k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x1+x22=-kb k2+9,y M =kx M +b =9bk2+9.于是直线OM 的斜率k OM =yM xM =-9k,即k OM ·k =-9. 所以直线OM 的斜率与l 的斜率的乘积为定值. (2)解 四边形OAPB 能为平行四边形.因为直线l 过点⎝⎛⎭⎫m3,m ,所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3. 由(1)得OM 的方程为y =-9k x .设点P 的横坐标为x P ,由⎩⎪⎨⎪⎧y =-9k x ,9x2+y2=m2得x 2P =k2m29k2+81,即x P =±km3k2+9.将点⎝⎛⎭⎫m 3,m 的坐标代入直线l 的方程得b =m (3-k )3, 因此x M =k (k -3)m3(k 2+9).四边形OAPB 为平行四边形,当且仅当线段AB 与线段OP 互相平分,即x P =2x M . 于是±km3k2+9=2×k (k -3)m 3(k 2+9),解得k 1=4-7,k 2=4+7.因为k i >0,k i ≠3,i =1,2,所以当直线l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形. [子题1] 已知椭圆C :x24+y 2=1的左、右焦点分别为F 1,F 2,左、右顶点分别为A 1,A 2.(1)若M 为C 上任意一点,求|MF 1|·|MF 2|的最大值;(2)椭圆C 上是否存在点P (异于点A 1,A 2),使得直线PA 1,PA 2与直线x =4分别交于点E ,F ,且|EF |=1?若存在,求出点P 的坐标;若不存在,请说明理由. 解 (1)由椭圆的定义可知|MF 1|+|MF 2|=4,∴|MF 1|·|MF 2|≤⎝⎛⎭⎫|MF1|+|MF2|22=4,当且仅当|MF 1|=|MF 2|=2时等号成立, ∴|MF 1|·|MF 2|的最大值为4. (2)假设存在满足题意的点P . 不妨设P (x 0,y 0)(y 0>0),则-2<x 0<2. 由题意知直线PA 1的方程为y =y0x0+2(x +2),令x =4,得y E =6y0x0+2,直线PA 2的方程为y =y0x0-2(x -2),令x =4,得y F =2y0x0-2,由|EF |=y E -y F =6y0x0+2-2y0x0-2=4x0y0-16y0x20-4=4y0(x 0-4)-4y 20=4-x0y0=1,得x 0=4-y 0,由x 20+4y 20=4,得5y 20-8y 0+12=0, ∵Δ=-176<0,∴此方程无解. 故不存在满足题意的点P . [子题2] (2020·合肥适应性检测)已知抛物线C :y 2=4x ,过点(2,0)作直线l 与抛物线C 交于M ,N 两点,在x 轴上是否存在一点A ,使得x 轴平分∠MAN ?若存在,求出点A 的坐标;若不存在,请说明理由.解 ①当直线l 的斜率不存在时,由抛物线的对称性可知x 轴上任意一点A (不与点(2,0)重合),都可使得x 轴平分∠MAN ;②当直线l 的斜率存在时,设直线l 的方程为y =k (x -2)(k ≠0),设M (x 1,y 1),N (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =k (x -2),y 2=4x ,消去y 得k 2x 2-(4k 2+4)x +4k 2=0, 显然Δ>0,∴x 1+x 2=4k2+4k2,x 1x 2=4,(*)假设在x 轴上存在一点A (a ,0),使得x 轴平分∠MAN , ∴k AM +k AN =0,∴y1x1-a +y2x2-a=0, ∴y1(x 2-a )+y 2(x 1-a )(x 1-a )(x 2-a )=0,又y 1=k (x 1-2),y 2=k (x 2-2), ∴2x1x2-(a +2)(x 1+x 2)+4ax 1x 2-a (x 1+x 2)+a 2=0,把(*)式代入上式化简得4a =-8, ∴a =-2,∴点A (-2,0),综上所述,在x 轴上存在一点A (-2,0),使得x 轴平分∠MAN . 规律方法 探索性问题的求解策略(1)若给出问题的一些特殊关系,要探索一般规律,并能证明所得规律的正确性,通常要对已知关系进行观察、比较、分析,然后概括一般规律.(2)若只给出条件,求“不存在”“是否存在”等语句表述问题时,一般先对结论给出肯定的假设,然后由假设出发,结合已知条件进行推理,从而得出结论. 跟踪演练 1.已知椭圆G :x24+y 2=1,点B (0,1),点A 为椭圆G 的右顶点,过原点O 的直线l 与椭圆G 交于P ,Q 两点(点Q 在第一象限),且与线段AB 交于点M .是否存在直线l ,使得△BOP 的面积是△BMQ 的面积的3倍?若存在,求出直线l 的方程;若不存在,请说明理由. 解 设Q (x 0,y 0),则P (-x 0,-y 0),可知0<x 0<2,0<y 0<1.假设存在直线l ,使得△BOP 的面积是△BMQ 的面积的3倍,则|OP |=3|MQ |,即|OQ |=3|MQ |, 即OM →=23OQ →=⎝⎛⎭⎫23x0,23y0,得M ⎝⎛⎭⎫23x0,23y0. 又A (2,0),∴直线AB 的方程为x +2y -2=0. ∵点M 在线段AB 上,∴23x 0+43y 0-2=0,整理得x 0=3-2y 0,①∵点Q 在椭圆G 上,∴x204+y 20=1,②把①式代入②式可得8y 20-12y 0+5=0, ∵判别式Δ=(-12)2-4×8×5=-16<0, ∴该方程无解.∴不存在直线l ,使得△BOP 的面积是△BMQ 的面积的3倍. 2.(2020·滁州模拟)已知椭圆E :x24+y23=1的左、右焦点分别为F 1,F 2,是否存在斜率为-1的直线l 与以线段F 1F 2为直径的圆相交于A ,B 两点,与椭圆E 相交于C ,D 两点,且|CD |·|AB |=12137?若存在,求出直线l 的方程;若不存在,说明理由.解 假设存在斜率为-1的直线l ,设为y =-x +m , 由题意知,F 1(-1,0),F 2(1,0),所以以线段F 1F 2为直径的圆为x 2+y 2=1,由题意,圆心(0,0)到直线l 的距离d =|-m|2<1,得|m |<2,|AB |=21-d2=21-m22=2×2-m2,由⎩⎪⎨⎪⎧x24+y23=1,y =-x +m 消去y ,整理得 7x 2-8mx +4m 2-12=0.由题意,Δ=(-8m )2-4×7×(4m 2-12)=336-48m 2=48(7-m 2)>0, 解得m 2<7,又|m |<2,所以m 2<2. 设C (x 1,y 1),D (x 2,y 2), 则x 1+x 2=8m7,x 1x 2=4m2-127,|CD |=1+k2|x 2-x 1|=2×336-48m27=467-m27, 若|CD |·|AB |=12137, 则2×2-m2×467×7-m2=12137,整理得4m 4-36m 2+17=0, 解得m 2=12或m 2=172.又m 2<2,所以m 2=12,即m =±22.故存在符合条件的直线l ,其方程为y =-x +22或y =-x -22.专题强化练1.(2020·广州模拟)如图,已知椭圆C :x24+y22=1.过点P (0,1)的动直线l (直线l 的斜率存在)与椭圆C 相交于A ,B 两点,问在y 轴上是否存在与点P 不同的定点Q ,使得|QA||QB|=S △APQS △BPQ恒成立?若存在,求出定点Q 的坐标;若不存在,请说明理由.解 假设在y 轴上存在与点P 不同的定点Q ,使得|QA||QB|=S △APQS △BPQ恒成立.设Q (0,m )(m ≠1),A (x 1,y 1), B (x 2,y 2),直线l 的方程为y =kx +1, 由⎩⎪⎨⎪⎧x24+y22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0, 显然,Δ>0,∴x 1+x 2=-4k 2k2+1,x 1x 2=-22k2+1,S △APQ S △BPQ =12|QP||QA|sin ∠PQA12|QP||QB|sin ∠PQB =|QA|sin ∠PQA|QB|sin ∠PQB,∵|QA||QB|=S △APQS △BPQ,∴sin ∠PQA =sin ∠PQB , ∴∠PQA =∠PQB ,∴k QA =-k QB ,∴y1-m x1=y2-m-x2,∴(m -1)(x 1+x 2)=2kx 1x 2,即-(m -1)·4k 2k2+1=-2k ·22k2+1,解得m =2,∴存在定点Q (0,2),使得|QA||QB|=S △APQS △BPQ 恒成立.2.在平面直角坐标系xOy 中.①已知点Q (3,0),直线l :x =23,动点P 满足到点Q 的距离与到直线l 的距离之比为22. ②已知点H (-3,0),G 是圆E :x 2+y 2-23x -21=0上一个动点,线段HG 的垂直平分线交GE 于P . ③点S ,T 分别在x 轴,y 轴上运动,且|ST |=3,动点P 满足OP →=63OS →+33OT →.(1)在①②③这三个条件中任选一个,求动点P 的轨迹C 的方程;(注:如果选择多个条件分别解答,按第一个解答计分)(2)设圆O :x 2+y 2=2上任意一点A 处的切线交轨迹C 于M ,N 两点,试判断以MN 为直径的圆是否过定点?若过定点,求出该定点坐标;若不过定点,请说明理由. 解 (1)若选①,设P (x ,y ),根据题意得,(x -3)2+y 2|x -23|=22,整理,得x26+y23=1,所以动点P 的轨迹C 的方程为x26+y23=1.若选②,由E :x 2+y 2-23x -21=0得(x -3)2+y 2=24, 由题意得|PH |=|PG |,所以|PH |+|PE |=|PG |+|PE |=|EG |=2 6 >|HE |=23,所以点P 的轨迹C 是以H ,E 为焦点的椭圆,且a =6,c =3,则b =3,所以动点P 的轨迹C 的方程为x26+y23=1.若选③,设P (x ,y ),S (x ′,0),T (0,y ′),则x ′2+y ′2=9,(*) 因为OP →=63OS →+33OT →,所以⎩⎨⎧x =63x′,y =33y′,即⎩⎪⎨⎪⎧x′=62x ,y′=3y ,将其代入(*),得x26+y23=1, 所以动点P 的轨迹C 的方程为x26+y23=1.(2)当过点A 且与圆O 相切的切线斜率不存在时,切线方程为x =2,x =-2, 当切线方程为x =2时,M (2,2),N (2,-2), 以MN 为直径的圆的方程为(x -2)2+y 2=2.①当切线方程为x =-2时,M (-2,2),N (-2,-2), 以MN 为直径的圆的方程为(x +2)2+y 2=2.② 由①②联立,可解得交点为(0,0).当过点A 且与圆O 相切的切线斜率存在时,设切线方程为y =kx +m ,即|m|k2+1=2,即m 2=2(k 2+1).联立切线与椭圆C 的方程⎩⎪⎨⎪⎧y =kx +m ,x26+y23=1,并消去y ,得(1+2k 2)x 2+4kmx +2m 2-6=0.因为Δ=16k 2m 2-4(1+2k 2)(2m 2-6)=-8(m 2-6k 2-3)=-8(2k 2+2-6k 2-3)=8(4k 2+1)>0, 所以切线与椭圆C 恒有两个交点. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4km1+2k2,x 1x 2=2m2-61+2k2,因为OM →=(x 1,y 1),ON →=(x 2,y 2),所以OM →·ON →=x 1x 2+y 1y 2=x 1x 2+(kx 1+m )(kx 2+m )=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=(1+k 2)·2m2-61+2k2+km ·-4km 1+2k2+m 2 =3m2-6-6k21+2k2=3×2(k 2+1)-6-6k 21+2k 2=0.所以OM ⊥ON ,所以以MN 为直径的圆过原点(0,0), 综上所述,以MN 为直径的圆过定点(0,0).。
新高考方案二轮-数学(新高考版)大题专攻(二) 第1课时 圆锥曲线中的最值、范围、证明问题

(2)已知 O 为坐标原点,M,N 为椭圆上不重合两点,且 M,N 的中点 H
落在直线 y=12x 上,求△MNO 面积的最大值.
