人教版数学必修一课时作业附答案1.1.2
(精选)2019人教版小学数学一年级上册课时作业(全册含答案)
二、看图列算式。
三、在圆里填上“>”“<”或 =。 5-0 4 2+0 2 2-2 0 3-3 3 2-0 2
3.14 练习六
一、连线。 3-0= 5+0= 4-0= 0+3= 5-4= 2-2= 2-0=
5
3
0
1
2
4
二、判断。
3. 把球、圆柱、长方体和正方体的序号写在相应盒子下面的横线上。
4. 想一想,至少切( )刀,就能把
的豆腐块切成 8 块。
1. 数一数、填一填。
5.1 6 、7 的认识
( 1)
共有()人。
( 2)从左数起,圈出第六个。
2. 完成任务 ( 1)从左数出第 6 个五角星,并画成红色。
( 2)从右数出 7 个正方形,给第七个画成蓝色。
一、把 4 个草莓放在两个盘子里,有几种放法。
二、填一填。
三、丽丽送给好友 3 个棒棒糖后还剩下 1 个,那她原来有几个?
一、猜一猜。
3.6 5 的组成
二、涂一涂,填一填。
三、夜深了, 5 只 要去睡觉了,每个小房子里能进同样多的兔子吗?每个房子有几只兔宝 宝,可能有几种情况?
一、从左数
是第 3 个。
2. 看图解决问题。
( 1)
( 2)
7把 ( 3)
3.2019 年春节我得到了 7 个红包,爷爷和奶奶给了我 2 个红包,我还收到其它亲人多少个红 包呢?
3. 填空。 ( 1)看图列式计算。
5.8 练习十
( 2)想一想,填一填。
6 - ( )= 3
6-
( )=2
( )- 2 = 5
2014-2015学年高中数学(人教A版,选修1-1)课时作业1.1.2
1.1.2四种命题【课时目标】 1.了解四种命题的概念.2.认识四种命题的结构,会对命题进行转换.1.四种命题的概念:(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的______________,那么我们把这样的两个命题叫做互逆命题,其中的一个命题叫做原命题,另一个命题叫做原命题的逆命题.(2)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的____________________________,我们把这样的两个命题叫做互否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的否命题.(3)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的______________________________,我们把这样的两个命题叫做互为逆否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的逆否命题.2.四种命题的命题结构:用p和q分别表示原命题的条件和结论,用綈p,綈q分别表示p和q的否定,四种形式就是:原命题:若p成立,则q成立.即“若p,则q”.逆命题:________________________.即“若q,则p”.否命题:______________________.即“若綈p,则綈q”.逆否命题:__________________.即“若綈q,则綈p”.一、选择题1.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.1 B.2 C.3 D.42.命题“若A∩B=A,则A⊆B”的逆否命题是()A.若A∪B≠A,则A⊇BB.若A∩B≠A,则A⊆BC.若A⊆B,则A∩B≠AD.若A⊇B,则A∩B≠A3.对于命题“若数列{a n}是等比数列,则a n≠0”,下列说法正确的是()A.它的逆命题是真命题B.它的否命题是真命题C.它的逆否命题是假命题D.它的否命题是假命题4.有下列四个命题:①“若xy=1,则x、y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;④若“A∪B=B,则A⊇B”的逆否命题.其中的真命题是()A.①②B.②③C.①③D.③④5.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中,真命题的个数是()A.4 B.3 C.2 D.06.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是()A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数D.若log a2<0,二、填空题7.命题“若x>y,则x3>y3-1”的否命题是________________________.8.命题“各位数字之和是3的倍数的正整数,可以被3整除”的逆否命题是____________________________;逆命题是_______;否命题是________________________.9.有下列四个命题:①“全等三角形的面积相等”的否命题;②若a2+b2=0,则a,b全为0;③命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;④命题“若A∩B=B,则A⊆B”的逆命题.其中是真命题的是________(填上你认为正确的命题的序号).三、解答题10.命题:“已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d.”写出其逆命题、否命题、逆否命题,并判断真假.11.把下列命题写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0;(3)对顶角相等.12.写出下列命题的逆命题、否命题、逆否命题.(1)实数的平方是非负数;(2)等高的两个三角形是全等三角形;(3)弦的垂直平分线平分弦所对的弧.【能力提升】13.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数14.命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.1.对条件、结论不明显的命题,可以先将命题改写成“若p则q”的形式后再进行转换.2.分清命题的条件和结论,然后进行互换和否定,即可得到原命题的逆命题,否命题和逆否命题.1.1.2四种命题知识梳理1.(1)结论和条件(2)条件的否定和结论的否定(3)结论的否定和条件的否定2.若q成立,则p成立若綈p成立,则綈q成立若綈q成立,则綈p成立作业设计1.B[由a>-3⇒a>-6,但由a>-6 a>-3,故真命题为原命题及原命题的逆否命题,故选B.]2.C[先明确命题的条件和结论,然后对命题进行转换.]3.D 4.C5.C[原命题和它的逆否命题为真命题.]6.A[由互为逆否命题的关系可知,原命题的逆否命题为:若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数.]7.若x≤y,则x3≤y3-18.不能被3整除的正整数,其各位数字之和不是3的倍数能被3整除的正整数,它的各位数字之和是3的倍数各位数字之和不是3的倍数的正整数,不能被3整除9.②③10.解逆命题:已知a,b,c,d是实数,若a+c=b+d,则a=b,c=d.假命题否命题:已知a,b,c,d是实数,若a≠b或c≠d,则a+c≠b+d.假命题逆否命题:已知a,b,c,d是实数,若a+c≠b+d,则a≠b或c≠d.真命题.11.解(1)原命题:“若a是正数,则a的平方根不等于0”.逆命题:“若a的平方根不等于0,则a是正数”.否命题:“若a不是正数,则a的平方根等于0”.逆否命题:“若a的平方根等于0,则a不是正数”.(2)原命题:“若x=2,则x2+x-6=0”.逆命题:“若x2+x-6=0,则x=2”.否命题:“若x≠2,则x2+x-6≠0”.逆否命题:“若x2+x-6≠0,则x≠2”.(3)原命题:“若两个角是对顶角,则它们相等”.逆命题:“若两个角相等,则它们是对顶角”.否命题:“若两个角不是对顶角,则它们不相等”.逆否命题:“若两个角不相等,则它们不是对顶角”.12.解(1)逆命题:若一个数的平方是非负数,则这个数是实数.否命题:若一个数不是实数,则它的平方不是非负数.逆否命题:若一个数的平方不是非负数,则这个数不是实数.(2)逆命题:若两个三角形全等,则这两个三角形等高.否命题:若两个三角形不等高,则这两个三角形不全等.逆否命题:若两个三角形不全等,则这两个三角形不等高.(3)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线.否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧.逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线.13.B[命题“若p,则q”的否命题为“若綈p,则綈q”,而“是”的否定是“不是”,故选B.]14.解逆命题:已知a、b为实数,若a2-4b≥0,则关于x的不等式x2+ax+b≤0有非空解集.否命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0没有非空解集,则a2-4b<0. 逆否命题:已知a、b为实数,若a2-4b<0,则关于x的不等式x2+ax+b≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.。
2019新人教A版高中数学 必修第一册课时同步课时作业 1.1 第1课时 集合的含义 课堂 Word版含解析
名校名师整理材料 助同学们一臂之力 - 1 - 第一章
1.1 第1课时
1.下列语句能确定一个集合的是( D )
A .充分小的负数全体
B .爱好飞机的一些人
C .某班本学期视力较差的同学
D .某校某班某一天的所有课程
[解析] 由集合的含义,根据集合元素的确定性,易排除A 、B 、C ,故选D .
2.已知集合S ={a ,b ,c }中的三个元素是△ABC 的三边长,那么△ABC 一定不是( D )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .等腰三角形
[解析] 由集合中元素的互异性知a ,b ,c 互不相等,故选D .
3.用符号“∈”或“∉”填空:
0__∈__N ;-3__∉__N ;0.5__∉__Z ;2__∉__Z ;13
__∈__Q ;π__∈__R . 4.集合A 中的元素y 满足y ∈N 且y =-x 2+1,若t ∈A ,则t 的值为__0,1__.
[解析] 因为y ∈N 且y =-x 2+1,所以y =0或y =1.
即A 中有两个元素0,1,又t ∈A ,所以t =0或1.
5.判断下列元素的全体是否组成集合,并说明理由:
(1)与定点A ,B 等距离的点;(2)高中学生中的游泳能手.
[解析] (1)与定点A ,B 等距离的点可以组成集合,因为这些点是确定的.
