几类递推数列通项公式的常见类型及解法
数列的递推公式及通项公式
数列的递推公式及通项公式数列是由一系列按照一定规律排列的数字组成的序列。
数列中的每个数字称为项,而这些项之间的关系可以通过递推公式和通项公式来描述。
本文将介绍数列的递推公式和通项公式,并通过具体的例子来解释其应用。
一、递推公式递推公式是指通过前一项或多项来确定后一项的公式。
递推公式可以分为线性递推和非线性递推两种类型。
1.1 线性递推线性递推是指数列的每一项都可以通过前一项乘以某个常数再加上某个常数得到。
其一般形式如下:an = a(n-1) * r + d其中,an代表数列中的第n项,a(n-1)代表数列中的第n-1项,r为公比,d为公差。
例如,给定数列1,3,5,7,9,...,其中第一项a1为1,公差d 为2。
根据数列的特点可以确定递推公式为:an = a(n-1) + 2通过递推公式,可以依次计算出数列的每一项。
1.2 非线性递推非线性递推是指数列的每一项不能用前一项的线性组合表示,而是通过其他的方式来确定。
例如,斐波那契数列就是一个常见的非线性递推数列。
斐波那契数列的递推公式为:an = a(n-1) + a(n-2)其中,a1 = 1,a2 = 1。
根据递推公式,可以计算出斐波那契数列的每一项。
二、通项公式通项公式是指通过数列的位置n来直接计算数列中的第n项的公式。
通项公式可以分为线性通项和非线性通项两种类型。
2.1 线性通项线性通项是指数列的每一项可以通过位置n的线性关系来计算。
其一般形式如下:an = a1 + (n-1) * d其中,an代表数列中的第n项,a1为数列首项,d为公差。
以等差数列为例,假设已知数列首项a1为2,公差d为3,可以通过线性通项公式an = 2 + (n-1) * 3计算出数列的任意一项。
2.2 非线性通项非线性通项是指数列的每一项不能用位置n的线性关系来计算,而是通过其他的方式来确定。
例如,等比数列就是一个常见的非线性通项数列。
等比数列的通项公式为:an = a1 * r^(n-1)其中,an代表数列中的第n项,a1为数列首项,r为公比。
数列-递推公式求通项的十大模型
递推公式求通项的十种类型类型1.等差数列:相邻两项递推形式:d d a a n n ,(=--1为常数,+∈≥N n n 且2)或者相邻三项递推形式:)2(211++-∈≥=+N n n a a a n n n 且.这种递推形式下,直接用等差数列的通项公式:即可解决!例1.已知数列{}n a 的前n 项和为n S ,满足11a =1=,则n a =()A.21n -B.nC.21n +D.12n -解析:∵11a ==1,∴是以1为首项,以1为公差的等差数列,(1)11(1)1n n n =-⨯=+-⨯=,即2n S n =,∴()221121n n n a S S n n n -=-=--=-(2n ≥).当1n =时,11a =也适合上式,∴21n a n =-.故选:A.注1:在等差数列中,有一类比较特殊的递推类型,即b kn a a n n +=++1,它可以得到两个子数列分别是公差为k 的等差数列.例2.已知数列{}n a 的前n 项和为n S ,且12a =,()142n n a a n n +++=+∈N ,则数列1n S ⎧⎫⎨⎬⎩⎭的前2021项的和为()A.20212022B.20202021C.20192020D.10101011解析:∵12a =,()142n n a a n n +++=+∈N ,∴216a a +=,解得24a =.142n n a a n ++=+ ,∴2146n n a a n +++=+,两式相减,得24n na a +-=,∴数列{}n a 的奇数项与偶数项均为公差为4的等差数列,∴当n 为偶数时,2(1)422n n a a n =+-⨯=.当n 为奇数时,1n +为偶数,∴根据上式和(*)知1422n n a n a n +=+-=,数列{}n a 的通项公式是2n a n =,易知{}n a 是以2为首项,2为公差的等差数列,故()()2212n n nS n n +==+,()111111n S n n n n ==-++,设1n S ⎧⎫⎨⎩⎭的前n 项和为n T ,则20211111112021112232021202220222022T =-+-++-=-= .故选:A.例3.数列{}n a 中,112,21,N n n a a a n n *+=+=+∈.求{}n a 的通项公式;解析:(1)由121++=+n n a a n ①2123n n a a n ++⇒+=+②,②-①22n n a a +⇒-=,∴{}n a 的奇数项与偶数项各自成等差数列,由11223a a a =⇒+=,∴21a =,∴2112(1)2n a a n n -=+-=,∴1n a n =+,n 为奇数,212(1)21n a n n =+-=-,∴1n a n =-,n 为偶数.∴()()**1,21,N 1,2,Nn n n k k a n n k k ⎧+=-∈⎪=⎨-=∈⎪⎩.类型2.等比数列:相邻两项递推:)2,0,0(1+-∈≥≠≠=N n n a q qa a n n n且且或q a a n n=-1.或者相邻三项递推:)2(211≥∈=+-+n N n a a a n n n 且.注2:在等比数列应用中,有一类比较特殊的递推类型,即++∈∀⋅=N n m a a a n m m n ,,,我们可以对其赋值得到一个等比数列.例4.数列{}n a 中,112a =,对任意,N m n *∈有m n m n a a a +=,若19111k k k a a a +++++ 15522=-,则k =()A.2B.3C.4D.5解析:由任意,m n *∈N 都有m n m n a a a +=,所以令1m =,则11n n a a a +=,且112a =,所以{}n a 是一个等比数列,且公比为12,则1910155191112222222k k k k k k k k a a a ++++++++=+++=-=- 所以5k =,故选:D.例5.已知数列{}n a 满足22,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数且11a =,22a =.求通项n a ;解析:当n 为奇数时,由22n n a a +-=知数列{}21k a -是公差为2的等差数列,()2111221k a a k k -=+-⨯=-,∴n a n =,n 为奇数;当n 为偶数时,由22n n a a +=知数列{}2k a 是公比为2的等比数列,1222k kk a a q -==,∴22nn a =,n 为偶数∴2,2,n n n n a n ⎧⎪=⎨⎪⎩为奇数为偶数.类型3.)(1n f a a n n =--累加型例6.若数列{}n a 满足11a =,12n n a a n +-=.求{}n a 的通项公式.解析:因为12n n a a n +-=,11a =,所以()()()1122112(1)2(2)21n n n n n a a a a a a a a n n ---=-+-++-+=-+-+++2222(1)112n n n n -+⋅-+=-+=,故21n a n n =-+.类型4.)(1n f a a n n=-(2≥∈+n N n 且)累乘型.例7.数列{}n a 及其前n 项和为n S 满足:11a =,当2n ≥时,111n n n a a n -+=-,则12320231111a a a a ++++= ()A.20211011B.40442023C.20231012D.40482025解析:当2n ≥时,111n n n a a n -+=-,即111n n a n a n -+=-,所以3124123213451,,,,,12321n n n n a a a a a n n a a a a n a n ---+=====-- 累乘得:()113451123212n n n a n n a n n ++=⨯⨯⨯⨯=-- ,又11a =,所以()12n n n a +=所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭则1232023111111111111222212233420232024a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭14046202321202420241012⎛⎫=-== ⎝⎭.故选:C.类型5.d ca a n n +=-1型(待定系数法)一般形式:1(,n n a ca d c d -=+为常数,0,1,0)c c d ≠≠≠,可以构造一个等比数列,只要在每一项同加上一个常数即可,且常数1dx c =-,1()n n a x c a x -+=+,令n n b a x =+,则n b 为等比数列,求出n b ,再还原到n a ,1)1(11--⋅-+=-c dc cd a a n n .例8.在数列{}n a 中,12a =,()*1432,N n n a a n n -=-≥∈.求{}n a 的通项公式.