中考数学复习全等三角形测试
人教版九年级中考数学 考点复习 全等三角形 专题练习
人教版九年级中考数学考点复习全等三角形专题练习一.选择题(本大题共10道小题)1. 已知图中的两个三角形全等,则∠1等于( )A.47°B.57°C.60°D.73°2. 如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )A.∠ABC=∠DCBB.AB=DCC.AC=DBD.∠A=∠D3. 如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD4. 如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( )A.AD=AEB.BE=CDC.∠ADC=∠AEBD.∠DCB=∠EBC5. 如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F.若∠BCE=65°,则∠CAF的度数为( )A.30°B.25°C.35°D.65°6. 在正方形网格中,∠AOB的位置如图所示,则下列各点中到∠AOB两边距离相等的点是( )A.点QB.点NC.点RD.点M7. 工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA,OB上分别取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C,D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )A.SASB.ASAC.AASD.SSS8. 如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36o.连接AC、BD交于点M,连接OM.下列结论:①∠AMB=36o;②AC=BD;③OM平分∠AOD;④MO平分∠AMD其中正确的结论个数有( )个.A.4B.3C.2D.19. 下面是黑板上出示的尺规作图题需要回答横线上符号代表的内容.如图,已知∠AOB,求作:∠DEF,使∠DEF=∠AOB.作法:(1)以△为圆心,任意长为半径画弧,分别交OA,OB于点P,Q;(2)作射线EG,并以点E为圆心,○长为半径画弧交EG于点D;(3)以点D为圆心,* 长为半径画弧交前弧于点F;(4)作⊕,则∠DEF即为所求作的角.A.△表示点EB.○表示PQC.*表示EDD.⊕表示射线EF10. 如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连结CD,连结BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是( )A.∠ADC=∠AEBB.CD∥ABC.DE=GED.BF2=CF·AC二.填空题(本大题共6道小题)11. 如图,点B 、F 、C 、E 在一条直线上,已知FB=CE,AC ∥DF,请你添加一个适当的条件 使得△ABC ≌△DEF.12. 如图,四边形ABCD 中,∠BAC =∠DAC,请补充一个条件 ,使得△ABC ≌△ADC.13. 如图,AC =AD,∠1=∠2,要使△ABC ≌△AED,应添加的条件是 .(只需写出一个条件即可)14. 如图,AC=AD,∠1=∠2,要使ABC AED ≌△△,应添加的条件是______(只需写出一个条件即可)15. 如图,点P 为定角∠AOB 的平分线上的一个定点,点M,N 分别在射线OA,OB 上(都不与点O 重合),且∠MPN 与∠AOB 互补.若∠MPN 绕着点P 转动,那么以下四个结论:①P M =PN 恒成立;②MN 的长不变;③OM+ON 的值不变;④四边形PMON 的面积不变.其中正确的为_____.(填番号)16. 如图,在△ABC 中,AB =AC,点D 在BC 上(不与点B,C 重合).只需添加一个条件即可证明△ABD ≌△ACD,这个条件可以是 (写出一个即可).三.解答题(本大题共6道小题)17. 如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.18. 如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.19. 如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.20. 如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21. 在Rt△ABC中,∠ACB=90°,CB=CA=22,点D是射线AB上一点,连接CD,在CD右侧作∠DCE =90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.22. 如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.。
中考数学复习《全等三角形》专题训练-附带参考答案
中考数学复习《全等三角形》专题训练-附带参考答案一、选择题1.下列选项中表示两个全等的图形的是()A.形状相同的两个图形B.周长相等的两个图形C.面积相等的两个图形D.能够完全重合的两个图形2.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,则不一定能使△ABE≌△ACD的条件是()A.AB=AC B.∠B=∠CC.∠AEB=∠ADC D.CD=BE3.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A.SAS B.ASA C.AAS D.SSS4.如图△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.25°B.30°C.35°D.65°5.如图EF=CF,BF=DF则下列结论不一定正确的是()A.△BEF≌△DCF B.△ABC≌△ADEC.DC=AC D.AB=AD6.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2 B.3 C.4 D.57.如图,CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE、CD相交于点O.∠1=∠2,则图中全等三角形共有()A.2对B.3对C.4对D.5对8.如图,AD 是△ABC中∠BAC的平分线,DE⊥AB于点E,△ABC的面积为12,DE =2,AB = 7,则 AC 的长是()A.3 B.4 C.5 D.6二、填空题9.如图,∠ACD=∠BCE,BC=EC,要使△ABC≌△DEC,则可以添加的一个条件是.10.如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为.11.如图,在Rt△ABC中,∠BAC=90°,分别过点B,C作过点A的直线的垂线BD,若BD=4cm,CE=3cm则DE= cm.12.如图,把两根钢条AB,CD的中点连在一起做成卡钳,已知AC的长度是6cm,则工件内槽的宽BD是cm.13.如图,△ABC为等腰直角三角形AC=BC,若A(−3,0),C(0,2),则点B的坐标为.三、解答题14.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°(1)求证:△ADE≌△CDE.(2)求∠BDC度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A =25°,∠D =15°,求∠ACB 的度数.16.如图,AB =AC ,AD =AE ,∠BAC =∠DAE.(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,在ABC 中90C ∠=︒,BD 是ABC ∠的平分线,DE AB ⊥于点E ,点F 在BC 上,连接DF ,且AD DF =. (1)求证:CF AE =;(2)若3AE =,BF=4,求AB 的长.18.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD =2BF+DE .1.D2.D3.D4.A5.C6.B7.C8.C9.AC =DC (答案不唯一)10.811.712.613.(2,-1)14.(1)证明:∵DE 是线段AC 的垂直平分线 ∴DA=DC ,AE=CE在△ADE 与△CDE 中:DA=DCAE=CEDE=DE∴△ADE ≌△CDE (SSS );(2)解:∵△ADE ≌△CDE .∴∠DCA=∠A=50°∴∠BDC=∠DCA+∠A=100°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:(1)∵90C ∠=︒∴DC BC ⊥又∵BD 是ABC ∠的平分线DE AB ⊥∴DE DC = 90AED ∠=︒在Rt AED △和Rt FCD △中∵AD DFDE DC =⎧⎨=⎩∴()Rt Rt AED FCD HL ≌△△∴CF AE =.(2)解:由(1)可得3CF AE ==∴437BC BF CF =+=+=∵DE AB ⊥∴90DEB ∠=︒∴DEB C ∠=∠∵BD 是ABC ∠的平分线∴ABD CBD ∠=∠在BED 和BCD △中∵DEB C EBD CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED BCD AAS ≌△△ ∴7BE BC ==∴7310AB BE AE =+=+=∴AB 的长为10.18.(1)证明:∵90BAD CAE ∠=∠=︒∴90BAC CAD ∠+∠=︒ 90CAD DAE ∠+∠=︒ ∴BAC DAE ∠=∠在△BAC 和△DAE 中∵AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴()BAC DAE SAS ≌△△;(2)解:∵90CAE ∠=︒,AC=AE∴45E ∠=︒由(1)知BAC DAE ≌△△∴45BCA E ∠=∠=︒∵AF BC ⊥∴90CFA ∠=︒∴45CAF ∠=︒∴4590135FAE FAC CAE ∠=∠+∠=︒+︒=︒;(3)证明:延长BF 到G ,使得FG FB = ∵AF BG ⊥∴90AFG AFB ∠=∠=︒在△AFB 和△AFG 中∴BF GF AFB AFG AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AFB AFG SAS ≌△△∴AB AG = ABF G ∠=∠∵BAC DAE ≌△△∴AB AD = CBA EDA ∠=∠ CB=ED ∴AG AD = ABF CDA ∠=∠∴CGA CDA ∠=∠∵45GCA DCA ∠=∠=︒∴在△CGA 和△CDA 中GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CGA CDA AAS ≌△△∴CG CD =∵22CG CB BF FG CB BF DE BF =++=+=+ ∴2CD BF DE =+.。
中考数学-三角形全等的判定专题训练题
1、如图(1):AD⊥BC,垂足为D,BD=CD。求证:△ABD≌△ACD。
5、如图(5)Leabharlann AB⊥BD,ED⊥BD,AB=CD,BC=DE。 求证:AC⊥CE。
2、如图(2):AC∥EF,AC=EF,AE=BD。 求证:△ABC≌△EDF。
3、如图(3):DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。
(1)求证:AE=CD,(2)若BD=5㎝,求AC的长。
15、如图15△ABC中,AB=2AC,∠BAC=90°,延长BA到D,使AD= AB,延长AC到E,使CE=AC。求证:△ABC≌△AED。
16、如图(16)AD∥BC,AD=BC,AE=CF。求证:(1)DE=DF,(2)AB∥CD。
17、如图:在△ABC中,AD⊥BC于D,AD=BD,CD=DE,E是AD上一点,连结BE并延长交AC于点F。求证:(1)BE=AC,(2)BF⊥AC。
11、如图(11)在△ABC和△DBC中,∠1=∠2,∠3=∠4,P是BC上任一点。求证:PA=PD。
12、如图(12)AB∥CD,OA=OD,点F、D、O、A、E在同一直线上,AE=DF。求证:EB∥CF。
13、如图(13)△ABC≌△EDC。求证:BE=AD。
14、如图(14)在△ABC中,∠ACB=90°,AC=BC,AE是BC的中线,过点C作CF⊥AE于F,过B作BD⊥CB交CF的延长线于点D。
43、如图:AB=FE,BD=EC,AB∥EF。求证:(1)AC=FD,(2)AC∥EF,(3)∠ADC=∠FCD。
44、如图:AD=AE,∠DAB=∠EAC,AM=AN。 求证:AB=AC。
45、如图:AB=AC,BD=CE。求证:OA平分∠BAC。
九年级数学中考专题复习全等三角形练习(有答案)
全等三角形一、单选题1.如图,若△OAD △△OBC ,且△O =65°,△C =20°,则△OAD = ( )A .65°B .75°C .85°D .95°2.在下列四组条件中,能判定△ABC△△A′B′C′的是( )A .AB=A′B′,BC=B′C′,△A=△A′B .△A=△A′,△C=△C′,AC=B′C′C .△A=△B′,△B=△C′,AB=B′C′D .AB=A′B′,BC=B′C′,△ABC 的周长等于△A′B′C′的周长3.到三角形三个顶点距离相等的点是( )A .三角形三条边的垂直平分线的交点B .三角形三条角平分线的交点C .三角形三条高的交点D .三角形三条边的中线的交点4.如图所示的是已知BOA ∠,求作B O A BOA '''∠=∠的作图痕迹,则下列说法正确的是( )A .因为边的长度对角的大小无影响,所以孤CD 的半径长度可以任意选取B .因为边的长度对角的大小无影响,所以弧CD ''的半径长度可以任意选取C .因为边的长度对角的大小无影响,所以弧E F ''的半径长度可以任意选取D .以上三种说法都正确5.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个6.如图,在Rt ABC 中,90A ∠=,ABC ∠的平分线BD 交AC 于点D ,3AD =,10BC =,则BDC 的面积是( )A .10?B .15?C .20D .307.如图,已知AO=OB ,OC=OD ,AD 和BC 相交于点E ,则图中全等三角形有( )对.A.1对B.2对C.3对D.4对8.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带△去B.带△去C.带△去D.带△△去9.如图,点A、D、C、E在同一条直线上,AB△EF,AB=EF,△B=△F,AE=12,AC=8,则CD的长为()A.5.5B.4C.4.5D.310.工人师傅常用角尺平分一个任意角做法如下:如图所示,在△AOB的两边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是△AOB的平分线画法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL11.如图:△ABC是等边三角形,AE=CD,AD,BE相交于点P,BQ△AD于Q,PQ=4,PE=1,则AD的长是()A.9B.8C.7D.612.如图,已知AB=AC,AF=AE,△EAF=△BAC,点C、D、E、F共线.则下列结论,其中正确的是()△△AFB△△AEC;△BF=CE;△△BFC=△EAF;△AB=BC.A.△△△B.△△△C.△△D.△△△△二、填空题13.如图,已知△1=△2,请你添加一个条件使△ABC△△BAD,你的添加条件是_______(填一个即可)。
中考数学总复习《三角形与全等三角形》专项测试卷(带有答案)
中考数学总复习《三角形与全等三角形》专项测试卷(带有答案)时间:45分钟满分:100分学校:___________班级:___________姓名:___________考号:___________ 1.(2023·长沙)下列长度的三条线段,能组成三角形的是( )A.1,3,4 B.2,2,7C.4,5,7 D.3,3,62.(2023·凉山州)如图,点E,点F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是( )第2题图A.∠A=∠D B.∠AFB=∠DECC.AB=DC D.AF=DE3.(2023·济宁)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A,B,C,D,E均在小正方形方格的顶点上,线段AB,CD相交于点F,若∠CFB=α,则∠ABE等于( )第3题图A.180°-α B.180°-2αC.90°+α D.90°+2α4.(2023·巴中)如图,在Rt△ABC中,AB=6 cm,BC=8 cm,点D,E分别为AC,BC中点,连接AE,BD,相交于点F,点G在CD上,且DG∶GC=1∶2,则四边形DFEG的面积为( )第4题图A.2 cm2B.4 cm2C.6 cm2D.8 cm25.(2023·浙江)如图,点P是△ABC的重心,点D是边AC的中点,PE∥AC交BC于点E,DF∥BC交EP于点F.若四边形CDFE的面积为6,则△ABC的面积为( )第5题图A.12 B.14 C.18 D.246.一个三角形的两边长分别是3和3,则第三边长可以是.(只填一个即可) 7.(2023·丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若AB=4,则DC的长是.第7题图8.(2022·南京)在平面直角坐标系中,正方形ABCD如图所示,点A的坐标(-1,0),点D的坐标是(-2,4),则点C的坐标是.第8题图9.(2023·遂宁)如图,以△ABC的边AB,AC为腰分别向外作等腰直角△ABE,△ACD,连接ED,BD,EC,过点A的直线l分别交线段DE,BC于点M,N.以下说法:①当AB=AC=BC时,∠AED=30°②EC=BD ③若AB=3,AC=4,BC=6,则DE=2 3 ④当直线l⊥BC时,点M为线段DE的中点.正确的有.(填序号)第9题图10.(2023·苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A 为圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.第10题图(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.11.(2023·大连)如图,在△ABC和△ADE中,延长BC交DE于点F,BC=DE,AC=AE,∠ACF+∠AED=180°.求证:AB=AD.第11题图12.(2023·聊城)如图,在四边形ABCD中,点E是BC边上一点,且BE=CD,∠B=∠AED=∠C.第12题图(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE=4,求△AED的面积.参考答案1.(2023·长沙)下列长度的三条线段,能组成三角形的是( C)A.1,3,4 B.2,2,7C.4,5,7 D.3,3,62.(2023·凉山州)如图,点E,点F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是( D)第2题图A.∠A=∠D B.∠AFB=∠DECC.AB=DC D.AF=DE3.(2023·济宁)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A,B,C,D,E均在小正方形方格的顶点上,线段AB,CD相交于点F,若∠CFB=α,则∠ABE等于( C)第3题图A.180°-α B.180°-2αC.90°+α D.90°+2α4.(2023·巴中)如图,在Rt△ABC中,AB=6 cm,BC=8 cm,点D,E分别为AC,BC中点,连接AE,BD,相交于点F,点G在CD上,且DG∶GC=1∶2,则四边形DFEG的面积为( B)第4题图A.2 cm2B.4 cm2C.6 cm2D.8 cm25.(2023·浙江)如图,点P是△ABC的重心,点D是边AC的中点,PE∥AC交BC于点E,DF∥BC交EP于点F.若四边形CDFE的面积为6,则△ABC的面积为( C)第5题图A.12 B.14 C.18 D.246.一个三角形的两边长分别是3和3,则第三边长可以是(示例)3.(只填一个即可)7.(2023·丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若AB=4,则DC的长是4.第7题图8.(2022·南京)在平面直角坐标系中,正方形ABCD如图所示,点A的坐标(-1,0),点D的坐标是(-2,4),则点C的坐标是(2,5).第8题图9.(2023·遂宁)如图,以△ABC的边AB,AC为腰分别向外作等腰直角△ABE,△ACD,连接ED,BD,EC,过点A的直线l分别交线段DE,BC于点M,N.以下说法:①当AB=AC=BC时,∠AED=30°②EC=BD ③若AB=3,AC=4,BC=6,则DE=2 3 ④当直线l⊥BC时,点M为线段DE的中点.正确的有①②④.(填序号)第9题图10.(2023·苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A 为圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.第10题图(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.解:(1)证明:∵AD是△ABC的角平分线由作图知,AE =AF. 在△ADE 和△ADF 中 ⎩⎪⎨⎪⎧AE =AF ,∠BAD =∠CAD ,AD =AD ,∴△ADE ≌△ADF(SAS);(2)∵∠BAC =80°,AD 为△ABC 的角平分线 ∴∠EAD =12∠BAC =40°由作图知,AE =AD. ∴∠AED =∠ADE∴∠ADE =12×(180°-40°)=70°∵AB =AC ,AD 为△ABC 的角平分线 ∴AD ⊥BC.∴∠BDE =90°-∠ADE =20°.11.(2023·大连)如图,在△ABC 和△ADE 中,延长BC 交DE 于点F ,BC =DE ,AC =AE ,∠ACF +∠AED=180°.求证:AB =AD.第11题图证明:∵∠ACB +∠ACF =∠ACF +∠AED =180°在△ABC 和△ADE 中 ⎩⎪⎨⎪⎧BC =DE ,∠ACB =∠AED ,AC =AE ,∴△ABC ≌△ADE(SAS) ∴AB =AD.12.(2023·聊城)如图,在四边形ABCD 中,点E 是BC 边上一点,且BE =CD ,∠B =∠AED=∠C.第12题图(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE =4,求△AED 的面积.解:(1)证明:∵∠B =∠AED =∠C ,∠AEC =∠B +∠BAE =∠AED +∠CED ∴∠BAE =∠CED 在△ABE 和△ECD 中 ⎩⎪⎨⎪⎧∠BAE =∠CED ,∠B =∠C ,BE =CD ,∴△ABE ≌△ECD(AAS) ∴AE =ED ∴∠EAD =∠EDA ;(2)∵∠AED =∠C =60°,AE =ED ∴△AED 为等边三角形 ∴AE =AD =ED =4 过A 点作AF ⊥ED 于点F.第12题图∴EF =12ED =2∴AF =AE 2-EF 2=42-22=2 3 ∴S △AED =12ED ·AF =12×4×23=4 3.。
专题18 三角形及全等三角形(40题)(原卷版)--2024年中考数学真题分类汇编