[解题微“点”]
(1)利用―A→G ·―B→G =0 及 e= 23构建方程组求 a,b, 即得椭圆方程; 切入点 (2)设出点 M,N 与 H 的坐标,表示出直线 MN 的方 程,与椭圆联立,利用弦长公式和点到直线的距离 公式表示△MNO 的面积后求最大值 障碍点 不要漏掉 Δ>0,利用此条件可求参数的取值范围
解:(1)依题意,2c=6,则 b= 9-5=2,
则双曲线 C:x52-y42=1,B1(0,-2),F2(3,0).
设直线 l:4x+3y+m=0,将 B1(0,-2)代入解得 m=6,
此时 l:4x+3y+6=0,F2 到 l 的距离为 d=158.
(2)设双曲线上的点 P(x,y)满足―PB→1 ·―PB→2 =-2, 即 x2+y2=b2-2,又xa22-by22=1⇒y2=ba22x2-b2,
[对点训练] (2021·济南三模)已知抛物线C:x2=4y,过点P(1,-2)作斜率为k(k>0)的直线l1与 抛物线C相交于A,B两点. (1)求k的取值范围; (2)过P点且斜率为-k的直线l2与抛物线C相交于M,N两点,求证:直线AM、BN 及y轴围成等腰三角形.
解:(1)由题意设直线 l1 的方程为 y+2=k(x-1), 由xy+2=24=y,kx-1, 得到:x2-4kx+4k+8=0, 由题意知 Δ>0,所以 k2-k-2>0,即 k<-1 或 k>2. 因为 k>0,所以 k 的取值范围为(2,+∞).
[提分技巧] 解决范围问题的常用方法
利用待求量的几何意义,确定出极端位置后,利 数形结合法
高考数学二轮复习专题突破—圆锥曲线中的定点、定值、探索性问题(含解析)

高考数学二轮复习专题突破—圆锥曲线中的定点、定值、探索性问题1.(2021·重庆八中月考)已知椭圆C :x 24+y 23=1的右焦点为F ,过点M (4,0)的直线l 交椭圆C 于A ,B 两点,连接AF ,BF 并延长分别与椭圆交于异于A ,B 的两点P ,Q. (1)求直线l 的斜率的取值范围; (2)若PF ⃗⃗⃗⃗⃗ =λFA ⃗⃗⃗⃗⃗ ,QF ⃗⃗⃗⃗⃗ =μFB ⃗⃗⃗⃗⃗ ,证明:λμ为定值.2.(2021·河北张家口三模)已知抛物线C :y 2=4px (p>0)的焦点为F ,且点M (1,2)到点F 的距离比到y 轴的距离大p. (1)求抛物线C 的方程;(2)若直线l :x-m (y+2)-5=0与抛物线C 交于A ,B 两点,问是否存在实数m ,使|MA|·|MB|=64√2?若存在,求出m 的值;若不存在,请说明理由.3.(2021·江苏南通适应性联考)已知双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的两个焦点为F 1,F 2,一条渐近线方程为y=bx (b ∈N *),且双曲线C 经过点D (√2,1). (1)求双曲线C 的方程;(2)设点P 在直线x=m (y ≠±m ,0<m<1,且m 是常数)上,过点P 作双曲线C 的两条切线PA ,PB ,切点为A ,B ,求证:直线AB 过某一个定点.4.(2021·山东济南二模)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为√22,且经过点H (-2,1).(1)求椭圆C 的方程;(2)过点P (-3,0)的直线(不与x 轴重合)与椭圆C 相交于A ,B 两点,直线HA ,HB 分别交x 轴于M ,N 两点,点G (-2,0),若PM⃗⃗⃗⃗⃗⃗ =λPG ⃗⃗⃗⃗⃗ ,PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,求证:1λ+1μ为定值.5.(2021·广东汕头三模)已知圆C :x 2+(y-2)2=1与定直线l :y=-1,且动圆M 与圆C 外切并与直线l 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)已知点P 是直线l 1:y=-2上一个动点,过点P 作轨迹E 的两条切线,切点分别为A ,B.①求证:直线AB 过定点; ②求证:∠PCA=∠PCB.6.(2021·北京东城一模)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)过点D (-2,0),且焦距为2√3. (1)求椭圆C 的方程;(2)过点A (-4,0)的直线l (不与x 轴重合)与椭圆C 交于P ,Q 两点,点T 与点Q 关于x 轴对称,直线TP 与x 轴交于点H ,是否存在常数λ,使得|AD|·|DH|=λ(|AD|-|DH|)成立?若存在,求出λ的值;若不存在,说明理由.答案及解析1.(1)解 由题意知直线l 的斜率不为零,故设其方程为x=ty+4,与椭圆方程联立,消去x 得(3t 2+4)y 2+24ty+36=0,Δ=144(t 2-4)>0,解得t<-2或t>2.故直线l 的斜率k=1t 的取值范围为(-12,0)∪(0,12).(2)证明 F (1,0),设A (x 1,y 1),B (x 2,y 2),P (x 3,y 3),Q (x 4,y 4),由(1)得y 1+y 2=-24t3t 2+4,y 1y 2=363t 2+4,所以ty 1y 2=-32(y 1+y 2).由PF⃗⃗⃗⃗⃗ =λFA ⃗⃗⃗⃗⃗ ,得{1−x 3=λ(x 1-1),-y 3=λy 1,即{-x 3=λx 1-λ-1,-y 3=λy 1. 又点P 在椭圆上,即有3x 32+4y 32=12,代入上式得3(λx 1-λ-1)2+4λ2y 12=12,即λ2(3x 12+4y 12)-6λ(λ+1)x 1+3(λ+1)2=12, 又3x 12+4y 12=12,所以12(λ+1)(λ-1)-6λ(λ+1)x 1+3(λ+1)2=0.易知λ+1≠0,故λ=35−2x 1,同理可得μ=35−2x 2.又(5-2x 1)(5-2x 2)=25-10(x 1+x 2)+4x 1x 2 =25-10[t (y 1+y 2)+8]+4(ty 1+4)(ty 2+4)=9+6t (y 1+y 2)+4t 2y 1y 2=9+6t (y 1+y 2)+4t ·(-32)(y 1+y 2)=9, 所以λμ=9(5-2x1)(5-2x 2)=1.2.解 (1)由点M 到点F 的距离比到y 轴的距离大p ,得点M 到点F 的距离与到直线x=-p 的距离相等.由抛物线的定义,可知点M 在抛物线C 上,所以4=4p ,解得p=1. 所以抛物线C 的方程为y 2=4x.(2)存在满足题意的m ,其值为1或-3. 理由如下:由{y 2=4x,x-m(y +2)−5=0,得y 2-4my-8m-20=0. 因为Δ=16m 2+4(8m+20)>0恒成立,所以直线l 与抛物线C 恒有两个交点. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4(2m+5).因为MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ =(x 1-1)(x 2-1)+(y 1-2)(y 2-2)=(y 124-1)(y 224-1)+(y 1-2)(y 2-2)=y 12y 2216−(y 1+y 2)2-2y 1y 24+y 1y 2-2(y 1+y 2)+5=16(2m+5)216−(4m)2+8(2m+5)4-4(2m+5)-8m+5=0,所以MA ⊥MB ,即△MAB 为直角三角形.设d 为点M 到直线l 的距离,所以|MA|·|MB|=|AB|·d=√1+m 2·√(y 1+y 2)2-4y 1y 2·√1+m 2=4·|1+m|·√16m 2+16(2m +5)=16·|1+m|·√(m +1)2+4=64√2,所以(m+1)4+4(m+1)2-32=0, 解得(m+1)2=4或(m+1)2=-8(舍). 所以m=1或m=-3.所以当实数m=1或m=-3时,|MA|·|MB|=64√2.3.(1)解 由{ba =b,2a 2-1b 2=1,解得{a =1,b =1,故双曲线方程为x 2-y 2=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),直线PA 的斜率为k ,P (m ,y 0).则PA:y-y1=k(x-x1),联立方程组{y-y1=k(x-x1), x2-y2=1,消去y,可得x2-[kx+(-kx1+y1)]2=1,整理可得(1-k2)x2-2k(y1-kx1)x-(y1-kx1)2-1=0.因为PA与双曲线相切,所以Δ=4k2(y1-kx1)2+4(1-k2)·(y1-kx1)2+4(1-k2)=0,整理得4(y1-kx1)2+4(1-k2)=0.即k2x12-2kx1y1+y12+1-k2=0,即(x12-1)k2-2kx1y1+(y12+1)=0,因为x12−y12=1,所以x12-1=y12,y12+1=x12代入可得y12k2-2x1y1k+x12=0,即(y1k-x1)2=0,所以k=x1y1.故PA:y-y1=x1y1(x-x1),即y1y=x1x-1.同理,切线PB的方程为y2y=x2x-1.因为P(m,y0)在切线PA,PB上,所以有{y0y1=mx1-1, y0y2=mx2-1,A,B满足直线方程y0y=mx-1,而两点唯一确定一条直线,故AB:y0y=mx-1,所以当{x=1m,y=0时,无论y0为何值,等式均成立.故点(1m ,0)恒在直线AB上,故无论P在何处,AB恒过定点(1m,0).4.(1)解由题意知e=ca =√1−b2a2=√22,则a2=2b2.又椭圆C经过点H(2,1),所以4a2+1b2=1.联立解得a2=6,b2=3,所以椭圆C的方程为x 26+y23=1.(2)证明 设直线AB 的方程为x=my-3,A (x 1,y 1),B (x 2,y 2),由{x =my-3,x 26+y 23=1联立消去x ,得(m 2+2)y 2-6my+3=0,所以Δ=36m 2-12(m 2+2)>0,y 1+y 2=6mm 2+2,y 1y 2=3m 2+2,由题意知,y 1,y 2均不为1.设M (x M ,0),N (x N ,0),由H ,M ,A 三点共线知AM ⃗⃗⃗⃗⃗⃗ 与MH ⃗⃗⃗⃗⃗⃗⃗ 共线,所以x M -x 1=(-y 1)(-2-x M ),化简得x M =x 1+2y 11−y 1.由H ,N ,B 三点共线,同理可得x N =x 2+2y 21−y 2.由PM ⃗⃗⃗⃗⃗⃗ =λPG⃗⃗⃗⃗⃗ ,得(x M +3,0)=λ(1,0),即λ=x M +3. 由PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,同理可得μ=x N +3. 