(2)高中学生中的游泳能手不能组成集合,因为组成它的元素是不确定的.。
高中数学人教版A版必修一课时作业及解析:第一章1-2函数及其表示
高中数学人教版A版必修一第一章集合与函数概念§1.2函数及其表示1.2.1 函数的概念课时目标 1.理解函数的概念,明确函数的三要素.2.能正确使用区间表示数集,表示简单函数的定义域、值域.3.会求一些简单函数的定义域、值域.1.函数(1)设A、B是非空的数集,如果按照某种确定的__________,使对于集合A中的____________,在集合B中都有________________和它对应,那么就称f:________为从集合A到集合B的一个函数,记作__________________.其中x 叫做________,x的取值范围A叫做函数的________,与x的值相对应的y值叫做________,函数值的集合{f(x)|x∈A}叫做函数的________.(2)值域是集合B的________.2.区间(1)设a,b是两个实数,且a<b,规定:①满足不等式__________的实数x的集合叫做闭区间,表示为________;②满足不等式__________的实数x的集合叫做开区间,表示为________;③满足不等式________或________的实数x的集合叫做半开半闭区间,分别表示为______________.(2)实数集R可以用区间表示为__________,“∞”读作“无穷大”,“+∞”读作“__________”,“-∞”读作“________”.我们把满足x≥a,x>a,x≤b,x<b的实数x的集合分别表示为________,________,________,______.一、选择题1.对于函数y=f(x),以下说法正确的有()①y 是x 的函数②对于不同的x ,y 的值也不同③f (a )表示当x =a 时函数f (x )的值,是一个常量 ④f (x )一定可以用一个具体的式子表示出来 A .1个B .2个 C .3个D .4个2.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有( )A .①②③④B .①②③C .②③D .②3.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )24.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有( )A .10个B .9个C .8个D .4个 5.函数y =1-x +x 的定义域为( )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1} 6.函数y =x +1的值域为( ) A .[-1,+∞) B .[0,+∞) C .(-∞,0] D .(-∞,-1]二、填空题7.已知两个函数f (x )和g (x )的定义域和值域都是{1,2,3},其定义如下表:8.如果函数f (x )满足:对任意实数a ,b 都有f (a +b )=f (a )f (b ),且f (1)=1,则f (2)f (1)+f (3)f (2)+f (4)f (3)+f (5)f (4)+…+f (2011)f (2010)=________. 9.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为______________.10.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________. 三、解答题11.已知函数f (1-x1+x )=x ,求f (2)的值.能力提升12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息多长时间?(3)第一次休息时,离家多远?(4)11∶00到12∶00他骑了多少千米?(5)他在9∶00~10∶00和10∶00~10∶30的平均速度分别是多少?(6)他在哪段时间里停止前进并休息用午餐?13.如图,某灌溉渠的横断面是等腰梯形,底宽为2m,渠深为1.8m,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;(2)确定函数的定义域和值域;(3)画出函数的图象.1.函数的判定判定一个对应关系是否为函数,关键是看对于数集A 中的任一个值,按照对应关系所对应数集B 中的值是否唯一确定,如果唯一确定,就是一个函数,否则就不是一个函数.2.由函数式求函数值,及由函数值求x ,只要认清楚对应关系,然后对号入座就可以解决问题.3.求函数定义域的原则:①当f (x )以表格形式给出时,其定义域指表格中的x 的集合;②当f (x )以图象形式给出时,由图象范围决定;③当f (x )以解析式给出时,其定义域由使解析式有意义的x 的集合构成;④在实际问题中,函数的定义域由实际问题的意义确定.§1.2 函数及其表示 1.2.1 函数的概念知识梳理1.(1)对应关系f 任意一个数x 唯一确定的数f (x ) A →B y =f (x ),x ∈A 自变量 定义域 函数值 值域 (2)子集2.(1)①a ≤x ≤b [a ,b ] ②a <x <b (a ,b ) ③a ≤x <b a <x ≤b [a ,b ),(a ,b ] (2)(-∞,+∞) 正无穷大 负无穷大 [a ,+∞) (a ,+∞) (-∞,b ] (-∞,b ) 作业设计1.B [①、③正确;②不对,如f (x )=x 2,当x =±1时y =1;④不对,f (x )不一定可以用一个具体的式子表示出来,如南极上空臭氧空洞的面积随时间的变化情况就不能用一个具体的式子来表示.]2.C [①的定义域不是集合M ;②能;③能;④与函数的定义矛盾.故选C.] 3.D [A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.]4.B [由2x 2-1=1,2x 2-1=7得x 的值为1,-1,2,-2,定义域为两个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”.]5.D [由题意可知⎩⎨⎧1-x ≥0,x ≥0,解得0≤x ≤1.]6.B 7.3 2 1解析 g [f (1)]=g (2)=3,g [f (2)]=g (3)=2, g [f (3)]=g (1)=1. 8.2010解析 由f (a +b )=f (a )f (b ),令b =1,∵f (1)=1, ∴f (a +1)=f (a ),即f (a +1)f (a )=1,由a 是任意实数,所以当a 取1,2,3,…,2010时,得f (2)f (1)=f (3)f (2)=…=f (2011)f (2010)=1.故答案为2010. 9.{-1,1,3,5,7}解析 ∵x =1,2,3,4,5,∴f (x )=2x -3=-1,1,3,5,7. 10.[0,13]解析 由⎩⎪⎨⎪⎧0≤2x ≤1,0≤x +23≤1,得⎩⎪⎨⎪⎧0≤x ≤12,-23≤x ≤13,即x ∈[0,13].11.解 由1-x 1+x=2,解得x =-13,所以f (2)=-13.12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米. (2)10∶30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11∶00至12∶00他骑了13千米.(5)9∶00~10∶00的平均速度是10千米/时;10∶00~10∶30的平均速度是14千米/时.(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2m ,上底为(2+2h )m ,高为h m ,∴水的面积A=[2+(2+2h)]h2=h2+2h(m2).(2)定义域为{h|0<h<1.8}.值域由二次函数A=h2+2h(0<h<1.8)求得.由函数A=h2+2h=(h+1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A<6.84.故值域为{A|0<A<6.84}.(3)由于A=(h+1)2-1,对称轴为直线h=-1,顶点坐标为(-1,-1),且图象过(0,0)和(-2,0)两点,又考虑到0<h<1.8,∴A=h2+2h的图象仅是抛物线的一部分,如下图所示.1.2.2 函数的表示法 第1课时 函数的表示法课时目标 1.掌握函数的三种表示方法——解析法、图象法、列表法.2.在实际情境中,会根据不同的需要选择恰当方法表示函数.函数的三种表示法(1)解析法——用____________表示两个变量之间的对应关系; (2)图象法——用______表示两个变量之间的对应关系; (3)列表法——列出______来表示两个变量之间的对应关系.一、选择题1.一个面积为100cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( ) A .y =50x (x >0) B .y =100x (x >0)C .y =50x (x >0)D .y =100x (x >0)2.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是( ) A .0B .1C .2D .33.如果f (1x )=x1-x,则当x ≠0时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1 4.已知f (x )=2x +3,g (x +2)=f (x ),则g (x )等于( )A .2x +1B .2x -1C .2x -3D .2x +75.若g (x )=1-2x ,f [g (x )]=1-x 2x 2,则f (12)的值为( ) A .1B .15C .4D .306.在函数y =|x |(x ∈[-1,1])的图象上有一点P (t ,|t |),此函数与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )二、填空题7.一个弹簧不挂物体时长12cm ,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3kg 物体后弹簧总长是13.5cm ,则弹簧总长y (cm)与所挂物体质量x (kg)之间的函数关系式为________________________________________________________________________.8.