专题18三角形及全等三角形(40题)一、单选题1.(2024·陕西·中考真题)如图,在ABC 中,90BAC ∠=︒,AD 是BC 边上的高,E 是DC 的中点,连接AE ,则图中的直角三角形有()A .2个B .3个C .4个D .5个2.(2024·河北·中考真题)观察图中尺规作图的痕迹,可得线段BD 一定是ABC 的()A .角平分线B .高线C .中位线D .中线3.(2024·黑龙江齐齐哈尔·中考真题)将一个含30︒角的三角尺和直尺如图放置,若150∠=︒,则2∠的度数是()A .30︒B .40︒C .50︒D .60︒4.(2024·四川凉山·中考真题)数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点,A B ,连接AB ,作AB 的垂直平分线CD 交AB 于点D ,交 AB 于点C ,测出40cm 10cm AB CD ==,,则圆形工件的半径为()A .50cmB .35cmC .25cmD .20cm5.(2024·云南·中考真题)已知AF 是等腰ABC 底边BC 上的高,若点F 到直线AB 的距离为3,则点F 到直线AC 的距离为()A .32B .2C .3D .726.(2024·四川凉山·中考真题)如图,在Rt ABC △中,90ACB DE ∠=, 垂直平分AB 交BC 于点D ,若ACD 的周长为50cm ,则AC BC +=()A .25cmB .45cmC .50cmD .55cm7.(2024·四川眉山·中考真题)如图,在ABC 中,6AB AC ==,4BC =,分别以点A ,点B 为圆心,大于12AB 的长为半径作弧,两弧交于点E ,F ,过点E ,F 作直线交AC 于点D ,连接BD ,则BCD △的周长为()A .7B .8C .10D .128.(2024·湖北·中考真题)平面坐标系xOy 中,点A 的坐标为()4,6-,将线段OA 绕点O 顺时针旋转90︒,则点A 的对应点A '的坐标为()A .()4,6B .()6,4C .()4,6--D .()6,4--9.(2024·北京·中考真题)下面是“作一个角使其等于AOB ∠”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD 长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是()A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等10.(2024·广东广州·中考真题)下列图案中,点O 为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是()A .B .C .D .11.(2024·青海·中考真题)如图,OC 平分AOB ∠,点P 在OC 上,PD OB ⊥,2PD =,则点P 到OA 的距离是()A .4B .3C .2D .112.(2024·四川凉山·中考真题)一副直角三角板按如图所示的方式摆放,点E 在AB 的延长线上,当DF AB 时,EDB ∠的度数为()A .10︒B .15︒C .30︒D .45︒13.(2024·天津·中考真题)如图,Rt ABC △中,90,40C B ∠=︒∠=︒,以点A 为圆心,适当长为半径画弧,交AB 于点E ,交AC 于点F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧(所在圆的半径相等)在BAC ∠的内部相交于点P ;画射线AP ,与BC 相交于点D ,则ADC ∠的大小为()A .60B .65C .70D .7514.(2024·四川宜宾·中考真题)如图,在ABC 中,2AB AC ==,以BC 为边作Rt BCD ,BC BD =,点D 与点A 在BC 的两侧,则AD 的最大值为()A .2+B .6+C .5D .815.(2024·山东烟台·中考真题)某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线OP 为AOB ∠的平分线的有()A .1个B .2个C .3个D .4个16.(2024·安徽·中考真题)在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A .ABC AED∠=∠B .BAF EAF ∠=∠C .BCF EDF ∠=∠D .ABD AEC∠=∠17.(2024·浙江·中考真题)如图,正方形ABCD 由四个全等的直角三角形(,,,)ABE BCF CDG DAH △△△△和中间一个小正方形EFGH 组成,连接DE .若4,3AE BE ==,则DE =()A .5B .26C 17D .418.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13二、填空题19.(2024·四川成都·中考真题)如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为.20.(2024·甘肃临夏·中考真题)如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()4,1,点C 的坐标为()3,4,点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,点D 的坐标是.21.(2024·黑龙江牡丹江·中考真题)如图,ABC 中,D 是AB 上一点,CF AB ∥,D 、E 、F 三点共线,请添加一个条件,使得AE CE =.(只添一种情况即可)22.(2024·四川凉山·中考真题)如图,ABC 中,3080BCD ACB CD ∠∠=︒=︒,,是边AB 上的高,AE 是CAB ∠的平分线,则AEB ∠的度数是.23.(2024·江苏连云港·中考真题)如图,直线a b ,直线l a ⊥,1120∠=︒,则2∠=︒.24.(2024·黑龙江绥化·中考真题)如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠=︒.25.(2024·黑龙江绥化·中考真题)如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA 、点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠=.26.(2024·四川广元·中考真题)点F 是正五边形ABCDE 边DE 的中点,连接BF 并延长与CD 延长线交于点G ,则BGC ∠的度数为.27.(2024·湖南·中考真题)如图,在锐角三角形ABC 中,AD 是边BC 上的高,在BA ,BC 上分别截取线段BE ,BF ,使BE BF =;分别以点E ,F 为圆心,大于12EF 的长为半径画弧,在ABC ∠内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN AB ⊥于点N .若2MN =,4AD MD =,则AM =.28.(2024·重庆·中考真题)如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF =.29.(2024·陕西·中考真题)如图,在ABC 中,AB AC =,E 是边AB 上一点,连接CE ,在BC 右侧作BF AC ∥,且BF AE =,连接CF .若13AC =,10BC =,则四边形EBFC 的面积为.30.(2024·黑龙江齐齐哈尔·中考真题)如图,在平面直角坐标系中,以点O 为圆心,适当长为半径画弧,交x 轴正半轴于点M ,交y 轴正半轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第一象限交于点H ,画射线OH ,若()21,1H a a -+,则=a .31.(2024·四川内江·中考真题)如图,在ABC 中,40DCE ∠=︒,AE AC =,BC BD =,则ACB ∠的度数为;三、解答题32.(2024·四川乐山·中考真题)知:如图,AB 平分CAD ∠,AC AD =.求证:C D ∠=∠.33.(2024·四川内江·中考真题)如图,点A 、D 、B 、E 在同一条直线上,AD BE =,AC DF =,BC EF=(1)求证:ABC DEF ≌△△;(2)若55A ∠=︒,45E ∠=︒,求F ∠的度数.34.(2024·江苏盐城·中考真题)已知:如图,点A 、B 、C 、D 在同一条直线上,AE BF ∥,AE BF =.若________,则AB CD =.请从①CE DF ∥;②CE DF =;③E F ∠=∠这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.35.(2024·广西·中考真题)如图,在ABC 中,45A ∠=︒,AC BC >.(1)尺规作图:作线段AB 的垂直平分线l ,分别交AB ,AC 于点D ,E :(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE ,若8AB =,求BE 的长.36.(2024·四川南充·中考真题)如图,在ABC 中,点D 为BC 边的中点,过点B 作BE AC ∥交AD 的延长线于点E .(1)求证:BDE CDA ≌ .(2)若AD BC ⊥,求证:BA BE=37.(2024·云南·中考真题)如图,在ABC 和AED △中,AB AE =,BAE CAD ∠=∠,AC AD =.求证:ABC AED ≌△△.38.(2024·江苏苏州·中考真题)如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.39.(2024·黑龙江绥化·中考真题)已知:ABC .(1)尺规作图:画出ABC 的重心G .(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG ,BG .已知ABG 的面积等于25cm ,则ABC 的面积是______2cm .40.(2024·福建·中考真题)如图,已知直线1l 2l .(1)在12,l l 所在的平面内求作直线l ,使得l 1l 2l ,且l 与1l 间的距离恰好等于l 与2l 间的距离;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若1l 与2l 间的距离为2,点,,A B C 分别在12,,l l l 上,且ABC 为等腰直角三角形,求ABC 的面积.。
(必考题)初中八年级数学上册第十二章《全等三角形》经典测试卷(含答案解析)
一、选择题1.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .64B解析:B【分析】 过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,根据角平分线的性质求出OE =OD =OF =4,根据三角形的面积公式求出即可.【详解】解:过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵点O 为∠ABC 与∠ACB 的平分线的交点,OD ⊥BC 于D ,OD =4,∴OE =OD =4,OF =OD =4,∵AB +AC =16,∴四边形ABOC 的面积S =S △ABO +S △ACO =1122AB OE AC OF ⨯+⨯ =114422AB AC ⨯+⨯ =42×(AB +AC ) =42×16 =32,故选:B .【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质得出OD =OE =OF =3是解此题的关键.2.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠D .PC PE = D解析:D【分析】 根据角平分线的性质定理判断A 选项;证明△OPC ≌△OPD 判断B 选项;根据△OPC ≌△OPD 即可判断C 选项;证明△DPE ≌△CPF 判断D 选项.【详解】∵OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,∴PC=PD ,故A 选项正确;∵∠ODP=∠OCP=90︒,又∵OP=OP ,PC=PD ,∴Rt △OPC ≌Rt △OPD ,∴OC=OD ,故B 选项正确;∵△OPC ≌△OPD ,∴CPO DPO ∠=∠,故C 选项正确;∵∠PDE=∠PCF=90︒,PD=PC ,∠DPE=∠CPF ,∴△DPE ≌△CPF ,∴PE=PF ,∵PF>PC ,∴PE>PC ,故D 选项错误;故选:D .【点睛】此题考查三角形角平分线的性质定理,全等三角形的判定及性质,熟记角平分线的性质定理是解题的关键.3.下列四个命题中,真命题是( )A .如果 ab =0,那么a =0B .面积相等的三角形是全等三角形C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等C【分析】根据有理数的乘法、全等三角形的概念、直角三角形的性质、对顶角的概念判断即可.【详解】解:A 、如果 ab =0,那么a =0或b =0或a 、b 同时为0,本选项说法是假命题,不符合题意;B 、面积相等的三角形不一定全等,本选项说法是假命题,不符合题意;C 、直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D 、不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.4.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ B解析:B【分析】根据角平分线上的点到角的两边距离相等可得点P 到OB 的距离为5,再根据垂线段最短解答.【详解】∵点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,∴点P 到OB 的距离为5,∵点Q 是OB 边上的任意一点,∴PQ≥5.故选:B .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.5.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A .6B .8C .10D .12A【分析】根据两条平行线之间的距离可知当CD ⊥OM 时,CD 取最小值,先利用角平分线的性质得出AD =AE =3,利用全等三角形的判定和性质得出AC =AD =AE =3,进而解答即可.【详解】解:由题意得,当CD ⊥OM 时,CD 取最小值,∵OB 平分∠MON ,AE ⊥ON 于点E ,CD ⊥OM ,∴AD =AE =3,∵BC ∥OM ,∴∠DOA =∠B ,∵A 为OB 中点,∴AB =AO ,在△ADO 与△ABC 中B DOA AB AO BAC DAO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADO ≌△ABC (SAS ),∴AC =AD =3,∴336CD AC AD =+=+=,故选A .【点睛】此题考查角平分线的性质、全等三角形的判定和性质、平行线之间的距离,关键是利用全等三角形的判定和性质得出AC =AD =AE =3.6.根据下列已知条件,能画出唯一的△ABC 的是( )A .AB =3,BC =4,∠C =40°B .∠A =60°,∠B =45°,AB =4C .∠C =90°,AB =6D .AB =4,BC =3,∠A =30°B解析:B【分析】根据全等三角形的判定方法对各选项进行判断.【详解】解:A 、根据AB =3,BC =4,∠C =40°,不能画出唯一三角形,故本选项不合题意; B 、∠A =60°,AB =4,∠B =45°,能画出唯一△ABC ,故此选项符合题意;C 、∠C =90°,AB =6,不能画出唯一三角形,故本选项不合题意;D 、AB =4,BC =3,∠A =30°,不能画出唯一三角形,故本选项不合题意;故选:B .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键.7.如图,点C ,D 在线段AB 上,AC DB =,AE //BF ,添加以下哪一个条件仍不能判定△AED ≌△BFC ( )A .ED CF =B .AE BF =C .E F ∠=∠D .ED //CF A解析:A【分析】欲使△AED ≌△BFC ,已知AC=DB ,AE ∥BF ,可证明全等三角形判定定理AAS 、SAS 、ASA 添加条件,逐一证明即可;【详解】∵ AC=BD ,∴ AD=CE ,∵ AE ∥BF ,∴ ∠A=∠E ,A 、如添加ED=CF ,不能证明△AED ≌△BFC ,故该选项符合题意;B 、如添加AE=BF ,根据SAS ,能证明△AED ≌△BFC ,故该选项不符合题意;C 、如添加∠E=∠F ,利用AAS 即可证明△AED ≌△BFC ,故该选项不符合题意; D 、如添加ED ∥CF ,得出∠EDC=∠FCE ,利用ASA 即可证明△AED ≌△BFC ,故该选项不符合题意;故选:A .【点睛】本题考查了全等三角形的判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理;8.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒D 解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】解:A ,AB BC CA +=,不满足三边关系,不能画出三角形,故选项错误; B ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D ,可以利用直角三角形全等判定定理HL 证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.9.如图,在下列条件中,不能判断△ABD ≌△BAC 的条件是( )A .∠D=∠C , ∠BAD=∠ABCB .BD=AC , ∠BAD=∠ABC C .∠BAD=∠ABC , ∠BAD=∠ABCD .AD=BC ,BD=AC B解析:B【分析】 本题已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,则所加角必须是所加边和公共边的夹角对应相等才能判定两个三角形全等;【详解】A 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;B 、符合SSA ,∠BAD 和∠ABC 不是两条边的夹角,不能判断两个三角形全等,故该选项符合题意;C 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;D 、符合SSS ,能判断两个三角形全等,故该选项不符合题意;故选:B .【点睛】本题考查了全等三角形的判定方法,三角形判定定理中,最容易出错的是“边角边”定理,这里强调的是夹角,不是任意角;10.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠ D解析:D【分析】 根据HL 定理分别证明Rt △ABC ≌Rt △ADE 和Rt △AEO ≌Rt △ACO ,根据全等三角形的性质可判断各选项.【详解】解:解:∵90,,ACB AED AB AD AC AE ∠=∠===,∴Rt △ABC ≌Rt △ADE (HL )∴BC DE =,∠BAC=∠DAE ,故A 选项正确;∴∠BAC-∠EAC=∠DAE-∠EAC ,即BAE DAC ∠=∠,故B 选项正确;连接AO ,∵AE=AC ,AO=AO ,∴Rt △AEO ≌Rt △ACO (HL ),∴OC OE =,故C 选项正确;无法得出EAC ABC ∠=∠,故D 选项错误;故选:D .【点睛】本题全等三角形的性质与判断.掌握证明直角三角形全等的HL 定理是解题关键.二、填空题11.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =12,BC =18,CD =8,则四边形ABCD 的面积是____.【分析】过点D 作DE ⊥BA 的延长线于点E 利用角平分线的性质可得出DE =DC =8再利用三角形的面积公式结合S 四边形ABCD =S △ABD +S △BCD 可求出四边形ABCD 的面积【详解】解:过点D 作DE ⊥B 解析:120【分析】过点D 作DE ⊥BA 的延长线于点E ,利用角平分线的性质可得出DE =DC =8,再利用三角形的面积公式结合S 四边形ABCD =S △ABD +S △BCD ,可求出四边形ABCD 的面积.【详解】解:过点D 作DE ⊥BA 的延长线于点E ,如图所示.又∵BD 平分∠ABC ,∠BCD =90°,∴DE =DC =8,∴S 四边形ABCD =S △ABD +S △BCD , =12AB•DE +12BC•CD , =12×12×8+12×18×8, =120.故答案为:120.【点睛】本题考查了角平分线的性质以及三角形的面积,利用角平分线的性质,找出DE =8是解题的关键.12.如图,已知四边形,90,3,4,5,ABCD B AB BC AC ︒∠====180BAD CAD ︒∠+∠=,180BCD ACD ︒∠+∠=,则四边形ABCD 的面积是_________.21【分析】如图作DHBA 交BA 的延长线于H 作DFBC的延长线于F 作DEAC 于E 首先证明利用面积法求出DE 即可解决问题【详解】解:作DHBA 交BA 的延长线于H 作DFBC 的延长线于F 作DEAC 于E 设则 解析:21【分析】如图,作DH ⊥BA 交BA 的延长线于H ,作DF ⊥BC 的延长线于F ,作DE ⊥AC 于E ,首先证明DH DE DF ==,利用面积法求出DE ,即可解决问题.【详解】解:作DH ⊥BA 交BA 的延长线于H ,作DF ⊥BC 的延长线于F ,作DE ⊥AC 于E ,180,180BAD CAD BAD DAH ∠+∠=︒∠+∠=︒,CAD DAH ∴∠=∠,180,180BCD ACD BCD DCF ∠+∠=︒∠+∠=︒,ACD DCF ∴∠=∠,,,DH BH DE AC DF BF ⊥⊥⊥,DH DE DF ∴==,设DH DE DF x ===, 则有:11112222AB DH BC DF AB BC AC DE ⋅⋅+⋅⋅=⋅⋅+⋅⋅, ∴34125x x x +=+,6x ∴=,∴S 四边形ABCD=11113456212222AB CB AC DE ⋅+⋅=⨯⨯+⨯⨯=. 故答案为:21.【点睛】本题考查了角平分线的性质、三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.13.如图,ABC 中,D 是AB 上的一点,DF 交AC 于点E ,AE CE =,//CF AB ,若四边形DBCF 的面积是26cm ,则ABC 的面积为______2cm . 6【分析】根据CF ∥AB 得到∠DAE=∠FCE 结合AE=CE ∠AED=∠FEC 可得△AED ≌△CEF 根据即可得出结果【详解】解:∵CF ∥AB ∴∠DAE=∠FCE 又∵AE=CE ∠AED=∠FEC ∴△A解析:6【分析】根据CF ∥AB ,得到∠DAE=∠FCE ,结合AE=CE ,∠AED=∠FEC ,可得△AED ≌△CEF ,AED CEF S S =,根据 ABC AED CEF DBCE DBCE DBCF S S S S S S =+=+=四边形四边形四边形,即可得出结果.【详解】解:∵CF ∥AB ,∴∠DAE=∠FCE ,又∵AE=CE ,∠AED=∠FEC ,∴△AED ≌△CEF ,∴AED CEF SS =, ∴26ABC AED CEF DBCE DBCE DBCF S S S S S S cm =+=+==四边形四边形四边形,故答案为:6.【点睛】本题考查全等三角形的判定与性质,解题的关键是证得△AED ≌△CEF .14.如图,ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB =10cm ,则DEB 的周长是_____cm .10【分析】由已知利用角的平分线上的点到角的两边的距离相等可得到DE =CDAC =AE 加上BC =AC 三角形的周长为BE+BD+DE =BE+CB =AE+BE 于是周长可得【详解】解:∵AD 平分∠BAC 交B解析:10【分析】由已知利用角的平分线上的点到角的两边的距离相等可得到DE =CD ,AC =AE ,加上BC =AC ,三角形的周长为BE+BD+DE =BE+CB =AE+BE ,于是周长可得.【详解】解:∵AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,∠C =90°,∴CD =DE ,∵AD=AD ,∴ACD AED ≅,∴AC=AE ,又∵AC =BC , ∴△DEB 的周长=DB+DE+BE =AC+BE =AB =10.故填:10.【点睛】本题主要考查角平分线的性质以及全等三角形的证明,解题的关键是理解并掌握角平分线的性质以及全等三角形的证明方法.15.如图,在Rt ABC △中,90C ∠=︒,10AC =,5BC =,线段PQ AB =,P ,Q 两点分别在线段AC 和过点A 且垂直于AC 的射线AD 上运动,当AQ =______时,ABC 和PQA △全等.5或10【分析】分两种情况:当AQ=5时当AQ=10时利用全等三角形的判定及性质定理得到结论【详解】分两种情况:当AQ=5时∵∴AQ=BC ∵AD ⊥AC ∴∠QAP=∠ACB=∵AB=PQ ∴≌△PQA (解析:5或10【分析】分两种情况:当AQ=5时,当AQ=10时,利用全等三角形的判定及性质定理得到结论.【详解】分两种情况:当AQ=5时,∵5BC =,∴AQ=BC ,∵AD ⊥AC ,∴∠QAP=∠ACB=90︒,∵AB=PQ ,∴ABC ≌△PQA (HL );当AQ=10时,∵10AC =,∴AQ=AC ,∵AD ⊥AC ,∴∠QAP=∠ACB=90︒,∵AB=PQ ,∴△ABC ≌△QPA ,故答案为:5或10.【点睛】 此题考查全等三角形的判定及性质定理,运用分类思想,动点问题,熟记三角形的判定定理及性质定理是解题的关键.16.如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且5PD =,点M 是射线OC 上一动点,则PM 的最小值为__.5【分析】根据角平分线的性质及垂线段最短解答【详解】根据垂线段最短可知:当PM ⊥OC 时PM 最小∵OP 平分PD=5∴PM=PD=5故答案为:5【点睛】此题考查角平分线的性质垂线段最短掌握点到直线的所有 解析:5【分析】根据角平分线的性质及垂线段最短解答.【详解】根据垂线段最短可知:当PM ⊥OC 时,PM 最小,∵OP 平分AOC ∠,PD OA ⊥,PD=5,∴PM=PD=5,故答案为:5.【点睛】此题考查角平分线的性质,垂线段最短,掌握点到直线的所有连线中垂线段最短是解题的关键.17.已知70COB ∠=,30AOB ∠=,OD 平分AOC ∠,则BOD ∠=_________20°或50°【分析】根据题意分两种情况进行讨论然后根据角平分线的性质计算解决即可【详解】解:①如图∵∠BOC=70°∴∠AOC=100°∵OD 平分∠AOC ∴∠AOD=∠AOC=50°∠AOD-=2解析:20°或50°【分析】根据题意,分两种情况进行讨论,然后根据角平分线的性质计算解决即可.【详解】解:①如图∵30AOB ∠=︒,∠BOC=70°,∴∠AOC=100°,∵OD平分∠AOC∠AOC=50°,∴∠AOD=12∠=20°;BOD∠=∠AOD-AOB②如图,∵30AOB∠=︒,∠BOC=70°,∴∠AOC=40°,∵OD平分∠AOC∠AOC=20°,∴∠AOD=12∠=50°;∠=∠AOD+AOBBOD故答案为:20°或50°【点睛】本题考查了角平分线的性质,解决本题的关键是正确理解题意,熟练掌握角平分线的性质,能够由角平分线得出相等的角,在解决问题时注意要分类讨论.△的面积是18.