所以1λ+1μ=1xM+3+1xN+3=1x 1+2y 11−y 1+3+1x 2+2y 21−y 2+3=1−y 1x1-y 1+3+1−y 2x 2-y 2+3=1−y1(m-1)y1+1−y 2(m-1)y 2=1m-11−y 1y 1+1−y 2y 2=1m-1(y 1+y 2y1y 2-2)=1m-1(6mm 2+23m 2+2-2)=2,所以1λ+1μ为定值.5.(1)解 依题意知:M 到C (0,2)的距离等于M 到直线y=-2的距离,故动点M 的轨迹是以C 为焦点,直线y=-2为准线的抛物线.设抛物线方程为x 2=2py (p>0),则p2=2,则p=4,即抛物线的方程为x 2=8y ,故动圆圆心M 的轨迹E 的方程为x 2=8y. (2)证明 ①由x 2=8y 得y=18x 2,y'=14x.设A (x 1,18x 12),B (x 2,18x 22),P (t ,-2),其中x 1≠x 2, 则切线PA 的方程为y-18x 12=x 14(x-x 1),即y=14x 1x-18x 12.同理,切线PB 的方程为y=14x 2x-18x 22. 由{y =14x 1x-18x 12,y =14x 2x-18x 22,解得{x =x 1+x22,y =x 1x 28, 故{t =x 1+x 22,-2=x 1x 28,即{x 1+x 2=2t,x 1x 2=−16.故直线AB 的方程为y-18x 12=18x 22-18x 12x 2-x 1(x-x 1),化简得y=x 1+x 28x-x 1x 28,即y=t4x+2,故直线AB 过定点(0,2).②由①知:直线AB 的斜率为k AB =t4,(i)当直线PC 的斜率不存在时,直线AB 的方程为y=2,∴PC ⊥AB ,∴∠PCA=∠PCB ;(ii)当直线PC 的斜率存在时,P (t ,-2),C (0,2),直线PC 的斜率k PC =-2-2t-0=-4t,k AB ·k PC =t 4×-4t =-1,故PC ⊥AB ,∠PCA=∠PCB. 综上所述,∠PCA=∠PCB 得证.6.解 (1)因为椭圆C :x 2a 2+y 2b 2=1(a>b>0)过点D (-2,0),所以a=2,又2c=2√3,即c=√3,所以b 2=a 2-c 2=4-3=1,所以椭圆C 的方程为x 24+y 2=1.(2)存在常数λ=2,满足题意. 理由如下:显然直线l 的斜率存在且不为0,设直线l :y=k (x+4),联立{y =k(x +4),x 24+y 2=1,消去y 并整理,得(1+4k 2)x 2+32k 2x+64k 2-4=0, Δ=(32k 2)2-4(1+4k 2)(64k 2-4)>0,得0<k 2<112.设P (x 1,y 1),Q (x 2,y 2),则T (x 2,-y 2),所以x 1+x 2=-32k 21+4k 2,x 1x 2=64k 2-41+4k 2,直线PT :y-y 1=y 1+y2x 1-x 2(x-x 1),令y=0,得x=x 1-y 1(x 1-x 2)y 1+y 2,所以H x 1-y 1(x 1-x 2)y 1+y 2,0,若存在常数λ,使得|AD|·|DH|=λ(|AD|-|DH|)成立, 所以1λ=|AD|-|DH||AD|·|DH|=1|DH|−1|AD|,又因为D (-2,0),A (-4,0),H (x 1-y 1(x 1-x 2)y 1+y 2,0),所以|AD|=2,|DH|=x 1-y 1(x 1-x 2)y 1+y 2+2 =x 1-k(x 1+4)(x 1-x 2)k(x 1+4)+k(x 2+4)+2=x 1-k(x 1+4)(x 1-x 2)k(x 1+x 2)+8k+2=kx 1(x 1+x 2)+8kx 1-k(x 1+4)(x 1-x 2)k(x 1+x 2)+8k+2=kx 12+kx 1x 2+8kx 1-kx 12+kx 1x 2-4kx 1+4kx 2k(x 1+x 2)+8k+2=4k(x 1+x 2)+2kx 1x 2k(x 1+x 2)+8k+2=4k·-32k 21+4k 2+2k·64k 2-41+4k 2k·-32k 21+4k 2+8k +2=-1+2=1,所以1λ=11−12,解得λ=2.所以存在常数λ=2,使得|AD|·|DH|=2(|AD|-|DH|)成立.。
2021年新高考数学专题复习-圆锥曲线专项练习(含答案解析)

2021年新高考数学专题复习-圆锥曲线专项练习1.已知椭圆22221(0)x y a b a bΓ+=>>:过点(02),,其长轴长、焦距和短轴长三者的平方依次成等差数列,直线l 与x 轴的正半轴和y 轴分别交于点Q P 、,与椭圆Γ相交于两点M N 、,各点互不重合,且满足12PM MQ PN NQ λλ==,. (1)求椭圆Γ的标准方程; (2)若直线l 的方程为1y x =-+,求1211λλ+的值;(3)若123,试证明直线l 恒过定点,并求此定点的坐标.2.已知动点M 到直线20x +=的距离比到点(1,0)F 的距离大1. (1)求动点M 所在的曲线C 的方程;(2)已知点(1,2)P ,A B 、是曲线C 上的两个动点,如果直线PA 的斜率与直线PB 的斜率互为相反数,证明直线AB 的斜率为定值,并求出这个定值;(3)已知点(1,2)P ,A B 、是曲线C 上的两个动点,如果直线PA 的斜率与直线PB 的斜率之和为2,证明:直线AB 过定点.3.已知椭圆2222:1(0)x y C a b a b +=>>经过点1,2P ⎛⎫ ⎪ ⎪⎝⎭,且离心率2e =. (1)求椭圆C 的标准方程;(2)若斜率为k 且不过点P 的直线l 交C 于,A B 两点,记直线PA ,PB 的斜率分别为1k ,2k ,且120k k +=,求直线l 的斜率k .4.如图,已知圆A :22(1)16x y ++=,点()10B ,是圆A 内一个定点,点P 是圆上任意一点,线段BP 的垂直平分线1l 和半径AP 相交于点Q .当点P 在圆上运动时,点Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)设过点()4,0D 的直线2l 与曲线C 相交于,M N 两点(点M 在,D N 两点之间).是否存在直线2l 使得2DN DM =?若存在,求直线2l 的方程;若不存在,请说明理由.5.已知双曲线C 的方程为:22186x y -=,其左右顶点分别为:1A ,2A ,一条垂直于x轴的直线交双曲线C 于1P ,2P 两点,直线11A P 与直线22A P 相交于点P .(1)求点P 的轨迹E 的方程;(2)过点)Q的直线,与轨迹E 交于A ,B 两点,线段AB 的垂直平分线交x 轴于M 点,试探讨ABMQ是否为定值.若为定值,求出定值,否则说明理由. 6.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,过点2F 作直线l 交椭圆C 于M ,N 两点(l 与x 轴不重合),1F MN △,12F F M △的周长分别为12和8. (1)求椭圆C 的方程;(2)在x 轴上是否存在一点T ,使得直线TM 与TN 的斜率之积为定值?若存在,请求出所有满足条件的点T 的坐标;若不存在,请说明理由.7.已知椭圆C :22221x y a b +=(0a b >>)的离心率e =10x +-=被以椭圆C . (1)求椭圆C 的方程;(2)过点(4,0)M 的直线l 交椭圆于A ,B 两个不同的点,且||||||||MA MB MA MB λ+=⋅,求λ的取值范围.8.已知抛物线C :24y x =的焦点为F ,直线l :2y x a =+与抛物线C 交于A ,B 两点.(1)若1a =-,求FAB 的面积;(2)若抛物线C 上存在两个不同的点M ,N 关于直线l 对称,求a 的取值范围. 9.如图,直线l 与圆22:(1)1E x y ++=相切于点P ,与抛物线2:4C x y =相交于不同的两点,A B ,与y 轴相交于点(0,)(0)T t t >.(1)若T 是抛物线C 的焦点,求直线l 的方程;(2)若2||||||TE PA PB =⋅,求t 的值.10.在平面直角坐标系中,己知圆心为点Q 的动圆恒过点(1,0)F ,且与直线1x =-相切,设动圆的圆心Q 的轨迹为曲线Γ. (Ⅰ)求曲线Γ的方程;(Ⅱ)过点F 的两条直线1l 、2l 与曲线Γ相交于A 、B 、C 、D 四点,且M 、N 分别为AB 、CD 的中点.设1l 与2l 的斜率依次为1k 、2k ,若121k k +=-,求证:直线MN 恒过定点.11.已知椭圆()2222:10x y C a b a b +=>>的离心率为2,且直线1x y a b +=与圆222x y +=相切.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于不同的两点A ﹐B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆C 相交于点P ,且O 点在以AB 为直径的圆上.记AOM ,BOP △的面积分别为1S ,2S ,求12S S 的取值范围. 12.已知抛物线2:2(0)E x py p =>的焦点为,F 点Р在抛物线E 上,点Р的横坐标为2,且2PF =.(1)求抛物线E 的标准方程;(2)若,A B 为抛物线E 上的两个动点(异于点P ),且AP AB ⊥,求点B 的横坐标的取值范围.13.如图,已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:GF 为∠AGB 的平分线.14.已知椭圆C :22221(0)x y a b a b +=>>的短轴长为2.(∠)求椭圆C 的方程;(∠)设过定点()02T ,的直线l 与椭圆C 交于不同的两点A 、B ,且∠AOB 为锐角,求直线l 的斜率k 的取值范围.参考答案1.(1)221124x y +=;(2)83-;(3)证明见解析,(2,0). 【分析】(1)由题意,得到2b =和222(2)(2)2(2)a b c +=,结合222a b c =+,求得2a 的值,即可求得椭圆Γ的标准方程;(2)由直线l 的方程为1y x =-+,根据12PM MQ PN NQ λλ==,,求得12121211x x x x λλ==--,,得到121212112x xx x λλ++=-,联立方程组,结合根与系数的关系,即可求解;(3)设直线l 的方程为()()0y k x m m =->,由1PM MQ ,得到111x m x λ=-和222xm xλ=-,联立方程组,结合根与系数的关系和123,求得2m =,得到直线l 的方程,即可求解. 