已知函数y =f (x )满足f (x )=2f (1x )+x ,则f (x )的解析式为____________. 9.已知f (x )是一次函数,若f (f (x ))=4x +8,则f (x )的解析式为__________________.三、解答题10.已知二次函数f (x )满足f (0)=f (4),且f (x )=0的两根平方和为10,图象过(0,3)点,求f (x )的解析式.11.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0)、f (1)、f (3)的大小;(2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域.能力提升12.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6·时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x10] B .y =[x +310]C .y =[x +410]D .y =[x +510]13.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.1.如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式(可能有的要表示为分段函数),再列表描出图象,并在画图象的同时注意一些关键点,如与坐标轴的交点、分段函数的区间端点等. 2.如何求函数的解析式求函数的解析式的关键是理解对应关系f 的本质与特点(对应关系就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法).1.2.2 函数的表示法 第1课时 函数的表示法知识梳理(1)数学表达式 (2)图象 (3)表格 作业设计1.C [由x +3x2·y =100,得2xy =100.∴y =50x (x >0).]2.B [由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.]3.B [令1x =t ,则x =1t ,代入f (1x )=x1-x,则有f (t )=1t 1-1t=1t -1,故选B.] 4.B [由已知得:g (x +2)=2x +3,令t =x +2,则x =t -2,代入g (x +2)=2x +3,则有g (t )=2(t -2)+3=2t -1,故选B.]5.B [令1-2x =12,则x =14,∴f (12)=1-(14)2(14)2=15.] 6.B [当t <0时,S =12-t 22,所以图象是开口向下的抛物线,顶点坐标是(0,12);当t >0时,S =12+t 22,开口是向上的抛物线,顶点坐标是(0,12).所以B 满足要求.]7.y =12x +12解析 设所求函数解析式为y =kx +12,把x =3,y =13.5代入,得13.5=3k+12,k =12.所以所求的函数解析式为y =12x +12.8.f (x )=-x 2+23x (x ≠0)解析 ∵f (x )=2f (1x )+x ,①∴将x 换成1x ,得f (1x )=2f (x )+1x .②由①②消去f (1x ),得f (x )=-23x -x3,即f (x )=-x 2+23x (x ≠0).9.f (x )=2x +83或f (x )=-2x -8 解析 设f (x )=ax +b (a ≠0), 则f (f (x ))=f (ax +b )=a 2x +ab +b .∴⎩⎨⎧a 2=4ab +b =8,解得⎩⎪⎨⎪⎧a =2b =83或⎩⎨⎧a =-2b =-8.10.解 设f (x )=ax 2+bx +c (a ≠0).由f (0)=f (4)知⎩⎨⎧f (0)=c ,f (4)=16a +4b +c ,f (0)=f (4),得4a +b =0.① 又图象过(0,3)点, 所以c =3.②设f (x )=0的两实根为x 1,x 2,则x 1+x 2=-b a ,x 1·x 2=ca . 所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(-b a)2-2·c a=10.即b 2-2ac =10a 2.③由①②③得a =1,b =-4,c =3.所以f (x )=x 2-4x +3.11.解 因为函数f (x )=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 … y … -5 0 3 4 3 0 -5 …连线,描点,得函数图象如图:(1)根据图象,容易发现f (0)=3,f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2). (3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].12.B [方法一 特殊取值法,若x =56,y =5,排除C 、D ,若x =57,y =6,排除A ,所以选B.方法二 设x =10m +α(0≤α≤9),0≤α≤6时, [x +310]=[m +α+310]=m =[x 10],当6<α≤9时,[x +310]=[m +α+310]=m +1=[x10]+1, 所以选B.]13.解 因为对任意实数x ,y ,有 f (x -y )=f (x )-y (2x -y +1), 所以令y =x ,有f (0)=f (x )-x (2x -x +1),即f (0)=f (x )-x (x +1).又f (0)=1, ∴f (x )=x (x +1)+1=x 2+x +1.第2课时分段函数及映射课时目标 1.了解分段函数的概念,会画分段函数的图象,并能解决相关问题.2.了解映射的概念.1.分段函数(1)分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的____________的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的______;各段函数的定义域的交集是空集.(3)作分段函数图象时,应_____________________________________.2.映射的概念设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A 中的任意一个元素x,在集合B中____________确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的__________.一、选择题1.已知,则f(3)为()A.2B.3C.4D.52.下列集合A到集合B的对应中,构成映射的是()3.一旅社有100间相同的客房,经过一段时间的经营实践,发现每间客房每天的定价与住房率有如下关系:A.100元B.90元C.80元D.60元4.已知函数,使函数值为5的x的值是()A.-2B.2或-5 2C.2或-2D.2或-2或-5 25.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m元收费;用水超过10立方米的,超过部分按每立方米2m元收费.某职工某月缴水费16m元,则该职工这个月实际用水为() A.13立方米B.14立方米C.18立方米D.26立方米6.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列不能表示从P到Q的映射的是()A.f:x→y=12x B.f:x→y=13xC.f:x→y=23x D.f:x→y=x二、填空题7.已知,则f(7)=____________.8.设则f {f [f (-34)]}的值为________,f (x )的定义域是______________.9.已知函数f (x )的图象如下图所示,则f (x )的解析式是__________________.三、解答题 10.已知,(1)画出f (x )的图象; (2)求f (x )的定义域和值域.11.如图,动点P从边长为4的正方形ABCD的顶点B开始,顺次经C、D、A绕周界运动,用x表示点P的行程,y表示△APB的面积,求函数y=f(x)的解析式.能力提升12.设f:x→x2是集合A到集合B的映射,如果B={1,2},则A∩B一定是() A.∅B.∅或{1}C.{1}D.∅13.在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内,车距d是车速v(公里/小时)的平方与车身长S(米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时,车距恰好等于车身长,试写出d关于v的函数关系式(其中S为常数).1.全方位认识分段函数(1)分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集.(2)分段函数的图象应分段来作,特别注意各段的自变量取区间端点处时函数的取值情况,以决定这些点的实虚情况.2.对映射认识的拓展映射f:A→B,可理解为以下三点:(1)A中每个元素在B中必有唯一的元素与之对应;(2)对A中不同的元素,在B中可以有相同的元素与之对应;(3)A中元素与B中元素的对应关系,可以是:一对一、多对一,但不能一对多.3.函数与映射的关系映射f:A→B,其中A、B是两个“非空集合”;而函数y=f(x),x∈A为“非空的实数集”,其值域也是实数集,于是,函数是数集到数集的映射.由此可知,映射是函数的推广,函数是一种特殊的映射.第2课时 分段函数及映射知识梳理1.(1)对应关系 (2)并集 (3)分别作出每一段的图象 2.都有唯一 一个映射 作业设计 1.A [∵3<6,∴f (3)=f (3+2)=f (5)=f (5+2)=f (7)=7-5=2.] 2.D3.C [不同的房价对应着不同的住房率,也对应着不同的收入,因此求出4个不同房价对应的收入,然后找出最大值对应的房价即可.] 4.A [若x 2+1=5,则x 2=4,又∵x ≤0,∴x =-2, 若-2x =5,则x =-52,与x >0矛盾,故选A.]5.A [该单位职工每月应缴水费y 与实际用水量x 满足的关系式为y =⎩⎨⎧mx , 0≤x ≤10,2mx -10m ,x >10. 由y =16m ,可知x >10.