解析:依题意,数列{}n a 中,12a =,()*1432,N n n a a n n -=-≥∈,所以()()1*N 1412,n n a a n n --=-≥∈,所以数列{}1n a -是首项为111a -=,公比为4的等比数列.例9.(2014年新课标全国1卷)已知数列{}n a 满足13,111+==+n n a a a ,证明⎭⎬⎫⎩⎨⎧+21n a 是等比数列,并求{}n a 的通项公式.解析:显性构造:13,111+==+n n a a a ,)21(3211+=++n n a a ,)13(21-=n n a .类型6.nn n b m qa a ⋅+=+1型例10.已知数列{}n a 的首项1=6a ,且满足1142n n n a a ++=-.求数列{}n a 的通项公式;解析:∵1142n n n a a ++=-,∴112122n n n n a a ++=⋅-,∴1112122n n n n a a ++⎛⎫-=- ⎪⎝⎭,又∵1122a -=,故12n n a ⎧⎫-⎨⎬⎩⎭是以2为首项,2为公比的等比数列.112222n nn n a --=⋅=,则42n n n a =+.类型7.)1)((1≠+=+p n f pa a n n 型.方法1.数学归纳法.方法2.1111)()(+++++=⇒+=n n n n n n n p n f p a p a n f pa a ,令n n n p a b =,则11)(++=-n n n pn f b b ,用累加法即可解决!(公众号:凌晨讲数学)例11.(2020年新课标全国3卷)设数列{}n a 满足31=a ,n a a n n 431-=+.(1)计算2a ,3a ,猜想{}n a 的通项公式并加以证明;(2)求数列{}n na 2的前n 项和n S .解析:方法1:归纳法.(1)235,7,a a ==猜想21,n a n =+得1(23)3[(21)]n n a n a n +-+=-+,1(21)3[(21)]n n a n a n --+=--,……2153(3)a a -=-.因为13a =,所以2 1.n a n =+方法2:构造法.由n a a n n 431-=+可得:1113433+++-=-n n n n n n a a ,累加可得:123123+=⇒+=n a n a n n n n .(2)由(1)得2(21)2n n n a n =+,所以23325272(21)2n n S n =⨯+⨯+⨯+++⨯ .①23412325272(21)2n n S n +=⨯+⨯+⨯+++⨯ .②-①②得23132222222(21)2n n n S n +-=⨯+⨯+⨯++⨯-+⨯ ,1(21)2 2.n n S n +=-+类型8.)0(1≠⋅+=+q p qpa ta a n nn 型例12.已知数列{}n a 满足11a =,*1,N 1nn n a a n a +=∈+,求数列{}n a 的通项公式.因为*1,N 1n n n a a n a +=∈+,所以1111n na a +=+,即1111n n a a +-=,又11a =,所以111a =,所以数列1n a ⎧⎫⎨⎬⎩⎭为首项为1,公差为1的等差数列,所以()1111n n n a =+-⨯=,故1n a n =,所以数列{}n a 的通项公式为1n a n=.类型9.已知n S 与n a 关系,求n a .(公众号:凌晨讲数学)解题步骤:第1步:当1=n 代入n S 求出1a ;第2步:当2≥n ,由n S 写出1-n S ;第3步:1--=n n n S S a (2≥n );第4步:将1=n 代入n a 中进行验证,如果通过通项求出的1a 跟实际的1a 相等,则n a 为整个数列的通项,若不相等,则数列写成分段形式,.)2()1(1⎩⎨⎧≥==n a n a a n n 在本考点应用过程中,具体又可分为三个角度,第一,消n S 留n a ,第二个角度,消n a 留n S ,第三个角度,级数形式的前n 项和,下面我们具体分析.例13.已知数列{}n a 的前n 项和为n S ,112a =,112n n n S S a ++⋅=-.证明:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列.证明:∵112n n n S S a ++⋅=-,∴112n n n n S S S S ++⋅=-,易知0n S ≠,∴111112n n n n n nS S S S S S +++-=-=⋅,∴数列1n S ⎧⎫⎨⎬⎩⎭是公差为2的等差数列.例14.设数列{}n a 的前n 项和为n S ,且满足1=2a ,()*123N n n n a S n +=+∈.求n S .解析:因为()*123N n n n a S n +=+∈,所以11233,3n nn n n n n S S S S S ++-=+=+∴,则111111,333333n n n n n n n n S S S S ++++-=+=,11233S =,即{}3n n S 为首项为23,公差为13的等差数列,则211(1)(1)3333n n S n n =+-=+,故1(1)3n n n S -=+⋅.例15.已知数列{}n a 满足123123252525253n n na a a a ++++----….求数列{}n a 的通项公式.解析:123123252525253n n na a a a +++=----…,①当1n =时,14a =.当2n ≥时,123112311252525253n n n a a a a ---++++----…,②由①-②,得()3522n n a n +=≥,因为14a =符合上式,所以352n n a +=.例16.(2022新高考1卷)记n S 为数列{}n a 的前n 项和,已知11=a ,{}n n S a 是公差为13的等差数列.求{}n a 得通项公式.解析:111==S a ,所以111=S a ,所以{}n n S a 是首项为1,公差为13的等差数列,所以121(1)33+=+-⋅=n n S n n a ,所以23+=n n n S a .当2n 时,112133--++=-=-n n n n n n n a S S a a ,所以1(1)(1)--=+n n n a n a ,即111-+=-n n a n a n (2n );累积法可得:(1)2+=n n n a (2n ),又11=a 满足该式,所以{}n a 得通项公式为(1)2+=n n n a .类型9:已知前n 项积求n a .例17.记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.解析:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb b b b +++=-,由于10n b +≠,所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈,所以数列{}n b 是以132b =为首项,以12d =为公差等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n n b n ∴=+-⨯=+,22211n n n b n S b n +==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.类型10.特征方程法(强基层次):n n n ba aa a +=++12型.求解方程:02=--b a λλ,根据方程根的情况,可分为:(1)若特征方程有两个相等的根,则nn x b An a 0)(+=(2)若特征方程有两个不等的根,则n nn Bx Ax a 21+=例18.已知数列{}n a 满足12a =,28a =,2143n n n a a a ++=-.求数列{}n a 的通项公式;解析:2143n n n a a a ++=-,变形为:()2113n n n n a a a a +++-=-,216a a -=,∴数列{}1n n a a +-是等比数列,首项为6,公比为3.∴116323n nn n a a -+-=⨯=⨯,变形为:1133n n n n a a ++-=-,131a -=-,∴31n n a -=-,∴31n n a =-例19.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a .解析:其特征方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭,由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩,1322n n n a --∴=.例20.已知数列{}n a 满足11122,(2)21n n n a a a n a --+==≥+,求数列{}n a 的通项n a .解析:其特征方程为221x x x +=+,化简得2220x -=,解得121,1x x ==-,令111111n n n n a a c a a ++--=⋅++由12,a =得245a =,可得13c =-,∴数列11n n a a ⎧⎫-⎨⎬+⎩⎭是以111113a a -=+为首项,以13-为公比的等比数列,1111133n n n a a --⎛⎫∴=⋅- ⎪+⎝⎭,3(1)3(1)n n n n na --∴=+-.。