【详解】(1)由题意,因为椭圆22221(0)x y a b a bΓ+=>>:过点(02),,可得2b =, 设焦距为2c ,又由长轴长、焦距和短轴长三者的平方依次成等差数列, 可得222(2)(2)2(2)a b c +=,即2222a b c +=又因为222a b c =+,解得212a =,所以椭圆Γ的标准方程为221124x y +=.(2)由直线l 的方程为1y x =-+,可得而(01)(10)P Q ,,,,设1122()()M x y N x y ,,,,因为12PM MQ PN NQ λλ==,,可得1111122222(1)(1)(1)(1)x y x y x y x y λλ-=---=--,,,,,, 从而111222(1)(1)x x x x λλ=-=-,,于是12121211x x x x λλ==--,,所以12121212111122x x x x x x λλ++=+-=-,由2211241x y y x ⎧+=⎪⎨⎪=-+⎩,整理得24690x x --=,可得12123924x x x x +==-,,所以1212121211118223x x x x x x λλ++=+-=-=-. (3)显然直线l 的斜率k 存在且不为零,设直线l 的方程为()()0y k x m m =->,1122()()M x y N x y ,,,,可得(0,)(,0)P km Q m -,,由1PMMQ ,可得11111()()x y km m x y λ+=--,,, 所以()111x x m λ=-,从而111x m x λ=-,同理222x m x λ=-, 又123,∠212122()30x x m x x m -++=①,联立221124()x y y k x m ⎧+=⎪⎨⎪=-⎩,得22222(13)63120k x k mx k m +-+-=, 则()42222222364(13)(312)121240k m k k m k k m -∆=+-=+->②,且2221212226312,1313k m k m x x x x k k -+==++③∠代入∠得2222222231263122300131313k m k m m m m k k k ---⋅+=⇒=+++,∠2m =,(满足∠)故直线l 的方程为()2y k x =-,所以直线l 恒过定点(20),. 2.(1)24y x =;(2)证明见解析,定值1-;(3)证明见解析.【分析】(1)根据题意转化为动点M 到直线1x =-的距离和到点(1,0)F 的距离相等,结合抛物线的定义,即可求得曲线C 的方程;(2)由:2(1)PA l y k x -=-和2(1)PB l y k x -=--:,分别联立方程组,求得()22242,k k A k k ⎛⎫-- ⎪ ⎪⎝⎭和()22242,k k B k k ⎛⎫+-- ⎪ ⎪⎝⎭,结合斜率公式,即可求解; (3)由::2(1)PA l y k x -=-,2(1)PB l y k x -=--:,分别联立方程组()22242,k k A k k ⎛⎫--⎪ ⎪⎝⎭和()222,22k k B k k ⎛⎫ ⎪ ⎪--⎝⎭,求得2(2)22AB k k k k k -=-+,求得直线AB l 的方程,即可求解. 【详解】(1)已知动点M 到直线20x +=的距离比到点(1,0)F 的距离大1,等价于动点M 到直线1x =-的距离和到点(1,0)F 的距离相等,由抛物线的定义可得曲线C 的轨迹时以(1,0)F 为焦点,以直线1x =-为准线的方程,且2p =,所以曲线C 的方程为24y x =.(2)设直线PA 的斜率为k ,因为直线PA 的斜率与直线PB 的斜率互为相反数,所以直线PB 的斜率为k -,则:2(1)PA l y k x -=-,2(1)PB l y k x -=--:联立方程组22(1)4y k x y x-=-⎧⎨=⎩,整理得24480ky y k --+=, 即()()2420ky k y +--=⎡⎤⎣⎦,可得()22242,k k A k k ⎛⎫-- ⎪ ⎪⎝⎭联立方程组22(1)4y k x y x-=--⎧⎨=⎩,整理得24480ky y k +--=,即()()2+420ky k y +-=⎡⎤⎣⎦,可得()22242,k k B k k ⎛⎫+-- ⎪ ⎪⎝⎭所以()()22224242122ABk kk k k k k k k ----==-+--,即直线AB 的斜率为定值1-. (3)设直线PA 的斜率为k ,所以直线PB 的斜率为2k -, 则2(1)PA l y k x -=-:,2(1)PB l y k x -=--:两类方程组22(1)4y k x y x-=-⎧⎨=⎩,整理得24480ky y k --+=, 即()()2420ky k y +--=⎡⎤⎣⎦,可得()22242,k k A k k ⎛⎫-- ⎪ ⎪⎝⎭, 联立方程组()222(1)4y k x y x⎧-=--⎨=⎩,可得()22440k y y k --+=,即()()2220k y k y ---=⎡⎤⎣⎦,可得()222,22k k B k k ⎛⎫⎪ ⎪--⎝⎭所以()()22222242(2)22222ABk kk k k k k k k k k k k ----==-+---, 所以()2222(2)2222AB k k k k l y x k k k k ⎛⎫--=- ⎪ ⎪--+-⎝⎭:,整理得()2(2)122k k y x k k -=+-+ 所以直线AB 恒过()1,0-.3.(1)2212x y +=;(2. 【分析】(1)由题意可得222221112a b c e a a b c ⎧+=⎪⎪⎪==⎨⎪=+⎪⎪⎩,解方程组即可求得,,a b c 的值,进而可得椭圆C 的标准方程;(2))设直线PA的方程为()112y k x -=-,()11,A x y ,()22,B x y ,与椭圆方程联立消元可得关于x 的一元二次方程,由韦达定理可得1x ,因为120k k +=,所以21k k =-,同理可得2x ,再利用1212y y k x x -=-即可求得直线l 的斜率k .【详解】(1)因为1,2P ⎛ ⎝⎭在椭圆C 上,所以221112a b +=,又2c e a ==,222a b c =+,由上述方程联立可得22a =,21b =,所以椭圆的标准方程为2212x y +=.(2)设直线PA的方程为()112y k x -=-, 设()11,A x y ,()22,B x y ,由122(1)12y k x x y ⎧=-⎪⎪⎨⎪+=⎪⎩消y 得: ())222111111222210k xk k x k +++--=,所以21112121112k x k --⨯=+,因为120k k +=,所以21k k =-,同理可得21122121112k x k +-⋅=+,因为2112214212k x x k -+=+,1122112x x k --=+,所以()111121112112121212222k x k k x k k x x k y y k x x x x x x ⎛-+--++ +--⎝⎭===---2242212k k k k --+=== 4.(1)22143x y+=(2)存在,(4)6y x =-或4)6y x =--.【分析】(1)结合垂直平分线的性质和椭圆的定义,求出椭圆C 的方程.(2)设出直线2l 的方程,联立直线2l 的方程和椭圆方程,写出韦达定理,利用2DN DM =,结合向量相等的坐标表示,求得直线2l 的斜率,进而求得直线2l 的方程.方法一和方法二的主要曲边是直线2l 的方程的设法的不同. 【详解】(1)因为圆A 的方程为22(1)16x y ++=,所以(1,0)A -,半径4r =.因为1l 是线段AP 的垂直平分线,所以||||QP QB =. 所以||||||||||4AP AQ QP AQ QB =+=+=.因为4||AB >,所以点Q 的轨迹是以(1,0)A -,(1,0)B 为焦点,长轴长24a =的椭圆.因为2a =,1c =,2223b a c =-=,所以曲线C 的方程为22143x y +=.(2)存在直线2l 使得2DN DM =.方法一:因为点D 在曲线C 外,直线2l 与曲线C 相交,所以直线2l 的斜率存在,设直线2l 的方程为(4)y k x =-.设112212(,),(,)()M x y N x y x x >,由22143(4)x y y k x ⎧+=⎪⎨⎪=-⎩ 得2222(34)32(6412)0k x k x k +-+-=. 则21223234k x x k +=+, ① 2122641234k x x k-=+, ② 由题意知2222(32)4(34)(6412)0k k k ∆=--+->,解得1122k -<<. 因为2DN DM =,所以2142(4)x x -=-,即2124x x =-. ③把③代入①得21241634k x k +=+,22241634k x k-+=+ ④ 把④代入②得2365k =,得6k =±,满足1122k -<<.所以直线2l的方程为:(4)6y x =-或4)6y x =--. 方法二:因为当直线2l 的斜率为0时,(2,0)M ,(2,0)N -,(6,0)DN =-,(2,0)DM =-此时2DN DM ≠.因此设直线2l 的方程为:4x ty =+.设112212(,),(,)()M x y N x y x x >,由221434x y x ty ⎧+=⎪⎨⎪=+⎩得22(34)24360t y ty +++=. 由题意知22(24)436(34)0t t ∆=-⨯+>,解得2t <-或2t >,则1222434ty y t +=-+, ① 1223634y y t =+, ②因为2DN DM =,所以212y y =. ③把③代入①得12834t y t =-+,221634ty t =-+ ④ 把④代入②得2536t =,t =±2t <-或2t >. 所以直线2l的方程为4)y x =-或4)y x =-. 5.(1)22186x y +;(2)为定值,4.【分析】(1)设直线为:0x x =,()100,P x y ,()200,P x y -,以及(),P x y,利用三点共线得到==,两式相乘化简得22022088y y x x =---,再利用点1P 在双曲线上代入整理即可得到答案;(2)显然直线l 不垂直x 轴,①当0k =时,易证4ABMQ=,②当0k ≠时,利用点斜式设出直线l 方程,联立直线l 与椭圆的方程消y ,得到关于x 的一元二次方程,利用韦达定理以及弦长公式求出AB ,求出AB 的中点坐标,利用点斜式求出线段AB 的垂直平分线的方程,求出点M 的坐标,利用两点间的距离公式求解MQ ,即可得出答案. 