令2mx -10m =16m ,解得x =13(立方米).]6.C [如果从P 到Q 能表示一个映射,根据映射的定义,对P 中的任一元素,按照对应关系f 在Q 中有唯一元素和它对应,选项C 中,当x =4时,y =23×4=83∉Q ,故选C.] 7.6解析 ∵7<9,∴f (7)=f [f (7+4)]=f [f (11)]=f (11-3)=f (8). 又∵8<9,∴f (8)=f [f (12)]=f (9)=9-3=6. 即f (7)=6.8.32 {x |x ≥-1且x ≠0}解析 ∵-1<-34<0,∴f (-34)=2×(-34)+2=12.而0<12<2,∴f (12)=-12×12=-14.∵-1<-14<0,∴f (-14)=2×(-14)+2=32.因此f {f [f (-34)]}=32.函数f (x )的定义域为{x |-1≤x <0}∪{x |0<x <2}∪{x |x ≥2}={x |x ≥-1且x ≠0}.9.f (x )=⎩⎨⎧ x +1, -1≤x <0,-x ,0≤x ≤1解析 由图可知,图象是由两条线段组成,当-1≤x <0时,设f (x )=ax +b ,将(-1,0),(0,1)代入解析式,则⎩⎨⎧ -a +b =0,b =1.∴⎩⎨⎧a =1,b =1.当0<x <1时,设f (x )=kx ,将(1,-1)代入,则k =-1. 10.解 (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.解 当点P 在BC 上运动,即0≤x ≤4时,y =12×4x =2x ;当点P 在CD 上运动,即4<x ≤8时,y =12×4×4=8;当点P 在DA 上运动,即8<x ≤12时,y =12×4×(12-x )=24-2x .综上可知,f (x )=⎩⎨⎧ 2x , 0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12.12.B [由题意可知,集合A 中可能含有的元素为:当x 2=1时,x =1,-1;当x 2=2时,x =2,- 2. 所以集合A 可为含有一个、二个、三个、四个元素的集合.无论含有几个元素,A ∩B =∅或{1}.故选B.]13.解 根据题意可得d =k v 2S .∵v =50时,d =S ,代入d =k v 2S 中,解得k =12500.∴d =12500v 2S .当d =S 2时,可解得v =25 2.∴d =⎩⎪⎨⎪⎧ S 2 (0≤v <252)12500v 2S (v ≥252).§1.2习题课课时目标 1.加深对函数概念的理解,加深对映射概念的了解.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.通过具体实例,理解简单的分段函数,并能简单应用.1.下列图形中,不可能作为函数y=f(x)图象的是()2.已知函数f:A→B(A、B为非空数集),定义域为M,值域为N,则A、B、M、N的关系是()A.M=A,N=B B.M⊆A,N=BC.M=A,N⊆B D.M⊆A,N⊆B3.函数y=f(x)的图象与直线x=a的交点()A.必有一个B.一个或两个C.至多一个D.可能两个以上4.已知函数,若f(a)=3,则a的值为()A.3B.- 3C.±3D.以上均不对5.若f(x)的定义域为[-1,4],则f(x2)的定义域为()A.[-1,2]B.[-2,2]C.[0,2]D.[-2,0]6.函数y=xkx2+kx+1的定义域为R,则实数k的取值范围为() A.k<0或k>4B.0≤k<4C.0<k<4D.k≥4或k≤0一、选择题1.函数f (x )=xx 2+1,则f (1x )等于( )A .f (x )B .-f (x )C.1f (x )D.1f (-x )2.已知f (x 2-1)的定义域为[-3,3],则f (x )的定义域为( )A .[-2,2]B .[0,2]C .[-1,2]D .[-3,3]3.已知集合A ={a ,b },B ={0,1},则下列对应不是从A 到B 的映射的是()4.与y =|x |为相等函数的是( )A .y =(x )2B .y =x 2C .D .y =3x 35.函数y =2x +1x -3的值域为( )A .(-∞,43)∪(43,+∞)B .(-∞,2)∪(2,+∞)C .RD .(-∞,23)∪(43,+∞)6.若集合A ={x |y =x -1},B ={y |y =x 2+2},则A ∩B 等于( )A .[1,+∞)B .(1,+∞)C .[2,+∞)D .(0,+∞)二、填空题7.设集合A=B={(x,y)|x∈R,y∈R},点(x,y)在映射f:A→B的作用下对应的点是(x-y,x+y),则B中点(3,2)对应的A中点的坐标为____________.8.已知f(x+1)=x+2x,则f(x)的解析式为___________________________________.9.已知函数,则f(f(-2))=______________________________.三、解答题10.若3f(x-1)+2f(1-x)=2x,求f(x).11.已知,若f(1)+f(a+1)=5,求a的值.能力提升12.已知函数f(x)的定义域为[0,1],则函数f(x-a)+f(x+a)(0<a<12)的定义域为()A.∅B.[a,1-a] C.[-a,1+a]D.[0,1]13.已知函数(1)求f(-3),f[f(-3)];(2)画出y=f(x)的图象;(3)若f(a)=12,求a的值.1.函数的定义域、对应关系以及值域是构成函数的三个要素.事实上,如果函数的定义域和对应关系确定了,那么函数的值域也就确定了.两个函数是否相同,只与函数的定义域和对应关系有关,而与函数用什么字母表示无关.求函数定义域时,要注意分式的字母不能为零;偶次根式内的被开方式子必须大于或等于零.2.函数图象是描述函数两个变量之间关系的一种重要方法,它能够直观形象地表示自变量、函数值的变化趋势.函数的图象可以是直线、光滑的曲线,也可以是一些孤立的点、线段或几段曲线等.3.函数的表示方法有列举法、解析法、图象法三种.根据解析式画函数的图象时,要注意定义域对函数图象的制约作用.函数的图象既是研究函数性质的工具,又是数形结合方法的基础.§1.2习题课双基演练1.C[C选项中,当x取小于0的一个值时,有两个y值与之对应,不符合函数的定义.]2.C[值域N应为集合B的子集,即N⊆B,而不一定有N=B.]3.C[当a属于f(x)的定义域内时,有一个交点,否则无交点.]4.A[当a≤-1时,有a+2=3,即a=1,与a≤-1矛盾;当-1<a<2时,有a2=3,∴a=3,a=-3(舍去);当a≥2时,有2a=3,∴a=32与a≥2矛盾.综上可知a = 3.]5.B [由-1≤x 2≤4,得x 2≤4,∴-2≤x ≤2,故选B.]6.B [由题意,知kx 2+kx +1≠0对任意实数x 恒成立,当k =0时,1≠0恒成立,∴k =0符合题意.当k ≠0时,Δ=k 2-4k <0,解得0<k <4,综上,知0≤k <4.]作业设计1.A [f (1x )=1x 1x 2+1=x 1+x 2=f (x ).] 2.C [∵x ∈[-3,3],∴0≤x 2≤3,∴-1≤x 2-1≤2,∴f (x )的定义域为[-1,2].]3.C [C 选项中,和a 相对应的有两个元素0和1,不符合映射的定义.故答案为C.]4.B [A 中的函数定义域与y =|x |不同;C 中的函数定义域不含有x =0,而y =|x |中含有x =0,D 中的函数与y =|x |的对应关系不同,B 正确.]5.B [用分离常数法.y =2(x -3)+7x -3=2+7x -3. ∵7x -3≠0,∴y ≠2.] 6.C [化简集合A ,B ,则得A =[1,+∞),B =[2,+∞).∴A ∩B =[2,+∞).]7.(52,-12)解析 由题意⎩⎨⎧ x -y =3x +y =2,∴⎩⎪⎨⎪⎧ x =52y =-12.8.f (x )=x 2-1(x ≥1)解析 ∵f (x +1)=x +2x=(x )2+2x +1-1=(x +1)2-1,∴f (x )=x 2-1. 由于x +1≥1,所以f (x )=x 2-1(x ≥1).9.4解析 ∵-2<0,∴f (-2)=(-2)2=4,又∵4≥0,∴f (4)=4,∴f (f (-2))=4.10.解 令t =x -1,则1-x =-t ,原式变为3f (t )+2f (-t )=2(t +1),①以-t 代t ,原式变为3f (-t )+2f (t )=2(1-t ),②由①②消去f (-t ),得f (t )=2t +25. 即f (x )=2x +25.11.解 f (1)=1×(1+4)=5,∵f (1)+f (a +1)=5,∴f (a +1)=0.当a +1≥0,即a ≥-1时,有(a +1)(a +5)=0,∴a =-1或a =-5(舍去).当a +1<0,即a <-1时,有(a +1)(a -3)=0,无解.综上可知a =-1.12.B [由已知,得⎩⎨⎧ 0≤x +a ≤1,0≤x -a ≤1⇒⎩⎨⎧-a ≤x ≤1-a ,a ≤x ≤1+a . 又∵0<a <12,∴a ≤x ≤1-a ,故选B.]13.解 (1)∵x ≤-1时,f (x )=x +5,∴f (-3)=-3+5=2,∴f [f (-3)]=f (2)=2×2=4.(2)函数图象如右图所示.(3)当a ≤-1时,f (a )=a +5=12,a =-92≤-1; 当-1<a <1时,f (a )=a 2=12,a =±22∈(-1,1); 当a ≥1时,f (a )=2a =12,a =14∉[1,+∞),舍去. 故a 的值为-92或±22.。
人教版数学必修一课时作业附答案1.1.3.2