9类常见递推数列求通项公式方法
数列通项九种求解方法类型一:1n n a pa q+=+(1p ≠)思路(构造等比数列法):设()1n n a p a μμ++=+,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列。
例1、已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。
解:(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134a +=为首项、2为公比的等比数列,则113422n n n a -++=⋅=,即123n n a +=-。
3(a a ++-21n a n =+类型三:1()n n a f n a +=⋅ (累乘法) 思路(累乘法):=n a 13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅,即得数列{}n a 的通项公式 例3、已知11a =,111n n n a a n --=+,求n a 。
解:,2≥n 111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a =,即12311n n n n a n n n ---=⋅⋅⋅+-…21243(1)n n ⋅⋅=+,11=a 也符合。
类型四:1()n n a pa f n +=+ (0p ≠且1p ≠)思路(转化法):1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n n a a f n p p p ---=+,我们令nn na b p =,那么问题就可以转化为类型二进行求解了。
例4 、已知12a =,1142n n n a a ++=+,求n a 。
解:142nn n a a -=+,式子两边同时除以4n得111442nn n n n a a --⎛⎫=+ ⎪⎝⎭,令4n n n a b =,则112nn n b b -⎛⎫-= ⎪⎝⎭,由累加法得nn b )21(1-= 1441422n n n n n n n a b ⎡⎤⎛⎫∴=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦。
常见递推数列通项的九种求解方法
常见递推数列通项的九种求解方法(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--常见递推数列通项的九种求解方法高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。
是一类考查思维能力的好题。
要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。
类型一:1()n na a f n +=+(()f n 可以求和)−−−−→解决方法累加法 例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。
解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: ∴211n a a n -=- 2n a n ∴=评注:一般情况下,累加法里只有n-1个等式相加。
【类型一专项练习题】1、已知11a =,1n n a a n -=+(2≥n ),求n a 。
2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。
3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。
4、已知}{n a 中,n n n a a a 2,311+==+,求n a 。
5、已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.6、 已知数列{}n a 满足11,a =()1132,n n n a a n --=+≥求通项公式n a7、若数列的递推公式为1*113,23()n n n a a a n N ++==-⋅∈,则求这个数列的通项公式 8、 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。
利用递推关系求数列通项的九种类型及解法
利用递推关系求数列通项的九种类型及解法1.形如)(1n f a a n n =-+型(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法.方法如下: 由 )(1n f a a n n =-+得:2≥n 时,)1(1-=--n f a a n n ,)2(21-=---n f a a n n ,K K)2(23f a a =-)1(12f a a =-所以各式相加得 )1()2()2()1(1f f n f n f a a n+++-+-=-Λ即:∑-=+=111)(n k n k f a a .为了书写方便,也可用横式来写:Θ 2≥n 时,)1(1-=--n f a a n n ,∴112211)()()(a a a a a a a a n n n n n +-++-+-=---Λ=1)1()2()2()1(a f f n f n f ++++-+-Λ.例 1. (2003天津文) 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n , 证明213-=n n a 例2.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 答案:12+-n n例3.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式. 答案:n a n 12-= 评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a . ①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;④若f(n)是关于n 的分式函数,累加后可裂项求和。
九类常见递推数列求通项公式方法
九类常见递推数列求通项公式方法递推数列通项求解方法类型一:an1panq(p1)思路1(递推法):anpan1qp(pan2q)qpppan3qqq……pn1a1q(1pp2…pn2qqn1。
)a1pp11p思路2(构造法):设an1pan,即p1q得qp1,数列an是以a1为首项、p为公比的等比数列,则anqn1qana1pp11pqn1a1p,即p1p1q例1已知数列an满足an2an13且a11,求数列an的通项公式。
解:方法1(递推法):an2an132(2an23)3222an3333……2n13(122…22n23n13n1)1223。
2112方法2(构造法):设an12an,即3,数列an3是以a134n1n1n1为首项、2为公比的等比数列,则an3422,即an23。
类型二:an1an思路1(递推法):f(n)anan1f(n1)an2f(n2)f(n1)an3f(n3)f(n2)f(n1)…a1f(n)。
i1n1思路2(叠加法):anan1f(n1),依次类推有:an1an2f(n2)、n1an2an3f(n3)、…、a2a1f(1),将各式叠加并整理得ana1i1f(n),即n1ana1i1f(n)。
例2已知a11,anan1n,求an。
解:方法1(递推法):anan1nan2(n1)nan3(n2)(n1)nn……a1[23…(n2)(n1)n]i1nn(n1)2。
方法2(叠加法):anan1n,依次类推有:an1an2n1、an2an3n2、…、nnna2a12,将各式叠加并整理得ana1i2n,ana1i2ni1nn(n1)2。
类型三:an1f(n)an思路1(递推法):anf(n1)an1f(n1)f(n2)an2f(n1)f(n2)f(n3)an3…f(1)f(2)f(3)…f(n2)f(n1)a1。
anan1a2a1an1an2ana1思路2(叠乘法):f(n1),依次类推有:f(n2)、an2an3f(n3)、…、f(1),将各式叠乘并整理得f(1)f(2)f(3)…f(n2)f(n1),即anf(1)f(2)f(3)…f(n2)f(n1)a1。
三大类递推数列通项公式的求法