【详解】(1)由题意知:()1A -,()2A ,设直线为:0x x =,()100,P x y ,()200,P x y -,以及(),P x y , 由11,,A P P 三点以及22,,A P P 三点共线,则==,两式相乘化简得:22022088y y x x =---, 又2200186x y -=, 代入上式得轨迹E 的方程:22186x y +.(2)显然直线l 不垂直x 轴,①当0k =时,直线l 的方程为:0y =,线段AB 为椭圆的长轴,线段AB 的垂直平分线交x 轴于M 点,则AB =,()0,0M,MQ =所以4ABMQ=; ②当0k ≠时,设方程为:(y k x =,联立方程得(22186y k x x y ⎧=⎪⎨⎪+=⎩,化简整理得:()2222348240kxx k +-+-=,设()11,A x y ,()22,B x y ,212221223482434x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,)2122143k AB x k +=-==+,线段AB的中点的坐标为222,3434P k k ⎛⎫- ⎪ ⎪++⎝⎭,线段AB的垂直平分线的方程为:22213434y x k k k ⎛⎫+=-- ⎪ ⎪++⎝⎭, 令0y =,则M ⎫⎪⎪⎝⎭,)22134k MQ k +==+,∴4ABMQ=. 综上:4ABMQ=. 6.(1)22198x y ;(2)存在,坐标为(3,0)-和(3,0).【分析】(1)由1F MN △,12F F M △的周长分别为12和8,可求椭圆基本量,进一步确定方程. (2)设直线代入消元,韦达定理整体代入定点满足的关系,探求恒成立的条件. 【详解】(1)设椭圆C 的焦距为2(0)c c >,由题意可得412228a a c =⎧⎨+=⎩,解得31a c =⎧⎨=⎩,所以b =因此椭圆C 的方程为22198x y .(2)因为直线l 过点2(1,0)F 且不与x 轴重合,所以设l 的方程为1x my =+,联立方程221198x my x y =+⎧⎪⎨+=⎪⎩,消去x 并整理得()228916640m y my ++-=,设()11,M x y ,()22,N x y ,则12212216896489m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩,所以()1212218289x x m y y m +=++=+, ()()()2212121212272911189m x x my my m y y m y y m -+=++=+++=+. 设(,0)T t ,则直线TM 与TN 的斜率分别为11TM y k x t =-,22TN y k x t=-, 则()()1212TM TN y y k k x t x t ⋅=--()2122221212226489729188989y y m m x x t x x t t t m m -+==-+-++-⋅+++ ()222648729189t m t t -=-+-+.所以当28720t -=,即当3t =-时,m ∀∈R ,49TM TN k k ⋅=-; 当3t =时,m ∀∈R ,169TM TN k k ⋅=-. 因此,所有满足条件的T 的坐标为(3,0)-和(3,0).7.(1)2214x y +=;(2)2]3.【分析】(1)由直线与圆的位置关系可得1b =.由椭圆的离心率可得2a =,则椭圆C 的方程为2214x y +=. (2)当直线l 的斜率为0时,求出MA ,MB ,当直线l 的斜率不为0时,设直线l 方程为4x my =+,()11A x y ,,()22B x y ,,联立方程可得()2248120m y my +++=,满足题意时212m >,结合韦达定理以及弦长公式,化简整理,结合不等式的性质,据此即可所求范围. 【详解】(1)因为原点到直线10x +-=的距离为12,所以22212b ⎛⎫+= ⎪⎝⎭⎝⎭(0b >),解得1b =. 又22222314c b e a a ==-=,得2a =所以椭圆C 的方程为2214x y +=.(2)当直线l 的斜率为0时,12MA MB ⋅=,268MA MB +=+=,所以||||82||||123MA MB MA MB λ+===⋅,当直线l 的斜率不为0时,设直线l :4x my =+,()11A x y ,,()22B x y ,,联立方程组22414x my x y =+⎧⎪⎨+=⎪⎩,得()2248120m y my +++=, 由()22=644840m m ∆-+>,得212m >,所以122124y y m =+,12284my y m +=-+,()21221214m MA MB y y m +⋅==+,1212MA MB y y y +=+=+284mm =+,||||||||121MA MB MA MB m λ+====⋅+由212m >,得211113121m ∴<-<+,所以2233λ<<.23λ<≤,即2]3.8.(12)12a <- 【分析】(1)联立直线与抛物线,根据弦长公式求出||AB ,根据点到直线的距离公式求出点F 到直线的距离,根据三角形面积公式可求得结果;(2)设直线MN 的方程为12y x m =-+代入抛物线,利用判别式大于0可得2m >-, 根据韦达定理求出MN 的中点坐标,将其代入直线l 得到m 与a 的关系式,根据m 的范围可得a 的范围. 【详解】抛物线C :24y x =的焦点为F (1,0),(1)当1a =-时,直线:21l y x =-,联立2214y x y x=-⎧⎨=⎩,消去y 得21204x x -+=, 设11(,)A x y ,22(,)B x y ,则122x x +=,1214x x =,所以||AB ===点F 到直线:21l y x =-的距离d ==,所以FAB的面积为11||22AB d ==. (2)因为点M ,N 关于直线l 对称,所以直线MN 的斜率为12-, 所以可设直线MN 的方程为12y x m =-+, 联立2124y x m y x⎧=-+⎪⎨⎪=⎩,消去y 并整理得22(416)40x m x m -++=, 由22(416)160m m ∆=+->,得2m >-,设33(,)M x y ,44(,)N x y ,所以34416x x m +=+,所以343411()2(416)2822y y x x m m m +=-++=-⨯++=-, 所以MN 的中点为(28,4)m +-,因为点M ,N 关于直线l 对称,所以MN 的中点(28,4)m +-在直线:2l y x a =+上,所以42(28)m a -=++,得420a m =--,因为2m >-,所以12a <-.9.(1)1y =+;(2)12. 【分析】(1)由(0,)(0)T t t >为抛物线焦点,即可设直线l 的方程为1y kx =+,根据直线l 与圆相切可求k 值,写出直线方程.(2)设直线l 的方程为y kx t =+,()00,P x y ,()11,A x y ,()22,B x y ,由直线上两点距离公式可知()()0022||||14PA PB kxy ⋅==+-,根据直线l 与圆相切、2||||||TE PA PB =⋅求0y ,切线性质:直线l 与PE 互相垂直及00t y kx =-即可求t 的值.【详解】(1)因为(0,)(0)T t t >是抛物线2:4C x y =的焦点,所以1t =,即(0,1)T ,设直线l 的方程为1y kx =+,由直线l 与圆E1=,即k =,所以,直线l的方程为1y =+.(2)设直线l 的方程为y kx t =+,()00,P x y ,()11,A x y ,()22,B x y ,由24y kx tx y=+⎧⎨=⎩,得2440x kx t --=,124x x k +=,124x x t ⋅=-,∴1020||||PA PB x x ⋅=-⋅-()()221201201kx xx x x x ⎡⎤=+-++⎣⎦()()220014k x kx t ⎡⎤=+-+⎣⎦()()220014k x y =+-. 由直线l 与圆E1=,即221(1)k t +=+.由||1TE t =+,2||||||TE PA PB =⋅,得()()2220014(1)kxy t +-=+.所以20041x y -=,又()220011x y ++=,解得03y =-+.由直线l 与PE 互相垂直,得0011PE xk k y =-=-+, 200001i x t y kx y y =-=++220000001112x y y y y y ++-===++. 10.(Ⅰ)24y x =;(Ⅱ)证明见解析.【分析】(Ⅰ)设(,)Q x y,根据题意得到|1|x +=Γ的方程;(Ⅱ)设1l ,2l 的方程为12(1),(1)y k x y k x =-=-,联立方程组分别求得2121122,k M k k ⎛⎫+ ⎪⎝⎭,和2222222,k N k k ⎛⎫+ ⎪⎝⎭,进而得出MN k ,进而得出()111MN k k k =+,得出直线MN 的方程,即可判定直线MN 恒过定点. 【详解】(Ⅰ)由题意,设(,)Q x y ,因为圆心为点Q 的动圆恒过点(1,0)F ,且与直线1x =-相切,可得|1|x +=24y x =.(Ⅱ)设1l ,2l 的方程分别为1(1)y k x =-,2(1)y k x =-,联立方程组12(1)4y k x y x=-⎧⎨=⎩,整理得()2222111240k x k x k -++=, 所以21122124k x x k ++=,则2121122,k M k k ⎛⎫+ ⎪⎝⎭,同理2222222,k N k k ⎛⎫+ ⎪⎝⎭ 所以121222121222122222MNk k k k k k k k k k k -==+++-, 由121k k +=-,可得()111MN k k k =+,所以直线MN 的方程为()2111211221k y k k x k k ⎛⎫+-=+- ⎪⎝⎭ 整理得()1121(1)y k k x +=+-,所以直线MN 恒过定点(1,2)-.11.(1)22163x y +=;(2),33⎣⎦. 【分析】(1)依题意得到c a ==,再根据222c b a +=解方程即可;(2)由M 为线段AB 的中点,可得12OM S S OP=,对直线l 的斜率的斜率存在与否分两种情况讨论,当直线l 的斜率存在时,设直线():0l y kx m m =+≠,()11,A x y ,()22,B x y .