如图,ABC中,∠C=90°,AD平分∠BAC, AB=5,CD=2,则ABD______5【分析】根据角平分线的性质求出DE根据三角形的面积公式计算即可;【详解】如图:作DE⊥AB于点E∵AD平分∠BAC∠C=90°DE⊥AB∴DE=DC=2∵AB=5∴△ABD的面积=×AB×DE=5解析:5【分析】根据角平分线的性质求出DE,根据三角形的面积公式计算即可;【详解】如图:作DE⊥AB于点E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=2,∵AB=5∴△ABD的面积=1×AB×DE=5,2故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键; 19.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,交BC 边于点D ,若12AB =,4CD =,则ABD △ 的面积为__________.24【分析】过D 作DE ⊥AB 垂足为E 根据角平分线定理可得DE=CD=4然后根据三角形的面积公式计算即可【详解】解:如图:过D 作DE ⊥AB 垂足为E ∵AD 平分交BC 边于点D ∴DE=CD=4∴的面积为AB解析:24【分析】过D 作DE ⊥AB 垂足为E ,根据角平分线定理可得DE=CD=4,然后根据三角形的面积公式计算即可.【详解】解:如图:过D 作DE ⊥AB 垂足为E ,∵90C ∠=︒,AD 平分BAC ∠,交BC 边于点D ,∴DE=CD=4,∴ABD △ 的面积为12AB·DE=12×12×4=24. 故答案为:24.【点睛】本题主要考查了角平分线的性质定理,正确作出辅助线、构造角平分线定理所需条件成为解答本题的关键.20.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,点D 在线段BE 上.若125∠=︒,230∠=︒,则3∠=______.55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案【详解】∵∴∠1+∠CAD=∠CAE+∠CAD ∴∠1解析:55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等,求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案.【详解】∵BAC DAE ∠=∠,∴∠1+∠CAD=∠CAE+∠CAD ,∴∠1=∠CAE ;在△ABD 与△ACE 中,1AD AE CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );∴∠2=∠ABE ;∵∠3=∠ABE+∠1=∠1+∠2,∠1=25°,∠2=30°,∴∠3=55°.故答案为:55°.【点睛】本题考查了全等三角形的判定及性质,三角形的外角性质;将所求的角与已知角通过全等及内角、外角之间的关系联系起来是解答此题的关键.三、解答题21.如图,已知在ABC 中,AB AC =,90BAC ∠=︒,别过B 、C 两点向过A 的直线作垂线,垂足分别为E 、F .求证:EF BE CF =+.解析:见解析【分析】证明△BEA ≌△AFC ,得到AE=CF ,BE=AF ,即可得到结论.【详解】证明:BE EA ⊥,CF AF ⊥,90BAC BEA AFC ∴∠=∠=∠=︒,90EAB CAF ∴∠+∠=︒,90EBA EAB ∠+∠=︒,CAF EBA ∴∠=∠,在ABE △和AFC △中,BEA AFC EBA CAF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BEA AFC ∴△≌△.AE CF ∴=,BE AF =.EF AF AE BE CF ∴=+=+..【点睛】此题考查全等三角形的判定及性质,熟记三角形的判定定理是解题的关键.22.如图,△ABC 中,AB=AC ,∠BAC=90°,CD 平分∠ACB ,BE ⊥CD ,垂足E 在CD 的延长线上.求证:CD=2BE .解析:见解析【分析】根据等角的余角相等求出∠ACD=∠ABF ,再利用“角边角”证明△AFB ≌△ADC 可得CD=BF ,利用“角边角”证明△BCE 和△FCE 全等,根据全等三角形对应边相等BE=EF ,整理即可得证.【详解】证明:∵BE ⊥CD ,∠BAC=90°,∴∠ACD+∠F=180°-90°=90°,∠ABF+∠F=180°-90°=90°,∴∠ACD=∠ABF ,在△AFB 和△ADC 中,90ACD ABF AB ACCAD BAF ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△AFB ≌△ADC (ASA );∴CD=BF ,∵CD 平分∠ACB ,∴∠BCE=∠FCE ,在△BCE 和△FCE 中,90BCE FCE CE CEBEC FEC ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△BCE ≌△FCE (ASA ),∴BE=EF ,∴BF=2BE∴CD=2BE .【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的证明方法并准确识图是解题的关键.23.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.解析:(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB ACBAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.24.如图,在四边形ABCD 中,//AD BC ,E 为AC 的中点,连接DE 并延长,交BC 于点F .(1)求证:DE EF =.(2)若12AD =,:2:3BF CF =,求BC 的长.解析:(1)见解析;(2)20【分析】(1)根据平行线的性质可得:EAD ECF ∠=∠,EDA EFC ∠=∠,继而根据全等三角形的判定证得()ADE CFE AAS ≅△△,继而即可求证结论;(2)由全等三角形的性质可得:12AD CF ==,求得8BF =,继而即可求解.【详解】(1)证明:∵//AD BC ,∴EAD ECF ∠=∠,EDA EFC ∠=∠.∵E 为AC 的中点,∴AE CE =.在ADE 和CFE 中,,,,EAD ECF EDA EFC AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()ADE CFE AAS ≅△△.∴DE EF =.(2)解:∵ADE CFE ≅,∴12AD CF ==.∵:2:3BF CF =,∴8BF =,∴81220BC BF CF =+=+=.【点睛】 本题考查全等三角形的判定和性质,平行线的性质,解题的关键是熟练掌握全等三角形的判定方法和性质.25.如图,点E ,F 在BC 上,A D ∠=∠,AF DE =,AFC DEB ∠=∠.求证:BE CF =.解析:见详解【分析】先证明∠AFB=∠DEC ,再根据ASA 证明∆AFB ≅∆DEC ,进而即可得到结论. 【详解】∵AFC DEB ∠=∠,∴∠AFB=∠DEC ,又∵A D ∠=∠,AF DE =,∴∆AFB ≅∆DEC (ASA ),∴BF=CE ,∴BF-EF= CE-EF ,∴BE CF =.【点睛】本题主要考查三角形全等的判定和性质定理,熟练掌握ASA 证明三角形全等,是解题的关键.26.如图,在△ABC 中,AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,D 是BC 的中点,证明:∠B =∠C .解析:见解析【分析】通过角平分线上点的性质、D 为BC 中点、DE ⊥AB 、DF ⊥AC 证明出BDE CDF ≌,从而证明∠B =∠C .【详解】∵AD 是AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∵D 是BC 的中点,∴BD =CD∵△BDE 与△CDF 是直角三角形∴BDE CDF ≌∴∠B =∠C .【点睛】 本题考查了全等三角形的判定和性质以及角平分线上点的性质,正确证明全等三角形并得出各角之间的关系是本题的关键.27.已知:直线EF 分别与直线AB ,CD 相交于点G ,H ,并且180AGE DHE ∠+∠=︒(1)如图1,求证://AB CD ;(2)如图2,点M 在直线AB ,CD 之间,连接GM ,HM ,求证:M AGM CHM ∠=∠+∠;(3)如图3,在(2)的条件下,射线GH 是BGM ∠的平分线,在MH 的延长线上取点N ,连接GN ,若N AGM ∠=∠,12M N FGN ∠=∠+∠,求MHG ∠的度数. 解析:(1)见解析;(2)见解析;(3)60°【分析】(1)推出同旁内角互补即可(2)如图,过点M 作//MR AB ,利用平行线性质推出////AB CD MR .得GMR AGM ∠=∠,HMR CHM ∠=∠.利用角的和M GMR HMR ∠=∠+∠代换即可.(3)如图,令2AGM α∠=,CHM β∠=,由N AGM ∠=∠推得2N α∠=,2M αβ∠=+,由射线GH 是BGM ∠的平分线,推得1902FGM BGM α∠=∠=︒-, 则90AGH AGM FGM α∠=∠+∠=︒+,由12M N FGN ∠=∠+∠,求出2FGN β∠=,过点N 作//HT GN ,由平行线的性质22GHM MHT GHT αβ∠=∠+∠=+,求出∠CHG 23αβ=+,利用//AB CD 的性质180AGH CHG ∠+∠=︒,即9023180ααβ︒+++=︒,求出30αβ+=︒,再求()260MHG αβ∠=+=︒即可.【详解】(1)证明:如图,∵180AGE DHE ∠+∠=︒,AGE BGF ∠=∠.∴180BGF DHE ∠+∠=︒,∴//AB CD .(2)证明:如图,过点M 作//MR AB ,又∵//AB CD ,∴////AB CD MR .∴GMR AGM ∠=∠,HMR CHM ∠=∠.∴M GMR HMR AGM CHM ∠=∠+∠=∠+∠;(3)解:如图,令2AGM α∠=,CHM β∠=,∵N AGM ∠=∠则2N α∠=,2M αβ∠=+,∵射线GH 是BGM ∠的平分线, ∴()111809022FGM BGM AGM α∠=∠=︒-∠=︒-, ∴29090AGH AGM FGM ααα∠=∠+∠=+︒-=︒+, ∵12M N FGN ∠=∠+∠, ∴1222FGN αβα+=+∠, ∴2FGN β∠=,过点N 作//HT GN ,则2MHT N α∠=∠=,2GHT FGN β∠=∠=,∴22GHM MHT GHT αβ∠=∠+∠=+,∴CHG CHM MHT GHT ∠=∠+∠+∠2223βαβαβ=++=+,∵//AB CD ,∴180AGH CHG ∠+∠=︒,∴9023180ααβ︒+++=︒,∴30αβ+=︒,∴()260MHG αβ∠=+=︒.【点睛】本题主要考查平行线的性质, 角平分线的定义,解决问题的关键是作平行线构造内错角,和同位角,利用两直线平行,内错角相等,同位角相等来计算是解题关键.28.命题:有两个内角相等的三角形必有两条高线相等,写出它的逆命题,并判断逆命题的真假,若是真命题,给出证明;若是假命题,请举反例.解析:逆命题是有两条高线相等的三角形必有两个内角相等,是真命题;证明见解析.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可得到原命题的逆命题,再得出命题的正确性.【详解】解:有两个内角相等的三角形必有两条高线相等的逆命题是有两条高线相等的三角形必有两个内角相等,是真命题;在Rt BCE 与Rt CBD △中,BD CE BC CB =⎧⎨=⎩∴()Rt BCE Rt CBD HL ≌,∴DCB EBC ∠=∠.【点睛】此题主要考查了命题与定理的证明,根据逆命题的概念来回答:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,进而利用全等三角形的证明方法求出即可.。
全等三角形(优选真题60道):三年(2021-2023)中考数学真题分项汇编(全国通用)(解析版)
三年(2021-2023)中考数学真题分项汇编(全国通用)全等三角形(优选真题60道)一.选择题(共14小题)1.(2023•凉山州)如图,点E、点F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是()A.∠A=∠D B.∠AFB=∠DEC C.AB=DC D.AF=DE【分析】根据BE=CF求出BF=CE,再根据全等三角形的判定定理进行分析即可.【解答】解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∴当∠A=∠D时,利用AAS可得△ABF≌△DCE,故A不符合题意;当∠AFB=∠DEC时,利用ASA可得△ABF≌△DCE,故B不符合题意;当AB=DC时,利用SAS可得△≌△DCE,故C不符合题意;当AF=DE时,无法证明△ABF≌△DCE,故D符合题意;故选:D.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL等.2.(2023•长春)如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA'、BB'的中点,只要量出A'B'的长度,就可以知道该零件内径AB的长度.依据的数学基本事实是()A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C .两条直线被一组平行线所截,所得的对应线段成比例D .两点之间线段最短【分析】根据点O 为AA '、BB '的中点得出OA =OA ',OB =OB ',根据对顶角相等得到∠AOB =∠A 'OB ',从而证得△AOB 和△A 'OB '全等,于是有AB =A 'B ',问题得证.【解答】解:∵点O 为AA '、BB '的中点,∴OA =OA ',OB =OB ',由对顶角相等得∠AOB =∠A 'OB ',在△AOB 和△A 'OB '中,{OA =OA′∠AOB =∠A′OB′OB =OB′,∴△AOB ≌△A 'OB '(SAS ),∴AB =A 'B ',即只要量出A 'B '的长度,就可以知道该零件内径AB 的长度,故选:A .【点评】本题考查了三角形全等的判定与性质,正确运用三角形全等的判定定理是解题的关键.3.(2022•成都)如图,在△ABC 和△DEF 中,点A ,E ,B ,D 在同一直线上,AC ∥DF ,AC =DF ,只添加一个条件,能判定△ABC ≌△DEF 的是( )A .BC =DEB .AE =DBC .∠A =∠DEFD .∠ABC =∠D【分析】先根据平行线的性质得到∠A =∠D ,加上AC =DF ,则可根据全等三角形的判定方法对各选项进行判断.【解答】解:∵AC ∥DF ,∴∠A =∠D ,∵AC =DF ,∴当添加∠C =∠F 时,可根据“ASA ”判定△ABC ≌△DEF ;当添加∠ABC=∠DEF时,可根据“AAS”判定△ABC≌△DEF;当添加AB=DE时,即AE=BD,可根据“SAS”判定△ABC≌△DEF.故选:B.【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键,选用哪一种方法,取决于题目中的已知条件.4.(2022•云南)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F 与O点都不重合,连接ED、EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE【分析】由OB平分∠AOC,得∠DOE=∠FOE,由OE=OE,可知∠ODE=∠OFE,即可根据AAS得△DOE≌△FOE,可得答案.【解答】解:∵OB平分∠∴∠DOE=∠FOE,又OE=OE,若∠ODE=∠OFE,则根据AAS可得△DOE≌△FOE,故选项D符合题意,而增加OD=OE不能得到△DOE≌△FOE,故选项A不符合题意,增加OE=OF不能得到△DOE≌△FOE,故选项B不符合题意,增加∠ODE=∠OED不能得到△DOE≌△FOE,故选项C不符合题意,故选:D.【点评】本题考查全等三角形的判定,解题的关键是掌握全等三角形判定定理并会应用.5.(2022•金华)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO 的依据是()A .SSSB .SASC .AASD .HL【分析】根据题目中的条件和全等三角形的判定方法,可以得到判定△ABO ≌△DCO 的依据.【解答】解:在△AOB 和△DOC 中,{OA =OD∠AOB =∠DOC OB =OC,∴△AOB ≌△DOC (SAS ),故选:B .【点评】本题考查全等三角形的判定,解答本题的关键是明确题意,写出△AOB 和△DOC 全等的证明过程.6.(2022•扬州)如图,小明家仿古家具的一块三角形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC ,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是( )A .AB ,BC ,CA B .AB ,BC ,∠B C .AB ,AC ,∠BD .∠A ,∠B ,BC【分析】直接利用全等三角形的判定方法分析得出答案.【解答】解:A .利用三角形三边对应相等,两三角形全等,三角形形状确定,故此选项不合题意;B .利用三角形两边、且夹角对应相等,两三角形全等,三角形形状确定,故此选项不合题意;C .AB ,AC ,∠B ,无法确定三角形的形状,故此选项符合题意;D .根据∠A ,∠B ,BC ,三角形形状确定,故此选项不合题意;故选:C .【点评】此题主要考查了全等三角形的应用,正确掌握全等三角形的判定方法是解题关键.7.(2022•湘西州)如图,在Rt △ABC 中,∠A =90°,M 为BC 的中点,H 为AB 上一点,过点C 作CG ∥AB ,交HM 的延长线于点G ,若AC =8,AB =6,则四边形ACGH 周长的最小值是( )A .24B .22C .20D .18【分析】通过证明△BMH ≌△CMG 可得BH =CG ,可得四边形ACGH 的周长即为AB +AC +GH ,进而可确定当MH ⊥AB 时,四边形ACGH 的周长有最小值,通过证明四边形ACGH 为矩形可得HG 的长,进而可求解.【解答】解:∵CG ∥AB ,∴∠B =∠MCG ,∵M 是BC 的中点,∴BM =CM ,在△BMH 和△CMG 中,{∠B =∠MCGBM =CM ∠BMH =∠CMG,∴△BMH ≌△CMG (ASA ),∴HM =GM ,BH =CG ,∵AB =6,AC =8,∴四边形ACGH 的周长=AC +CG +AH +GH =AB +AC +GH =14+GH ,∴当GH 最小时,即MH ⊥AB 时四边形ACGH 的周长有最小值,∵∠A =90°,MH ⊥AB ,∴GH ∥AC ,∴四边形ACGH 为矩形,∴GH =8,∴四边形ACGH 的周长最小值为14+8=22,故选:B .【点评】本题主要考查全等三角形的判定与性质,确定GH 的值是解题的关键.8.(2021•攀枝花)如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带()去最省事.A.①B.②C.③D.①③【分析】根据全等三角形的判定方法结合图形判断出带③去.【解答】解:由图形可知,③有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形,所以,最省事的做法是带③去.故选:C.【点评】本题考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题的关键.9.(2021•重庆)如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB 全等的是()A.∠ABC=∠DCB B.AB=DC C.AC=DB D.∠A=∠D【分析】根据证明三角形全等的条件AAS,SAS,ASA,SSS逐一验证选项即可.【解答】解:在△ABC和△DCB中,∵∠ACB=∠DBC,BC=BC,A:当∠ABC=∠DCB时,△ABC≌△DCB(ASA),故A能证明;B:当AB=DC时,不能证明两三角形全等,故B不能证明;C:当AC=DB时,△ABC≌△DCB(SAS),故C能证明;D:当∠A=∠D时,△ABC≌△DCB(AAS),故D能证明;故选:B.【点评】本题主要考查三角形全等的判定,熟练掌握三角形全等的判定是解题的关键.10.(2021•重庆)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD【分析】根据全等三角形的判定方法,可以判断添加各个选项中的条件是否能够判断△ABC≌△DEF,本题得以解决.【解答】解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,又∵∠B=∠E,∴当添加条件AB=DE时,△ABC≌△DEF(SAS),故选项A不符合题意;当添加条件∠A=∠D时,△ABC≌△DEF(AAS),故选项B不符合题意;当添加条件AC=DF ABC≌△DEF,故选项C符合题意;当添加条件AC∥FD时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故选项D不符合题意;故选:C.【点评】本题考查全等三角形的判定,解答本题的关键是明确全等三角形的判定方法,利用数形结合的思想解答.11.(2021•盐城)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别截取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M 的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是()A.SAS B.ASA C.AAS D.SSS【分析】根据全等三角形的判定定理SSS 推出△COM ≌△DOM ,根据全等三角形的性质得出∠COM =∠DOM ,根据角平分线的定义得出答案即可.【解答】解:在△COM 和△DOM 中{OC =ODOM =OM MC =MD,所以△COM ≌△DOM (SSS ),所以∠COM =∠DOM ,即OM 是∠AOB 的平分线,故选:D .【点评】本题考查了全等三角形的判定定理和性质定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL ,全等三角形的对应角相等.12.(2021•青海)如图,在四边形ABCD 中,∠A =90°,AD =3,BC =5,对角线BD 平分∠ABC ,则△BCD 的面积为( )A .8B .7.5C .15D .无法确定【分析】过D 点作DE ⊥BC 于E ,如图,根据角平分线的性质得到DE =DA =3,然后根据三角形面积公式计算.【解答】解:过D 点作DE ⊥BC 于E ,如图,∵BD 平分∠ABC ,DE ⊥BC ,DA ⊥AB ,∴DE =DA =3,∴△BCD 的面积=12×5×3=7.5.故选:B .【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.13.(2021•哈尔滨)如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.30°B.25°C.35°D.65°【分析】由全等三角形的性质可求得∠ACD=65°,由垂直可得∠CAF+∠ACD=90°,进而可求解∠CAF 的度数.【解答】解:∵△ABC≌△DEC,∴∠ACB=∠DCE,∵∠BCE=65°,∴∠ACD=∠BCE=65°,∵AF⊥CD,∴∠AFC=90°,∴∠CAF+∠ACD=90°,∴∠CAF=90°﹣65°=25°,故选:B.【点评】本题主要考查全等三角形的性质,由全等三角形的性质求解∠ACD的度数是解题的关键.14.(2021•台湾)已知△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,且E点在AC上,B、F、C、D四点共线,如图所示.若∠A=40°,∠CED=35°,则下列叙述何者正确?()A.EF=EC,AE=FC B.EF=EC,AE≠FCC.EF≠EC,AE=FC D.EF≠EC,AE≠FC【分析】由△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,可得∠A=∠D=40°,AC=DF,∠ACB=∠DFE,可得EF=EC;∠CED=35°,∠D=40°可得∠D>∠CED,由大角对大边可得CE >CD;利用AC=DF,可得AC﹣CE<DF﹣CD,即AE<FC,由上可得正确选项.【解答】解:∵△ABC≌△DEF,∴∠A=∠D=40°,AC=DF,∠ACB=∠DFE,∵∠ACB=∠DFE,∴EF=EC.∵∠CED=35°,∠D=40°,∴∠D>∠CED.∴CE>CD.∵AC=DF,∴AC﹣CE<DF﹣CD,即AE<FC.∴AE≠FC.∴EF=EC,AE≠FC.故选:B.【点评】本题主要考查了全等三角形的性质.利用全等三角形对应角相等,对应边相等是解题的关键.二.填空题(共16小题)15.(2023•成都)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为.【分析】根据全等三角形的对应边相等得到EF=BC=8,计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=8,∴EF=8,∵EC=5,∵CF=EF﹣EC=8﹣5=3.故答案为:3.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.16.(2022•黑龙江)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=.