三大类递推数列通项公式的求法一、一阶线性递推数列求通项问题一阶线性递推数列主要有如下几种形式:1.这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n项和).当为常数时,通过累加法可求得等差数列的通项公式.而当为等差数列时,则为二阶等差数列,其通项公式应当为形式,注意与等差数列求和公式一般形式的区别,后者是,其常数项一定为0.2.这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n项积).当为常数时,用累乘法可求得等比数列的通项公式.3.;这类数列通常可转化为,或消去常数转化为二阶递推式.例1已知数列中,,求的通项公式.解析:解法一:转化为型递推数列.∵∴又,故数列{}是首项为2,公比为2的等比数列.∴,即.解法二:转化为型递推数列.∵=2x n-1+1(n≥2) ①∴=2x n+1 ②②-①,得(n≥2),故{}是首项为x2-x1=2,公比为2的等比数列,即,再用累加法得.解法三:用迭代法.当然,此题也可用归纳猜想法求之,但要用数学归纳法证明.例2已知函数的反函数为求数列的通项公式.解析:由已知得,则.令=,则.比较系数,得.即有.∴数列{}是以为首项,为公比的等比数列,∴,故.评析:此题亦可采用归纳猜想得出通项公式,而后用数学归纳法证明之.(4)若取倒数,得,令,从而转化为(1)型而求之.(5);这类数列可变换成,令,则转化为(1)型一阶线性递推公式.例3设数列求数列的通项公式.解析:∵,两边同除以,得.令,则有.于是,得,∴数列是以首项为,公比为的等比数列,故,即,从而.例4设求数列的通项公式.解析:设用代入,可解出.∴是以公比为-2,首项为的等比数列.∴,即.(6)这类数列可取对数得,从而转化为等差数列型递推数列.二、可转化为等差、等比数列或一些特殊数列的二阶递推数列例5设数列求数列的通项公式.解析:由可得设故即用累加法得或例6在数列求数列的通项公式.解析:可用换元法将其转化为一阶线性递推数列.令使数列是以为公比的等比数列(待定).即∴对照已给递推式,有即的两个实根.从而∴①或②由式①得;由式②得.消去.例7在数列求.解析:由①,得②.式②+式①,得,从而有.∴数列是以6为其周期.故==-1.三、特殊的n阶递推数列例8已知数列满足,求的通项公式.解析:∵①∴②②-①,得.∴故有将这几个式子累乘,得又例9数列{}满足,求数列{}的同项公式.解析:由①,得②.式①-式②,得,或,故有.∴,.将上面几个式子累乘,得,即.∵也满足上式,∴.。
递推式求数列通项公式常见类型及解法
递推式求数列通项公式常见类型及解法对于由递推式所确定的数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列,也可以通过构8造把问题转化。
下面分类说明。
一、型例1. 在数列{a}中,已知,求通项公式。
n解:已知递推式化为,即,所以。
将以上个式子相加,得,所以。
二、型例2. 求数列的通项公式。
解:当,即当,所以。
三、型例3. 在数列中,,求。
解法1:设,对比,得。
于是,得,以3为公比的等比数列。
所以有。
解法2:又已知递推式,得上述两式相减,得,因此,数列是以为首项,以3为公比的等比数列。
所以,所以。
四、型例4. 设数列,求通项公式。
解:设,则,,所以,即。
设这时,所以。
由于{b}是以3为首项,以为公比的等比数列,所以有。
n由此得:。
说明:通过引入一些尚待确定的系数转化命题结构,经过变形与比较,把问题转化成基本数列(等差或等比数列)。
五、型例5. 已知b≠0,b≠±1,,的通项公式。
写出用n和b表示an解:将已知递推式两边乘以,得,又设,于是,原递推式化为,仿类型三,可解得,故。
说明:对于递推式,可两边除以,得,引入辅助数列,然后可归结为类型三。
六、型例6. 已知数列,求。
解:在两边减去。
所以为首项,以。
所以令上式,再把这个等式累加,得。
所以。
说明:可以变形为,就是,则可从,解得,于是是公比为的等比数列,这样就转化为前面的类型五。
等差、等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上。
转化的目的是化陌生为熟悉,当然首先是等差、等比数列,根据不同的递推公式,采用相应的变形手段,达到转化的目的。
构建新数列巧解递推数列题1 求通项求通项是递推数列竞赛题的常见题型,这类问题可通过构建新数列进行代换,使递推关系式简化,这样就把原数列变形转化为等差数列、等比数列和线性数列等容易处理的数列,使问题由难变易,所用的即换元和化归的思想。
数学(文)由递推公式求通项的7种方法及破解数列中的3类探索性问题
由递推公式求通项的7种方法及破解数列中的3类探索性问题一、由递推公式求通项的7种方法1.a n +1=a n +f (n )型把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1).[例1] 已知数列{a n }满足a 1=12,a n +1=a n +1n 2+n,求a n . [解] 由条件,知a n +1-a n =1n 2+n =1n (n +1)=1n -1n +1,则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1-1n , 所以a n -a 1=1-1n. 因为a 1=12,所以a n =12+1-1n =32-1n. 2.a n +1=f (n )a n 型把原递推公式转化为a n +1a n =f (n ),再利用累乘法(逐商相乘法)求解,即由a 2a 1=f (1),a 3a 2=f (2),…,a n a n -1=f (n -1),累乘可得a n a 1=f (1)f (2)…f (n -1). [例2] 已知数列{a n }满足a 1=23,a n +1=n n +1·a n,求a n . [解] 由a n +1=n n +1·a n ,得a n +1a n =n n +1, 故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ×n -2n -1×…×12×23=23n .即a n =23n . 3.a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)型对于此类问题,通常采用换元法进行转化,假设将递推公式改写为a n +1+t =p (a n +t ),比较系数可知t =q p -1,可令a n +1+t =b n +1换元即可转化为等比数列来解决. [例3] 已知数列{a n }中,a 1=1,a n +1=2a n +3,求a n .[解] 设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,则t =-3.故递推公式为a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以b 1=4为首项,2为公比的等比数列.所以b n =4×2n -1=2n +1,即a n =2n +1-3. 4.a n +1=pa n +q n (其中p ,q 均为常数,pq (p -1)≠0)型(1)一般地,要先在递推公式两边同除以q n +1,得a n +1q n +1=p q ·a n q n +1q ,引入辅助数列{b n }⎝⎛⎭⎫其中b n =a n q n ,得b n +1=p q ·b n +1q,再用待定系数法解决; (2)也可以在原递推公式两边同除以p n +1,得a n +1p n +1=a n p n +1p ·⎝⎛⎭⎫q p n ,引入辅助数列{b n }⎝⎛⎭⎫其中b n =a n p n ,得b n +1-b n =1p ⎝⎛⎭⎫q p n ,再利用叠加法(逐差相加法)求解. [例4] 已知数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1,求a n . [解] 法一:在a n +1=13a n +⎝⎛⎭⎫12n +1两边乘以2n +1,得2n +1·a n +1=23(2n ·a n )+1. 令b n =2n ·a n ,则b n +1=23b n +1, 根据待定系数法,得b n +1-3=23(b n -3). 所以数列{b n -3}是以b 1-3=2×56-3=-43为首项, 以23为公比的等比数列. 所以b n -3=-43·⎝⎛⎭⎫23n -1,即b n =3-2⎝⎛⎭⎫23n . 于是,a n =b n 2n =3⎝⎛⎭⎫12n -2⎝⎛⎭⎫13n . 法二:在a n +1=13a n +⎝⎛⎭⎫12n +1两边乘以3n +1,得 3n +1a n +1=3n a n +⎝⎛⎭⎫32n +1.令b n =3n ·a n ,则b n +1=b n +⎝⎛⎭⎫32n +1.所以b n -b n -1=⎝⎛⎭⎫32n ,b n -1-b n -2=⎝⎛⎭⎫32n -1,…,b 2-b 1=⎝⎛⎭⎫322.将以上各式叠加,得b n -b 1=⎝⎛⎭⎫322+…+⎝⎛⎭⎫32n -1+⎝⎛⎭⎫32n . 又b 1=3a 1=3×56=52=1+32,所以b n =1+32+⎝⎛⎭⎫322+…+⎝⎛⎭⎫32n -1+⎝⎛⎭⎫32n =1·⎣⎡⎦⎤1-⎝⎛⎭⎫32n +11-32=2⎝⎛⎭⎫32n +1-2, 即b n =2⎝⎛⎭⎫32n +1-2.故a n =b n 3n =3⎝⎛⎭⎫12n -2⎝⎛⎭⎫13n . 5.a n +1=pa n +an +b (p ≠1,p ≠0,a ≠0)型这种类型一般利用待定系数法构造等比数列,即令a n +1+x (n +1)+y =p (a n +xn +y ),与已知递推式比较,解出x ,y ,从而转化为{a n +xn +y }是公比为p 的等比数列.[例5] 设数列{a n }满足a 1=4,a n =3a n -1+2n -1(n ≥2),求a n .