[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A等于()A.{1,3,5,6}B.{2,3,7}C.{2,4,7} D.{2,5,7}解析:由题意知∁U A={2,4,7},选C.答案:C2.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)等于()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.故选D.答案:D3.如图所示,U是全集,A,B是U的子集,则阴影部分所表示的集合是()A.A∩B B.A∪BC.B∩(∁U A) D.A∩(∁U B)解析:由Venn图可知阴影部分为B∩(∁U A).答案:C4.设全集U={1,2,3,4,5},若A∩B={2},(∁U A)∩B={4},(∁A)∩(∁U B)={1,5},则下列结论中正确的是()UA.3∉A,3∉B B.3∉A,3∈BC.3∈A,3∉B D.3∈A,3∈B解析:由Venn图可知,3∈A,3∉B,故选C.答案:C5.设集合M={x|-1≤x<2},N={x|x-k≤0},若(∁R M)⊇(∁R N),则k的取值范围是()A.k≤2 B.k≥-1C.k>-1 D.k≥2解析:由(∁R M)⊇(∁R N)可知M⊆N,则k的取值范围为k≥2.答案:D二、填空题(每小题5分,共15分)6.设全集U={a,b,c,d},集合A={a,b},B={b,c,d},则(∁U A)∪(∁U B)=________.解析:依题意得知,∁U A={c,d},∁U B={a},(∁U A)∪(∁U B)={a,c,d}.答案:{a,c,d}7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.解析:∵U={0,1,2,3},∁U A={1,2}.∴A={x∈U|x2+mx=0}={0,3}.∴0,3是方程x2+mx=0的两根,∴0+3=-m,即m=-3.答案:-38.已知U=R,A={x|a≤x≤b},∁U A={x|x<3或x>4},则ab=________.解析:因为A∪(∁U A)=R,所以a=3,b=4,所以ab=12.答案:12三、解答题(每小题10分,共20分)9.已知全集U=R,集合A={x|-1<x<2},B={x|0<x≤3}.求:(1)A∩B;(2)∁U(A∪B);(3)A∩(∁U B).解析:(1)因为A={x|-1<x<2},B={x|0<x≤3},所以A∩B={x|-1<x<2}∩{x|0<x≤3}={x|0<x<2}.(2)A∪B={x|-1<x<2}∪{x|0<x≤3}={x|-1<x≤3},∁U(A∪B)={x|x≤-1或x>3}.(3)A∩(∁U B)={x|-1<x<2}∩{x|x>3或x≤0}={x|-1<x≤0}.10.已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a}.(1)求(∁R A)∩B;(2)若A⊆C,求a的取值范围.解析:(1)因为A={x|3≤x<7},所以∁R A={x|x<3或x≥7},所以(∁R A)∩B={x|2<x<3或7≤x<10}.(2)因为C={x|x<a},且A⊆C,如图所示,所以a≥7,所以a的取值范围是{a|a≥7}.[能力提升](20分钟,40分)11.已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩(∁U B)等于()A.{3} B.{4}C.{3,4} D.∅解析:由A∪B={1,2,3},B={1,2},U={1,2,3,4}知A∩(∁U B)={3}.答案:A12.设全集U={1,2,x2-2},A={1,x},则∁U A=________.解析:若x=2,则x2-2=2,U={1,2,2},与集合中元素的互异N ={x |x 2+x -6=0}={-3,2}, 所以∁I M ={x |x ∈R 且x ≠-3}, 所以(∁I M )∩N ={2}.(2)A =(∁I M )∩N ={2},因为A ∪B =A ,所以B ⊆A , 所以B =∅或B ={2},当B =∅时,a -1>5-a ,得a >3;当B ={2}时,⎩⎨⎧ a -1=2,5-a =2,解得a =3, 综上所述,所求a 的取值范围为{a |a ≥3}.。
数学必修一,(全部课时作业)
内蒙古呼伦贝尔莫旗尼尔基一中刘春和作业(一)集合的概念一、选择题1.把集合{x|x2-3x+2=0}用列举法表示为()A.{x=1,x=2} B.{x|x=1,x=2}C.{x2-3x+2=0} D.{1,2}【解析】解方程x2-3x+2=0可得x=1或2,所以集合{x|x2-3x+2=0}用列举法可表示为{1,2}.【答案】 D2.设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中的元素个数为()A.4 B.5C.6 D.7【解析】由题意,B={2,3,4,5,6,8},共有6个元素,故选C.【答案】 C3.下列各组两个集合M和N表示同一集合的是()A.M={π},N={3.141 59}B.M={2,3},N={(2,3)}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={x|x2+1=0},N=∅【解析】对于A,∵π≠3.141 59,∴{π}≠{3.141 59}.对于B,前者包含2个元素,而后者只含一个元素,是个点.对于C,前者是直线x+y=1上点的集合,而后者是函数y=-x+1的值域.对于D,∵x2+1=0无解,∴{x|x2+1=0}=∅,故选D.【答案】 D4.设集合A={-2,0,1,3},集合B={x|-x∈A,1-x∉A},则集合B中元素的个数为()A.1 B.2C.3 D.4【解析】若x∈B,则-x∈A,∴x的可能取值为:2,0,-1,-3,当2∈B时,则1-2=-1∉A,∴2∈B;当0∈B时,则1-0∈A,∴0∉B;当-1∈B时,则1-(-1)=2∉A,∴-1∈B;当-3∈B时,则1-(-3)=4∉A,∴-3∈B.综上,B={-3,-1,2},所以集合B含有的元素个数为3,故选C.【答案】 C5.已知P={x|2<x<k,x∈N},若集合P中恰有3个元素,则() A.5<k<6 B.5≤k<6C.5<k≤6 D.5≤k≤6【解析】因为P中恰有3个元素,所以P={3,4,5},可得5<k≤6,故选C.【答案】 C二、填空题6.已知集合A={-1,-2,0,1,2},B={x|x=y2,y∈A},则用列举法表示B应为________.【解析】(-1)2=12=1,(-2)2=22=4,02=0,所以B={0,1,4}.【答案】{0,1,4}7.已知集合A={x|x2+2x+a=0},若1∈A,则A=________.【解析】把x=1代入方程x2+2x+a=0可得a=-3,解方程x2+2x-3=0可得A={-3,1}.【答案】{-3,1}8.若2∉{x|x-a<0},则实数a的取值集合是________.【解析】由题意,{x|x-a<0}={x|x<a},∵2∉{x|x-a<0},∴a≤2,∴实数a的取值集合是{a|a≤2}.【答案】{a|a≤2}三、解答题9.用适当的方法表示下列集合:(1)方程x2+y2-4x+6y+13=0的解集;(2)1 000以内被3除余2的正整数组成的集合;(3)二次函数y=x2-10图象上的所有点组成的集合.【解】(1)方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3,所以方程的解集为{(x,y)|x=2,y=-3}.(2)集合的代表元素是数,用描述法可表示为{x|x=3k+2,k∈N 且x<1 000}.(3)“二次函数y=x2-10图象上的所有点”用描述法表示为{(x,y)|y=x2-10}.10.若-3∈{a-3,2a-1,a2+1},求实数a的值.【解】∵-3∈{a-3,2a-1,a2+1},又a2+1≥1,∴-3=a-3,或-3=2a-1,解得a=0,或a=-1,当a=0时,{a-3,2a-1,a2+1}={-3,-1,1},满足集合三要素;当a=-1时,{a-3,2a-1,a2+1}={-4,-3,2},满足集合三要素;∴a=0或-1.作业(二)(45分钟)一、选择题1.已知集合A={x|x2-1=0},则有()A.1∉A B.0⊆AC.∅⊆A D.{0}⊆A2.已知集合N={1,3,5},则集合N的真子集个数为()A.5 B.6C.7 D.83.集合A={2,-1},B={m2-m,-1},且A=B,则实数m=() A.2 B.-1C.2或-1 D.44.已知集合M={x|-5<x<3,x∈Z},则下列集合是集合M的子集的为()A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤3,x∈N}5.集合M=,,则()A.M=N B.M⊆NC.N⊆M D.M∩N∅二、填空题 6.设a ,b ∈R ,集合⎩⎨⎧⎭⎬⎫0,b ,b a ={1,a ,a +b },则a +2b =________.7.已知集合A ={x|x 2-3x +2=0},B ={1,2},C ={x|x<8,x ∈N },用适当的符号填空:(1)A ________B ;(2)A ________C ; (3){2}________C ;(4)2________C .8.设集合A ={x |x 2+x -6=0},B ={x |mx +1=0},则满足B ⊆A 的实数m 的取值集合为________.三、解答题9.已知A ={x|x <3},B ={x|x <a}. (1)若B ⊆A ,求a 的取值范围; (2)若A ⊆B ,求a 的取值范围. 一、选择题1【解析】 因为A ={1,-1},所以选项A ,B ,D 都错误,因为∅是任何非空集合的真子集,所以C 正确.【答案】 C2【解析】 ∵集合N ={1,3,5},∴集合N 的真子集个数是23-1=7个,故选C.【答案】 C3【解析】 ∵A =B ,∴m 2-m =2,即m 2-m -2=0,∴m =2或-1. 【答案】 C4【解析】 集合M ={-2,-1,0,1},集合R ={-3,-2},集合S ={0,1},不难发现集合P 中的元素-3∉M ,集合Q 中的元素2∉M ,集合R 中的元素-3∉M ,而集合S ={0,1}中的任意一个元素都在集合M 中,所以S ⊆M .故选D.【答案】 D5【解析】∵M 中:x =k 2+13=⎩⎨⎧n +13,k =2n ,n ∈Z , n +56,k =2n +1,n ∈Z .N 中:x =k +13=n +13,k =n ∈Z ,∴N ⊆M . 【答案】 C6【解析】 ∵⎩⎨⎧⎭⎬⎫0,b ,b a ={1,a ,a +b },而a ≠0,∴a +b =0,ba =-1,从而b =1,a =-1,可得a +2b =1. 【答案】 17【解析】 集合A 为方程x 2-3x +2=0的解集,即A ={1,2},而C ={x |x <8,x ∈N }={0,1,2,3,4,5,6,7}.故(1)A =B ;(2)A C ;(3){2} C ;(4)2∈C .【答案】 (1)= (2) (3) (4)∈8【解析】 ∵A ={x |x 2+x -6=0}={-3,2},又∵B ⊆A ,当m =0,mx +1=0无解,故B =∅,满足条件;若B ≠∅,则B ={-3},或B ={2},即m =13,或m =-12.