【分析】过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB=√AC2+BC2=√62+82=10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=12AC•CD+12AB•DE=12AC•BC,即12×6•CD+12×10•CD=12×6×8,解得CD=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.17.(2022•株洲)如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON ⊥BC于点N,若OM=ON,则∠ABO=度.【分析】方法一:根据OM⊥AB,ON⊥BC,可知∠OMB=∠ONB=90°,从而可证Rt△OMB≌Rt△ONB (HL),根据全等三角形的性质可得∠OBM=∠OBN,即可求出∠ABO的度数.方法二:根据角平分线的判定定理求解即可.【解答】解:方法一:∵OM⊥,ON⊥BC,∴∠OMB=∠ONB=90°,在Rt△OMB和Rt△ONB中,{OM=ON,OB=OB∴Rt△OMB≌Rt△ONB(HL),∴∠OBM=∠OBN,∵∠ABC=30°,∴∠ABO=15°.方法二:∵OM⊥AB,ON⊥BC,又∵OM=ON,∴OB平分∠ABC,∴∠OBM=∠OBN,∵∠ABC=30°,∴∠ABO=15°.故答案为:15.【点评】本题考查了全等三角形的判定和性质,熟练掌握判定直角三角形全等特有的方法(HL)是解题的关键.18.(2022•牡丹江)如图,CA=CD,∠ACD=∠BCE,请添加一个条件,使△ABC≌△DEC.【分析】根据等式的性质可得∠DCE=∠ACB,然后再利用全等三角形的判定方法SAS,ASA或AAS即可解答.【解答】解:∵∠ACD=∠BCE,∴∠ACD+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵CA=CD,CB=CE,∴△ABC≌△DEC(SAS),故答案为:CB=CE.【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.19.(2022•南通)如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,要使△ABC≌△DEF,只需添加一个条件,则这个条件可以是.【分析】根据平行线的性质可得∠B=∠E,∠ACB=∠DFE,然后再利用全等三角形的判定方法即可解答.【解答】解:∵AB∥ED,∴∠B=∠E,∵AC∥DF,∴∠ACB=∠DFE,∵AB=DE,∴△ABC≌△DEF(AAS),故答案为:AB=DE(答案不唯一).【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.20.(2022•北京)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S△ACD=.【分析】过D点作DH⊥AC于H,如图,根据角平分线的性质得到DE=DH=1,然后根据三角形面积公式计算.【解答】解:过D点作DH⊥AC于H,如图,∵AD平分∠BAC,DE⊥AB,DH⊥AC,∴DE=DH=1,∴S△ACD=12×2×1=1.故答案为:1.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.21.(2022•宁夏)如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是.(只写一个)【分析】根据全等三角形的判定方法,即可解答.【解答】解:∵OB =OD ,∠AOB =∠COD ,OA =OC ,∴△AOB ≌△COD (SAS ),∴要使△AOB ≌△COD ,添加一个条件是OA =OC ,故答案为:OA =OC (答案不唯一).【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.22.(2022•黑龙江)如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,OA =OC ,请你添加一个条件 ,使△AOB ≌△COD .【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是OD ,理由是:在△AOB 和△COD 中,{AO =CO∠AOB =∠COD BO =DO,∴△AOB ≌△COD (SAS ),故答案为:OB =OD (答案不唯一).【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理是SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL 等.23.(2022•湖北)如图,已知AB ∥DE ,AB =DE ,请你添加一个条件 ,使△ABC ≌△DEF .【分析】添加条件:∠A =∠D ,根据ASA 即可证明△ABC ≌△DEF .【解答】解:添加条件:∠A =∠D .∵AB ∥DE ,∴∠B =∠DEC ,在△ABC 和△DEF 中,{∠A =∠DAB =DE ∠B =∠DEC,∴△ABC ≌△DEF (ASA ),故答案为:∠A =∠D .(答案不唯一)【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.24.(2021•福建)如图,AD 是△ABC 的角平分线.若∠B =90°,BD =√3,则点D 到AC 的距离是 .【分析】由角平分线的性质可求DE =BD =√3,即可求解.【解答】解:如图,过点D 作DE ⊥AC 于E ,∵AD 是△ABC 的角平分线.∠B =90°,DE ⊥AC ,∴DE =BD =√3,∴点D 到AC 的距离为√3,故答案为√3.【点评】本题考查了角平分线的性质,掌握角平分线上的点到角的两边距离相等是解题的关键.25.(2021•齐齐哈尔)如图,AC =AD ,∠1=∠2,要使△ABC ≌△AED ,应添加的条件是 .(只需写出一个条件即可)【分析】利用∠1=∠2得到∠BAC=∠EAD,由于AC=AD,然后根据全等三角形的判定方法添加条件.【解答】解:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD,∵AC=AD,∴当添加∠B=∠E时,可根据“AAS”判断△ABC≌△AED;当添加∠C=∠D时,可根据“ASA”判断△ABC≌△AED;当添加AB=AE时,可根据“SAS”判断△ABC≌△AED.故答案为∠B=∠E或∠C=∠D或AB=AE.【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决此类问题的关键.26.(2021•长沙)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若BC=4,DE=1.6,则BD的长为.【分析】由角平分线的性质可知CD=DE=1.6,得出BD=BC﹣CD=4﹣1.6=2.4.【解答】解:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴CD=DE,∵DE=1.6,∴CD=1.6,∴BD=BC﹣CD=4﹣1.6=2.4.故答案为:2.4【点评】本题主要考查了角平分线的性质,熟记角平分线上的点到角两边的距离相等是解题的关键.27.(2021•成都)如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于12MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为.【分析】由题目作图知,AD是∠CAB的平分线,过点D作DH⊥AB,则CD=DH=1,进而求解.【解答】解:过点D作DH⊥AB,则DH=1,由题目作图知,AD是∠CAB的平分线,则CD=DH=1,∵△ABC为等腰直角三角形,故∠B=45°,则△DHB为等腰直角三角形,故BD=√2HD=√2,则BC=CD+BD=1+√2,故答案为:1+√2.【点评】本题考查的是角平分线的性质,涉及到几何作图、等腰直角三角形的性质等,有一定的综合性,难度适中.28.(2021•德州)如图,点E,F在BC上,BE=CF,∠A=∠D.请添加一个条件,使△ABF≌△DCE.【分析】求出BF=CE,再根据全等三角形的判定定理判断即可.【解答】解:∵BE =CF ,∴BE +EF =CF +EF ,∴BF =CE ,添加∠B =∠C ,在△ABF 和△DCE 中,{∠B =∠C∠A =∠D BF =CE,∴△ABF ≌△DCE (AAS ),故答案为:∠B =∠C (答案不唯一).【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键.29.(2021•常德)如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,DE ⊥AB 于E ,若CD =3,BD =5,则BE 的长为 .【分析】根据角的平分线上的点到角的两边的距离相等,得DE =DC =3,再由勾股定理求得BE 的长即可.【解答】解:∵AD 平分∠CAB ,又∵DE ⊥AB ,DC ⊥AC ,∴DE =DC =3,∵BD =5,∴BE =√BD 2−DE 2=√52−32=4,故答案为4.【点评】本题考查了角平分线的性质.角平分线上的任意一点到角的两边距离相等.比较简单,属于基础题.30.(2021•济宁)如图,四边形ABCD 中,∠BAC =∠DAC ,请补充一个条件 ,使△ABC ≌△ADC .【分析】本题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是AD =AB ,理由是:在△ABC 和△ADC 中{AC =AC∠BAC =∠DAC AD =AB,∴△ABC ≌△ADC (SAS ),故答案为:AD =AB (答案不唯一).【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL .三.解答题(共30小题)31.(2023•长沙)如图,AB =AC ,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E .(1)求证:△ABE ≌△ACD ;(2)若AE =6,CD =8,求BD 的长.【分析】(1)利用“AAS ”可证明△ABE ≌△ACD ;(2)先利用全等三角形的性质得到AD =AE =6,再利用勾股定理计算出AC ,从而得到AB 的长,然后计算AB ﹣AD 即可.【解答】(1)证明:∵CD ⊥AB ,BE ⊥AC ,∴∠AEB =∠ADC =90°,在△ABE 和△ACD 中,{∠AEB =∠ADC∠BAE =∠CAD AB =AC ,∴△ABE ≌△ACD (AAS );(2)解:∵△ABE ≌△ACD ,∴AD =AE =6,在Rt △ACD 中,AC =√AD 2+CD 2=√62+82=10,∵AB =AC =10,∴BD =AB ﹣AD =10﹣6=4.【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.32.(2023•吉林)如图,点C 在线段BD 上,△ABC 和△DEC 中,∠A =∠D ,AB =DE ,∠B =∠E .求证:AC =DC .【分析】由两个三角形的全等判定ASA 直接可判断两个三角形全等,得出结论.【解答】解:在△ABC 和△DEC 中,{∠A =∠DAB =DE ∠B =∠E,∴△ABC ≌△DEC (ASA ),∴AC =DC .【点评】本题考查了三角形全等的判定ASA ,掌握ASA 判定两个三角形全等的方法是解题的关键.33.(2023•大连)如图,在△ABC 和△ADE 中,延长BC 交DE 于F .BC =DE ,AC =AE ,∠ACF +∠AED =180°.求证:AB =AD .【分析】由“SAS ”可证△ABC ≌△ADE ,可得结论.【解答】证明:∵∠ACB +∠ACF =∠ACF +∠AED =180°,∴∠ACB =∠AED ,在△ABC 和△ADE 中,{BC =DE∠ACB =∠AED AC =AE,∴△ABC ≌△ADE (SAS ),∴AB =AD .【点评】本题考查了全等三角形的判定和性质,证明三角形全等是解题的关键.34.(2023•福建)如图,OA =OC ,OB =OD ,∠AOD =∠COB .求证:AB =CD .【分析】根据角的和差求得∠AOB =∠COD ,根据全等三角形的判定和性质定理即可得到结论.【解答】证明:∵∠AOD =∠COB ,∴∠AOD ﹣∠BOD =∠COB ﹣∠BOD ,即∠AOB =∠COD .在△AOB 和△COD 中,{OA =OC∠AOB =∠COD OB =OD,∴△AOB ≌△COD (SAS ),∴AB =CD .【点评】本题考查了等式的基本性质、全等三角形的判定与性质,熟练掌握全等三角形的判定和性质定理是解题的关键.35.(2023•聊城)如图,在四边形ABCD 中,点E 是边BC 上一点,且BE =CD ,∠B =∠AED =∠C .(1)求证:∠EAD =∠EDA ;(2)若∠C =60°,DE =4时,求△AED 的面积.【分析】(1)利用AAS 证明∴△ABE ≌△ECD ,即可证明结论;(2)先证明△AED 为等边三角形,可得AE =AD =ED =4,过A 点作AF ⊥ED 于F ,利用等边三角形的性质可得EF =2,再根据勾股定理求得AF 的长,利用三角形的面积公式可求解.【解答】(1)证明:∵∠B =∠AED =∠C ,∠AEC =∠B +∠BAE =∠AED +∠CED ,∴∠BAE =∠CED ,在△ABE 和△ECD 中,{∠BAE =∠CED∠B =∠C BE =CD,∴△ABE ≌△ECD (AAS ),∴AE =ED ,∴∠EAD =∠EDA ;(2)解:∵∠AED =∠C =60°,AE =ED ,∴△AED 为等边三角形,∴AE =AD =ED =4,过A 点作AF ⊥ED 于F ,∴EF =12ED =2,∴AF =√AE 2−EF 2=√42−22=2√3,∴S △AED =12ED •AF =12×4×2√3=4√3.【点评】本题主要考查全等三角形的判定与性质,等边三角形的判定与性质,勾股定理,三角形的面积等知识的综合运用,证明△ABE ≌△ECD 是解题的关键.36.(2023•陕西)如图,在△ABC 中,∠B =50°,∠C =20°.过点A 作AE ⊥BC ,垂足为E ,延长EA 至点D .使AD =AC .在边AC 上截取AF =AB ,连接DF .求证:DF =CB .【分析】利用三角形内角和定理得∠CAB 的度数,再根据全等三角形的判定与性质可得结论.【解答】证明:在△ABC 中,∠B =50°,∠C =20°,∴∠CAB =180°﹣∠B ﹣∠C =110°.∵AE ⊥BC .∴∠AEC =90°.∴∠DAF =∠AEC +∠C =110°,∴∠DAF =∠CAB .在△DAF 和△CAB 中,{AD =BC∠DAF =∠CAB AF =AB,∴△DAF ≌△CAB (SAS ).∴DF =CB .【点评】此题考查的是全等三角形的判定与性质,掌握其性质定理是解决此题的关键.37.(2023•乐山)如图,已知AB 与CD 相交于点O ,AC ∥BD ,AO =BO ,求证:AC =BD .【分析】由平行线的性质可得∠A =∠B ,∠C =∠D ,利用AAS 即可判定△AOC ≌△BOD ,从而得AC =BD .【解答】证明:∵AC ∥BD ,∴∠A =∠B ,∠C =∠D ,在△AOC 和△BOD 中,{∠C =∠D∠A =∠B AO =BO,∴△AOC ≌△BOD (AAS ),∴AC =BD .【点评】本题主要考查全等三角形的判定与性质,解答的关键是熟记全等三角形的判定定理与性质并灵活运用.38.(2023•苏州)如图,在△ABC 中,AB =AC ,AD 为△ABC 的角平分线.以点A 圆心,AD 长为半径画弧,与AB ,AC 分别交于点E ,F ,连接DE ,DF .(1)求证:△ADE ≌△ADF ;(2)若∠BAC =80°,求∠BDE 的度数.【分析】(1)由角平分线定义得出∠BAD =∠CAD .由作图知:AE =AF .由SAS 可证明△ADE ≌△ADF ;(2)由作图知:AE =AD .得出∠AED =∠ADE ,由等腰三角形的性质求出∠ADE =70°,则可得出答案.【解答】(1)证明:∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD .由作图知:AE =AF .在△ADE 和△ADF 中,{AE =AF∠BAD =∠CAD AD =AD,∴△ADE ≌△ADF (SAS );(2)解:∵∠BAC =80°,AD 为△ABC 的角平分线,∴∠EAD =12∠BAC =40°,由作图知:AE =AD .∴∠AED =∠ADE ,∴∠ADE =12×(180°﹣40°)=70°,∵AB =AC ,AD 为△ABC 的角平分线,∴AD ⊥BC .∴∠BDE =90°﹣∠ADE =20°.【点评】本题考查了全等三角形的判定与性质,角平分线的性质,等腰三角形的性质,熟练掌握全等三角形的判定是解题的关键.39.(2023•宜宾)已知:如图,AB ∥DE ,AB =DE ,AF =DC .求证:∠B =∠E .【分析】由AF =DC ,得AC =DF ,由AB ∥DE ,得∠A =∠D ,即可证△ABC ≌△DEF (SAS ),故∠B =∠E .【解答】证明:∵AF =DC ,∴AF +CF =DC +CF ,即AC =DF ,∵AB ∥DE ,∴∠A =∠D ,在△ABC 和△DEF 中,{AB =DE∠A =∠D AC =DF,∴△ABC ≌△DEF (SAS ),∴∠B =∠E .【点评】本题考查三角形全等的判定与性质,解题的关键是掌握三角形全等的判定定理.40.(2023•云南)如图,C 是BD 的中点,AB =ED ,AC =EC .求证:△ABC ≌△EDC .【分析】求出BC =DC ,根据全等三角形的判定定理证明即可.【解答】证明:∵C 是BD 的中点,∴BC =DC ,在△ABC 和△EDC 中,{AB =EDAC =EC BC =DC,∴△ABC ≌△EDC (SSS ).【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL .41.(2023•泸州)如图,点B 在线段AC 上,BD ∥CE ,AB =EC ,DB =BC .求证:AD =EB .【分析】由平行线的性质可得∠A =∠EBC ,由“AAS ”可证△ABD ≌△BEC ,可得BD =EC .【解答】证明:∵BD ∥CE ,∴∠ABD =∠C ,在△ABD 和△ECB 中,{AB =EC ,∠ABD =∠C ,DB =BC ,∴△ABD ≌△ECB (SAS ),∴AD =EB .【点评】本题考查了全等三角形的判定和性质,涉及到平行线的性质,熟练运用全等三角形的判定是解题的关键.42.(2022•益阳)如图,在Rt △ABC 中,∠B =90°,CD ∥AB ,DE ⊥AC 于点E ,且CE =AB .求证:△CED ≌△ABC .【分析】由垂直的定义可知,∠DEC =∠B =90°,由平行线的性质可得,∠A =∠DCE ,进而由ASA 可得结论.【解答】证明:∵DE ⊥AC ,∠B =90°,∴∠DEC =∠B =90°,∵CD ∥AB ,∴∠A =∠DCE ,在△CED 和△ABC 中,{∠DCE =∠ACE =AB ∠DEC =∠B,∴△CED ≌△ABC (ASA ).【点评】本题主要考查全等三角形的判定,垂直的定义和平行线的性质,熟知全等三角形的判定定理是解题基础.43.(2022•长沙)如图,AC 平分∠BAD ,CB ⊥AB ,CD ⊥AD ,垂足分别为B ,D .(1)求证:△ABC ≌△ADC ;(2)若AB =4,CD =3,求四边形ABCD 的面积.【分析】(1)由AC 平分∠BAD ,得∠BAC =∠DAC ,根据CB ⊥AB ,CD ⊥AD ,得∠B =90°=∠D ,用AAS 可得△ABC ≌△ADC ;(2)由(1)△ABC ≌△ADC ,得BC =CD =3,S △ABC =S △ADC ,求出S △ABC =12AB •BC =6,即可得四边形ABCD 的面积是12.【解答】(1)证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC ,∵CB ⊥AB ,CD ⊥AD ,∴∠B =90°=∠D ,在△ABC 和△ADC 中,{∠B =∠D∠BAC =∠DAC AC =AC,∴△ABC ≌△ADC (AAS );(2)解:由(1)知:△ABC ≌△ADC ,∴BC =CD =3,S △ABC =S △ADC ,∴S △ABC =12AB •BC =12×4×3=6,∴S △ADC =6,∴S 四边形ABCD =S △ABC +S △ADC =12,答:四边形ABCD 的面积是12.【点评】本题考查全等三角形的判定与性质,解题的关键是掌握全等三角形的判定定理.44.(2022•西藏)如图,已知AD 平分∠BAC ,AB =AC .求证:△ABD ≌△ACD .【分析】由角平分线的定义得∠BAD =∠CAD ,再利用SAS 即可证明△ABD ≌△ACD .【解答】证明:∵AD 平分∠BAC ,∴∠BAD =∠CAD ,在△ABD 和△ACD 中,{AB =AC∠BAD =∠CAD AD =AD,∴△ABD ≌△ACD (SAS ).【点评】本题主要考查了全等三角形的判定,角平分线的定义等知识,熟练掌握全等三角形的判定定理是解题的关键.45.(2022•衡阳)如图,在△ABC 中,AB =AC ,D 、E 是BC 边上的点,且BD =CE .求证:AD =AE .【分析】由“SAS ”可证△ABD ≌△ACE ,可得AD =AE .【解答】证明:∵AB =AC ,∴∠B =∠C ,在△ABD 和△ACE 中,{AB =AC∠B =∠C BD =CE,∴△ABD ≌△ACE (SAS ),∴AD =AE .【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,掌握全等三角形的判定方法是解题的关键.46.(2022•兰州)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB =AE ,AC =AD ,∠BAD =∠EAC ,∠C =50°,求∠D 的大小.【分析】由∠BAD =∠EAC 可得∠BAC =∠EAD ,根据SAS 可证△BAC ≌△EAD ,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD =∠EAC ,∴∠BAD +∠CAD =∠EAC +∠CAD ,即∠BAC =∠EAD ,在△BAC 与△EAD 中,{AB =AE∠BAC =∠EAD AC =AD,∴△BAC ≌△EAD (SAS ),∴∠D =∠C =50°.【点评】本题考查了全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.47.(2022•衢州)已知:如图,∠1=∠2,∠3=∠4.求证:AB =AD .【分析】根据邻补角的定义得出∠ACB =∠ACD ,利用ASA 证明△ACB ≌△ACD ,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB =∠ACD ,在△ACB 和△ACD 中,{∠1=∠2AC =AC∠ACB =∠ACD ,∴△ACB ≌△ACD (ASA ),∴AB =AD .【点评】此题考查了全等三角形的判定与性质,利用ASA 证明△ACB ≌△ACD 是解题的关键.48.(2022•福建)如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E .求证:∠A =∠D .【分析】利用SAS 证明△ABC ≌△DEF ,根据全等三角形的性质即可得解.【解答】证明:∵BF =EC ,即BC =EF ,在△ABC 和△DEF 中,{AB =DE ∠B =∠EBC =EF ,∴△ABC ≌△DEF (SAS ),∴∠A =∠D .【点评】此题考查了全等三角形的判定与性质,利用SAS 证明△ABC ≌△DEF 是解题的关键.49.(2022•乐山)如图,B 是线段AC 的中点,AD ∥BE ,BD ∥CE .求证:△ABD ≌△BCE .【分析】根据ASA 判定定理直接判定两个三角形全等.【解答】证明:∵点B 为线段AC 的中点,∴AB =BC ,∵AD ∥BE ,∴∠A =∠EBC ,∵BD ∥CE ,∴∠C =∠DBA ,在△ABD 与△BCE 中,{∠A =∠EBCAB =BC ∠DBA =∠C,∴△ABD ≌△BCE .(ASA ).【点评】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.50.(2022•陕西)如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .。
中考数学备考专题复习 全等三角形(含解析)-人教版初中九年级全册数学试题