[解] 设递推公式可以转化为a n +An +B =3[a n -1+A (n -1)+B ],化简后与原递推式比较,得⎩⎪⎨⎪⎧ 2A =2,2B -3A =-1, 解得⎩⎪⎨⎪⎧A =1,B =1. 令b n =a n +n +1.(*)则b n =3b n -1,又b 1=6,故b n =6·3n -1=2·3n , 代入(*)式,得a n =2·3n -n -1.6.a n +1=pa r n (p >0,a n >0)型这种类型一般是等式两边取对数后转化为a n +1=pa n +q 型数列,再利用待定系数法求解.[例6] 已知数列{a n }中,a 1=1,a n +1=1a ·a 2n(a >0),求数列{a n }的通项公式. [解] 对a n +1=1a ·a 2n的两边取对数, 得lg a n +1=2lg a n +lg 1a. 令b n =lg a n ,则b n +1=2b n +lg 1a. 由此得b n +1+lg 1a =2⎝⎛⎭⎫b n +lg 1a ,记c n =b n +lg 1a,则c n +1=2c n , 所以数列{c n }是以c 1=b 1+lg 1a =lg 1a为首项,2为公比的等比数列. 所以c n =2n -1·lg 1a. 所以b n =c n -lg 1a =2n -1·lg 1a -lg 1a=lg ⎣⎡⎦⎤a ·⎝⎛⎭⎫1a 2n -1=lg a 1-2 n -1, 即lg a n =lg a 1-2 n -1,所以a n =a 1-2 n -1.7.a n +1=Aa n Ba n +C(A ,B ,C 为常数)型 对于此类递推数列,可通过两边同时取倒数的方法得出关系式[例7] 已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1,n =1,2,3,…,求{a n }的通项公式. [解] ∵a n +1=3a n 2a n +1,∴1a n +1=23+13a n, ∴1a n +1-1=13⎝⎛⎭⎫1a n -1. 又1a 1-1=23, ∴⎩⎨⎧⎭⎬⎫1a n -1是以23为首项,13为公比的等比数列, ∴1a n -1=23·13n -1=23n , ∴a n =3n3n +2. 二、破解数列中的4类探索性问题1.条件探索性问题此类问题的基本特征是:针对一个结论,条件未知需探求,或条件增删需确定,或条件正误需判定,解决此类问题的基本策略是:执果索因,先寻找结论成立的必要条件,再通过检验或认证找到结论成立的充分条件,在“执果索因”的过程中,常常会犯的一个错误是不考虑推理过程的可逆与否,误将必要条件当作充分条件,应引起注意.[例1] 已知数列{a n }中,a 1=2,a 2=3,其前n 项和S n 满足S n +2+S n =2S n +1+1(n ∈N *);数列{b n }中,b 1=a 1,b n +1=4b n +6(n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)设c n =b n +2+(-1)n -1λ·2a n (λ为非零整数,n ∈N *),试确定λ的值,使得对任意n ∈N *,都有c n +1>c n 成立.[解] (1)由已知得S n +2-S n +1-(S n +1-S n )=1,所以a n +2-a n +1=1(n ≥1).又a 2-a 1=1,所以数列{a n }是以a 1=2为首项,1为公差的等差数列.所以a n =n +1.因为b n +1=4b n +6,即b n +1+2=4(b n +2),又b 1+2=a 1+2=4,所以数列{b2+2}是以4为公比,4为首项的等比数列.所以b n=4n-2.(2)因为a n=n+1,b n=4n-2,所以c n=4n+(-1)n-1λ·2n+1.要使c n+1>c n成立,需c n+1-c n=4n+1-4n+(-1)nλ·2n+2-(-1)n-1λ·2n+1>0恒成立,化简得3·4n-3λ(-1)n-12n+1>0恒成立,即(-1)n-1λ<2n-1恒成立,①当n为奇数时,即λ<2n-1恒成立,当且仅当n=1时,2n-1有最小值1,所以λ<1;②当n为偶数时,即λ>-2n-1恒成立,当且仅当n=2时,-2n-1有最大值-2,所以λ>-2,即-2<λ<1.又λ为非零整数,则λ=-1.综上所述,存在λ=-1,使得对任意n∈N*,都有c n+1>c n成立.[点评]对于数列问题,一般要先求出数列的通项,不是等差数列和等比数列的要转化为等差数列或等比数列.遇到S n要注意利用S n与a n的关系将其转化为a n,再研究其具体性质.遇到(-1)n型的问题要注意分n为奇数与偶数两种情况进行讨论,本题易忘掉对n的奇偶性的讨论而致误.2.结论探索性问题此类问题的基本特征是:有条件而无结论或结论的正确与否需要确定.解决此类问题的策略是:先探索结论而后去论证结论,在探索过程中常可先从特殊情形入手,通过观察、分析、归纳、判断来作一番猜测,得出结论,再就一般情形去认证结论.[例2]已知各项均为正数的数列{a n}满足:a2n+1=2a2n+a n a n+1,且a2+a4=2a3+4,其中n∈N*.(1)求数列{a n}的通项公式;(2)设数列{b n}满足:b n=na n(2n+1)2n,是否存在正整数m,n(1<m<n),使得b1,b m,b n成等比数列?若存在,求出所有的m,n的值,若不存在,请说明理由;(3)令c n=1+na n,记数列{c n}的前n项积为T n,其中n∈N *,试比较Tn与9的大小,并加以证明.[解](1)因为a2n+1=2a2n+a n a n+1,即(a n+a n+1)(2a n-a n+1)=0.又a n>0,所以2a n-a n+1=0,即2a n=a n+1.所以数列{a n}是公比为2的等比数列.由a2+a4=2a3+4,得2a1+8a1=8a1+4,解得a1=2.故数列{a n}的通项公式为a n=2n(n∈N*).(2)因为b n =na nn +n =n 2n +1, 所以b 1=13,b m =m 2m +1,b n =n 2n +1. 若b 1,b m ,b n 成等比数列,则⎝⎛⎭⎫m 2m +12=13⎝⎛⎭⎫n 2n +1, 即m 24m 2+4m +1=n 6n +3. 由m 24m 2+4m +1=n 6n +3,可得3n =-2m 2+4m +1m 2, 所以-2m 2+4m +1>0,从而1-62<m <1+62. 又n ∈N *,且m >1,所以m =2,此时n =12.故当且仅当m =2,n =12时,b 1,b m ,b n 成等比数列.(3)构造函数f (x )=ln(1+x )-x (x ≥0),则f ′(x )=11+x -1=-x 1+x. 当x >0时,f ′(x )<0,即f (x )在[0,+∞)上单调递减,所以f (x )<f (0)=0.所以ln(1+x )-x <0.所以ln c n =ln ⎝⎛⎭⎫1+n a n =ln ⎝⎛⎭⎫1+n 2n <n 2n . 所以ln T n <12+222+323+…+n 2n . 记A n =12+222+323+…+n 2n ,则12A n =122+223+324+…+n -12n +n 2n +1, 所以A n -12A n =12+122+123+124+…+12n -n 2n +1=1-n +22n +1<1,即A n <2. 所以ln T n <2.所以T n <e 2<9,即T n <9.[点评] 对于结论探索性问题,需要先得出一个结论,再进行证明.注意含有两个变量的问题,变量归一是常用的解题思想,一般把其中的一个变量转化为另一个变量,根据题目条件,确定变量的值.遇到数列中的比较大小问题可以采用构造函数,根据函数的单调性进行证明,这是解决复杂问题常用的方法.3.存在探索性问题此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形、函数等)是否存在或某一结论是否成立.解决此类问题的一般方法是:假定题中的数学对象存在或结论成立或暂且认可其中的一部分结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设,否则,给出肯定结论,其中反证法在解题中起着重要的作用.[例3] 已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1为等比数列; (2)记S n =1a 1+1a 2+…+1a n,若S n <100,求最大正整数n ; (3)是否存在互不相等的正整数m ,s ,n ,使m ,s ,n 成等差数列,且a m -1,a s -1,a n -1成等比数列?如果存在,请给以证明;如果不存在,请说明理由.[解] (1)因为1a n +1=23+13a n, 所以1 a n +1-1=13a n -13. 又因为1a 1-1≠0,所以1a n-1≠0(n ∈N *). 所以数列⎩⎨⎧⎭⎬⎫1a n -1为等比数列. (2)由(1)可得1a n -1=23·⎝⎛⎭⎫13n -1, 所以1a n=2·⎝⎛⎭⎫13n +1. S n =1a 1+1a 2+…+1a n=n +2⎝⎛⎭⎫13+132+…+13n =n +2×13-13n +11-13=n +1-13n , 若S n <100,则n +1-13n <100, 所以最大正整数n 的值为99.(3)假设存在,则m +n =2s ,(a m -1)(a n -1)=(a s -1)2,因为a n =3n3n +2, 所以⎝⎛⎭⎫3n 3n +2-1⎝⎛⎭⎫3m 3m +2-1=⎝⎛⎭⎫3s3s +2-12, 化简得3m +3n =2×3s .因为3m +3n ≥2×3m +n =2×3s ,当且仅当m =n 时等号成立,又m ,s ,n 互不相等,所以不存在.[点评] 数列问题是以分式形式给出条件的,一般采用取倒数,再转化为等差数列或等比数列,通过等差数列与等比数列的桥梁作用求出通项.遇到多个变量的存在性问题,一般假设存在,求出满足的关系,再寻找满足的条件,一般可以利用重要不等式、值域或范围等判断是否存在.。