故满足条件的实数m ∈⎩⎨⎧⎭⎬⎫0,13,-12.【答案】 ⎩⎨⎧⎭⎬⎫0,13,-129【解】 (1)因为B ⊆A ,由图(1)得a ≤3.(1)(2)因为A ⊆B ,由图(2)得a ≥3.(2)10.已知集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R},若B⊆A,求实数a的取值范围.作业(三)一、选择题1.若全集U={0,1,2,3}且∁U A={2},则集合A的真子集共有()A.3个B.5个C.7个D.8个2.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=() A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}3.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩(∁U B)=()A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6,8}4.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则图1-1-3中的阴影部分表示的集合为()图1-1-3A.{2} B.{4,6}C.{1,3,5} D.{4,6,7,8}5.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是()A.a≤2 B.a<1C.a≥2 D.a>2二、填空题6.已知全集U=R,M={x|-1<x<1},∁U N={x|0<x<2},那么集合M∪N=________.7.已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩(∁U B)=________.8.设全集U=R,集合A={x|x≥0},B={y|y≥1},则∁U A与∁U B的包含关系是________.三、解答题9.已知集合U={1,2,3,4,5},若A∪B=U,A∩B=∅,且A∩(∁U B)={1,2},试写出满足上述条件的集合A,B.10.设全集为R,A={x|3≤x<7},B={x|2<x<10},求:(1)A∩B;(2)∁R A;(3)∁R(A∪B).第二章课时作业(一)一、选择题1.下列各式正确的是()A.(-3)2=-3B.4a4=aC.22=2D.3(-2)3=2【解析】由于(-3)2=3,4a4=|a|,3(-2)3=-2,故A,B,D错误,故选C.【答案】C2. 的值为()A.-13 B.13C.43 D.73【解析】原式=1-(1-22)÷=1-(-3)×49=73.【答案】 D3.下列各式运算错误的是()A.(-a2b)2·(-ab2)3=-a7b8B.(-a2b3)3÷(-ab2)3=a3b3C.(-a3)2·(-b2)3=a6b6D.[-(a3)2·(-b2)3]3=a18b18【解析】对于A,(-a2b)2·(-ab2)3=a4b2·(-a3b6)=-a7b8,故A正确;对于B,(-a2b3)3÷(-ab2)3=-a6b9÷(-a3b6)=a6-3b9-6=a3b3,故B正确;对于C,(-a3)2·(-b2)3=a6·(-b6)=-a6b6,故C错误;对于D,易知正确,故选C.【答案】 C4.化简(a,b>0)的结果是()A.ba B.abC.ab D.a2b【解析】原式==【答案】 C5.设a 12-a-12=m,则a2+1a=()A.m2-2 B.2-m2 C.m2+2 D.m2【解析】将a 12-a-12=m平方得(a12-a-12)2=m2,即a-2+a-1=m2,所以a+a-1=m2+2,即a+1a=m2+2⇒a2+1a=m2+2.【答案】 C二、填空题6.若x <0,则|x |-x 2+x 2|x|=________.【解析】 由于x <0,所以|x |=-x ,x 2=-x ,所以原式=-x -(-x )+1=1.【答案】 17.已知3a=2,3b=15,则32a -b =________.【解析】 32a -b=32a 3b =(3a )23b =2215=20.【答案】 208.若x 2+2x +1+y 2+6y +9=0,则(x 2 017)y =________. 【解析】 因为x 2+2x +1+y 2+6y +9=0, 所以(x +1)2+(y +3)2=|x +1|+|y +3|=0, 所以x =-1,y =-3,所以(x 2 017)y =[(-1)2 017]-3=(-1)-3=-1. 【答案】 -1 三、解答题9.求值:(2)0.027-13-+2560.75-13+.【解】 (1)(2-1)0++(8)-43=1+34+14=2. (2)0.027-13-+2560.75-13+=103-36+64-13+1=32. 10.化简3a 72a -3÷3a-83a 15÷3a -3a -1.【解】 原式==3a 2作业(二)一、选择题1.函数y =(a 2-4a +4)a x 是指数函数,则a 的值是( ) A .4 B .1或3 C .3D .1【解析】由题意得⎩⎨⎧a >0a ≠1a 2-4a +4=1,得a =3,故选C.【答案】 C2.下列各函数中,是指数函数的是( ) A .y =(-3)x B .y =-3x C .y =3x -1D .y =【解析】 根据指数函数的定义y =a x (a >0且a ≠1),可知只有D 项正确.故选D.【答案】 D3.函数f (x )=2|x |-1在区间[-1,2]上的值域是( ) A .[1,4] B.⎣⎢⎡⎦⎥⎤12,2 C .[1,2]D.⎣⎢⎡⎦⎥⎤12,1 【解析】 函数f (x )=2t -1在R 上是增函数,∵-1≤x ≤2,∴0≤|x |≤2,∴t ∈[0,2],∴f(0)≤f(t)≤f(2),即12≤f(t)≤2,∴函数的值域是⎣⎢⎡⎦⎥⎤12,2,故选B.【答案】 B4.函数y=a|x|(a>1)的图象是()【解析】当x≥0时,y=a|x|的图象与指数函数y=a x(a>1)的图象相同,当x<0时,y=a|x|与y=a-x的图象相同,由此判断B正确.【答案】B5.如图2-1-1是指数函数①y=a x,②y=b x,③y=c x,④y=d x的图象,则a,b,c,d与1的大小关系是()图2-1-1A.a<b<1<c<d B.b<a<1<d<cC.1<a<b<c<d D.a<b<1<d<c【解析】法一当指数函数底数大于1时,图象上升,且当底数越大,图象向上越靠近于y轴;当底数大于0小于1时,图象下降,底数越小,图象向右越靠近于x轴,得b<a<1<d<c.法二令x=1,由题图知c1>d1>a1>b1,∴b<a<1<d<c.【答案】 B二、填空题6.指数函数f(x)=a x+1的图象恒过定点________.【解析】由函数y=a x恒过(0,1)点,可得当x+1=0,即x=-1时,y=1恒成立,故函数恒过点(-1,1).【答案】(-1,1)7.函数f (x )=3x -1的定义域为________.【解析】 由x -1≥0得x ≥1,所以函数f (x )=3x -1的定义域为[1,+∞). 【答案】 [1,+∞)8.函数f (x )=3x -3(1<x ≤5)的值域为________.【解析】 因为1<x ≤5,所以-2<x -3≤2,而函数f (x )=3x 是单调递增的,于是有19<f (x )≤32=9,即值域为⎝ ⎛⎦⎥⎤19,9.【答案】 ⎝ ⎛⎦⎥⎤19,9三、解答题9.已知函数f (x )=a x -1(x ≥0)的图象经过点⎝ ⎛⎭⎪⎫2,12,其中a >0且a ≠1.(1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域. 【解】 (1)因为函数图象过点⎝ ⎛⎭⎪⎫2,12,所以a 2-1=12,则a =12. (2)由(1)得f (x )=⎝ ⎛⎭⎪⎫12x -1(x ≥0),由x ≥0,得x -1≥-1,于是0<⎝ ⎛⎭⎪⎫12x -1≤⎝ ⎛⎭⎪⎫12-1=2.所以所求函数的值域为(0,2].10.已知f (x )=9x -2×3x +4,x ∈[-1,2]. (1)设t =3x ,x ∈[-1,2],求t 的最大值与最小值; (2)求f (x )的最大值与最小值.【解】 (1)设t =3x ,∵x ∈[-1,2],函数t =3x 在[-1,2]上是增函数,故有13≤t ≤9,故t 的最大值为9,t 的最小值为13.(2)由f (x )=9x -2×3x +4=t 2-2t +4=(t -1)2+3,可得此二次函数的对称轴为t =1,且13≤t ≤9,故当t =1时,函数f (x )有最小值为3,当t =9时,函数f (x )有最大值为67.作业(三)一、选择题1.设a=40.9,b=80.48,c=,则()A.c>a>b B.b>a>cC.a>b>c D.a>c>b【解析】a=40.9=21.8,b=80.48=21.44,c==21.5,因为函数y=2x在R上是增函数,且1.8>1.5>1.44,所以21.8>21.5>21.44,即a>c>b.【答案】 D2.已知f(x)=3x-b(2≤x≤4,b为常数)的图象经过点(2,1),则f(x)的值域是()A.[9,81] B.[3,9]C.[1,9] D.[1,+∞)【解析】由题意可知f(2)=1,即32-b=1,解得b=2,∴f(x)=3x-2,又2≤x≤4,故0≤x-2≤2,∴f(x)∈[1,9],故f(x)的值域为[1,9].【答案】C3.函数y=的单调递增区间为()A.(-∞,+∞) B.(0,+∞)C.(1,+∞) D.(0,1)【解析】y==2x-1,因为y=x-1在R上是递增的,所以函数y =的单调递增区间为(-∞,+∞).【答案】 A 4.若函数f (x )=12x +1,则该函数在(-∞,+∞)上( ) A .单调递减且无最小值 B .单调递减且有最小值 C .单调递增且无最大值 D .单调递增且有最大值 【解析】 函数f (x )=12x+1为减函数,2x +1>1,故f (x )=12x +1∈(0,1),无最值.【答案】 A5.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( )A .16小时B .20小时C .24小时D .21小时【解析】 由题意,⎩⎨⎧192=eb48=e 22k +b,得⎩⎪⎨⎪⎧192=e b 12=e 11k ,于是当x =33时,y =e 33k+b=(e 11k )3·e b =×192=24(小时).