全等三角形一、单选题(共12题;共24分)1、下图中,全等的图形有()A、2组B、3组C、4组D、5组2、使两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等3、下列说法错误的是()A、等腰三角形两腰上的中线相等B、等腰三角形两腰上的高线相等C、等腰三角形的中线与高重合D、等腰三角形底边的中线上任一点到两腰的距离相等4、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配.A、①B、②C、③D、①和②5、长为1的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值X围为()A、B、C、D、6、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°7、如图,x的值可能为()A、10B、9C、7D、68、如图,△A BC中,AB=AC , EB=EC ,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△BDE≌△CDED、以上答案都不对9、如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A、4cmB、2cmC、4cm或2cmD、小于或等于4cm,且大于或等于2cm10、(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(2016•某某)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A、AC=BDB、∠CAB=∠DBAC、∠C=∠DD、BC=AD12、如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A、24°B、25°C、30°D、36°二、填空题(共5题;共6分)13、若△ABC≌△EFG,且∠B=60°,∠FGE-∠E=56°,,则∠A=________度.14、如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“________”.15、如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.16、如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI________全等,如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△A BC 和△GHI________全等.(填“一定”或“不一定”或“一定不”)17、(2016•某某)如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的有________(写出所有正确结论的序号) ①△CMP∽△BPA;②四边形AMCB 的面积最大值为10;③当P 为BC 中点时,AE 为线段NP 的中垂线; ④线段AM 的最小值为2;⑤当△ABP≌△ADN 时,BP=4﹣4.三、综合题(共6题;共66分)18、如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F ,连接DF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.19、已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连接BG 并延长交DE 于F .(1)求证:△BCG≌△DCE;(2)将△DC E 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形,并说明理由。
中考数学专题训练:全等三角形(含答案)
中考数学专题训练:全等三角形一、选择题(本大题共10道小题)1. 如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.∠A=∠C B.∠D=∠BC.AD∥BC D.DF∥BE2. 如图,在△ABC中,D,E分别是边AC,BC上的点.若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°3. 如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D4. 如图,在正方形ABCD中,连接BD,点O是BD的中点.若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A. 2对B. 3对C. 4对D. 5对5. 如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()图12-1-10A.2B.3C.5D.2.56. 如图所示,△ABD≌△CDB,下列四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,AD=BC7. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c8. 如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()9. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于() A.90°B.120 C.135°D.150°10. 如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A. 1个B. 2个C. 3个D. 3个以上二、填空题(本大题共10道小题)11. 如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.12. 如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件:______________,使得△ABD≌△CDB.(只需写出一个)13. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).14. 如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当条件:________,使△AEH≌△CEB.15. 如图,已知AC=EC,∠ACB=∠ECD,要直接利用“AAS”判定△ABC≌△EDC,应添加的条件是__________.16. 如图,AC与BD相交于点O,且AB=CD,请添加一个条件:________,使得△ABO≌△CDO.17. △ABC的周长为8,面积为10,若其内部一点O到三边的距离相等,则点O 到AB的距离为________.18. 如图,P A⊥ON于点A,PB⊥OM于点B,且P A=PB.若∠MON=50°,∠OPC =30°,则∠PCA的大小为________.19. 如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q是线段AC与射线AX上的两个动点,且AB=PQ,当AP=________时,△ABC与△APQ全等.20. 如图,P是△ABC外的一点,PD⊥AB交BA的延长线于点D,PE⊥AC于点E,PF⊥BC交BC的延长线于点F,连接PB,PC.若PD=PE=PF,∠BAC=64°,则∠BPC的度数为________.三、解答题(本大题共6道小题)21. 如图,∠A=∠D=90°,AB=DE,BF=EC.求证:Rt△ABC≌Rt△DEF.22. 如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上.若AD=16,BC=10,求AB的长.23. 观察与类比(1)如图①,在△ABC中,∠ACB=90°.点D在△ABC外,连接AD,作DE⊥AB于点E,交BC于点F,AD=AB,AE=AC,连接AF.求证:DF=BC +CF;(2)如图②,AB=AD,AC=AE,∠ACB=∠AED=90°,延长BC交DE于点F,写出DF,BC,CF之间的数量关系,并证明你的结论.24. 如图所示,已知在△ABC中,AB=AC=10 cm,BC=8 cm,D为AB的中点,点P在线段BC上以3 cm/s的速度由点B向点C运动,同时,点Q在线段CA 上由点C向点A以a cm/s的速度运动,设运动的时间为t s(t>0).(1)求CP的长(用含t的式子表示);(2)若以C,P,Q为顶点的三角形和以B,D,P为顶点的三角形全等,且∠B和∠C是对应角,求a的值.25. △ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,①求证:△BPE∽△CEQ;②当BP=2,CQ=9时,求BC的长.26. 已知:在等边△ABC中,D、E分别是AC、BC上的点,且∠BAE=∠CBD<60°,DH⊥AB,垂足为点H.(1)如图①,当点D、E分别在边AC、BC上时,求证:△ABE≌△BCD;(2)如图②,当点D、E分别在AC、CB延长线上时,探究线段AC、AH、BE的数量关系;(3)在(2)的条件下,如图③,作EK∥BD交射线AC于点K,连接HK,交BC于点G,交BD于点P,当AC=6,BE=2时,求线段BP的长.2021中考数学一轮专题训练:全等三角形-答案一、选择题(本大题共10道小题)1. 【答案】B[解析] 在△ADF和△CBE中,由AD=BC,∠D=∠B,DF=BE,根据两边和它们的夹角分别相等的两个三角形全等,可以得到△ADF≌△CBE.故选B.2. 【答案】D[解析] 由条件可知∠ADB=∠EDB=∠EDC=60°,且∠DEB=∠DEC=90°,∴∠C=30°.3. 【答案】C4. 【答案】C【解析】由题意可知,△ABD≌△CBD,△MON≌△M′ON′,△DON ≌△BON′,△DOM≌△BOM′共4对.5. 【答案】B[解析] ∵△ABE≌△ACF,AB=5,∴AC=AB=5.∵AE=2,∴EC=AC-AE=5-2=3.6. 【答案】C[解析] A.∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项不符合题意;B.∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项不符合题意;C.∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB.∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项符合题意;D.∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD.∴AD∥BC,故本选项不符合题意.故选C.7. 【答案】D[解析] ∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠CED=∠AFB=90°,∠A=∠C.又∵AB=CD,∴△CED≌△AFB.∴AF=CE=a,DE=BF=b,DF =DE-EF=b-c.∴AD=AF+DF=a+b-c.故选D.8. 【答案】C[解析] 选项A中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项B中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项C中,如图①,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.这两个角所对的边是BE和CF,而已知条件给的是BD=CF=3,故不能判定两个小三角形全等.选项D中,如图②,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.又∵BD=CE=2,∠B=∠C,∴△BDE≌△CEF.故能判定两个小三角形全等.9. 【答案】C[解析] 在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.10. 【答案】D【解析】如解图,①当OM1=2时,点N1与点O重合,△PMN 是等边三角形;②当ON2=2时,点M2与点O重合,△PMN是等边三角形;③当点M3,N3分别是OM1,ON2的中点时,△PMN是等边三角形;④当取∠M1PM4=∠OPN4时,易证△M1PM4≌△OPN4(SAS),∴PM4=PN4,又∵∠M4PN4=60°,∴△PMN是等边三角形,此时点M,N有无数个,综上所述,故选D.二、填空题(本大题共10道小题)11. 【答案】120°【解析】由于△ABC≌△A′B′C′,∴∠C=∠C′=24°,在△ABC 中,∠B=180°-24°-36°=120°.12. 【答案】答案不唯一,如AB=CD[解析] 由已知AB∥CD可以得到一对角相等,还有BD=DB,根据全等三角形的判定,可添加夹这个角的另一边相等,或添加另一个角相等均可.13. 【答案】AB=DE或∠A=∠D或∠ACB=∠DFE或AC∥DF[解析]已知条件已经具有一边一角对应相等,需要添加的条件要么是夹已知角的边,构造SAS全等,要么添加另外的任一组角构造ASA或AAS,或者间接添加可以证明这些结论的条件即可.14. 【答案】AH=CB(符合要求即可)【解析】∵AD⊥BC,CE⊥AB,垂足分别为点D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,在Rt△HDC中,∠ECB=90°-∠DHC,∵∠AHE=∠DHC,∴∠EAH=∠ECB,∴根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故答案为:AH=CB或EH=EB或AE=CE均可.15. 【答案】∠B=∠D16. 【答案】∠A =∠C 或∠B =∠D 或AB ∥CD(答案不唯一)[解析] 由题意可知∠AOB =∠COD ,AB =CD.∵AB 是∠AOB 的对边,CD 是∠COD 的对边,∴只能添加角相等,故可添加∠A =∠C 或∠B =∠D 或AB ∥CD.17. 【答案】2.5 [解析] 设点O 到AB ,BC ,AC 的距离均为h ,∴S △ABC =12×8·h =10,解得h =2.5,即点O 到AB 的距离为2.5.18. 【答案】55° [解析] ∵PA ⊥ON ,PB ⊥OM ,∴∠PAO =∠PBO =90°.在Rt △AOP 和Rt △BOP 中,⎩⎪⎨⎪⎧PA =PB ,OP =OP ,∴Rt △AOP ≌Rt △BOP(HL).∴∠AOP =∠BOP =12∠MON =25°.∴∠PCA =∠AOP +∠OPC =25°+30°=55°.19. 【答案】5或10 [解析] ∵AX ⊥AC ,∴∠PAQ =90°.∴∠C =∠PAQ =90°. 分两种情况:①当AP =BC =5时,在Rt △ABC 和Rt △QPA 中,⎩⎪⎨⎪⎧AB =QP ,BC =PA ,∴Rt △ABC ≌Rt △QPA(HL);②当AP =CA =10时,在Rt △ABC 和Rt △PQA 中,⎩⎪⎨⎪⎧AB =PQ ,AC =PA ,∴Rt △ABC ≌Rt △PQA(HL).综上所述,当AP =5或10时,△ABC 与△APQ 全等.20. 【答案】32° [解析] ∵PD =PE =PF ,PD ⊥AB 交BA 的延长线于点D ,PE ⊥AC 于点E ,PF ⊥BC 交BC 的延长线于点F ,∴CP 平分∠ACF ,BP 平分∠ABC.∴∠PCF =12∠ACF ,∠PBF =12∠ABC.∴∠BPC =∠PCF -∠PBF =12(∠ACF -∠ABC)=12∠BAC =32°.三、解答题(本大题共6道小题)21. 【答案】证明:∵BF =EC ,∴BF +FC =FC +EC ,即BC =EF.∵∠A =∠D =90°,∴△ABC 和△DEF 都是直角三角形.在Rt △ABC 和Rt △DEF 中,⎩⎪⎨⎪⎧AB =DE ,BC =EF , ∴Rt △ABC ≌Rt △DEF(HL).22. 【答案】解:∵△ACF ≌△DBE ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD.∵AD=16,BC=10,∴AB=CD=(AD-BC )=3.23. 【答案】解:(1)证明:∵DE ⊥AB ,∠ACB =90°,∴∠AED =∠AEF =∠ACB =90°.在Rt △ACF 和Rt △AEF 中,⎩⎪⎨⎪⎧AC =AE ,AF =AF , ∴Rt △ACF ≌Rt △AEF(HL).∴CF =EF.在Rt △ADE 和Rt △ABC 中,⎩⎪⎨⎪⎧AD =AB ,AE =AC ,∴Rt △ADE ≌Rt △ABC(HL). ∴DE =BC.∵DF =DE +EF ,∴DF =BC +CF.(2)BC =CF +DF.证明:如图,连接AF.在Rt △ABC 和Rt △ADE 中,⎩⎪⎨⎪⎧AB =AD ,AC =AE , ∴Rt △ABC ≌Rt △ADE(HL).∴BC =DE.∵∠ACB =90°,∴∠ACF =90°=∠AED.在Rt △ACF 和 Rt △AEF 中,⎩⎪⎨⎪⎧AC =AE ,AF =AF ,∴Rt △ACF ≌△AEF(HL).∴CF=EF.∵DE=EF+DF,∴BC=CF+DF.24. 【答案】解:(1)依题意得BP=3t cm,BC=8 cm,∴CP=(8-3t)cm.(2)∵∠B和∠C是对应角,∴分两种情况讨论:①若△BDP≌△CPQ,则BD=CP,BP=CQ.∵AB=10 cm,D为AB的中点,∴BD=5 cm.∴5=8-3t,解得t=1.∴CQ=BP=3 cm.∴a==3.②若△BDP≌△CQP,则BD=CQ,BP=CP.∵BP=3t cm,CP=(8-3t)cm,∴3t=8-3t,解得t=.∵BD=CQ,∴5=a,解得a=.综上所述,a的值为3或.25. 【答案】(1)证明:∵△ABC是等腰直角三角形,∴AB=AC,∠B=∠C=45°,又∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=EC.∴在△BPE与△CQE中,∠∠BP CQ B C BE CE =⎧⎪=⎨⎪=⎩,∴△BPE ≌△CQE (SAS);(2)①证明:∵∠BEF =∠C +∠CQE ,∠BEF =∠BEP +∠DEF , ∠C =∠DEF =45°,∴∠CQE =∠BEP ,∵∠B =∠C ,∴△BPE ∽△CEQ ;②解:由①知△BPE ∽△CEQ , ∴BE BP CQ CE=, ∴BE ·CE =BP ·CQ ,又∵BE =EC ,∴BE 2=BP ·CQ ,∵BP =2,CQ =9,∴BE 2=2×9=18,∴BE =32,∴BC =2BE =6 2.26. 【答案】(1)证明:∵△ABC 为等边三角形,∴∠ABC =∠C =∠CAB =60°,AB =BC ,在△ABE 和△BCD 中,⎩⎪⎨⎪⎧∠BAE =∠CBD AB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA);(2)解:∵△ABC 为等边三角形,∴∠ABC =∠CAB =60°,AB =BC ,∴∠ABE =∠BCD =180°-60°=120°.∴在△ABE 和△BCD 中,⎩⎪⎨⎪⎧∠BAE =∠CBD AB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA),∴BE =CD .∵DH ⊥AB ,∴∠DHA =90°,∵∠CAB =60°,∴∠ADH =30°,∴AD =2AH ,∴AC =AD -CD =2AH -BE ;(3)解:如解图,作DS ⊥BC 延长线于点S ,作HM ∥AC 交BC 于点M ,解图∵AC =6,BE =2,∴由(2)得AH =4,BH =2,与(1)同理可得BE =CD =2,CE =8,∵∠SCD =∠ACB =60°,∴∠CDS =30°,∴CS =1,SD =3,BS =7,∵BD 2=BS 2+SD 2=72+(3)2,∴BD =213,∵EK ∥BD ,∴△CBD ∽△CEK ,∴CB CE =CD CK =BD EK ,∴CK =CD ·CE CB =2×86=83,EK =CE ·BD CB =8×2136=8133. ∵HM ∥AC ,∴∠HMB =∠ACB =60°,∴△HMB 为等边三角形,BM =BH =HM =2, CM =CB -BM =4,又∵HM ∥AC ,∴△HMG ∽△KCG , ∴HM KC =MG CG ,即382=MG 4-MG,∴MG =127,BG =267,EG =407, ∵EK ∥BD ,∴△GBP ∽△GEK , ∴BP EK =GB GE ,∴BP =261315.。
中考数学一轮复习《全等三角形》练习题(含答案)
中考数学一轮复习《全等三角形》练习题(含答案)(建议答题时间:60分钟)基础过关1. 如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A. ∠BB. ∠AC. ∠EMFD. ∠AFB第1题图第2题图2. (人教八上第44页11题改编)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A. AB=DEB. AC=DFC. ∠A=∠DD. BF=EC3. 如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对第3题图第4题图第5题图4. 注重开放探究(2017怀化)如图,AC=DC,BC=EC,请你添加一个适当的条件:____________________________,使得△ABC≌△DEC.5. 如图,AB∥CF,E为DF的中点,AB=10,CF=6,则BD=________.6. 如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为________.第6题图7. (2017福建)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF,求证:∠A=∠D.第7题图8. (2017武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.第8题图9. (2017南充)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.第9题图10. (2017重庆巴南区期中检测)如图,在四边形ABCD中,点E在对角线AC上,AB∥DE,∠ACB=∠ADE,AB=EA,求证:AC=ED.第10题图11. (人教八上第44页4题改编)如图所示,已知∠1=∠2,请你添加一个条件,证明:AB=AC.(1)你添加的条件是________________;(2)请写出证明过程.第11题图12. (2017重庆一中期中考试)如图,AF∥DE,点B、C在线段AD上,且∠E=∠F,连接FC、EB,延长EB交AF于点G.(1)求证:BE∥CF;(2)若CF=BE,求证:AB=CD.第12题图13. (2017苏州)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.第13题图14. (2017哈尔滨)已知,△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE =90°,连接AE、BD交于点O.AE与DC交于点M,BD与AC交于点N.(1)如图①,求证:AE=BD;(2)如图②,若AC=DC,在不添加任何辅助线的情况下,请直接写出图②中四对全等的直角三角形.第14题图满分冲关1. (2017滨州)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A. 4B. 3C. 2D. 1第1题图第2题图2. (2018原创) 如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A. 4个B. 3个C. 2个D. 1个3. (2017新疆建设兵团)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD互相平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=12AC·BD,正确的是________.(填写所有正确结论的序号)第3题图4. (2017温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC =AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.第4题图5. (2017荆门)如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,点E是CD的中点,过点C作CF∥AB交AE的延长线于点F.(1)求证:△ADE≌△FCE;(2)若∠DCF=120°,DE=2,求BC的长.第5题图6. (2017齐齐哈尔)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.第6题图7. (2017德阳)如图,在平行四边形ABCD中,E、F分别是AB、BC的中点,CE ⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G.(1)证明:△CFG≌△AEG;(2)若AB=4,求四边形AGCD的对角线GD的长.第7题图8. (2017北京)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B,C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示);(2)用等式表示线段MB与PQ之间的数量关系,并证明.第8题图9. (2018原创)已知△ABC和△ADE都是等边三角形,点B,D,E在同一条直线上.(1)如图①,当AC⊥DE,且AD=2时,求线段BC的长度;(2)如图②,当CD⊥BE时,取线段BC的中点F,线段DC的中点G,连接DF,EG,求证:DF=EG.第9题图答案基础过关 1. A 2. C3. D 【解析】∵AB =AC ,D 为BC 中点,∴CD =BD ,∠BDO =∠CDO =90°,在△ABD 和△ACD 中,⎩⎨⎧AB =AC AD =AD BD =CD ,∴△ABD ≌△ACD (SSS ),∵EF 垂直平分AC ,∴OA =OC ,AE =CE ,在△AOE 和△COE 中,⎩⎨⎧OA =OCOE =OE AE =CE ,∴△AOE ≌△COE (SSS ); 在△BOD 和△COD 中,⎩⎨⎧BD =CD∠BDO =∠CDO OD =OD ,∴△BOD ≌△COD (SAS );在△AOC和△AOB 中,⎩⎨⎧AC =ABOA =OA OC =OB,∴△AOC ≌△AOB (SSS ).4. AB =DE (答案不唯一)5. 