联立直线与椭圆方程,消元列出韦达定理,根据0OA OB ⋅=,即可得到12120x x y y +=,从而得到m 与k 的关系,即可求出面积比的取值范围; 【详解】解:(1)∵椭圆的离心率为2,∴2c a =(c 为半焦距). ∵直线1x y a b+=与圆222x y +==.又∵222c b a +=,∴26a =,23b =.∴椭圆C 的方程为22163x y +=.(2)∵M 为线段AB 的中点,∴12AOM BOP OMS S S S OP==△△. (ⅰ)当直线l 的斜率不存在时,由OA OB ⊥及椭圆的对称性,不妨设OA 所在直线的方程为y x =,得22A x =.则22M x =,26P x =,∴123OM S S OP ==. (ⅱ)当直线l 的斜率存在时,设直线():0l y kx m m =+≠,()11,A x y ,()22,B x y .由22163y kx mx y =+⎧⎪⎨+=⎪⎩,消去y ,得()222214260k x kmx m ++-=+. ∴()()()2222221682138630k m k m k m ∆=-+-=-+>,即22630k m -+>.∴122421km x x k +=-+,21222621m x x k -=+. ∵点O 在以AB 为直径的圆上,∴0OA OB ⋅=,即12120x x y y +=. ∴()()221212121210x x y y kx xkm x x m +=++++=. ∴()22222264102121m km k km m k k -⎛⎫++-+= ⎪++⎝⎭. 化简,得2222m k =+.经检验满足0∆>成立.∴线段AB 的中点222,2121kmm M k k ⎛⎫-⎪++⎝⎭. 当0k =时,22m =.此时123S S ==. 当0k ≠时,射线OM 所在的直线方程为12y x k=-.由2212163y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩,消去y ,得2221221P k x k =+,22321P y k =+. ∴M P OM y OP y == ∴12S S ==12,33S S ⎛∈ ⎝⎭. 综上,12S S的取值范围为33⎣⎦.12.(1)24x y =;(2)[)(,)610--⋃∞+∞,. 【分析】()1由抛物线的定义可得022p y =-,再代入可求得p ,可得抛物线E 的标准方程为24x y =.()2由直线垂直的条件建立关于点A 、B 的坐标的方程,由根的判别式可求得范围.【详解】解:()1依题意得0,,2p F ⎛⎫ ⎪⎝⎭设()002,,22p P y y =-, 又点Р是E 上一点,所以4222p p ⎛⎫=-⎪⎝⎭,得2440p p -+=,即2p =, 所以抛物线E 的标准方程为24x y =.()2由题意知()2,1P , 设221212,,,,44x x A x B x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭则()2111114224APx k x x -==+-,因为12x ≠-,所以142AB k x =-+,AB 所在直线方程为()2111442x y x x x --=-+,联立24x y =. 因为1x x ≠,得11(216(0))x x x +++=,即()21122160x x x x ++++=,因为()224216)0(x x ∆=+-+≥,即24600x x --≥,故10x ≥或6x ≤-经检验,当6x =-时,不满足题意.所以点B 的横坐标的取值范围是[)(,)610--⋃∞+∞,. 13.(1)y 2=4x ;(2)证明见解析. 【分析】(1)利用抛物线定义,由|AF |=2+2p=3求解. (2)根据点A (2,m )在抛物线E 上,解得m ,不妨设A (2,),直线AF 的方程为y(x -1),联立)214y x y x⎧=-⎪⎨=⎪⎩,然后论证k G A +k G B =0即可 【详解】(1)由抛物线定义可得|AF |=2+2p=3,解得p =2. ∠抛物线E 的方程为y 2=4x .(2)∠点A (2,m )在抛物线E 上, ∠m 2=4×2,解得m,由抛物线的对称性,不妨设A (2,),由A (2,,F (1,0),∠直线AF 的方程为y (x -1),由)214y x y x⎧=-⎪⎨=⎪⎩ 得2x 2-5x +2=0,解得x =2或12,∠B 1,2⎛ ⎝.又G (-1,0),∠k G A =3,k G B =3-∠k G A +k G B =0, ∠∠AGF =∠BGF . ∠GF 为∠AGB 的平分线. 【点睛】关键点点睛:由GF 为∠AGB 的平分线,即∠AGF =∠BGF ,转化为 k G A +k G B =0结合韦达定理证明.14.(∠)23x +y 2=1;(∠)11k ⎛⎫⎛∈-⋃ ⎪ ⎪ ⎝⎭⎝⎭. 【分析】(∠)根据椭圆短轴长公式、离心率公式,结合椭圆中,,a b c 的关系进行求解即可;(∠)根据平面向量数量积公式,结合一元二次方程根与系数关系、根的判别式进行求解即可. 【详解】(∠)由已知得 2b =2,所以1b =,又因为c a =所以有:2223c a =,而222c a b =-, 解得23a =,即椭圆C 的方程为23x +y 2=1.(∠)直线l 方程为y =kx +2,将其代入23x +y 2=1,得(3k 2+1)x 2+12kx +9=0,设A (x 1,y 1),B (x 2,y 2),∴△=(12k )2﹣36(1+3k 2)>0,解得k 2>1,由根与系数的关系,得x 1+x 2=21213kk -+,x 1x 2=2913k + ∵∠AOB 为锐角, ∴OA ⋅OB >0, ∴x 1x 2+y 1y 2>0,∴x 1x 2+(kx 1+2)(kx 2+2)>0, ∴(1+k 2)x 1x 2+2k (x 1+x 2)+4>0,化简得2213313k k -+>0,解得2133k <,由21k >且2133k <,解得1133k ⎛⎫⎛∈--⋃ ⎪ ⎪ ⎝⎭⎝⎭,.。
2021高考数学押题专练圆锥曲线(解析版)

由两圆方程作差即② ①得: 4x py 0 .
所以,切点弦 QR 所在直线的方程为 4x py 0 .
法二(求 Q、R 均满足的同一直线方程切点弦方程):
设 D 1, 0 , Q x1, y1 , R x2, y2 .
由 DQ PQ ,可得 Q 处的切线上任一点 T (x, y) 满足 QT DQ 0 (如图),
则 QR 恒过坐标原点 O 0, 0 .
4x py 0,
由 x 12 y2
消去 x 并整理得 4
16
p2
y2 8 py 48 0 .
设 Q x1,
y1
,
R x2,
y2
,则
y1
y2
8p 16 p2
.
点N
纵坐标
yN
y1 2
y2
4p 16 p2
.
因为 p 0 ,显然 yN 0 ,
由圆的性质,可得 DN QR ,即 DN ON (如图).
所以点
N
在以
OD
为直径的圆上,圆心为
G
1 2
,
0
,半径
r
1 2
.
因为直线 3x 4 y 6 分别与 x 轴、 y 轴交于点 E 、 F ,
所以
E
2,
0
,
F
0,
3 2
,
EF
5
.
2
又圆心
G
1 2
,
0
到直线
3x
4
y
6
0
的距离
d
【模拟专练】
21.(2021·山东高三二模)已知椭圆 C
:
x2 a2
y2 b2
1(a
届高考二轮复习专题高效升级卷圆锥曲线中的探索性问题共41页文档

A.1
B.2
C.4
D.8
答案:B
7.
过双曲线x a
2 2
-y 2 b2
=1(a>0,b>0)的一个
焦点F引它的渐近线的垂线,垂足为M,延长
FM交y轴于E,若|FM|=2|ME|,则该双曲线
的离心率为( )
A.3
B.2
C. 3 答案:C
D. 2
8.已知P为抛物线y2=4x上一个动点,Q为圆x2 +(y-4)2=1上一个动点,那么点P到点Q 的距离与点P到抛物线准线的距离之和的最小 值是 ( )
抛物线上三点.F若A F+B FC+ =0,FA则| |+FB | |+|FC |等于( )
A.9
B.6
C.4
D.3
答案:B
二、填空题(本大题共4小题,每小题4分,共 16分)
13. 如图,在△ABC中,∠CAB=∠CBA=30°, AC、BC边上的高分别为BD、AE,则以A、 B为焦点,且过D、E的椭圆与双曲线的离心 率的倒数和为_____.
答案:3
14.
已知点P是双曲线x a
2 2
-y 2
b2
=1上除顶点外的
任意一点,F1、F2分别为左、右焦点,c为半
焦距,△PF1F2的内切圆与F1F2切于点M,则
|F1M|·|F2M|=_____.
答案:b2
15. 已知抛物线y2=4x,过点P(4,0)的直线 与抛物线相交于A(x1,y1)、B(x2,y2) 两点,则y12+y22的最小值是_____.
A.1条
B.2条
C.3条
D.4条
答案:C
4. 对于抛物线C:y2=4x,我们称满足y02 <4x0 的点M(x0,y0)在抛物线内部,若M(x0, y0)在抛物线内部,则直线l:y0y=2(x+x0) 与曲线C( )
大题专练训练30:圆锥曲线(探索性问题2)-2021届高三数学二轮复习

设 , , , ,
所以 , ,
联立 ,得 ,
所以 , ,
所以
,
因为 ,所以 ,
解得 .
(Ⅱ)由 ,得 ,所以 ,
所以直线 的方程为 ,即 ,
又 ,代入上式,得 ,
同理可得直线 的方程为 ,
设 , ,则 ,且 ,
所以 , 在直线 上,即 ,
又因为直线 方程为 ,即 ,
所以 , ,即点 在直线 上,
二轮大题专练30—圆锥曲线(探索性问题2)
1.已知椭圆 的离心率为 ,椭圆 与 轴交于 、 两点, .
(Ⅰ)求椭圆 的方程;
(Ⅱ)已知点 是椭圆 上的动点,且直线 , 与直线 分别交于 、 两点,是否存在点 ,使得以 为直径的圆经过点 ?若存在,求出点 的横坐标;若不存在,说明理由.
解:(Ⅰ)由题意可得 , ,即 ,
(Ⅲ)是否存在垂直于 轴的直线 ,使得 被以 为直径的圆截得的弦长恒为定值?若存在,求出 的方程;若不存在,说明理由.
解: 抛物线 的焦点 ,
圆心 在线段 的垂直平分线 上.
因为抛物线 的准线方程为 ,
所以 ,即 .
因此抛物线 的方程为 .
依题意得:点 的坐标为 ,可设 , , , ,
设直线 的方程为 ,
线段 上存在点 ,使得 ,其中 .
(3)证明:设直线 的方程为: , ,
代入 ,得:
,
过点 且不垂直于 轴的直线与椭圆交于 , 两点,
由△ ,得: ,
设 , , , , , ,
则 , ,
则直线 的方程为 ,
令 得:
.
直线 过定点 .
6.已知抛物线 的焦点是椭圆 的右焦点,且两曲线有公共点 , .