【答案】 C 二、填空题6.已知y =21+ax 在R 上是减函数,则a 的取值范围是________.【解析】 ∵y =21+ax 在R 上是减函数,∴y =ax +1在R 上是减函数,∴a <0,即a 的取值范围是(-∞,0).【答案】 (-∞,0)7.不等式0.52x >0.5x -1的解集为________.(用区间表示) 【解析】 ∵0<0.5<1,由0.52x >0.5x -1得2x <x -1,即x <-1. 【答案】 (-∞,-1)8.函数y=a x(a>0,且a≠1)在[1,2]上的最大值与最小值的和为6,则a的值为________.【解析】由于函数在[1,2]上必定单调,因此最大值与最小值都在端点处取得,于是必定有a+a2=6,又a>0,解得a=2.【答案】 2三、解答题9.比较下列各组数的大小:(1)1.9-π与1.9-3;(2)0.72-3与0.70.3;(3)0.60.4与0.40.6.【解】(1)由于y=1.9x在R上单调递增,而-π<-3,所以1.9-π<1.9-3.(2)因为y=0.7x在R上单调递减,而2-3≈0.267 9<0.3,所以0.72-3>0.70.3.(3)因为y=0.6x在R上单调递减,所以0.60.4>0.60.6;又在y轴右侧,函数y =0.6x的图象在y=0.4x的图象的上方,所以0.60.6>0.40.6,所以0.60.4>0.40.6.10.已知函数f(x)=3x,f(a+2)=81,g(x)=1-a x 1+a x.(1)求g(x)的解析式并判断g(x)的奇偶性;(2)用定义证明:函数g(x)在R上是单调递减函数;(3)求函数g(x)的值域.【解】(1)由f(a+2)=3a+2=81,得a+2=4,故a=2,则g(x)=1-2x 1+2x,又g(-x)=1-2-x1+2-x=2x-12x+1=-f(x),故g(x)是奇函数.(2)证明:设x1<x2∈R,g(x1)-g(x2)=1-2x11+2x1-1-2x21+2x2=2(2x2-2x1)(1+2x1)(1+2x2).∵x1<x2,∴2x1<2x2,又2x1>0,2x2>0,∴g(x1)-g(x2)>0,即g(x1)>g(x2),则函数g(x)在R上是单调递减函数.(3)g(x)=1-2x1+2x=2-(1+2x)1+2x=21+2x-1.∵2x>0,2x+1>1,∴0<11+2x<1,0<21+2x<2,-1<21+2x-1<1,故函数g(x)的值域为(-1,1).作业(四)一、选择题1.若log x 7y=z,则()A.y7=x z B.y=x7z C.y=7x D.y=z7x【解析】由log x 7y=z,得x z=7y,y=x7z.【答案】 B2.方程2log3x=14的解是()A.9 B.3 3C. 3D.1 9【解析】∵2log3x=14=2-2.∴log3x=-2.∴x=3-2=19.【答案】 D3.log5(log3(log2x))=0,则等于()A.36 B.39C.24 D.23【解析】∵log5(log3(log2x))=0,∴log3(log2x)=1,∴log2x=3.∴x=23=8.∴==18=122=24. 【答案】 C4.计算21+log 25=( ) A .7 B .10 C .6D.92【解析】 21+log 25=2×2log 25=2×5=10. 【答案】 B 5.下列各式:①lg (lg 10)=0;②lg (lne )=0;③若10=lgx ,x =10;④若log 25x =12,得x =±5.其中正确的个数有( ) A .1个 B .2个 C .3个D .4个【解析】 底的对数为1,1的对数为0,故①②正确,0和负数没有对数,故④错误,③中10=lg x ,应该有x =1010,所以只有①②正确.【答案】 B 二、填空题6.已知a 12=49,则log 23a =________.【解析】 ∵a 12=49=⎝ ⎛⎭⎪⎫232,∴a =⎝ ⎛⎭⎪⎫234,∴log 23a =4.【答案】 47.已知log 12x =3,则x 13=________. 【解析】 ∵log 12x =3,∴x =⎝ ⎛⎭⎪⎫123.∴x 13=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12313=12.【答案】 128.使log (x -1)(x +2)有意义的x 的取值范围是________.【解析】 要使log (x -1)(x +2)有意义,则⎩⎨⎧x -1>0x -1≠1x +2>0,∴x >1且x ≠2.【答案】 (1,2)∪(2,+∞) 三、解答题9.求下列各式中x 的值. (1)log 5(log 3x )=0; (2)log 3(lgx )=1; (3)ln (log 2(lgx ))=0.【解】 (1)∵log 5(log 3x )=log 51,∴log 3x =1,∴x =3. (2)∵log 3(lgx )=1,∴lgx =3,∴x =103=1 000. (3)∵ln (log 2(lgx ))=0,∴log 2(lgx )=1, ∴lgx =2,∴x =102=100.10.若log 12x =m ,log 14y =m +2,求x 2y 的值. 【解】 log 12x =m ,∴⎝ ⎛⎭⎪⎫12m =x ,x 2=⎝ ⎛⎭⎪⎫122m .log 14y =m +2,∴⎝ ⎛⎭⎪⎫14m +2=y ,y =⎝ ⎛⎭⎪⎫122m +4.∴x 2y =⎝ ⎛⎭⎪⎫122m⎝ ⎛⎭⎪⎫122m +4=⎝ ⎛⎭⎪⎫122m -(2m +4)=⎝ ⎛⎭⎪⎫12-4=16.作业(五)一、选择题1.已知a =log 32,则log 38-2log 36=( ) A .a -2 B .5a -2 C .3a -(1+a )2D .3a -a 2-1【解析】 log 38-2log 36=3log 32-2(log 32+log 33)=3a -2(a +1)=a -2.【答案】 A2.若lga ,lgb 是方程2x 2-4x +1=0的两个实根,则ab 的值等于( ) A .2 B.12 C .100D.10【解析】 ∵lg a ,lg b 是方程2x 2-4x +1=0的两个实根,∴由韦达定理得:lg a +lg b =--42=2,∴ab =100.故选C.【答案】 C3.设2a =5b =m ,且1a +1b =2,则m =( ) A.10 B .10 C .20D .100【解析】 1a +1b =log m 2+log m 5=log m 10=2,∴m 2=10.又∵m >0,∴m =10.故选A .【答案】 A4.化简2lg (lga 100)2+lg (lga )的结果是( )A.12 B .1 C .2D .4【解析】 由对数运算可知:lg(lg a 100)=lg(100lg a )=2+lg(lg a ),∴原式=2.【答案】 C5.若log a x =2,log b x =3,log c x =6,则log ab c x 的值为( ) A .1 B .2 C .3D .4【解析】 log a x =1log xa =2,∴log x a =12. 同理log x b =13,log x c =16.log abc x =1log x abc =1log x a +log x b +log x c=1.【答案】 A 二、填空题6.已知3a =2,3b =15,则32a -b =________.【解析】 ∵3a =2,3b =15,∴a =log 32,b =log 315=-log 35, ∴2a -b =2log 32+log 35=log 320,∴32a -b =20. 【答案】 207.计算100⎝ ⎛⎭⎪⎫12lg 9-lg 2-log 98·log 433=________.【解析】 100⎝ ⎛⎭⎪⎫12lg 9-lg 2-log 98·log 433=10lg 9÷10lg 4-lg 8lg 9·13lg 3lg 4=94-3lg 22lg 3·13lg 32lg 2=94-14=2.【答案】 28.已知x ,y ∈(0,1),若lgx +lgy =lg (x +y ),则lg (1-x )+lg (1-y )=________. 【解析】 lg(x +y )=lg x +lg y =lg(xy )⇒x +y =xy ,lg(1-x )+lg(1-y )=lg[(1-x )(1-y )]=lg(1-x -y +xy )=lg 1=0. 【答案】 0 三、解答题9.求值:(1)lg 52+23lg 8+lg 5·lg 20+(lg 2)2; (2)log 89·log 2732-(3)lg 1+log 535-log 57.【解】 (1)原式=2lg 5+2lg 2+2lg 5lg 2+(lg 5)2+(lg 2)2=2(lg 5+lg 2)+(lg 5+lg 2)2=2+1=3.(2)log 89·log 2732-(3)lg 1+log 535-log 57=lg 9lg 8×lg 32lg 27-1+log 5357=2lg 33lg 2×5lg 23lg 3-1+1=109.10.2015年我国国民生产总值为a 亿元,如果平均每年增长8%,那么过多少年后国民生产总值是2015年的2倍(lg 2≈0.301 0,lg 1.08≈0.033 4,精确到1年).【解】 设经过x 年国民生产总值为2015年的2倍. 经过1年,国民生产总值为a (1+8%), 经过2年,国民生产总值为a (1+8%)2, …经过x 年,国民生产总值为a (1+8%)x =2a , ∴1.08x =2,两边取常用对数,得x ·lg 1.08=lg 2. ∴x =lg 2lg 1.08≈0.301 00.033 4≈9.故约经过9年,国民生产总值是2015年的2倍.作业(六)一、选择题1.已知下列函数:①y =log 12(-x )(x <0);②y =2log 4(x -1)(x >1);③y =lnx (x >0);④y =log (a 2+a )x (x >0,a 是常数).其中为对数函数的个数是( ) A .1 B .2 C .3D .4【解析】 对于①,自变量是-x ,故①不是对数函数;对于②,2log 4(x -1)的系数为2,而不是1,且自变量是x -1,不是x ,故②不是对数函数;对于③,l nx 的系数为1,自变量是x ,故③是对数函数;对于④,底数a 2+a =⎝ ⎛⎭⎪⎫a +122-14,当a =-12时,底数小于0,故④不是对数函数.故选A .【答案】 A2.