4 【解析】∵AB ∥CF ,∴∠ADE =∠CFE ,∵E 是DF 的中点,∴DE =EF ,在△ADE 与△CFE 中,⎩⎨⎧∠ADE =∠CFEDE =FE∠AED =∠CEF,∴△ADE ≌△CFE (ASA ),∴AD =CF ,∵AB =10,CF =6,∴BD =AB -AD =10-6=4.6. 120° 【解析】∵△ACD 和△BCE 均为等边三角形,∴∠DCA =∠BCE =60°,AC =DC ,BC =EC ,∴∠DCB =∠DCA +∠ACB =∠BCE +∠ACB =∠ACE ,∴△DCB ≌△ACE (SAS ),∴∠CDB =∠CAE ,∴∠AOB =∠DAO +∠ADO =∠DAC +∠CAE +∠ADC -∠CDB =∠ADC +∠DAC =120°.7. 证明:∵BE =CF , ∴BC =EF ,在△ABC 和△DEF 中,⎩⎨⎧AB =DE AC =DF BC =EF,∴△ABC ≌△DEF (SSS ), ∴∠A =∠D .8. 解:CD ∥AB ,CD =AB . 证明: ∵CE =BF , ∴CF =BE ,又∵∠CFD =∠BEA ,DF =AE , ∴△CFD ≌△BEA (SAS ), ∴CD =AB ,∠C =∠B , ∴CD ∥AB .9. 证明:∵DE ⊥AB ,CF ⊥AB , ∴∠BED =∠AFC =90°, 又∵AE =BF , ∴AE +EF =BF +EF , ∴AF =BE .在△ACF 和△BDE 中,⎩⎨⎧AF =BE∠AFC =∠BED CF =DE,∴△ACF ≌△BDE (SAS ), ∴∠A =∠B , ∴AC ∥BD .10. 证明:∵AB ∥DE , ∴∠BAC =∠AED ,在△ABC 和△EAD 中,⎩⎨⎧∠ACB =∠ADE∠BAC =∠AED AB =EA,∴△ABC ≌△EAD (AAS ), ∴AC =ED .11. (1)解:∠B =∠C 或∠ADB =∠ADC 等;(2)证明:若添加的条件为∠B =∠C ,在△ABD 和△ACD 中,⎩⎨⎧∠B =∠C∠1=∠2AD =AD,∴△ABD ≌△ACD (AAS ), ∴AB =AC ;若添加的条件为∠ADB =∠ADC ,在△ABD 和△ACD 中,⎩⎨⎧∠1=∠2AD =AD ∠ADB =∠ADC,∴△ABD ≌△ACD (ASA ), ∴AB =AC .12. 证明:(1)∵AF ∥DE , ∴∠E =∠AGE , ∵∠E =∠F , ∴∠F =∠AGE , ∴BE ∥CF ; (2)∵AF ∥DE ∴∠A =∠D ,在△ACF 和△DBE 中,⎩⎨⎧∠A =∠D∠F =∠E CF =BE,∴△ACF ≌△DBE (AAS ), ∴AC =DB , ∴AB =CD .13. (1)证明:∵AE 和BD 相交于点O , ∴∠AOD =∠BOE ,在△AOD 和△BOE 中,∠A =∠B , ∴∠BEO =∠2, 又∵∠1=∠2, ∴∠1=∠BEO , ∴∠AEC =∠BED ,在△AEC 和△BED 中,⎩⎨⎧∠A =∠BAE =BE ∠AEC =∠BED,∴△AEC ≌△BED (ASA ); 解:(2)∵△AEC ≌△BED , ∴EC =ED ,∠C =∠BDE ,在△EDC 中 ,∵EC =ED ,∠1=42°, ∴∠C =∠EDC =69°, ∴∠BDE =∠C =69°.14. (1)证明:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°, ∴AC =BC ,DC =EC ,∠ACB +∠ACD =∠DCE +∠ACD , ∴∠BCD =∠ACE , ∴△ACE ≌△BCD (SAS ), ∴AE =BD ;(2)解:△ACB ≌△DCE ,△AON ≌△DOM ,△AOB ≌△DOE ,△NCB ≌△MCE . 满分冲关1. B 【解析】如解图,过点P 分别作OA 、OB 的垂线PC 、PD ,根据角平分线的性质可得PC =PD ,∵OP 一定,∴OC =OD .∵∠AOB 是定角,∠MPN 与∠AOB 互补,∴∠MPN 也为定角.∵∠CPD 与∠AOB 也互补,∴∠MPN =∠CPD ,∴∠MPC =∠NPD ,∴△MPC ≌△NPD (ASA ),∴CM =DN ,MP =NP .故(1)正确;∵OM +ON =OC +CM +OD -DN ,∴OM +ON =OC +OD ,∵OC =OD 为定长,∴OM +ON 为定长.故(2)正确;∵△MPC ≌△NPD ,∴S四边形MONP=S △CMP +S四边形CONP=S △NPD +S 四边形CONP =S 四边形CODP .∴四边形MONP 面积为定值.故(3)正确;∵Rt △MPC 中,MP 为斜边,CP 为直角边,∴可设MP =kCP ,∴PN =kDP ,∵∠MPN =∠CPD ,∴△MPN ∽△CPD ,其相似比为k ,∴MN =kCD ,当点M 与点C 重合,点N 和点D 重合时,MN =CD ,当点M 与点C 不重合,点N 与点D 不重合时,MN ≠CD ,∴MN 的长度在发生变化.故(4)错误.第1题解图2. A 【解析】∵BF ∥AC ,∴∠C =∠CBF ,∵BC 平分∠ABF ,∴∠ABC =∠CBF ,∴∠C =∠ABC ,∴AB =AC ,∵AD 是△ABC 的角平分线,∴BD =CD ,AD ⊥BC ,故②③正确,在△CDE 与△BDF 中,⎩⎨⎧∠C =∠CBF CD =BD ∠EDC =∠BDF,∴△CDE ≌△BDF (ASA ),∴DE =DF ,CE =BF ,故①正确;∵AE =2BF ,∴AC =3BF ,故④正确.故选A .3. ①④【解析】在△ABC 与△ADC 中,⎩⎨⎧AB =ADBC =DC AC =AC,∴△ABC ≌△ADC (SSS ),∴∠ABC =∠ADC ,故①正确;∵△ABC ≌△ADC ,∴∠BAC =∠DAC ,∠BCA =∠DCA ,∴AC 平分∠BAD 、∠BCD ,故③错误;又∵AB =AD ,∠BAC =∠DAC ,∴OB =OD ,∴AC ,BD 互相垂直,但不平分,故②错误;∵AC ,BD 互相垂重,∴四边形ABCD 的面积S =12AC ·BO +12AC ·OD =12AC ·BD .故④正确,综上所述,正确的结论是①④. 4. (1)证明:∵AC =AD , ∴∠ACD =∠ADC ,∴∠BCD -∠ACD =∠EDC -∠ADC 即∠BCA =∠EDA ,在△ABC 与△AED 中,BC =ED ,∠BCA =∠EDA ,AC =AD , ∴△ABC ≌△AED (SAS ); (2)解:∵△ABC ≌△AED , ∴∠E =∠B =140°,∵五边形ABCDE 内角和为(5-2)×180°=540°,∴∠BAE =540°-2×90°-2×140°=80°. 5. (1)证明:∵点E 是CD 的中点, ∴DE =CE , ∵AB ∥CF , ∴∠BAF =∠AFC ,在△ADE 与△FCE 中,⎩⎨⎧∠DAE =∠CFE ∠AED =∠FEC DE =CE,∴△ADE ≌△FCE (AAS ); (2)解:由(1)知CD =2DE , ∵DE =2, ∴CD =4,在Rt △ABC 中,点D 为AB 的中点, ∴AB =2CD =8,AD =CD =12AB . ∵AB ∥CF ,∴∠BDC =180°-∠DCF =180°-120°=60°, ∴∠DAC =∠ACD =12∠BDC =12×60°=30°, ∴在Rt △ABC 中,BC =12AB =12×8=4. 6. (1)证明:∵AD ⊥BC , ∴∠ADB =∠ADC =90°,在△BDG 和△ADC 中,⎩⎨⎧BD =AD∠BDG =∠ADC DG =DC,∴△BDG ≌△ADC (SAS ), ∴BG =AC ,∠BGD =∠C ,∵∠ADB =∠ADC =90°,E ,F 分别是BG ,AC 的中点, ∴DE =12BG =EG ,DF =12AC =AF ,∴DE =DF ,∠EDG =∠EGD ,∠FDA =∠F AD , ∴∠EDG +∠FDA =90°,∴DE ⊥DF ; (2)解:∵AC =10, ∴DE =DF =5,由勾股定理得,EF =DE 2+DF 2=5 2. 7. (1)证明:∵E 是AB 的中点,且CE ⊥AB , ∴CA =CB .∵F 是BC 的中点,且AF ⊥BC , ∴AB =AC , ∴AB =AC =BC ,∴12AB =12BC ,∴AE =CF ,在△CFG 和△AEG 中,⎩⎨⎧∠CGF =∠AGE∠CFG =∠AEG CF =AE,∴△CFG ≌△AEG (AAS ); (2)解:如解图,连接GD ,第7题解图∵AB =AC =BC ,∴△ABC 为等边三角形,从而△CAD 也为等边三角形, ∵AF ⊥BC ,∴∠GAC =∠EAF =30°, 又∵AE =12AB =2, ∴在Rt △AEG 中,AG =23AE =433, ∵∠GAD =∠GAC +∠CAD =90°,∴在Rt △ADG 中,根据勾股定理得:GD 2=AG 2+AD 2,即GD 2=(433)2+42,∴GD 2=643, ∴GD =833.8. 解:(1) ∵∠ACP =90°,∴在Rt △ACP 中,∠CAP +∠APC =90°, ∵HQ ⊥AP ,∴在Rt △HPQ 中,∠Q +∠HPQ =90°, 又∵∠APC =∠HPQ ,∠CAP =α, ∴∠Q =α,又∵在等腰Rt △ABC 中,∠B =∠BAC =45°, ∴∠AMQ =∠B +∠Q =45°+α; (2)PQ =2BM .证明:如解图,连接AQ ,过点M 作MN ⊥BQ 于点N .第8题解图∵∠ACP =90°,CQ =CP ,∠CAP =α, ∴∠CAQ =∠CAP =α,AP =AQ ,PQ =2CP , 又∵∠BAC =45°,∴∠MAQ =∠BAC +∠CAQ =45°+α=∠AMQ , ∴AQ =MQ , ∴AP =MQ , 又∵MN ⊥BQ , ∴∠ACP =∠QNM =90°.在Rt △APC 和Rt △QMN 中,⎩⎨⎧∠CAP =∠NQM∠ACP =∠QNM =90°AP =MQ,∴Rt △APC ≌Rt △QMN (AAS ), ∴CP =MN ,∴PQ =2MN , 又∵在Rt △BMN 中,∠B =45°, ∴BM =2MN ,∴PQ =2BM .9. (1)解:∵△ABC 和△ADE 都是等边三角形,AC ⊥DE ,AD =2, ∴BC =AC ,DE =AD =2,DF =12DE =1,AF =CF , ∴AF =AD 2-DF 2=3, ∴AC =2AF =23,∴BC =23; (2)证明:连接CE ,FG ,如解图所示:第9题解图∵△ABC 和△ADE 都是等边三角形,点B ,D ,E 同一在一条直线上. ∴AB =AC ,AD =AE ,∠BAC =∠DAE =∠AED =60°, ∴∠ADB =120°,∠BAD =∠CAE ,在△ABD 和△ACE 中,⎩⎨⎧AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE (SAS ),∴BD =CE ,∠AEC =∠ADB =120°, ∴∠CED =∠AEC -∠AED =60°, ∵CD ⊥BE , ∴∠DCE =30°, ∴DE =12CE ,∵线段BC的中点为F,线段DC的中点为G,∴FG∥BD,FG=12BD,∴FG∥DE,FG=DE,∴四边形DFGE是平行四边形,∴DF=EG.。
中考数学试题分类汇总《全等三角形》练习题
中考数学试题分类汇总《全等三角形》练习题(含答案)全等三角形的判定1.一块三角形玻璃不慎被小明摔成了四片碎片(如图所示),小明经过仔细的考虑认为只要带其中的两块碎片去玻璃店,就可以让师傅配一块与原玻璃一样的玻璃.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、4或2、3去就可以了C.带1、4或3、4去就可以了D.带1、2或2、4去就可以了【分析】直接利用全等三角形的判定方法分析得出答案.【解答】解:带3、4可以用“角边角”确定三角形,带1、4可以用“角边角”确定三角形,2.如图,AC=BC=BE=DE=10cm,点A、B、D在同一条直线上,AB=12cm,BD=16cm,则点C和点E之间的距离是()A.6cm B.7cm C.8cm D.【分析】连接CE,过C作CM⊥AB于M,过E作EN⊥BD于N,根据等腰三角形的性质得到AM=BM =6cm,BN=DN=8cm,根据勾股定理得到的长,根据全等三角形的性质得到∠MBC=∠BEN,推出∠CBE=90°,根据勾股定理得出答案.【解答】解:连接CE,过C作CM⊥AB于M,过E作EN⊥BD于N,∴∠AMC=∠BMC=∠BNE=∠DNE=90°,∵AC=BC,BE=DE,∴AM=BM=AB=×12=6(cm),BN=DN=BD=×16=8(cm),∴CM==8(cm),在Rt△BCM与Rt△EBN中,,∴Rt△BCM≌Rt△EBN(HL),∴∠MBC=∠BEN,∵∠BEN+∠EBN=90°,∴∠MBC+∠EBN=90°,∴∠CBE=90°,∴CE==10(cm),故点C和点E之间的距离是10cm,3.如图,已知BD平分∠ABC,∠A=∠C.求证:△ABD≌△CBD.【分析】根据AAS证明△ABD与△CBD全等.【解答】证明:∵BD平分∠ABC,∴∠ABD=∠CBD,在△ABD与△CBD中,,∴△ABD≌△CBD(AAS).4.如图,点F、C在BD上,AB∥DE,∠A=∠E,BF=DC.求证:△ABC≌△EDF.【解答】证明:∵BF=DC,∴BF﹣FC=DC﹣FC,即BC=DF,∵AB∥DE,∴∠B=∠D,在△ABC和△EDF中∴△ABC≌△EDF(AAS).全等三角形的性质5.如图,△ABE≌△DCE,点E在线段AD上,点F在CD延长线上,∠F=∠A,求证:AD∥BF.【分析】根据△ABE≌△DCE得到∠A=∠ADC,然后利用∠F=∠A得到∠F=∠EDC,利用同位角相等,两直线平行证得结论.【解答】证明:∵△ABE≌△DCE,∴∠A=∠ADC,∵∠F=∠A,∴∠F=∠EDC,∴AD∥BF.全等三角形的判定与性质6.如图,△ABC中,∠ABC=90°,沿BC所在的直线向右平移得到△DEF,下列结论中不一定成立的是()A.EC=CF B.∠DEF=90°C.AC=DF D.AC∥DF【分析】由平移的性质得出△ABC≌△DEF,得出对应边相等,对应角相等,即可得出结论.【解答】解:∵Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,∴AC∥DF,△ABC≌△DEF,∴∠ACB=∠DFE,∠DEF=∠ABC=90°,AC=DF,BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF,∴选项B、C、D正确,不符合题意,选项A错误,符合题意;7.如图,在△ABC中,∠A=90°,BD平分∠ABC交AC于点D,过点D作DE⊥BC于点E.(1)求证:△ABD≌△EBD;(2)当AB=12,CE=3,AD=4时,求∠C的正切值.【分析】(1)根据角平分线的定义得∠ABD=∠EBD,再利用AAS即可证明△ABD≌△EBD;(2)由△ABD≌△EBD,得AD=DE=4,根据正切的定义可得答案.【解答】(1)证明:∵BD平分∠ABC,∴∠ABD=∠EBD,∵DE⊥BC,∴∠DEB=∠A=90°,在△ABD和△EBD中,,∴△ABD≌△EBD(AAS);(2)解:∵△ABD≌△EBD,∴AD=DE=4,∴tan C=.8.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b﹣c;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,9.已知∠MON=90°,点A,B分别在射线OM,ON上(不与点O重合),且OA>OB,OP平分∠MON,线段AB的垂直平分线分别与OP,AB,OM交于点C,D,E,连接CB,在射线ON上取点F,使得OF =OA,连接CF.(1)依题意补全图形;(2)求证:CB=CF;(3)用等式表示线段CF与AB之间的数量关系,并证明.【分析】(1)根据几何语言画出对应的几何图形;(2)过点C作CE垂直平分AB,CF⊥OP,垂足分别为D,C,根据线段的垂直平分线的性质得到CA =CB,根据角平分线的定义得到∠AOC=∠FOC,则可判断△AOC≌△FOC,从而得到CB=CF;(3)证明∠ACB=90°,结合(2)证明三角形ABC是等腰直角三角形,进而可得线段CF与AB之间的数量关系.【解答】(1)解:如图即为补全的图形;(2)证明:连接CA,∵OP是∠MON的平分线,∴∠AOC=∠FOC,在△AOC和△FOC中,,∴△AOC≌△FOC(SAS),∴CA=CF,∵CD是线段AB的垂直平分线,∴CA=CB,∴CB=CF;(3)AB=CF,证明:∵△AOC≌△FOC,∴∠CAO=∠CFB,∵CF=CB,∴∠CBF=∠CFB,∴∠CAO=∠CBF,∵∠CBF+∠CBO=180°,∴∠CAO+∠CBO=180°,∴∠AOB+∠ACB=180°,∵∠AOB=90°,∴∠ACB=90°,∵CA=CB,∴△ABC是等腰直角三角形,∴AB=CB,∴AB=CF.10.已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC 交于点O.求证:OE=OF.【分析】由平行四边形的性质得出AB∥CD,AB=CD,证出AE=CF,∠E=∠F,∠OAE=∠OCF,由ASA 证明△AOE≌△COF,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵BE=DF,∴AB+BE=CD+DF,即AE=CF,∵AB∥CD,∴AE∥CF,∴∠E=∠F,∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.11.如图,已知BD平分∠ABC,∠A=∠C.求证:△ABD≌△CBD.【分析】根据AAS证明△ABD与△CBD全等.【解答】证明:∵BD平分∠ABC,∴∠ABD=∠CBD,在△ABD与△CBD中,,∴△ABD≌△CBD(AAS).12.如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC.若AD=4,AB=6,BC=8,则梯形ABCD的周长为24.【分析】先判断△AMB≌△DMC,从而得出AB=DC,然后代入数据即可求出梯形ABCD的周长.【解答】解:∵AD∥BC,∴∠AMB=∠MBC,∠DMC=∠MCB,又∵MC=MB,∴∠MBC=∠MCB,∴∠AMB=∠DMC,在△AMB和△DMC中,∵∴△AMB≌△DMC(SAS),∴AB=DC,四边形ABCD的周长=AB+BC+CD+AD=24.13.如图,点E,F在线段AD上,AB∥CD,∠B=∠C,BE=CF.求证:AF=DE.【分析】根据AB∥CD,可得∠A=∠D,易证△ABE≌△DCF(AAS),根据全等三角形的性质可得AE=FD,进一步即可得证.【解答】证明:∵AB∥CD,∴∠A=∠D,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴AE=DF,∴AE﹣EF=DF﹣EF,∴AF=DE.14.如图,已知AD=AE,AB=AC.求证:BE=CD.【解答】证明:在△AEB与△ADC中,,∴△AEB≌△ADC(SAS),∴BE=CD.15.已知:如图,E为BC上一点,AC∥BD,AC=BE,BC=BD.求证:AB=DE.【解答】证明:∵AC∥BD,∴∠ACB=∠DBC,∵AC=BE,BC=BD,∴△ABC≌△EDB,∴AB=DE.16.如图.已知AB=DC,∠A=∠D,AC与DB相交于点O,求证:∠OBC=∠OCB.【分析】先证明出△AOB≌△COD,进而得出OB=OC,根据等腰三角形的性质得出结论.【解答】证明:在△AOB与△COD中,,∴△AOB≌△DOC(AAS),∴OB=OC,∴∠OBC=∠OCB.17.已知:如图,AC与BD交于点O,AO=CO,BO=DO.求证:AB∥CD.【分析】由已知两对边相等,再加上一对对顶角相等,利用SAS得出△AOB≌△COD,利用全等三角形的对应角相等得到一对内错角相等,利用内错角相等两直线平行,可得出AB与CD平行.【解答】证明:在△AOB和△COD中,,∴△AOB≌△COD(SAS),∴∠A=∠C,∴AB∥CD.18.如图,点C是AB的中点,DA⊥AB,EB⊥AB,AD=BE.求证:DC=EC.【解答】证明:∵DA⊥AB,EB⊥AB,∴∠A=∠B=90°,∵点C是AB的中点,∴AC=BC,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴DC=EC.19.如图,点E、C在线段BF上,AC∥DF,∠A=∠D,AB=DE,证明:BE=CF.【解答】证明:∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣EC=EF﹣EC,即BE=CF.20.如图,点A,D,B,E在一条直线上,AD=BE,AC=DF,AC∥DF.求证:BC=EF.【解答】证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE,∵AC∥DF,∴∠A=∠EDF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.21.如图,E为BC上一点,AC∥BD,AC=BE,∠ABC=∠D.求证:AB=ED.【解答】证明:∵AC∥BD,∴∠C=∠EBD,在△ABC与△EDB中,,∴△ABC≌△EDB(AAS),∴AB=ED.22.如图,点E,F在线段BC上,AB∥CD,AB=DC,BF=CE.求证:AF∥DE.【解答】证明:∵AB∥CD,∴∠B=∠C,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS),∴∠AFB=∠DEC,∴AF∥DE.。
中考数学复习专项之三角形全等 (含答案)
30°ABOCl D 第1题图C A P B D三角形全等一、选择题1、(2022年安徽省模拟六)在△ABC 与△A ′B ′C ′中,已知AB = A ′B ′,∠A =∠A ′,要使△ABC ≌△A ′B ′C ′,还需要增加一个条件,这个条件不正确的是…………【 】 A .AC = A ′C ′ B.BC = B ′C ′ C.∠B =∠B ′ D.∠C =∠C ′.答案:B2、(2022年江苏南京一模)如图,直线上有三个正方形a b c ,,,若a c ,的面积分别为3和4,则b 的面积为( ) A .3 B .4 C .5 D .7 答案:D3.(2022郑州外国语预测卷)如图,两个等圆⊙A 、⊙B 分别与直线l 相切于点C 、D ,连接AB 与直线l 相交于点O ,∠AOB =30°,连接AC 、BD ,若AB =4,则这两个等圆的半径为( ) A .21B .1C .3D .2 答案:B4、(2022河南沁阳市九年级第一次质量检测) 如图,把△ABC 绕着点C 顺时针旋转30°,得到△A ′B ′C ,A ′B ′交AC 于点D ,若∠A ′DC =90°,则∠A 的度数是【 】A.30°B.50°C.60°D.80°C5、(2022年湖北省武汉市中考全真模拟)如图,等腰△ABC 中,AB=AC ,P 为其底角平分线的交点,将△BCP 沿CP 折叠,使B 点恰好落在AC 边上的点D 处,若DA=DP ,则∠A 的度数为( ).A.20°B.30°C.32°D.36°D6、 (2022年湖北宜昌调研)如图,AC ,BD 交于点E ,AE=CE ,添加以下四个条件中的一个,其中不能使△ABE ≌△CDE 的条件是( ) (A )BE=DE (B )AB ∥CD (C )∠A=∠C (D )AB=CDabclEABCD答案:D7、(2022年唐山市二模)在锐角△ABC 中,∠BAC =60°,BN 、CM 为高,P 为BC 的中点,连接MN 、MP 、NP ,则结论:①NP =MP ②当∠ABC =60°时,MN ∥BC ③ BN =2AN ④AN︰AB =AM ︰AC ,一定正确的有 ( )A 、1个B 、2个C 、3个D 、4个答案:C8.(2022年上海闵行区二摸)在△ABC 与△A ′B ′C ′中,已知AB = A ′B ′,∠A =∠A ′,要使△ABC ≌△A ′B ′C ′,还需要增加一个条件,这个条件不正确的是 (A )AC = A ′C ′; (B )BC = B ′C ′; (C )∠B =∠B ′; (D )∠C =∠C ′.答案:B二、填空题1、(2022云南勐捧中学二模)如图,AB CD ,相交于点O ,AO=CO ,试添加一个条件使得AOD COB △≌△,你添加的条件是 (只需写一个). 【答案】∠A= ∠C 、∠D= ∠B 、OD=OB (答案不唯一)2.(2022年安徽初中毕业考试模拟卷一)如图,ABC ∆为等边三角形,AQ =PQ ,PR =PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则四个结论正确的是 .(把所有正确答案的序号都填写在横线上)①AP 平分∠BAC ;②AS =AR ;③QP ∥AR ;④BRP ∆≌△QSP . 答案:①②③④三、解答题1、(2022年湖北荆州模拟5)(本题满分8分)将两块斜边长度相等的等腰直角三角纸板如图(1)摆放,若把图(1)中的△BCN 逆时针旋转90°,得到图(2),图(2)中除△ABC ≌△CED 、△BCN ≌△ACF 外,你还能找到一对全等的三角形吗?写出你的结论并说明理由.AC BDO第1题答案:解:△FCM ≌△NCM ,理由如下: ∵把图中的△BCN 逆时针旋转90°, ∴∠FCN=90°,CN=CF , ∵∠MCN=45°, ∴∠FCM=90°-45°=45°, 在△FCM 和△NCM 中∵CM=CM ,∠FCM=∠NCM , FC=CN∴△FCM ≌△NCM (SAS ).2、(2022年湖北荆州模拟6)(本题满分8分)如图,正方形ABCD 和BEFG 在直线AB 的同侧,连接AG 、EC ,易证AG=EC ,现在将正方形BEFG 顺时针旋转30°,那么AG=EC 还成立吗?请作出旋转后的图形,并证明你的结论. 答案:解:成立. 