2021高考数学专项预测《圆锥曲线大题专练》

1、(本小题满分13分)已知椭圆)0(1:2222>>=+b a b y a x C 的一个顶点为)0,2(A ,离心率为22.过点)0,1(G 的直线l 与椭圆C 相交于不同的两点,M N .(1)求椭圆C 的方程;(2)当AMN ∆的面积为524时,求直线l 的方程.1、解:(1)22,,22c a c a ==∴=2222b a c ∴=-=所以所求的椭圆方程是22142x y +=………………3分(2)①直线l 的斜率不存在时,直线方程为1x =,弦长6MN =,62AMN S ∆=,不满足条件;………………4分②直线l 的斜率存在时,设直线l 的方程为(1)(0)y k x k =-≠,代入C 的方程得:2222(21)4240k x k x k +-+-=4222164(21)(24)8(32)0k k k k ∆=-+-=+>设1122(,),(,)M x y N x y ,则22121222424,2121k k x x x x k k -+==++………………6分11221212(1),(1),()y k x y k x y y k x x =-=-∴-=-2222221212121212()()(1)()(1)[()4]MN x x y y k x x k x x x x ∴=-+-=+-=++-422222222168(2)2(1)[]2(1)(32)(21)2121k k k k k k k k -=+-+++++………………9分点A 到直线l 的距离为21k d k =+………………10分所以22222(1)(32)1222151MNAk k k S MN d k k ∆++==+,化简得42221114160,(2)(118)0k k k k --=-+=22,2k k ∴=∴=……12分所以所求的直线l 的方程为2(1)y x =-………………13分或解2121212111()()222MNA S y y k x x k x x ∆=-=-=-(下同)2.(本小题满分13分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为12,左、右焦点分别为12,F F ,点G 在椭圆C 上,且021=⋅GF GF ,12G F F ∆的面积为3.(1)求椭圆C 的方程:(2)设椭圆的左、右顶点为A ,B ,过2F 的直线l 与椭圆交于不同的两点M ,N (不同于点A ,B ),探索直线AM ,BN 的交点能否在一条垂直于x 轴的定直线上,若能,求出这条定直线的方程;若不能,请说明理由。
2021高考数学(理)二轮专题复习【统考版】课件:2.5.3 圆锥曲线中的证明、定点及定值问题

所以直线 AB 的方程为 y=kx-k-2=k(x-1)-2.易知直线 AB
过定点(1,-2).
当直线 AB 的斜率不存在时,设其方程为 x=m,A(m,y3),B(m, y4),
则y3- m 2+y4- m 2=y3+my4-4=-4, 易知 y3,y4 互为相反数,所以 y3+y4=0, 所以 m=1,可知直线 x=1 也过定点(1,-2).
6ktx+3t2-12=0, 则 Δ=(6kt)2-4(3k2+2)(3t2-12)>0,即 6k2-t2+4>0, x1+x2=-3k62k+t 2,x1x2=33tk22-+122.
由 l1 与 l2 的斜率之和为-4,可得y1x-1 2+y2x-2 2=-4,
又 y1=kx1+t,y2=kx2+t, 所以y1x-1 2+y2x-2 2=kx1+x1t-2+kx2+x2t-2=2k+t-2x1xx12+x2 =2k+t-32t2-·3-k1226+kt2=-4,化简得 t=-k-2(t=2 舍去).
以 xD=52,
因为 MG 中点的横坐标为52,所以 D 为线段 MG 的中点,
所以|MD|=|DG|.
考点二 定点问题
解析几何中的定点问题一般是指与解析几何有关的直线或圆 (其他曲线过定点太复杂,高中阶段一般不涉及)过定点的问题,其 实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这 些直线或圆绕着定点在转动,这类问题的求解一般分为以下三步:
(2)若 AC⊥l1,垂足为 C,直线 BC 交 x 轴于点 D,证明:|MD| =|DG|.
解析:(1)因为椭圆 E 的焦距为 2 3,所以 c= 3, 所以 a2-b2=3,①
当 l2 垂直于 x 轴时.|MG|=3,因为△ABG 的面积为32 3,
2021届高考数学文全国版二轮复习参考专题检测(十七) 圆锥曲线中的最值、范围、探索性问题

专题检测(十七) 圆锥曲线中的最值、范围、探索性问题大题专攻强化练1.(2019·全国卷Ⅰ)已知点A ,B 关于坐标原点O 对称,|AB |=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径.(2)是否存在定点P ,使得当A 运动时,|MA |-|MP |为定值?并说明理由.解:(1)因为⊙M 过点A ,B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线x +y =0上,且A ,B 关于坐标原点O 对称,所以M 在直线y =x 上,故可设M (a ,a ).因为⊙M 与直线x +2=0相切,所以⊙M 的半径为r =|a +2|. 连接MA ,由已知得|AO |=2.又MO ―→⊥AO ―→,故可得2a 2+4=(a +2)2, 解得a =0或a =4. 故⊙M 的半径r =2或r =6.(2)存在定点P (1,0),使得|MA |-|MP |为定值. 理由如下:设M (x ,y ),由已知得⊙M 的半径为r =|x +2|,|AO |=2.由于MO ⊥AO ,故可得x 2+y 2+4=(x +2)2,化简得M 的轨迹方程为y 2=4x .因为曲线C :y 2=4x 是以点P (1,0)为焦点,以直线x =-1为准线的抛物线,所以|MP |=x +1.因为|MA |-|MP |=r -|MP |=x +2-(x +1)=1, 所以存在满足条件的定点P .2.(2019·武汉部分学校调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,且长轴长为8,T 为椭圆C 上异于A ,B 的点,直线TA ,TB 的斜率之积为-34.(1)求椭圆C 的方程;(2)设O 为坐标原点,过点M (8,0)的动直线与椭圆C 交于P ,Q 两点,求△OPQ 面积的最大值.解:(1)设T (x ,y )(x ≠±4),则直线TA 的斜率为k 1=y x +4,直线TB 的斜率为k 2=yx -4. 于是由k 1k 2=-34,得y x +4·y x -4=-34,整理得x 216+y 212=1(x ≠±4),故椭圆C 的方程为x 216+y 212=1. (2)由题意设直线PQ 的方程为x =my +8, 由⎩⎪⎨⎪⎧x =my +8,x 216+y 212=1得(3m 2+4)y 2+48my +144=0, Δ=(48m )2-4×144×(3m 2+4)=12×48(m 2-4)>0,即m 2>4, y P +y Q =-48m 3m 2+4,y P y Q =1443m 2+4. |PQ |=m 2+13m 2+4·Δ=24(m 2+1)(m 2-4)3m 2+4,点O 到直线PQ 的距离d =8m 2+1 .故S△OPQ=12×|PQ |×d =96m 2-43m 2+4=963m 2-4+16m 2-4≤43⎝⎛⎭⎫当且仅当m 2=283时等号成立,且满足m 2>4,故△OPQ 面积的最大值为4 3.3.(2019·湖南省湘东六校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =12,点A (b ,0),B ,F 分别为椭圆的上顶点和左焦点,且|BF |·|BA |=2 6.(1)求椭圆C 的方程.(2)若过定点M (0,2)的直线l 与椭圆C 交于G ,H 两点(G 在M ,H 之间),设直线l 的斜率k >0,在x 轴上是否存在点P (m ,0),使得以PG ,PH 为邻边的平行四边形为菱形?如果存在,求出m 的取值范围;如果不存在,请说明理由.解:(1)设椭圆的焦距为2c ,由离心率e =12得a =2c .①由|BF |·|BA |=26,得a ·b 2+b 2=26,∴ab =2 3.② a 2-b 2=c 2,③由①②③可得a 2=4,b 2=3, ∴椭圆C 的方程为x 24+y 23=1.(2)设直线l 的方程为y =kx +2(k >0),由⎩⎪⎨⎪⎧y =kx +2(k >0),x 24+y 23=1得(3+4k 2)x 2+16kx +4=0,可知Δ>0,∴k >12.设G (x 1,y 1),H (x 2,y 2),则x 1+x 2=-16k 4k 2+3,PG ―→+PH ―→=(x 1+x 2-2m ,k (x 1+x 2)+4),GH―→=(x 2-x 1,y 2-y 1)=(x 2-x 1,k (x 2-x 1)).∵菱形的对角线互相垂直,∴(PG ―→+PH ―→)·GH ―→=0, ∴(1+k 2)(x 1+x 2)+4k -2m =0,得m =-2k4k 2+3, 即m =-24k +3k,∵k >12,∴-36≤m <0⎝⎛⎭⎫当且仅当3k =4k 时,等号成立. ∴存在满足条件的实数m ,m 的取值范围为⎣⎡⎭⎫-36,0. 4.(2019·郑州市第二次质量预测)椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,A为椭圆上一动点(异于左、右顶点),△AF 1F 2的周长为4+23,且面积的最大值为 3.(1)求椭圆C 的方程;(2)设B 是椭圆上一动点,线段AB 的中点为P ,OA ,OB (O 为坐标原点)的斜率分别为k 1,k 2,且k 1k 2=-14,求|OP |的取值范围.解:(1)由椭圆的定义及△AF 1F 2的周长为4+23,可得2(a +c )=4+23, ∴a +c =2+ 3.①当A 在上(或下)顶点时,△AF 1F 2的面积取得最大值,即bc =3,② 由①②及a 2=c 2+b 2,得a =2,b =1,c =3, ∴椭圆C 的方程为x 24+y 2=1.(2)当直线AB 的斜率不存在时,k 1=-k 2,∵k 1k 2=-14,∴k 1=±12,不妨取k 1=12,则直线OA 的方程为y =12x ,不妨取点A ⎝⎛⎭⎫2,22,则B ⎝⎛⎭⎫2,-22,P (2,0),∴|OP |= 2. 当直线AB 的斜率存在时,设直线AB 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4可得(1+4k 2)x 2+8kmx +4m 2-4=0, Δ=64k 2m 2-4(4k 2+1)(4m 2-4)=16(4k 2+1-m 2)>0,③∴x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k 2.∵k 1k 2=-14, ∴4y 1y 2+x 1x 2=0,∴4(kx 1+m )(kx 2+m )+x 1x 2=(4k 2+1)x 1x 2+4km (x 1+x 2)+4m 2=4m 2-4-32k 2m 21+4k2+4m 2=0, 化简得2m 2=1+4k 2(满足③式),∴m 2≥12.设P (x 0,y 0),则x 0=x 1+x 22=-4km 1+4k2=-2k m ,y 0=kx 0+m =12m . ∴|OP |2=x 20+y 20=4k 2m 2+14m 2=2-34m 2∈⎣⎡⎭⎫12,2, ∴|OP |∈⎣⎡⎭⎫22,2.综上,|OP |的取值范围为⎣⎡⎦⎤22,2.。