利用几类经典的递推关系式求通项公式
利用几类经典的递推关系式求通项公式经典的递推关系式是一种常见的数学问题,其中通项公式是递推关系式的一般解。
在数学中,几类经典的递推关系式包括等差数列、等比数列以及斐波那契数列。
一、等差数列等差数列是一种常见的数列,每一项与前一项之差保持不变。
等差数列的递推关系式如下:an = a1 + (n-1)d其中,an表示第n项,a1表示首项,d表示公差。
利用等差数列的递推关系式可以求得通项公式:an = a1 + (n-1)d二、等比数列等比数列是一种常见的数列,每一项与前一项之比保持不变。
等比数列的递推关系式如下:an = a1 * r^(n-1)其中,an表示第n项,a1表示首项,r表示公比。
利用等比数列的递推关系式可以求得通项公式:an = a1 * r^(n-1)三、斐波那契数列斐波那契数列是一种著名的数列,每一项是前两项之和。
斐波那契数列的递推关系式如下:fn = fn-1 + fn-2其中,fn表示第n项,f1和f2分别表示斐波那契数列的前两项。
利用斐波那契数列的递推关系式可以求得通项公式:fn = [(1+sqrt(5))^n - (1-sqrt(5))^n] / (2^n * sqrt(5))其中,sqrt(5)表示5的平方根。
四、其他递推关系式除了等差数列、等比数列和斐波那契数列,还有许多其他经典的递推关系式。
例如,阶乘数列是一种常见的递推关系式,每一项是前一项与当前项之积。
阶乘数列的递推关系式如下:an = an-1 * n其中,an表示第n项,n表示当前项。
利用阶乘数列的递推关系式可以求得通项公式:an = n!其中,n!表示n的阶乘。
总结起来,利用等差数列、等比数列、斐波那契数列以及其他经典递推关系式,可以推导出它们的通项公式。
这些递推关系式和通项公式在数学问题中具有广泛的应用,能够帮助我们快速计算数列中任意项的数值。
六类递推数列通项公式的求解方法
六类递推数列通项公式的求解方法一、an-1=an+f(n)型利用叠加法.a2=a1+f(1),a3=a2+f(2),…,an=an-1+f(n-1),an=a1+∑n-1k=1f(k).【例1】数列{an}满足a1=1,an=an-1+1n2-n(n≥2) ,求数列{an}的通项公式.解:由an+1=an+1(n+1)2-(n+1) 得an=a1+∑n-1k=11(k+1)2-(k+1) =1+∑n-1k=1(1k-1k+1)=1+1-1n =2-1n.二、an+1=anf(n)型利用叠代法.a2=a1f(1),a3=a2f(2),…,an=an-1f(n-1).an=a1∏n-1k=1f(k).【例2】数列{an}中a1=2,且an=(1-1n2)an-1 ,求数列{an}的通项.解:因为an+1=[1-1(n+1)2 ]an,所以an=a1∏n-1k=1f(k)=2∏n-1k=1[1-1(k+1)2 ]=2∏n-1k=1[kk+1 ×k+2k+1 ]=n+1n .三、an+1=pan+q,其中p,q为常数,且p≠1,q≠0当出现an+1=pan+q(n∈n*)型时可利用叠代法求通项公式,即由an+1=pan+q得an=pan-1+q=p(pan-2+q)+q=…=pn-1a1+(pn-2+pn-3+…+p2+p+1)q=a1pn-1+q(pn-1-1)p-1 (p≠1).或者利用待定系数法,构造一个公比为p的等比数列,令an+1+λ=p(an+λ),则(p-1)λ=q,即λ=qp-1 ,从而{an+qp+1 }是一个公比为p的等比数列.【例3】设数列{an}的首项a1=12 ,an=3-an-12 ,n=2,3,4,…,求数列{an}的通项公式.解:令an+k=-12(an-1+k) ,又∵an=3-an-12=-12an-1+32 ,n=2,3,4,…,∴k=-1,∴an-1=-12(an-1-1) ,又a1=12,∴{an-1} 是首项为-12,公比为-12 的等比数列,即an-1=(a1-1)(-12)n-1 ,即an=(-12)n+1 .四、an+1=pan+qan-1(n≥2),p,q为常数可用下面的定理求解:令α,β为相应的二次方程x2-px-q=0的两根(此方程又称为特征方程),则当α≠β时,an=aαn+bβn;当α=β时,an=(a+bn)αn-1,其中a、b分别由初始条件a1、a2所得的方程组aα+bβ=a1,aα2+bβ2=a2和 a+b=a1,(a+2b)α=a2唯一确定.【例4】数列{an},{bn}满足:an+1=-an-2bn①,bn+1=6an+6bn ②,且a1=2,b1=4,求an,bn.解:由②得an=16bn+1-bn,∴an+1=16bn+2-bn+1 ,代入①到式中,有bn+2=5bn+1-6bn,由特征方程可得bn=-12×2n+283×3n ,代入②式中,可得an=8×2n-143×3n .五、an+1=pan+f(n)型,这里p为常数,且p≠1【例5】在数列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n ∈n*),其中λ>0,求数列{an}的通项公式.解:由 a1=2,an+1=λan+λn+1+(2-λ)2n(n∈n*),λ>0,可得,an+1λn+1-(2λ )n+1=anλn -(2λ )n+1,所以{anλn-(2λ)n}为等差数列,其公差为1,首项为0.故anλn-(2λ )n=n-1,所以数列{an}的通项公式为an=(n-1)λn+2n.六、an+1=makn(m>0,k∈q,k≠0,k≠1)一般地,若正项数列{an}中,a1=a,an+1=makn(m>0,k∈q,k≠0,k≠1),则有lgan+1=klgan+lgm,令lgan+1+a=k(lgan+a)(a为常数),则有a=1k-1lgm.数列{lgan+1k-1lgm }为等比数列,于是lgan+1k-1lgm=(lga+1k-1lgm)kn-1 ,从而可得an=akn-1?mkn-1-1k-1 .【例6】已知各项都是正数的数列{an}满足a1=32,an+1=12an(4-an) ,求数列{an}的通项公式.解:由已知得an+1=-12(an-2)2,令2-an=bn,则有b1=12,bn+1=12b2n .∵an>0,∴0<an+1<2,又0<a1<2,∴0<an<2,从而bn>0.取对数得lgbn+1=2lgbn-lg2,即lgbn+1-lg2=2(lgbn-lg2).∴{lgbn-lg2}是首项为-2lg2,公比为2的等比数列,∴lgbn-lg2=-2nlg2,∴bn=21-2n,∴an=2-21-2n.(责任编辑金铃)。
最全总结递推数列求通项公式的常用方法
递推数列求通项公式的常用方法 一、公式法例1、 已知无穷数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项公式? 【解析】:1n n S a =-,∴ 111n n n n n a S S a a +++=-=-,∴ 112n n a a +=,又112a =,∴ 12nn a ⎛⎫= ⎪⎝⎭.反思:利用相关数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设条件,建立递推关系,是本题求解的关键.二、归纳猜想法:由数列前几项用不完全归纳猜测出数列的通项公式,再利用数学归纳法证明其正确性,这种方法叫归纳法.例2、 已知数列{}n a 中,11a =,121(2)n n a a n -=+≥,求数列{}n a 的通项公式. 【解析】:11a =,121(2)n n a a n -=+≥,∴2121a a =+3=,3221a a =+7=⋅⋅⋅⋅猜测21n n a =-*()n N ∈,再用数学归纳法证明.(略)反思:用归纳法求递推数列,首先要熟悉一般数列的通项公式,再就是一定要用数学归纳法证明其正确性.三 、累加法:利用1211()()n n n a a a a a a -=+-+⋅⋅⋅-求通项公式的方法称为累加法。
累加法是求型如1()n n a a f n +=+的递推数列通项公式的基本方法(()f n 可求前n 项和).例3 、已知无穷数列{}n a 的的通项公式是12nn a ⎛⎫= ⎪⎝⎭,若数列{}n b 满足11b =,112nn n b b +⎛⎫-= ⎪⎝⎭(1)n ≥,求数列{}n b 的通项公式.【解析】:11b =,112nn n b b +⎛⎫-= ⎪⎝⎭(1)n ≥,∴1211()()n n n b b b b b b -=+-+⋅⋅⋅-=1+12+...+112n -⎛⎫⎪⎝⎭=1122n -⎛⎫- ⎪⎝⎭.反思:用累加法求通项公式的关键是将递推公式变形为1()n n a a f n +=+。