理由如下:在ΔABG 与ΔCBE 中,0120AB CB ABG CBE BG BE =⎧⎪∠=∠=⎨⎪=⎩∴ ΔABG ≌ΔCBE ∴ AG=CE3、(2022年江苏南京一模)(7分)如图, AB =AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O . (1) 求证:AD =AE ;(2) 连接BC ,DE ,试判断BC 与DE 的位置关系并说明理由. 答案:(1)证明:在△ACD 与△ABE 中, ∵∠A =∠A ,∠ADC =∠AEB =90°,AB =AC , ∴ △ACD ≌△ABE .…………………… 2分 ∴ AD=AE . ……………………3分 (2) 互相平行 ……………………4分 在△ADE 与△ABC 中, ∵AD=AE ,AB=AC ,∴ ∠ADE=∠AED ,∠ABC=∠ACB ……………6分 且 ∠ADE =180-∠A =∠ABC.∴ DE ∥BC . ……………7分第1题图第2题图第2题解答CACBB第2题图14.(2022年北京房山区一模)如图,点C、B、E在同一条直线上,AB∥DE,∠ACB=∠CDE,AC=CD.求证:AB=CD .答案:证明:∵AB∥DE∴∠ABC=∠E ------------------------------1分∵∠ACB=∠CDE,AC=CD --------------------- --------3分∴△ABC≌△CED -------------------------4分∴AB=CD--------------------------5分5.(2022年北京房山区一模)(1)如图1,△ABC和△CDE都是等边三角形,且B、C、D三点共线,联结AD、BE相交于点P,求证:BE = AD.(2)如图2,在△BCD中,∠BCD<120°,分别以BC、CD和BD为边在△BCD外部作等边三角形ABC、等边三角形CDE和等边三角形BDF,联结AD、BE和CF交于点P,下列结论中正确的是(只填序号即可)①AD=BE=CF;②∠BEC=∠ADC;③∠DPE=∠EPC=∠CPA=60°;(3)如图2,在(2)的条件下,求证:PB+PC+PD=BE.答案:(1)证明:∵△ABC和△CDE都是等边三角形∴BC=AC,CE=CD,∠ACB=∠DCE=60°∴∠BCE=∠ACD∴△BCE≌△ACD(SAS)∴BE=AD--------------1分(2)①②③都正确--------------4分(3)证明:在PE上截取PM=PC,联结CM由(1)可知,△BCE≌△ACD(SAS)EDC BA第1题图ADAB∴∠1=∠2设CD 与BE 交于点G ,,在△CGE 和△PGD 中 ∵∠1=∠2,∠CGE =∠PGD∴∠DPG =∠ECG =60°同理∠CPE =60° ∴△CPM 是等边三角形--------------5分 ∴CP =CM ,∠PMC =60° ∴∠CPD =∠CME =120°∵∠1=∠2,∴△CPD ≌△CME (AAS )---6分 ∴PD =ME∴BE =PB +PM +ME =PB +PC +PD . -------7分即PB+PC+PD=BE .6.(2022年北京龙文教育一模)已知:如图,AB ∥CD ,AB =CD ,点E 、F 在线段AD 上,且AF=DE .求证:BE =CF . 答案:证明: AF=DE , ∴ AF-EF=DE –EF . 即 AE=DF .………………1分AB ∥CD ,∴∠A =∠D .……2分在△ABE 和△DCF 中 , AB =CD , ∠A =∠D , AE=DF .∴△ABE ≌△DCF .……….4分 ∴ BE =CF .…………….5分7. (2022年北京龙文教育一模)阅读下面材料:问题:如图①,在△ABC 中, D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =45°,DC =2.求BD 的长.小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题得到解决.(1)请你回答:图中BD 的长为 ;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =30°,DC =2,求BD 和AB 的长.FE ACDB第3题图答案:解:(1)22=BD . ……………………………… ………………………1分(2)把△ADC 沿AC 翻折,得△AEC ,连接DE , ∴△ADC ≌△AEC .∴∠DAC =∠EAC ,∠DCA =∠ECA , DC =EC . ∵∠BAD =∠BCA =2∠DAC =30°, ∴∠BAD =∠DAE =30°,∠DCE =60°.∴△CDE 为等边三角形. ……………………2分 ∴DC =DE .在AE 上截取AF =AB ,连接DF , ∴△ABD ≌△AFD . ∴BD =DF .在△ABD 中,∠ADB =∠DAC +∠DCA =45°, ∴∠ADE =∠AED =75°,∠ABD =105°. ∴∠AFD =105°. ∴∠DFE =75°. ∴∠DFE =∠DEF . ∴DF =DE .∴BD =DC =2. …………………………………………………………………3分 作BG ⊥AD 于点G , ∴在Rt △BDG 中, 2=BG . ……………………………………………4分∴在Rt △ABG 中,22=AB . ……………………………………………5分 8.(2022年北京平谷区一模)已知:如图,AB ∥CD ,AB =EC ,BC =CD . 求证:AC =ED .答案:证明:∵ AB //CD ,∴B DCE ∠=∠.………………… ………………………1分在△ABC 和△ECD 中,= =B DCE AB EC BC CD ∠∠⎧⎪=⎨⎪⎩,,, ∴ △ABC ≌△ECD . …………………… ………………4分∴ AC =ED .………………………… ……………………5分9.(2022年北京顺义区一模)已知:如图,CA 平分BCD ∠, 点E 在AC 上,BC EC =,AC DC =.求证:A D ∠=∠.答案:证明:∵CA 平分BCD∠∴ ACB DCE ∠=∠ ……………1分在ABC ∆和DEC ∆中∵BC EC ACB DCE AC DC =⎧⎪∠=∠⎨⎪=⎩……………3分 ∴ABC ∆≌DEC ∆ …………………………………………… 4分 ∴A D ∠=∠ ……………………………………………5分10.(2022年北京平谷区一模)(1)如图(1),△ABC 是等边三角形,D 、E 分别是 AB 、BC 上的点,且BD CE =,连接AE 、CD 相交于点P . 请你补全图形,并直接写出∠APD 的度数;= (2)如图(2),Rt △ABC 中,∠B =90°,M 、N 分别是 AB 、BC 上的点,且,AM BC =BM CN =,连接AN 、CM 相交于点P . 请你猜想∠APM = °,并写出你的推理过程.答案:解:(1)60° (2)45° ………………………………..2分 证明:作AE ⊥AB 且AE CN BM ==. 可证EAM MBC ∆≅∆. ……………………………..3分 ∴ ,.ME MC AME BCM =∠=∠∵ 90,CMB MCB ∠+∠=︒∴ 90.CMB AME ∠+∠=︒∴ 90.EMC ∠=︒∴ EMC ∆是等腰直角三角形,45.MCE ∠=︒ ……………….5分又△AEC ≌△CAN (s , a , s )∴ .ECA NAC ∠=∠ ∴ EC ∥AN.∴ 45.APM ECM ∠=∠=︒…………………………………………………………………..7分EDCBA第6题图第7题图11.(2022浙江东阳吴宇模拟题)(本题12分) 如图,平面直角坐标系中,点A (0,4),B (3,0),D 、E 在x 轴上,F 为平面上一点,且EF ⊥x 轴,直线DF 与直线AB 互相垂直,垂足为H ,△AOB ≌△DEF ,设BD =h 。
中考数学专题练习:全等三角形(含答案)
中考数学专题练习:全等三角形(含答案)1.(·成都)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是( )A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC2.(·黔南州)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A.甲和乙B.乙和丙C.甲和丙D.只有丙3.(·南京)如图,AB⊥CD,且AB=CD,E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF =c,则AD的长为( )A.a+c B.b+c C.a-b+c D.a+b-c4.(·原创) 如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,当BC∥OA时,下列结论正确的是( )A.∠OAD=2∠ABOB.∠OAD=∠ABOC.∠OAD+2∠ABO=180°D.∠OAD+∠ABO=90°5.(·临沂)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E.AD=3,BE=1,则DE的长是( )A.32B.2 C.2 2 D.106.(·济宁)在△ABC中,点E、F分别是边AB、AC的中点,点D在BC边上,连接DE、DF、EF,请你添加一个条件____________________________,使△BED与△FED全等.7.(·原创)如图,已知△ABC≌△ADE,若AB=6,C为AD的中点,则AC的长为______.8.(·包河区二模)如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,垂足分别为D,E,若BD=3,CE=2,则DE=______.9.(·宜宾)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.10.(·菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.11.(·泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.12.(·陕西)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G、H,若AB=CD,求证:AG=DH.13.(·镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=________°.14.(·温州) 如图,在四边形 ABCD 中,E 是 AB 的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当 AB=6 时,求 CD 的长.15.(·恩施)如图,点 B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交 BE于点O.求证:AD与BE互相平分.16.(·广东)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E 处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.1.(·阜阳模拟)如图,过等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是( )A.PD=DQB.DE=12 ACC.AE=12CQD.PQ⊥AB2.(·原创)如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是( )A.76° B.62°C.42° D.76°、62°或42°都可以3.(·原创)如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是( )A.75° B.70° C.65° D.60°4.(·德阳)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连接AH,已知ED=2,求AH的值.5.(·合肥45中一模) 如图1,已知正方形ABCD,E是线段BC上一点,N是线段BC延长线上一点,以AE为边在直线BC的上方作正方形AEFG.(1)连接GD,求证:DG=BE;(2)连接FC,求∠FCN的度数;(3)如图2,将图1中正方形ABCD改为矩形ABCD,AB=m,BC=n(m、n为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线BC的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由点B向点C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含m、n的代数式表示tan∠FCN的值,若∠FCN的大小发生改变,请画图说明.参考答案【基础训练】1.C 2.B 3.D 4.A 5.B 6.BD =EF(答案不唯一) 7.3 8.5 9.证明:∵∠1=∠2,∴180°-∠1=180°-∠2,即∠ACB=∠ACD.在△CDA 和△CBA 中,⎩⎨⎧∠B=∠D,∠ACB=∠ACD,AC =AC ,∴△CDA≌△CBA(AAS).∴CB=CD.10.解:DF =AE.证明:∵AB∥CD ,∴∠C=∠B. ∵CE=BF,∴CE-EF =BF -FE,∴CF=BE. 又∵CD=AB,∴△DCF≌△ABE(SAS), ∴DF=AE.11.证明:方法一:∵∠A=∠D=90°,AC =DB,BC =CB, ∴Rt△ABC≌Rt△DCB(HL), ∴∠OBC=∠OCB ,∴BO=CO.方法二:∵∠A=∠D=90°,AC =DB,BC =CB, ∴Rt△ABC≌Rt△DCB(HL), ∴AB=DC,又∵∠AOB=∠DOC , ∴△ABO≌△DCO(AAS ),∴BO =CO. 12.证明:∵AB∥CD ,∴∠A=∠D.又∵CE∥BF ,∴∠AHB=∠DGC.在△ABH 和△DCG 中,⎩⎨⎧∠A=∠D∠AHB=∠DGC AB =CD,∴△ABH≌△DCG(AAS), ∴AH=DG.又∵AH=AG +GH,DG =DH +GH,∴AG=DH. 13.(1)证明:∵AB=AC,∴∠B=∠ACF.在△ABE 和△ACF 中,⎩⎨⎧AB =AC ,∠B=∠ACF,BE =CF ,∴△ABE≌△ACF(SAS). (2)解:75.14.(1)证明:由AD∥EC 可知∠A =∠CEB, 又因为E 是 AB 的中点,所以AE =EB, 且∠AED=∠B ,所以△AED≌△EBC(ASA). (2)解:由(1)△AED≌△EBC 可知AD =EC, 又因为AD∥EC ,所以四边形AECD 为平行四边形, 又因为AB =6,则CD =AE =3. 15.证明:如解图,连接 BD ,AE . ∵AB∥ED ,∴∠ABC=∠DEF. ∵AC∥FD ,∴∠ACB=∠DFE. ∵ FB=CE, ∴BC=EF. 在△ACB 和 △DFE 中,⎩⎨⎧∠ABC=∠DEF,BC =EF ,∠ACB=∠DFE.∴△ACB ≌ △DFE(ASA). ∴ AB=DE.∵AB∥ED ,∴四边形ABDE 是平行四边形.∴AD 与BE 互相平分.16.证明:(1)∵四边形ABCD 是矩形, ∴AD=BC, AB =DC.∵△AEC 是由△ABC 折叠而成的, ∴AD=BC =EC,AB =DC = AE.在△ADE 和△CED 中,⎩⎨⎧AD =CEDE =ED AE =CD,∴△ADE≌△CED(SSS);(2)由(1)△ADE≌△CED 可得∠AED=∠CDE , ∴FD=EF,∴△DEF 是等腰三角形. 【拔高训练】 1.D 2.B 3.C 4.(1)证明:∵EF⊥EC ,∴∠CEF=90°, ∴∠AEF+∠DEC=90°, ∵四边形ABCD 是矩形,∴∠AEF+∠AFE=90°, ∠DEC+∠DCE=90°, ∴∠AEF=∠DCE ,∠AFE=∠DEC , ∵AE=DC,∴△AEF≌△DCE(AAS), ∴DE=AF,∵AE=DC =AB =2DE,∴AB=2AF, ∴F 为AB 的中点.(2)解:由(1)知AF =FB,且AE∥BH , ∴∠FBH=∠FAE=90°, ∠AEF=∠FHB , ∴△AEF≌△BHF(AAS),∴AE=HB, ∵DE=2, 且AE =2DE, ∴AE=4,∴HB=AB =AE =4,∴AH 2=AB 2+BH 2=16+16=32,∴AH=4 2.5.(1)证明:∵四边形ABCD 和四边形AEFG 是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS).∴DG=BE;(2)解:如解图1,过点F作FH⊥BN于点H.∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°, ∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠EBA=90°,∴△EFH≌△AEB(AA S),∴FH=BE,EH=AB=BC,∴CH=BE=FH,∴∠FCN=∠CFH=12(180°-∠FHC).∵∠FHC=90°, ∴∠FCN=45°.(3)解:当点E由点B向点C运动时,∠FCN的大小总保持不变,理由如下:如解图2,过点F 作FH⊥BN于点H,由已知可得∠EAG=∠BAD=∠AEF=90°, 结合(1)(2)得∠FEH=∠BAE=∠DAG,又∵G在射线CD上,∠GDA=∠EHF=∠EBA=90°,∴△EFH≌△AGD(AAS),△EFH∽△AEB,∴EH=AD=BC=n, ∴CH=BE,∴EHAB=FHBE=FHCH;在Rt△FCH中,tan∠FCN=FHCH=EHAB=nm.∴当点E由点B向点C运动时,∠FCN的大小总保持不变,且tan∠FCN=n m .。
中考数学专题《全等三角形》
专题01 全等三角形一、单选题1.(2021·全国)在ABC V 中,B C ∠=∠,与ABC V 全等的三角形有一个角是100︒,那么在ABC V 中与这100︒角对应相等的角是( )A .A ∠B .BÐC .C ∠D .B Ð或C ∠2.(2021·山西襄汾县·七年级期末)如图,Rt △ABC 沿直角边BC 所在直线向右平移到Rt △DEF ,则下列结论中,错误的是( )A .BE EC =B .BC EF =C .AC DF =D .ABC DEF △≌△3.(2021·山西七年级期末)下列说法:①两个形状相同的图形称为全等图形;②边、角分别对应相等的两个多边形全等;③全等图形的形状、大小都相同;④面积相等的两个三角形全等.其中正确的是()A .①②③B .①②④C .①③D .②③4.(2021·哈尔滨市第四十七中学)如图,ABD BAC ∆∆≌,若AD BC =,则BAD ∠的对应角( )A .ADB ∠B .BCD ∠C .ABC ∠D .CDA ∠5.(2021·全国八年级课时练习)如图,,40,30ABD CDB ABD CBD ∠=︒∠=︒V V ≌,则C ∠等于( )A .20︒B .100︒C .110︒D .115︒6.(2021·重庆巴南区·)已知△ABC 的三边的长分别为3,5,7,△DEF 的三边的长分别为3,7,2x ﹣1,若这两个三角形全等,则x 的值是( )A .3B .5C .﹣3D .﹣57.(2021·大连市第三十四中学八年级月考)如图,ABC A B C '''≅V V ,其中36A ∠=︒,24C '∠=︒,则B ∠=( )A .150︒B .120︒C .90︒D .60︒8.(2021·全国七年级课时练习)如图,在ABC V 中,D ,E 分别是边AC ,BC 上的点,若ADB EDB EDC V V V ≌≌,则C ∠的度数为( )A .15︒B .20︒C .25︒D .30°9.(2021·甘肃榆中县·七年级期末)如图,90A B ∠=∠=︒,6AB =,E 、F 分别为线段AB 和射线BD 上的一点,若点E 从点B 出发向点A 运动,同时点F 从点B 出发向点D 运动,二者速度之比为1:2,运动到某时刻同时停止,在射线AC 上取一点G ,使AEG △与BEF V 全等,则AG 的长为( )A .2B .3C .2或3D .2或610.(2021·全国)如图,锐角△ABC 中,D 、E 分别是AB 、AC 边上的点,△ADC ≌△ADC ′,△AEB ≌△AEB ′,且C ′D //EB ′//BC ,BE 、CD 交于点F ,若∠BAC =α,∠BFC =β,则( )A .2α+β=180°B .2β﹣α=180°C .α+β=150°D .β﹣α=60°11.(2021·全国八年级课时练习)如图,AOB ADC △≌△,点B 和点C 是对应顶点,90O D ∠=∠=︒,记,,OAD ABO ABC ACB αβ∠=∠=∠=∠,当//BC OA 时,α与β之间的数量关系为( )A .αβ=B .2αβ=C .90αβ+=︒D .2180αβ+=︒12.(2021·河南川汇区·八年级期末)如图,点D ,E ,F 分别在ABC V 的边AB ,BC ,CA 上(不与顶点重合),设BAC α∠=,FED θ∠=.若BED CFE ≌△△,则α,θ满足的关系是( )A .90αθ+=︒B .2180αθ+=︒C .90αθ-=︒D .2180αθ+=︒第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(2021·吉林铁西区·八年级期中)如图所示,ABC ECD ≌△△,48A ∠=︒,62D ∠=︒,则图中B Ð的度数是______度.14.(2021·全国八年级课时练习)如图,ABE ACD △≌△,且D ∠与E ∠是对应角,顶点C 与顶点B 对应,若10cm BE =,则CD =__________.15.(2021·全国)如图,长方形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,AD =7cm ,DM =5cm ,∠DAM =39°,则△ANM ≌△ADM ,AN =_____cm ,NM =_____cm ,∠NAB =_______.17.(2021·浙江东阳市·七年级期末)如图,把一张长方形纸板裁去两个边长为3cm的小正方形和两个全等的小长方形,再把剩余部分(阴影部分)四周折起,恰好做成一个有底有盖的长方体纸盒,纸盒底面长方形的长为3k cm,宽为2k cm,则(1)裁去的每个小长方形面积为___cm2;(用k的代数式表示)(2)若长方体纸盒的表面积是底面积的正整数倍,则正整数k的值为___.18.(2021·山东莱州市·七年级期末)三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数等于_______.19.(2021·辽宁本溪市·七年级期末)如图,∠A=∠B=90°,AB=80,点E和点F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,点E和点F运动速度之比为2:3,运动到某时刻点E和点F同时停止运动,在射线AC 上取一点G,使△AEG与△BEF全等,则AG的长为________.20.(2021·全国)如图,在△ABC中,AB=AC=24厘米,∠B=∠C,BC=16厘米,点D为AB的中点,点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.当点Q 的运动速度为________厘米/秒时,能够在某一时刻使△BPD 与△CQP 全等.三、解答题21.(2021·全国八年级课时练习)已知:如图,,8cm,5cm ABC DEF BC EC ==V V ≌,求线段CF 的长.22.(2020·铜陵市第二中学八年级月考)如图,ABF V ≌CDE △,已知30B ∠=︒,25DCF ∠=︒,求EFC ∠的度数.23.(2021·河南邓州市·七年级期末)我们已经认识了图形的轴对称、平移和旋转,这是图形的三种基本变换,图形经过这样的变换,虽然位置发生了改变,但图形的形状与大小都不发生变化,反映了图形之间的全等关系.这种运用动态变换研究图形之间的关系的方法,是一种重要而且有效的方法.同学们学完了这些知识后,王老师在黑板上给大家出示了这样的一道题目:(1)如图,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .试说明AD =BE ;聪明的小亮很快就找到了解决该问题的方法:请你帮小亮把说理过程补充完整.解:∵△ACB 和△DCE 均为等边三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°,(等边三角形的性质)∴∠ACD = (等式的性质)∴△ACD 绕点C 按逆时针方向旋转 度,能够与 重合∴△ACD ≌ (旋转变换的性质)∴AD =BE ( );(2)当同学们把这道题领会感悟后,王老师又在上题基础上追加了一问:试求∠AEB 的度数.聪明的同学们你会解决吗?请写出你的求解过程.(此题不用写推理依据即可). 24.(2021·全国八年级课时练习)如图,,ABF CDE B ∠V V ≌和D ∠是对应角,AF 和CE 是对应边.(1)写出ABF V 和CDE △的其他对应角和对应边;(2)若30,40B DCF ∠=︒∠=︒,求EFC ∠的度数;(3)若10,2BD EF ==,求BF 的长.25.(2021·河南伊川县·七年级期末)如图,点A、B、C、D在同一直线上,△ACE≌△DBF,AD =8,BC=2.(1)求AC的长;(2)求证:CE∥BF,AE∥DF.⊥于点B,26.(2021·辽宁铁西区·)如图,点B,C,E,F在同一直线上,AB BCCE=.BC=,3DEF ABCV V≌,且6(1)求CF的长;(2)判断DE与EF的位置关系,并说明理由.27.(2021·浙江浙江省·八年级期末)如图,已知正方形ABCD 边长为4cm ,动点M 从点C 出发,沿着射线CD 的方向运动,动点P 从点B 出发,沿着射线BC 的方向运动,连结,BM DP ,(1)若动点M 和P 都以每秒2cm 的速度运动,问t 为何值时DPC △和BCM V 全等?(2)若动点P 的速度是每秒3cm ,动点M 的速度是每秒1.5cm 问t 为何值时DPC △和BCM V 全等?28.(2020·浙江浙江省·)在56⨯的方格纸中,每格的边长为1,请按下列要求画图.(1)在图1中画一个格点ADE V ,使ADE V 与ABC V 全等,且所画格点三角形的顶点均不与点B ,C 重合.(2)在图2中画一个面积为7的格点四边形ABCD ,且BAD ∠为锐角.29.(2021·云南盘龙区·七年级期末)如图,在平面直角坐标系中,O 为坐标原点,ABC V 的边BC 在x 轴上,A 、C 两点的坐标分别为()0,A m ,(),0C n ,()5,0B -,且()231230m n -+-=点P 从B 出发,以每秒1个单位的速度沿射线BO 匀速运动,设点P 运动时间为t .(1)点A 的坐标为 ;点C 的坐标为 ;(2)连接PA ,当POA V 的面积等于ABC V 的面积的一半时,求t 的值;(3)当P 在线段BO 上运动时,在y 轴上是否存在点Q ,使POQ △与AOC △全等?若存在,请直接写出Q 点坐标;若不存在,请说明理由.30.(2021·江苏姑苏区·苏州草桥中学七年级期末)如图,将一副三角板按如图所示的方式放置,其中ABC V 中,90ACB ∠=︒,45BAC ∠=︒,ADE V 中,90ADE ∠=︒,30DAE ∠=︒,AB AD =,点C 在线段AE 上.射线AB '从AB 出发,绕点A 以5︒/秒的速度顺时针旋转;同时,射线DA '从DA 出发,绕点D 顺时针旋转.设射线AB '运动的时间为t 秒(09t <≤),AB '与BC 交于点M ,DA '与AB '交于点N .(1)若射线DA '旋转的速度为5︒/秒,则AND ∠=________︒;(2)设射线DA '旋转的速度为x ︒/秒,当射线AB '与DA '旋转到某处时,ABM V 与AND △全等,求相应的t 、x 的值.。
