小学生学习数学的方法及培养途径

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学生学习数学的方法及培养途径

为了适应学生的学习心理,发掘其潜能,义务教育教材已适当地降低了对数学知识体系严密性的要求,拉开了知识结构之间的“距离”,并以“结构化”与“问题化”互补的教材体系呈现出来。因而,学生必须掌握、并且具有一定的学习数学的方法,提高和发展学习能力,这也是上海“数学教育行动纲领”所提出的“基础能力”的要求。

为此,我们对小学生应具有的主要的学习数学的方法及其相应的培养途径进行了实践,以发展学生学习数学的能力。

1.良好的学习习惯。叶圣陶先生说过:凡是好的态度和好的方法,都要使它化成习惯。只有熟练成了习惯,好的态度和方法才能随时随地表现……一辈子受用不尽。叶老的话阐明了良好的学习习惯和学习方法的关系:良好的学习习惯既是学生形成学习方法的基础,又是他们具有了一定的学习方法的集中体现。因此,培养学生从小养成良好的学习习惯具有十分重要的意义。主要的培养途径有:(1)课前预习。预习的方法:明天要学习什么内容,是否能用今天学习的知识去解决它;在不懂的地方画上记号;尝试地做一二道题,看哪里有困难……上课伊始,教师先检查学生预习情况,并把上面的预习方法经常交代给学生。学生预习后就可带着问题投入新课的学习,上课时就更有目的性和针对性。这样做对于提高课堂学习的效果,养成学生的自学习惯,提高自学能力都有积极作用。

预习数学内容会显得较枯燥,所以,教师要经常表扬自觉预习的学生,以激励全体学生预习的积极性。

(2)课后整理。要养成先复习当天学习的知识,再做作业,最后,把学习内容加以整理的习惯。例如,能被2、5整除的数的特征,一位同学整理如下:

个位是0的数同时能被2和5整除

这样,容易使学生学到的知识系统化,从而内化为他们的认知结构。

(3)在课内,要求学生:一要仔细看教师的操作演示、表情、手势;二要全神贯注地听老师的提问、点拨、归纳以及同学的发言;三要积极思考、联想;四要踊跃发表自己的想法,有困惑应发问,敢于质疑。

(4)要养成检查验算的习惯。检查验算的过程既是一种培养学生负责态度的途径,又是学生对自己思维活动的再认识过程。如有题:一个水池能盛水54吨,甲、乙两个水管同时向池内放水,3小时放满。

已知甲管每小时放水5吨,乙管每小时放水多少吨?学生设乙管每小时放水x吨,且列方程:5×3+3x=54,54-3x=5×3,54-5×3=3x,(x+5)×3=54,5+x=54÷3,54÷3-x=5……最后解得x=13。学生一方面要检验x=13是否是方程的解;另一方面要检查列方程的依据是什么,解答过程是否简练。如果发现错了,那么失败就成了成功之母。这种“认知元”的发展是学生养成良好的学习习惯的重要标志。

2.尝试活动。学生原有的认知结构具有同化作用,这是学生能进行尝试活动的心理支撑点。因此,学生具有了某一认知结构后,接着学习相应的后面知识时,教师可让学生去尝试学习。例如,学生掌握了整数四则混合运算顺序之后,可请他们去尝试学习“小数四则混合运算”,然后,教师稍作点拨:整数四则

混合运算顺序同样适用于“小数四则混合运算”。学生就可同化新知识,从而构建新的认知结构:整小数四则混合运算的顺序都是:先乘除,后加减,有括号的要先算括号里的。

当学生掌握了“分数乘法应用题”,又理解了比与分数之间的关系以后,教师可让学生去尝试学习“按比例分配”的应用题。

3.操作活动。当学生原有的认知结构似乎能同化又同化不了新知识时,他们的学习心理就有求助于外围行为的倾向。这时,教师就请学生去进行动手操作活动,进而刺激其心理,促进他们实现学习心理的相互作用、互为转化——学到新知识。

例如,教学“圆的周长”,学生引起心理反映:只能测量、计算直线图形的周长,用什么方法来得到曲线图形的周长呢?这时,教师就可要求学生分组进行操作活动,以满足他们的心理对行为的要求:1元硬币、瓶盖、飞碟等的直径与相应的圆周长分别是多少?并把得到的结果记入下表:

测量曲线图形的周长,学生还是第一次,可是当学生看到事先准备好的线、绳和直尺,他们借助对图形周长概念的理解,首先还是想出了用测量的办法求圆的周长:有些学生用线绕测量物一周,再拉直放在直尺上量得其周长;有些学生将测量物在直尺上滚一圈测得其周长。学生的测量活动(行为)反过来又必将引起其心理活动,所以,教师这时可要求学生对测量的结果进行思维活动:从所填的表格中你们能发现什么规律?

当学生无知识基础可作学习新知识的支撑点时,教师可直接请学生进行多次的操作活动,以不断刺激其心理,引起思维活动,从而达到理解新知的目的。例如,正、负数的加法:

(+3)+(-2)=+1+2-2=+1

4.观察活动。所谓观察是指学生对客观事物或某种现象的仔细察看,因而是一种有意注意。培养的途径是:教师提供的“客观事物或某种现象”特征有序、背景鲜明,而且要给出一些观察的思考题。这样有助于学生明确观察目标,进而使他们边观察,边思考,边议论,边作观察记录,以发现数学规律、本质。

“乘法分配律”的教学,根据例证得到三个等式:

(5+3)×2=5×2+3×2

(6+4)×30=6×30+4×30

(25+9)×4=25×4+9×4

教师要求学生结合下面的两个思考题观察上面的三个等式都具有什么相同点(即规律)。①竖里观察,等式的左边都有什么特点?等式右边又有什么特征?②横里观察,等式的左边与右边有怎样的关系?

教师再要求学生把记录的文字:两个加数的和与一个数相乘,两个积的和,两个加数分别与一个数相乘……整理一下就得到了“乘法分配律”。

低年级学生观察时更需要意志力参与。教学“几个和第几个”时,教师请小朋友仔细看主题图:有几个人排队上公共汽车?小明排在第几个?教师在示范时又提醒学生:看谁看得认真,第一行从左边起老师涂色了几只?第二行从左边起第几只涂了色?然后,教师写上“3只”、“第3只”。

教师运用语言的调节功能,激励低年级学生有意识地进行观察,这样能有效地促进学生心理转化,学到新知识。

相关文档
最新文档