递推式求数列通项公式常见类型及解法
递推式求数列通项公式常见类型及解法重庆广益中学对于由递推式所确定的数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列,也可以通过构造把问题转化。
下面分类说明。
一.基本法:)2(1(1≥=-⎩⎨⎧=-n n S S S a n n n n ) 二.公式法:1.等差型:d n a a d a a n n n )1(11-+=⇒+=+; 2.等比型:111-+⋅=⇒⋅=n n n n q a a q a a 三.累加法:1.)()()(123121--++-+-+=n n n a a a a a a a aC Bn b An kn r a a nn n +++⎪⎩⎪⎨⎧+=+21型用累加法 例1. 在数列{}n a 中,已知2,221111=+⋅=+++a a a a n n n n n ,求通项公式。
2.123121-⋅⋅⋅⋅=n nn a a a a a a a a )(1n f a a n n ⋅=+型用累乘法例2. 求数列)2(1232,3111≥⋅+-==-n a n n a a n n 的通项公式。
四.构造法:1.)1(1≠+=+q p qa a n n 型,构造⎭⎬⎫⎩⎨⎧-+1q p a n 是以q 为公比的等比数列; 例3. 在数列{}n a 中,232,111+=≥=-n n a a n a 时,当,求{}n a 的通项公式。
2.)1)((1≠++=+q b kn qa a n n 型,构造{}B An a n ++是以q 为公比的等比数列; 例4. 设数列{})2(1221,111≥-+==-n n a a a a n n n 满足:,求{}n a 的通项公式。
3.)1)((21≠+++=+q c bn an qa a n n 型,构造{}C Bn An a n +++2是以q 为公比的等比数列; 例5. 设数列{})2(221,1211≥++==-n n n a a a a n n n 满足:,求{}n a 的通项公式。
由数列递推公式求通项公式的常用方法
21世纪,信息技术在各行各业都在运用,它已和人们的学习生活息息相关,掌握不好信息知识和信息技能,就难以高效地工作和生活。
初中信息技术的开设,引导着我们每个教学者探究如何采取适当的教学方法激发学生主动学习,提高信息技术的教学质量、提升学生素质。
一、编好导学案,培养学生独立探究的品质什么样的导学案才叫好的导学案?一要能激发学习动机,在学案中创设特定的情境和启发性的问题,引导学生积极思考和主动探索,能和实践紧密结合。
二要针对不同类型的信息课,设计不同的形式的导学案,新授课的导学案要着重关注学生的最近发展区,问题设计情境化,有启发性和探究性。
习题课的导学案应着重帮助学生总结解答典型问题的基本方法和基本思路,复习课导学应帮助学生梳理知识体系。
设计导学时要充分考虑学生在学习过程中可能会遇到的问题和困难,考虑怎样去帮助学生克服困难,导学思考题,要求将学习目标问题化、情境化。
能力训练题,每个知识点学完后,要给予适当的题目进行训练,但题目应少而精,要有利于学生巩固基础知识,突出易混淆的和需注意的知识点;能力提高题,主要是针对掌握程度好的学生设计的,这部分题目的设置可以多链接学生的疑点。
学生对每一项应该完成的任务都必须掌握和理解,才开始学习新的任务,这样才能保证收到效果。
比如,初中“网络课件构件设计”导学案设计。
①学习对象设计包括中哪五个环节?(内容结构设计、内容呈现设计、SCOS 设计、内容编序设计和元数据设计)。
②每个设计的方案是什么?(如:内容呈现设计,在画面中应该尽量删除无用的背景和多余的细节。
元数据设计,SCORM 中的元数据包括Assets 元数据、SCOS 元数据、学习活动元数据、内容组织元数据和内容聚合元数据。
元数据设计时可参照SCORM。
定义的九大类元数据元素及其应用情况,其中“M”为必选项,“O”为可选项,“NP”为不选项。
)导学案为提高课堂效益架设了一座快捷的桥梁,导学让学生在课前有一定的时间构思,在课堂上学生参与、学生创新潜质更易发挥。
递推数列通项公式的求法
递推数列通项公式的求法递推数列是指通过前一项或前几项推导出后一项的数列。
通项公式是指通过数列中的任意一项可以直接计算出该项的数值的公式。
在求递推数列的通项公式时,可以使用多种方法,包括直接法、联立方程法、差分法、母函数法等。
下面将详细介绍这些方法。
一、直接法二、联立方程法联立方程法适用于一些复杂的递推数列,通过联立多个方程来求出通项公式。
该方法需要已知的一些数列值,然后根据这些值建立方程组,通过解方程组来求得通项公式。
例如,对于数列1,3,7,13,21,...,我们可以通过观察得到an = a(n-1) + 2n-1、然后,我们可以通过已知项确定初始值,如a1 = 1、通过逐一代入这些值,可以得到如下的方程组:a2 = a1 + 2(2) - 1,a3 = a2 + 2(3) - 1,...,以此类推。
然后我们可以通过求解这个方程组来得到数列的通项公式。
三、差分法差分法是通过求解数列项之间的差分来求得通项公式。
该方法常用于递推数列的高阶通项公式的求解。
对于数列an,我们可以通过计算an+1- an的值,然后继续计算相邻项之间的差分,直到得到一个关于n的表达式。
例如,对于数列1,3,6,10,15,...,我们可以计算出相邻项之间的差分:2,3,4,5,...。
我们发现这个差分数列是一个等差数列,其通项公式为an = n(n+1)/2、通过这个通项公式,我们可以进一步求得原数列的通项公式。
四、母函数法母函数法是一种重要的数学工具,适用于一些复杂的递推数列。
该方法通过构造一个函数来表示数列的各项,然后通过求解函数的表达式来得到数列的通项公式。
例如,对于数列1,1,2,3,5,...,我们可以构造一个函数F(x)=1+x+x^2+x^3+x^4+...。
我们可以通过求解这个函数关于x的表达式来得到数列的通项公式。
这个函数有一个特点,即F(x)=xF(x)+1,通过求解这个方程我们可以得到F(x)=1/(1-x)。
递推公式求数列通项的八大常见形式
新课标高考由递推公式求数列通项的八大常见形式对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列称辅助数列法。
1.递推公式为(其中p,q均为常数,)。
解法:把原递推公式转化为:其中,再利用换元法转化为等比数列求解。
例1. 已知数列中,,求。
2.型递推式可构造为形如的等比数列。
例5. 在数列中,,求通项公式。
解:原递推式可化为,比较系数可得:,,上式即为是一个等比数列,首项,公比为。
所以。
即,故为所求。
3. (A、B、C为常数,下同)型递推式(1)可构造为形如的等比数列。
类型 4 递推公式为(其中p,q均为常数,)。
(2)可构造为形如引入辅助数列(其中),得:再应用类型1的方法解决。
例1. 已知数列中,,求。
例2. 已知数列中,,求。
4.=p+q (p、q均为常数)(二阶递归)=p+q-=(-)∴解出、因此{-}是G.P型特殊地分析:∵∴∴是以为首项,公比为的等比数列例1、,,,求例2:a1=1,a2==-,求数列{}的通项公式。
-=(-)解得:=1、=-=(-), a2-a1= ∴-=∴=(-)+(-)+┈+(a2-a1)+a1=++┈++1=3-. ∴=3-5.等差数列:由此推广成差型递推关系:累加:=,于是只要可以求和就行。
递推公式为解法:把原递推公式转化为,(特殊情形:⑴.(差后等差数列)⑵(差后等比数列))利用累加法求解。
例1.已知{}满足,且,求例2.已知{}满足,且,求例3.已知{}满足,且,求例4. 已知数列满足,求。
6.等比数列:递推公式为累乘:类型2递推公式为解法(1)把原递推公式转化为,利用累乘法求解。
例1.已知{}满足,且,求例2.已知{}满足,且,求例3.. 已知数列满足,求。
7.倒数变换法:形如(为常数,且)的递推公式,可令。
则可转化为型;例1:数列中,且,,求数列的通项公式.8.对数变换法:1.递推式两边同取对数,得令,则,已转化为“型”,由累乘相消法可得例、已知数列满足,求。
递推式求数列通项公式常见类型及解法
递推式求数列通项公式常见类型及解法递推数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列给 予解决,由于递推数列的多变性,这里介绍总结一些常见类型及解法。
一、公式法(涉及前n 项的和) 已知)(n f s n =⎩⎨⎧≥----=-----=⇒-)2()1(11n S S n S a n n n 注意:已知数列的前n 项和,求通项公式时常常会出现忘记讨论1=n 的情形而致错。
例1.已知数列}a {n 前n 项和1322-+=n n S n ,求数列}a {n 的通项公式。