专题06 圆锥曲线中的最值、范围及探索性问题-2021年高考理科数学二轮复习专项练习附真题解析

微专题06 圆锥曲线中的最值、范围及探索性问题——2020高考数学(理)二轮复习微专题聚焦【考情分析】与圆锥曲线有关的最值、范围及存在性问题是高考命题的热点,直线或圆锥曲线运动变化时,点、直线、曲线之间的关联受到一定范围的制约,于是便产生了对范围的求解、最值的探求这类问题,注重与平面向量、函数、二次方程、不等式等融合与渗透,因而这类问题考查范围广泛,命题形式新颖,属于解析几何中的压轴题。
【前备知识】1、圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.2、解决圆锥曲线中的取值范围问题应考虑的五个方面①利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.①利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系. ①利用隐含的不等关系建立不等式,从而求出参数的取值范围.①利用已知的不等关系构造不等式,从而求出参数的取值范围.①利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.考点一 圆锥曲线中的最值或取值范围问题【例1】过F(0,1)的直线l 与抛物线y x C 4:2 交于A ,B 两点,以A ,B 两点为切点分别作抛物线C 的切线21,l l ,设21l l 与交于点),(00y x Q .(1)求0y ;(2)过Q ,F 的直线交抛物线C 于M ,N 两点,求四边形AMBN 面积的最小值.【方法归纳 提炼素养】——数学思想是数形结合、方程思想,核心素养是数学运算.求最值,取值范围的常用方法(1)利用函数单调性:求导,换元,变形等.(2)利用不等式:基本不等式(有一个或两个变量都可以),三角不等式等.(3)利用线性规划:条件是不等式组的题目,可考虑用线性规划法.(4)利用数形结合:将代数方程与它表示的几何图形联系起来.(5)利用转化与化归:将几何关系转化为代数式,再求解;或将不等式问题转化为等式问题,即先找到所求不等式恰好相等时的“边界”,“边界”将实数R 分为若干部分,其中符合题意的部分即为所求取值范围.注意:在圆锥曲线最值问题中,特别注意椭圆、双曲线、抛物线上的点(x,y)横纵坐标x,y 的取值范围.【类比训练】已知抛物线E:y 2=2px (p >0),过其焦点F 的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,满足y 1y 2=−4.(1)求抛物线E 的方程;(2)已知点C 的坐标为(-2,0),记直线CA,CB 的斜率分别为k 1,k 2,求1k 12+1k 22的最小值. 【例2】已知椭圆)0(12222>>=+b a by a x 的右焦点为F 2(3,0),离心率为e. (1)若23=e ,求椭圆的方程.(2)设直线y=kx 与椭圆相交于A,B 两点,M,N 分别为线段AF 2,BF 2的中点.若坐标原点O 在以MN 为直径的圆上,且2322≤<e ≤,求k 的取值范围. 【方法归纳 提炼素养】——数学思想是数形结合、函数与方程思想,核心素养是数学运算.解决取值范围问题的常用方法(1)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(2)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.(3)数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解.考点二 圆锥曲线中的探索性(或是否存在性)问题【必备知识】探索性问题的解题思路:第一步:先假设存在,用待定系数法设出;第二步:列出关于待定系数的方程组,推证满足条件的结论;第三步:解方程(组);若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.注意:(1)当条件和结论不唯一时要分类讨论;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件;(3)当条件和结论都不确定,按常规方法解题很难时,要开放思维,采取另外合适的方法.【例2】已知椭圆C:()的离心率为,且以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切.(1)求椭圆的标准方程;(2)已知动直线l过右焦点F,且与椭圆C交于A、B两点,试问x轴上是否存在定点Q,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)线段 的垂直平分线与 轴交于点 ,求点 横坐标的取值范围;
(3)试问在 轴上是否存在一点 ,使得 恒为定值?若存在,求出点 的坐标及该定值;若不存在,请说明理由.
解:(1)由题意椭圆过点 ,且椭圆的离心率为 ,
则满足方程组 ,解得 , ,
所以椭圆方程为 ,
(2)设直线 的方程为 ,
以椭圆短轴为直径的圆经过点 ,
,解得 , ,
椭圆 的方程为 .
(2) 是定值.
证明如下:设过 的直线: 或者
① 时,代入椭圆, , 令 , ,
, , .
② 代入椭圆,
设 , , , .
则 , ,
,
,பைடு நூலகம்
, ,
.
7.已知椭圆 的离心率为 ,过椭圆 的左焦点 且不与坐标轴垂直的直线 交椭圆 于 , 两点,且椭圆 截直线 所得弦长为 .
解得 , ,
则椭圆的方程为 ;
(2)由 ,设 的方程为 , ,交 轴于 ,交 于 ,
由 ,可得 ,设 ,
即有 ,解得 ,
所以 , 的斜率为 ,
由 ,可得 ,
则 ,可得 的中点 的坐标为 , ,
所以 ,
即有 ,解得 ,
则 的方程为 ,
(3)设 , ,由椭圆的 , ,且 ,
由椭圆的焦半径公式可得 , ,
设 的方程为 , ,
所以 ,可得 , , , , , ,
可得 , ,假设存在实数 ,使得 恒成立,
由 ,
所以存在,且实数 的值为1.
解:(1) ,椭圆 ,两个焦点 ,
设 , , ,
,
,
的范围是 , (4分)
(2)设 , 的坐标分别为 , , , ,则 两式相减,得 , ,即 ,故 ;(8分)
(3) 直线 过点 ,
直线 不过原点且与椭圆 有两个交点的充要条件是 且 .
设 , ,设直线 ,即 ,
由(2)的结论可知 ,代入椭圆方程得, ,(10分)
(1)求椭圆 的方程;
(2)设动直线 过椭圆 的右焦点 ,且与椭圆 交于 , 两点.在 轴上是否存在定点 ,使得 恒成立?若存在,求点 的坐标;若不存在,请说明理由.
解:(1)由题意得 ,即 ,
又椭圆经过点 ,可得 ,
解得 , ,
所以椭圆 的方程为 ;
(2)假设存在符合条件的点 ,
设 , , , ,
8.已知椭圆 的右焦点为 ,右准线为 .过点 作与坐标轴都不垂直的直线与椭圆 交于 , 两点,线段 的中点为 , 为坐标原点,且直线 与右准线 交于点 .
(1)求椭圆 的标准方程;
(2)若 ,求直线 的方程;
(3)是否存在实数 ,使得 恒成立?若存在,求实数 的值;若不存在,请说明理由.
解:(1)由题意可得 , ,
由 与 ,联立得 .(12分)
若四边形 为平行四边形,那么 也是 的中点,所以 ,
即 ,整理得 解得, .
所以当 时,四边形 为平行四边形.(16分)
2.在平面直角坐标系 中,已知椭圆 的焦距为4,且过点 .
(1)求椭圆 的方程
(2)设椭圆 的上顶点为 ,右焦点为 ,直线 与椭圆交于 、 两点,问是否存在直线 ,使得 为 的垂心,若存在,求出直线 的方程;若不存在,说明理由.
设点 , , ,
又因为 ,所以 ;
当直线 的斜率不为0时,设 , , , , ,
直线 的方程为: ,
联立直线 与椭圆的方程: ,整理可得: ,
则 , ,故
,
易知点 ,则 ,
假设存在实数 ,
则 , 无解,
因此不存在这样的 使得 恒成立,
综上所述,只有当直线 与 轴重合时, .
4.已知椭圆 的离心率为 ,且点 在椭圆 上.
则 , , , ,
,
①当直线 的斜率存在时,设直线 的方程为 ,
由 ,得 ,
可得△ 成立,且 , ,
,
,
对于任意的 值,上式为定值,
故 ,解得 ,
此时, 为定值;
②当直线 的斜率不存在时,
直线 , , , ,
由 ,得 为定值,
综合①②知,符合条件的点 存在,其坐标为 , .
5.已知椭圆 的焦距为4,点 在椭圆上.
(1)求椭圆 的方程;
(2)过点 引圆 的两条切线 , ,切线 , 与椭圆 的另一个交点分别为 , ,试问直线 的斜率是否为定值?若是,求出其定值,若不是,请说明理由.
解:(1)椭圆 的焦距为4,所以 ,左焦点 ,右焦点 ,
则 , ,所以 ,即 ,
则椭圆 的方程为 .
(2)设 ,则 ,所以
设 ,则 ,所以
(Ⅰ)求椭圆 的标准方程;
(Ⅱ)若直线 上有一点 ,且与 轴交于 点,过 的直线 交椭圆于 , 两点,交直线 于 点,是否存在实数 使得 恒成立?若存在,求出 ;若不存在,说明理由.
解:(Ⅰ)由题意可得 ,且 ,又 ,
解得: , ,
所以椭圆的方程为: ;
(Ⅱ)当直线 的斜率为0时,根据椭圆的对称性,设 , , ,
二轮大题专练29—圆锥曲线(探索性问题1)
1.已知椭圆 ,直线 不过原点 且不平行于坐标轴, 与 有两个交点 , ,线段 的中点为 .
(1)若 ,点 在椭圆 上, 、 分别为椭圆的两个焦点,求 的范围;
(2)证明:直线 的斜率与 的斜率的乘积为定值;
(3)若 过点 ,射线 与椭圆 交于点 ,四边形 能否为平行四边形?若能,求此时直线 斜率;若不能,说明理由.
联立方程 ,
消去 整理得 ,△ ,
设点 , , , , , , 的中点 , ,
则 ,
所以 ,
的垂直平分线 的方程为 ,
令 得 ,
因为 ,
所以 ,
所以点 的横坐标的取值范围为 .
(3)假设存在,设 , .
结合第(2)问知: ,
所以
所以
设
则 对任意 恒成立,
所以 ,解得 , ,
所以存在点 ,使得 为定值 .
解:(1)由已知可得,
解得 , ,
所以椭圆 的方程为 .
(2)
由已知可得, , , ,
, 可设直线 的方程为 ,代入椭圆方程整理,得
.
设 , , , ,则 , ,
, ,
即 .
, , ,
即 .
, 或 .
由△ ,得 .
又 时,直线 过 点,不合要求,
,
故存在直线 满足题设条件.
3.已知椭圆 ,离心率 ,且过点 .
所以 , 是方程 的两根,即 .
设 , , , 联立
有 ,
, .
同理: .
.
6.已知椭圆 的两个焦点分别为 , , , ,以椭圆短轴为直径的圆经过点 .
(1)求椭圆 的方程;
(2)过点 的直线 与椭圆 相交于 、 两点,设点 ,记直线 , 的斜率分别为 , ,问: 是否为定值?并证明你的结论.
解:(1) 椭圆 的两个焦点分别为 , , , ,