初中数学中考复习:30全等三角形(含答案)
中考总复习:全等三角形—巩固练习【巩固练习】一、选择题1.如图,△ABC是不等边三角形,DE=BC,以D、E为两个顶点画位置不同的三角形,使所画的三角形与△ABC全等,这样的三角形最多可画出( ) .A.2个B.4个C.6个D.8个2.如图,Rt△ABC中,∠BAC=90°,AB=AC,D为AC的中点,AE⊥BD交BC于E,若∠BDE=,∠ADB的大小是().A. B. C. D.3.如图,△ABC中,∠C为钝角,CF为AB上的中线,BE为AC上的高,若CF=BE,则∠ACF的大小是().A.45° B.60° C.30° D.不确定4.如图,△ABC中,∠BAC=90° AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是( ) . A. 45°B. 20°C. 30°D. 15°5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是(). A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等 C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC6. 如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则(). A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC;二、填空题7.如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的。
若∠1:∠2:∠3=28:5:3,则的度数为______.8.如图,把△ABC绕C点顺时针旋转35°,得到,交于点,若,则∠A=______.9.如图,已知的周长是20,分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3, △ABC的面积是___________..如图,直线AE∥BD,点则……峰1峰2已知:如图,过△ABC的边BC的中点求证:14.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE,AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.15.如图,已知中,厘米,厘米,点为的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C 点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与 全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?16. 如图,在中,,,,. (1)求证:,. (2)如图,若是的中点.求证:. (3)如图,若于点,延长交于点.求证:.【答案与解析】一、选择题1.【答案】B.2.【答案】C.【解析】作关于BC的对称图形,作的中点,连接,则容易证明,说明和AE在同一条直线上的线段,根据对称性交于E点,所以与DE在同一条直线上,容易证明.所以.所以.3.【答案】C.【解析】延长CF到D,使CD=2CF,容易证明 △AFC≌△,所以∠D=∠FCA,所以AC∥BD,因为 CF=BE,所以CD=2BE,即AC与BD之间的距离等于CD的一半, 所以∠D=30°.所以内错角∠ACF=30°.4.【答案】D.5.【答案】C.【解析】提示:∵△ABD≌△CDB, ∴AB=CD,BD=DB,AD=CB,∠ADB=∠CBD, ∴△ABD和△CDB的周长和面积都分别相等. ∵∠ADB=∠CBD, ∴AD∥BC.6.【答案】D.二、填空题7.【答案】80°.【解析】由三角形内角和是180°知∠1=140°,∠2=25°,∠3=15°, 由翻折知:∠ABE=∠2,∠ACD=∠3,∴.8.【答案】55°.【解析】由旋转知:,, ∵,∴55, ∴55°.9.【答案】30 .【解析】提示:面积法.10.【答案】8.11.【答案】相等或互补.12.【答案】-29 , B .三、解答题13.【答案与解析】证明:延长FM到G,使,连接 ∵M为BC的中点, ∴△BMG≌△CMF ∴∠G=∠2,CF=BG, 又∵平分,ME∥AD, ∴∠3=∠4,∠3=∠E,∠1=∠4, ∴∠1=∠E,即AE=AF, ∵∠1=∠2,∠G=∠2,∠1=∠E, ∴∠G=∠E,即BE=BG=CF, ∴AB+AC=AB+AF+CF=AB+AE+CF=BE+CF=2CF,即14.【答案与解析】猜测AE=BD,AE⊥BD. 证明如下: ∵∠ACD=∠BCE=90°, ∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB. ∵△ACD和△BCE都是等腰直角三角形, ∴AC=CD,CE=CB. ∴△ACE≌△DCB(SAS) ∴AE=BD,∠CAE=∠CDB. ∵∠AFC=∠DFH, ∴∠DHF=∠ACD=90°, ∴AE⊥BD.15.【答案与解析】(1)①∵秒, ∴, ∵,点为的中点, ∴. 又∵, ∴, ∴. 又∵, ∴, ∴. ②∵,∴, 又∵,,则, ∴点,点运动的时间秒, ∴. (2)设经过秒后点与点第一次相遇, 由题意,得, 解得. ∴点共运动了. ∵, ∴点、点在边上相遇, ∴经过秒点与点第一次在边上相遇.16.【答案与解析】(1)提示:证明≌(SAS).(2)提示:延长至,使得,连结,先证≌(SAS), 再证≌(SAS).(3)提示:作于,的延长线于,先证≌(AAS), 同理证明≌,再证≌(AAS).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四单元三角形第十九课时全等三角形基础达标训练1. 下列说法正确的是( )A. 全等三角形是指形状相同的两个三角形B. 全等三角形是指面积相等的两个三角形C. 两个等边三角形是全等三角形D. 全等三角形是指两个能完全重合的三角形2. 如图,在△AB C和△DEF中,AB=DE,∠B=∠DEF,补充下列哪一条件后,能应用“SAS”判定△ABC≌△DEF( )第2题图A. ∠A=∠DB. ∠ACB=∠DFEC. AC=DFD. BE=CF3.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF =BC,④∠EAB=∠FAC,其中正确结论的个数是()第3题图第4题图4. (2020眉山)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE=1.5,则四边形EFCD的周长为( )A. 14B. 13C. 12D. 105. (2020黔东南州)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件________使得△ABC≌△DEF.第5题图 第6题图 6. 如图,Rt △ABC ≌Rt △DCB ,两斜边交于点O ,如果AC =3,那么OD 的长为________.7. (2020达州)△ABC 中,AB =5,AC =3,AD 是△ABC 的中线,设AD 长为m ,则m 的取值范围是________.第8题图8. (2020新疆建设兵团)如图,在四边形ABCD 中,AB =AD ,CB =CD ,对角线AC ,BD 相交于点O ,下列结论中:①∠ABC =∠ADC ;②AC 与BD 相互平分;③AC ,BD 分别平分四边形ABCD的两组对角;④四边形ABCD 的面积S =12AC ·BD . 正确的是__________.(填写所有正确结论的序号)9. (6分)(2020云南)如图,点E 、C 在线段BF 上,BE =CF ,AB =DE ,AC =DF .求证:∠ABC =∠DEF .第9题图10. (6分)(2020南充)如图,DE ⊥AB ,CF ⊥AB ,垂足分别是点E ,F ,DE =CF ,AE =BF .求证:AC ∥BD .第10题图11. (6分)(2020郴州)已知△ABC中,∠ABC=∠ACB,点D、E分别为边AB、AC的中点.求证:BE=CD.第11题图12. (8分)(2020株州模拟)已知△ABN和△ACM位置如图,AB=AC=3,BD=CE=2,∠B=∠C.(1)求证:∠1=∠2;(2)若CM∥A B,求线段CM的长度.第12题图13. (8分)(2020苏州)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.第13题图14. (8分)(2020湘潭)如图,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB=2BC,∠F=36°,求∠B的度数.第14题图15. (8分)(2020广西四市)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.(1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.第15题图16. (8分)(2020长沙中考模拟卷一)如图,已知△ABC是等边三角形,点D、E分别是AC、BC上的两点,AD=CE,且AE与BD交于点P,BF⊥AE于点F.(1)求证:△ABD≌△CAE;(2)若BP=6,求PF的长.第16题图能力提升训练1. 在等腰Rt△ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于点F,若BF=12,则△FBC的面积为( )A. 40B. 46C. 48D. 50第1题图第2题图2. 如图,点C为线段AB上一点,△DAC、△ECB都是等边三角形,AE、DC交于点M,DB、EC交于点N,DB、AE交于点P,连接MN,下列说法中正确的个数有( )①MN∥AB;②∠DPM=60°;③∠DAP=∠PEC;④△ACM≌△DCN;⑤若∠DBE=30°,则∠AEB =80°.A. 2个B. 3个C. 4个D. 5个3. (2020哈尔滨)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM =PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为( )A. 4B. 3C. 2D. 1第3题图4. (9分)(2020重庆B卷)如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.(1)如图①,若AB=42,BE=5,求AE的长;(2)如图②,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD,CF.当AF=DF时,求证:DC=BC.第4题图5. 注重开放探究(9分)已知四边形ABCD 中,AB =AD , AB ⊥AD ,连接AC ,过点A 作AE ⊥AC ,且使AE =AC ,连接BE ,过点A 作AH ⊥CD 于H ,交BE 于F .(1)如图①,当E 在CD 的延长线上时,求证:①△ABC ≌△ADE ;②BF =EF ;(2)如图②,当E 不在CD 的延长线上时,BF =EF 还成立吗?请证明你的结论.第5题图拓展培优训练如图,在△ABC 中,∠BAC 、∠BCA 的平分线相交于点I ,若∠B =35°,BC =AI +AC ,则∠B A C 的度数为________.第1题图答案1. D2. D3. C4. C 【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,AD ∥BC ,∴∠DAC =∠ACB ,在△OAE和△OCF 中,⎩⎪⎨⎪⎧∠DAC=∠ACB OA =OC ∠AOE=∠COF,∴△OAE ≌△OCF (ASA ),∴CF =AE ,OE =OF ,∵OE =1.5,∴EF=2OE =3,∵▱ABC D 的周长为18,∴AD +DC =9,∴四边形EFCD 的周长=DE +EF +CF +C D =DE +AE +CD +EF =AD +CD +EF =9+3=12.5. AC =DF (答案不唯一) 【解析】∵FB =CE ,∴B C =EF ,∵AC ∥DF ,∴∠ACB =∠DFE ,由三角形全等的判定定理可知添加的条件为:AC =DF (SAS )或∠B =∠E (ASA )或∠A =∠D (AAS ).6. 1.5 【解析】如解图,连接AD ,∵Rt △ABC ≌Rt △DCB ,∴∠ABC =∠BCD =90°,且AB=CD ,∴AB ∥CD ,∴四边形ABCD 是矩形,∴OD =12BD =12AC =1.5.第6题解图7. 1<m <4 【解析】如解图,延长AD 到点E ,使AD =ED ,连接CE ,∵AD 是△ABC 的中线,∴BD =CD ,∵在△ABD 和△ECD 中,BD =CD ,DE =AD ,∠ADB =∠EDC,∴△ABD ≌△ECD ,∴AB =EC ,∴在△AEC 中,AC +EC >AE ,且EC -AC <AE ,即AB +AC >2AD ,AB -AC <2AD ,∴2<2AD <8,∴1<AD <4,即1<m <4.第7题解图8. ①④ 【解析】在△ABC 与△ADC 中,⎩⎪⎨⎪⎧AB =AD BC =DC AC =AC,∴△ABC ≌△A D C(SSS ),∴∠ABC =∠ADC ,故①正确;∵△ABC ≌△ADC ,∴∠BAC =∠DAC ,∠BCA =∠DCA ,∴AC 平分∠BAD 和∠BCD ,而AB 与BC 不一定相等,∴BD 不一定平分∠ABC 和∠ADC ,故③错误;又∵AB =AD ,∠BAC =∠CAD ,∴OB =OD ,∴AC,BD 互相垂直,但不互相平分,故②错误;∵AC,BD 互相垂直,∴四边形ABCD 的面积S =12AC ·B O +12AC ·OD =12AC ·BD .故④正确,综上所述,正确的结论是①④.9. 证明:∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF ,在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE BC =EF AC =DF,∴△ABC ≌△DEF (SSS )∴∠ABC =∠DEF .10. 证明:∵DE ⊥AB ,CF ⊥AB ,∴∠AFC =∠BED =90°,又∵AE =BF ,∴A E +EF =BF +EF ,∴AF =BE ,在△ACF 和△BDE 中,⎩⎪⎨⎪⎧AF =BE∠AFC=∠BED CF =DE,∴△ACF ≌△BDE (SAS ),∴∠A =∠B ,∴AC ∥BD .11. 证明:∵∠ABC =∠ACB ,∴AB =AC ,∵点D 、E 分别为边AB 、AC 的中点,∴BD=12AB ,CE =12AC ,∴BD =CE ,又∵∠ABC =∠ACB ,BC =CB ,∴△CBE ≌△BCD (SAS ),∴BE =CD .12. (1)证明:在△ABD 与△ACE 中,⎩⎪⎨⎪⎧AB =AC∠B=∠C BD =CE,∴△ABD ≌△ACE(SAS ),∴∠1=∠2;(2)解:∵CM ∥AB ,∴∠M =∠1,又∵∠C =∠B ,∴△AMC ∽△DAB ,∴MC AB =AC BD ,∴MC =AB·AC BD =92.13. (1)证明:∵AE 和BD 相交于点O ,∴∠AOD =∠BOE ,在△AOD 和△BOE 中,∠A =∠B ,∴∠BEO =∠2,又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC =∠BED ,在△AEC 和△BED 中,⎩⎪⎨⎪⎧∠A=∠BAE =BE ∠AEC=∠BED,∴△AEC ≌△BED (ASA );(2)解:∵△AEC ≌△BED ,∴EC =ED ,∠C =∠BDE ,∵在△EDC 中,EC =ED ,∠1=42°,∴∠C =∠EDC =69°,∴∠B D E =∠C =69°.14. (1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAE =∠CFE ,又∵∠A E D =∠FEC ,DE =CE ,∴△ADE ≌△FCE (AAS );(2)解:由(1)知,△ADE ≌△FCE ,∴AD =FC ,∵在▱ABCD 中,AD =BC ,AB =2BC ,∴AB =FB ,∴∠BAF =∠F =36°,∴∠B =180°-2×36°=108°.15. (1)证明:∵四边形ABCD 是矩形,∴AB =CD ,∠ABE =∠CDF ,∴在△ABE 与△CDF 中,⎩⎪⎨⎪⎧AB =CD∠ABE=∠CDF BE =DF,∴△ABE ≌△CDF (SAS ),∴AE =CF ;(2)解:∵四边形ABCD 是矩形,∴AO =OB ,∵∠COD =60°,∴∠AOB =60°,∴△AOB 为等边三角形,∴AO =AB =6,∴AC =12,在Rt △ABC 中,由勾股定理可得BC =AC 2-AB 2=63,∴矩形ABCD 的面积=AB ·BC =6×63=36 3.16. (1)证明:∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠C ,在△ABD 和△CAE 中,⎩⎪⎨⎪⎧AB =CA ∠BAD=∠C AD =CE,∴△ABD ≌△CAE (SAS );(2)解:∵△ABD ≌△CAE ,∴∠ABD =∠CAE ,∴∠APD =∠ABP +∠PAB=∠BAC =60°,∴∠BPF=∠APD =60°,∴在Rt △BFP 中,∠PBF =30°,∴PF =12BP =12×6=3. 能力提升训练1. C 【解析】∵CE ⊥BD ,∴∠BEF =90°,∵∠BAC =90°,∴∠CAF =90°,∴∠FAC =∠BAD =90°,∠ABD +∠F =90°,∠ACF +∠F =90°,∴∠ABD =∠ACF ,∵在△ABD 和△ACF 中,⎩⎪⎨⎪⎧∠BAD=∠CAF AB =AC∠ABD=∠ACF,∴△ABD ≌△ACF (ASA ),∴AD =AF ,∵AB =AC ,D 为AC 中点,∴AB =AC =2AD =2AF ,∵BF =AB +AF =12,∴3AF =12,∴AF =4,∴AB =AC =2AF =8,∴△FBC 的面积=12×BF ×AC =12×12×8=48. 2. C 【解析】∵△DAC 、△ECB 都是等边三角形,∴AC =CD ,BC =CE ,∠ACD =∠BCE =60°,∴∠ADC =∠DCE =60°,∴∠ACE =∠BCD ,∵∠DCE =60°,∴AD ∥CE ,∴∠DAP =∠PEC ,故③正确;在△ACE 与△DCB 中,⎩⎪⎨⎪⎧AC =CD ∠ACE=∠BCD CE =CB,∴△ACE ≌△DCB (SAS ),∴∠C A E =∠CDB ,又∵∠PMD =∠AMC ,∴∠DPM =∠ACM =60°,故②正确;在△ACM 与△DCN 中,⎩⎪⎨⎪⎧∠CAM=∠CDN AC =CD∠ACM=∠DCN=60°,∴△ACM ≌△DCN (ASA ),故④正确;∴CM =CN ,∴△CMN 是等边三角形,∴∠CMN =60°,∴∠CMN =∠ACD ,∴MN ∥AB ,故①正确;∵∠DBE =30°,∠BPE =∠APD =60°,∴∠AEB =90°,故⑤错误.综上所述,正确的个数是①②③④,共4个.第3题解图3. B 【解析】如解图,过点P 分别作OA 、OB 的垂线PC 、PD ,根据角平分线的性质可得PC =PD ,∵OP 为定值,∴OC =OD ,∵∠AOB 为定角,∠MPN 与∠AOB 互补,∴∠MPN 也为定角,∵∠CPD 与∠AOB 也互补,∴∠MPN =∠CPD ,∴∠MPC =∠NPD ,∴△MPC ≌△NPD ,∴CM =DN ,MP =NP ,故(1)正确;∵OM +ON =OC +CM +OD -DN ,∴OM +ON =OC +OD ,∵OC =OD 为定长,∴OM +ON 为定长,故(2)正确;∵△MPC ≌△NPD ,∴S 四边形MONP =S △CMP +S 四边形CONP =S △NPD +S 四边形CONP =S 四边形CODP ,∴四边形MONP 面积为定值,故(3)正确;∵Rt △MPC 中,MP 为斜边,CP 为直角边,∴可设MP =k ·CP ,∴PN =k ·DP ,∵∠MPN =∠CPD ,∴△MPN ∽△CPD ,其相似比为k ,∴MN =k ·CD ,当点M 与点C 重合,点N 和点D 重合时,MN =CD ,当点M 与点C 不重合,点N 与点D 不重合时,MN ≠CD ,∴MN 的长度在发生变化,故(4)错误.4. (1)解:在△ABC 中,∵∠ACB =90°,AC =BC ,∴∠BAC =∠ABC =45°,∴AC =BC =AB ·sin45°=4,∴在Rt △BCE 中,CE =BE 2-BC 2=3,∴AE =AC -CE =4-3=1;(2)证明:如解图,过C 点作CM ⊥CF 交BD 于点M ,第4题解图∴∠FCM =90°,∴∠FCA =∠MCB ,∵AF ⊥BD ,∴∠AFB =90°,∴∠AFE =∠ACB ,∵∠AEF =∠BEC ,∴∠CAF =∠CBM ,在△ACF 和△BCM 中,⎩⎪⎨⎪⎧∠FCA=∠MCBAC =BC ∠CAF=∠CBM,∴△ACF ≌△BCM (ASA ),∴FC =MC ,又∵∠FCM =90°,∴∠CFM =∠CMF =45°,∴∠AFC =∠AFB +∠CFM =90°+45°=135°,∠DFC =180°-∠CFM=180°-45°=135°,∴∠AFC =∠DFC ,在△ACF 和△DCF 中,⎩⎪⎨⎪⎧AF =DF∠AFC=∠DFC CF =CF,∴△ACF ≌△DCF (SAS ),∴AC =DC ,∵AC =BC ,∴DC =BC .5. 解:(1)证明:①∵AB ⊥AD ,AE ⊥AC ,∴∠BAD =∠CAE =90°,∴∠BAD -∠CAD =∠CAE -∠CAD ,即∠BAC =∠DAE ,又∵AB =AD ,AC =AE ,∴△ABC ≌△ADE (SAS );②由①知△ABC ≌△ADE ,AE =AC ,∠ACB =∠AED ,∵AH ⊥CD ,∴∠AED =∠ACD =45°,CH =HE ,∴∠ACB =∠AED =45°,∴∠BCD =∠ACB +∠ACD =90°,∴AH ∥BC ,∴点F 是BE 的中点,即BF =EF ;第5题解图(2)成立.证明如下:如解图,过点B 作BG∥AE,交AH 于点G ,∵AE∥BG,∴∠AGB=∠GAE,∵∠ACH+∠CAH=90°,∠GAE+∠CAH =90°,∴∠ACH=∠GAE,∴∠AGB=∠ACD,∵∠BAG+∠DAH=90°,∠ADC+∠DAH=90°,∴∠BAG=∠ADC,又∵AB=AD ,∴△ABG≌△DAC(AAS),∴BG=AC ,∵AC=AE ,∴BG=AE ,∵BG∥AE,∴∠AEF=∠GBF,∴△BFG≌△EFA(AAS),∴BF=EF.拓展培优训练1. 70° 【解析】如解图①,在BC 上取CD =AC ,连接BI 、DI ,∵CI 平分∠ACB,∴∠ACI=∠BCI,在△ACI 与△DCI 中,⎩⎪⎨⎪⎧AC =CD ∠ACI=∠DCI CI =CI,∴△ACI≌△DCI(SAS),∴AI=DI ,∠CAI=∠CDI,∵BC=AI +AC ,∴BD=AI ,∴BD=DI ,∴∠IBD=∠BID,∴∠CDI=∠IBD+∠BID =2∠IBD,又∵AI、CI 分别是∠BAC、∠ACB 的平分线,∴BI 是∠ABC 的平分线,∴∠ABC=2∠IBD,∠BAC=2∠CAI,∴∠CDI=∠ABC,∴∠BAC=2∠CAI=2∠CDI=2∠ABC,∵∠B =35°,∴∠BAC=35°×2=70°.【一题多解】如解图②,延长CA 到D ,使AD =AI ,∴∠D=∠AID,∵BC=AI +AC ,∴BC=CD ,在△BCI 与△DCI 中,⎩⎪⎨⎪⎧BC =CD ∠BCI=∠DCI CI =CI,∴△BCI≌△DCI(SAS),∴∠D=∠CBI,∵AI、CI 分别是∠BAC、∠ACB 的平分线,∴BI 是∠ABC 的平分线,∴∠ABC=2∠CBI,又∵∠CAI =∠D+∠AID=2∠D,∠BAC=2∠CAI=2∠ABC,∵∠B=35°,∴∠BAC=2×35°=70°.。