解:当n=1时,411==s a ,当2≥n 时,14]1)1(3)1(2[)132(221+=--+---+=-=-n n n n n s s a n n n ,15114a ≠=+⨯⎩⎨⎧≥+==∴)2(,14)1(,4n n n a n练习:已知数列}a {n 前n 项和12+=n n S ,求数列}a {n 的通项公式。
答案:⎩⎨⎧≥==-)2(,2)1(,31n n a n n 二、作商法(涉及前n 项的积)已知)(......321n f a a a a n =⨯⨯⨯⎪⎩⎪⎨⎧≥----=----=⇒)2()1()()1().1(n n f n f n f a n例2.已知数列}a {n 中的值试求时53232,2,11a a n a a a n a n +=⋅⋅⋅⋅⋅⋅⋅≥=。
解:当2≥n 时,由2321n a a a a n =⋅⋅⋅⋅⋅⋅⋅⋅,可得21321)1(-=⋅⋅⋅⋅⋅⋅⋅⋅-n a a a a n则22)1(-=n na n16614523222253=+=+∴a a三、累加法(涉及相邻两项的差)已知)(1n f a a n n =-+112211)......()()(a a a a a a a a n n n n n +-+-+-=⇒--- 例3.已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
数列通项公式常见求法
数列通项公式常见求法数列通项公式是指数列的一般项的表达式。
在数学问题中,求得数列通项公式可以帮助我们更方便地计算数列中的任意一项数值,解决各种与数列相关的问题。
本文将介绍数列通项公式的常见求法,包括递推法、通项公式和生成函数。
一、递推法递推法是一种通过已知数列的前几项来推导出数列通项公式的方法。
递推法的基本思路是找出数列每一项与前几项之间的关系式。
常见的递推法有差分法、倒推法、倍增法和特殊递推法。
1.差分法差分法是一种通过数列中相邻两项之间的差值来推导出通项公式的方法。
对于一个数列 {an},用 a(n+1) - an 的差来表示,通过不断地进行差分运算,直到差分为常数时,就可以得到数列的通项公式。
以斐波那契数列为例,我们知道斐波那契数列的通项公式是 fn = fn-1 + fn-2,其中 f0 = 0,f1 = 1、通过差分法可以推导出这个通项公式。
2.倒推法倒推法是一种逆序求解数列问题的方法,即从数列的最后一项逐步向前推导出每一项的值。
通过找出数列每一项与后几项之间的关系,从最后一项开始计算,并倒序得到数列的每一项的值。
以等差数列为例,设数列通项公式为 an = a + (n-1)d,其中 a 为首项,d 为公差。
已知 a1 和 an 的值,可以通过倒推法求得数列的通项公式。
3.倍增法倍增法是一种通过将数列每一项扩大或缩小倍数,使得这些倍数值之间构成等差或等比数列的方法。
通过找出数列每一项与前几项之间的倍关系,可以得到数列的通项公式。
以 2 的幂次方数列为例,我们知道这个数列的通项公式是 an = 2^n,其中 n >= 0。
通过倍增法可以推导出这个通项公式。
4.特殊递推法特殊递推法是对一些特殊的数列使用递推法求解通项公式的方法。
这类数列往往具有一些特殊的性质或规律,通过观察和分析这些特点,可以推导出数列的通项公式。
以全为奇数或全为偶数的等差数列为例,可以通过特殊递推法得到数列的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几类递推数列通项公式的常见类型及解法
递推数列问题成为高考命题的热点题型,对于由递推式所确定的数列通项公式问题,通常可对递推式的变形转化为等差数列或等比数列.下面将以常见的几种递推数列入手,谈谈此类数列的通项公式的求法.
一、a a d n n +=+1型 (d 为常数)
形如)(1n f a a n n +=+的递推数列求通项公式,将此类数列变形得a a d n n +-=1,再由 等差数列的通项公式()a a n d n =+-11可求得a n .
例1 已知数列{}a n 中()a a a n N n n 1123==+∈+,,求n a 的通项公式.
解:∵a a n n +=+13 ∴a a n n +-=13
∴ {}a n 是以a 12=为首项,3为公差的等差数列. ∴()a n n n =+-=-21331为所求的通项公式.
二、)(1n f a a n n +=+型
形如)(1n f a a n n +=+的递推数列求通项公式,可用差分法. 例2 已知数列{}a n 中满足a 1=1,n a a n n -=+1,求n a 的通项公式. 解:作差n a a n n -=-+1,则
2a -1a = -1,3a -2a = -2,4a -3a = -3,……,)1(1--=--n a a
n n
,
将上面n -1个等式相加得 +-+-+-=-)3()2()1(1a a n ……+[)1(--n ]
∴ n a =2
2
2++-n n 为所求的通项公式.
三、n n a q a ⋅=+1型
形如n n a q a ⋅=+1的递推数列求通项公式,将此类数列变形得
q a a n
n =+1
,再由等比数列的通项公式11-⋅=n n q a a 可求得a n . 例3 已知数列{}a n 中满足a 1=1,n n a a 21=+,求n a 的通项公式. 解:∵n n a a 21=+ ∴
21
=+n
n a a
∴ {}a n 是以11=a 为首项,2为公比的等比数列. ∴1
2
-=n n a 为所求的通项公式.
四、n n a n f a ⋅=+)(1型
形如n n a n f a ⋅=+)(1的递推数列求通项公式,可用累乘法.
例4 已知数列{}a n 中满足a 1=1,n n
n a a ⋅=+21,求n a 的通项公式.
解:∵n n
n a a ⋅=+21 ∴
n n
n a a 21
=+. ∴
1
2232332211a a a a a a a a a a a a n n n n n n n n ⋅⋅⋅⋅⋅⋅⋅------- =222
2
22
3
2
1
⋅⋅⋅⋅⋅⋅---n n n =2
)
1(2
-n n
∴ =1
a a n
2)
1(2-n n ∴=n a 2
)1(2
-n n 为所求的通项公式.
五、a ca d n n +=+1型 (c ,d 为常数)
形如a ca d n n +=+1的递推数列求通项公式,可通过适当换元,转换成等比数列或等差数列求解.
例5 已知{}a n 中a 13=-且a a n n =+-211求此数列的,通项公式.
解:)(21t a t a n n +=+-,则t a a n n +=-12.与a a n n =+-211进行比较,可得t=1, 则
有()1211+=+-n n a a . 设b a n n =+1, 则有b b n n =-21.
∴{}b n 是以b a 1112=+=-为首项,2为公比的等比数列
()122--=n n b ∴ ,∴()1212211--=--=-=-n n n n b a
六、)(1n f ka a n n +=+型 (k 为常数)
形如)(1n f ka a n n +=+的递推数列求通项公式,可对已知递推式适当变形,通过累加
或累积求得通项.
例6 已知数列{}n a 中,1a =
92,113
2
32+-+=n n n a a (n ≥2),求n a .
解:将原递推式化作:232311
+⋅=⋅-+n n n n a a , 则 2323211+⋅=⋅---n n n n a a
两式相减得 )3(323211----=
-n n n n a a a a ∴数列{13--n n a a }是以首项为94,公比为32的等比数列.∴13--n n a a =94×1)3
2(-n , 又 232311+⋅=⋅-+n n
n n a a
∴ n a =1
3)
21(2+--n n .
七、n n n da ca a +=++12型 (c ,d 为常数)
形如n n n da ca a +=++12的递推数列求通项公式,可通过适当换元,转换成等比数列或等差数列求解.
例7 已知数列{}n a ,1a =1,22a =,11320n n n a a a +--+=(*
n N ∈,n ≥2),求n a .
解:∵11320n n n a a a +--+= ∴112()n n n n a a a a +--=-
∴{1n n a a +-}是以2为公比,2a -1a 为首项的等比数列.
∴1
12n n n a a -+-=
∴n a =2310
112211()()()22221n n n n n n a a a a a a a ------+-++-+=+++++L L
=
1
1121212
n n ---+=- 评注:n n n da ca a +=++12可以变形为)(112n n n n pa a q pa a -=-+++,则可从p+q=c ,pq= -d ,解得p ,q ,于是{ n n pa a -+1}是公比为q 的等比数列,这样就可转化为类型六进行求解.
小结:等差数列或等比数列是两类最基本的数列,是数列部分的重点,也是高考考 查的热点.而主要考查学生分析问题和解决问题的能力,这个能力往往集中在“转化”的水平上.也就是说,把不同的递推公式,经过相应的变形手段,转化成比较熟悉的等差数列或等比数列进行求解.。