函数y =1+log 12(x -1)的图象一定经过点( )A .(1,1)B .(1,0)C .(2,1)D .(2,0)【解析】 ∵函数y =log 12x 恒过定点(1,0),而y =1+log 12(x -1)的图象是由y =log 12x 的图象向右平移一个单位,向上平移一个单位得到,故函数y =1+log 12(x -1)恒过的定点为(2,1).故选C.【答案】 C3.函数y =1log 2(x -2)的定义域为( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)【解析】 要使函数有意义,则⎩⎨⎧x -2>0log 2(x -2)≠0,解得x >2且x ≠3,所以原函数的定义域为(2,3)∪(3,+∞).故选C. 【答案】 C4.已知0<a <1,函数y =a x 与y =log a (-x )的图象可能是( )【解析】 函数y =a x 与y =log a x 互为反函数,其图象关于直线y =x 对称,y =log a (-x )与y =log a x 的图象关于y 轴对称,又0<a <1,根据函数的单调性即可得D 正确.故选D.【答案】 D5.函数f (x )=log a (x +2)(0<a <1)的图象必不过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限【解析】 ∵f (x )=log a (x +2)(0<a <1),∴其图象如下图所示,故选A .【答案】 A 二、填空题 6.函数f (x )=log 12(3x -2)的定义域是________.【解析】 要使函数f (x )有意义,则⎩⎪⎨⎪⎧3x -2>0 log 12(3x -2)≥0,即⎩⎨⎧3x -2>03x -2≤1,解得23<x ≤1,故函数的定义域的⎝ ⎛⎦⎥⎤23,1.【答案】 ⎝ ⎛⎦⎥⎤23,17.已知对数函数f (x )的图象过点(8,-3),则f (22)=________. 【解析】 设f (x )=log a x (a >0,且a ≠1), 则-3=log a 8,∴a =12,∴f (x )=log 12x ,f (22)=log 12(22)=-log 2(22)=-32. 【答案】 -32 8.已知函数y =log 22-x2+x,下列说法: ①关于原点对称;②关于y 轴对称;③过原点.其中正确的是________. 【解析】 由于函数的定义域为(-2,2),关于原点对称,又f (-x )=log 22+x 2-x=-log 22-x2+x =-f (x ),故函数为奇函数,故其图象关于原点对称,①正确;因为当x =0时,y =0,所以③正确.【答案】 ①③9.已知函数f (x )=log a x +1x -1(a >0,且a ≠1). (1)求f (x )的定义域; (2)判断函数的奇偶性.【解】 (1)要使函数有意义,则有x +1x -1>0,即⎩⎨⎧ x +1>0x -1>0或⎩⎨⎧x +1<0x -1<0,解得x >1或x <-1,此函数的定义域为(-∞,-1)∪(1,+∞).(2)由于f (x )的定义域关于原点对称,且f (-x )=log a -x +1-x -1=log a x +1x -1=-log a x +1x -1=-f (x ).∴f (x )为奇函数.10.若函数f (x )为定义在R 上的奇函数,且x ∈(0,+∞)时,f (x )=lg(x +1),求f (x )的表达式,并画出大致图象.【解】 ∵f (x )为R 上的奇函数,∴f (0)=0. 又当x ∈(-∞,0)时,-x ∈(0,+∞), ∴f (-x )=lg(1-x ).又f (-x )=-f (x ),∴f (x )=-lg(1-x ),∴f (x )的解析式为f (x )=⎩⎨⎧lg (x +1),x >00,x =0-lg (1-x ),x <0,∴f (x )的大致图象如图所示.作业(七)1.已知幂函数y =f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,则log 2f (2)的值为( )A.12 B .-12 C .2D .-2【解析】 设log 2f (2)=n ,则f (2)=2n ,∴f (x )=x n , 又∵由幂函数y =f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,∴⎝ ⎛⎭⎪⎫12n =22=⎝ ⎛⎭⎪⎫1212⇒n =12,故选A . 【答案】 A2.已知幂函数f (x )=x a ,当x >1时,恒有f (x )<x ,则a 的取值范围是( ) A .0<a <1 B .a <1 C .a >0D .a <0【解析】 当x >1时,f (x )<x 恒成立, 即x a -1<1=x 0恒成立,因为x >1,所以a -1<0,解得a <1,故选B . 【答案】 B3.如图2-3-2所示,给出4个幂函数的图象,则图象与函数的大致对应是( )图2-3-2A .①y =x 13,②y =x 2,③y =x 12,④y =x -1 B .①y =x 3,②y =x 2,③y =x 12,④y =x -1C .①y =x 2,②y =x 3,③y =x 12,④y =x -1 D .①y =x 3,②y =x 12,③y =x 2,④y =x -1【解析】 因为y =x 3的定义域为R 且为奇函数,故应为图①;y =x 2为开口向上的抛物线且顶点为原点,应为图②.同理可得出选项B 正确.【答案】 B4.已知幂函数f (x )的图象经过点(4,2),则f (x )的增区间为( ) A .(-∞,+∞) B .(-∞,0) C .[0,+∞)D .(1,+∞)【解析】 设幂函数f (x )=x n ,则4n =2,解得n =12,即f (x )=x ,则增区间为[0,+∞).故选C.【答案】 C5.设则a ,b ,c 的大小关系是( )A .a <b <cB .b <a <cC .c <a <bD .b <c <a【解析】 由于函数y =⎝ ⎛⎭⎪⎫25x 在它的定义域R 上是减函数,∴由于函数y =x 25在它的定义域R 上是增函数,且35>25,故有c =,故a ,b ,c 的大小关系是b <a <c ,故选B .【答案】 B 二、填空题6.若幂函数y =(m 2-2m -2)x -4m -2在x ∈(0,+∞)上为减函数,则实数m 的值是________.【解析】 因为函数y =(m 2-2m -2)x -4m -2既是幂函数又是(0,+∞)上的减函数,所以⎩⎨⎧m 2-2m -2=1,-4m -2<0⇒⎩⎪⎨⎪⎧m =3或m =-1,m >-12,解得m =3. 【答案】 3 7.从小到大依次是________.【解析】 ∵,<【答案】8.已知n ∈{-2,-1,0,1,2,3},若⎝ ⎛⎭⎪⎫-12n >⎝ ⎛⎭⎪⎫-13n ,则n =________.【解析】 ∵-12<-13,且⎝ ⎛⎭⎪⎫-12n >⎝ ⎛⎭⎪⎫-13n ,∴y =x n 在(-∞,0)上为减函数. 又n ∈{-2,-1,0,1,2,3}, ∴n =-1或n =2. 【答案】 -1或2 三、解答题9.比较下列各组数的大小:【解】 (1)∵y =x 34为[0,+∞)上的增函数,且2.3<2.4,∴2.334<2.434. (2)∵y =x -32为(0,+∞)上的减函数,且2<3, ∴(2)-32>(3)-32.(3)∵y =x 65为R 上的偶函数,∴(-0.31)65=0.3165.又函数y =x 65为[0,+∞)上的增函数,且0.31<0.35,∴0.3165<0.3565,即(-0.31)65<0.3565.10.已知幂函数y =f (x )经过点⎝ ⎛⎭⎪⎫2,18.(1)试求函数解析式;(2)判断函数的奇偶性并写出函数的单调区间.【解】 (1)由题意,得f (2)=2a =18,即a =-3,故函数解析式为f (x )=x -3. (2)∵f (x )=x -3=1x 3,∴要使函数有意义,则x ≠0,即定义域为(-∞,0)∪(0,+∞),关于原点对称.∵f (-x )=(-x )-3=-x -3=-f (x ), ∴该幂函数为奇函数.当x >0时,根据幂函数的性质可知f (x )=x -3,在(0,+∞)上为减函数,∵函数f (x )是奇函数,∴在(-∞,0)上也为减函数,故其单调减区间为(-∞,0),(0,+∞).第三章课时作业(一)一、选择题1.下列函数没有零点的是( ) A .f (x )=0 B .f (x )=2 C .f (x )=x 2-1D .f (x )=x -1x【解析】 函数f (x )=2,不能满足方程f (x )=0,因此没有零点. 【答案】 B2.已知函数f (x )=⎩⎨⎧2x-1,x ≤11+log 2x ,x >1,则函数f (x )的零点为( )A.12,0B .-2,0C.12D.0【解析】当x≤1时,由f(x)=0,得2x-1=0,所以x=0.当x>1时,由f(x)=0,得1+log2x=0,所以x=12,不成立,所以函数的零点为0,选D.【答案】 D3.函数f(x)=-x3-3x+5的零点所在的大致区间是()A.(-2,0) B.(0,1)C.(1,2) D.(2,3)【解析】∵f(1)=-13-3×1+5=1>0,f(2)=-23-3×2+5=-9<0,∴函数f(x)的零点必在区间(1,2)上,故选C.【答案】 C4.已知0<a<1,则函数y=|log ax|-a|x|零点的个数是()A.1个B.2个C.3个D.1个或2个或3个【解析】∵0<a<1,函数y=|log ax|-a|x|的零点的个数就等于方程a|x|=|log ax|的解的个数,即函数y=a|x|与y=|log ax|图象的交点的个数.如图所示,函数y=a|x|与y=|log ax|的交点的个数为2,故选B.【答案】 B5.已知方程|2x-1|=a有两个不等实根,则实数a的取值范围是()A.(-∞,0) B.(1,2)C.(0,+∞) D.(0,1)【解析】若关于x的方程|2x-1|=a有两个不等实数根,则y=|2x-1|的图象与y=a有两个不同的交点.函数y=|2x-1|的图象如图所示由图可得,当a∈(0,1)时,函数y=|2x-1|的图象与y=a有两个交点,故实数a的取值范围是(0,1),故选D.【答案】 D二、填空题6.函数f(x)=(x-1)lnxx-3的零点是________.【解析】令f(x)=0,即(x-1)lnxx-3=0,即x-1=0或ln x=0,∴x=1,故函数f(x)的零点为1.【答案】 17.若方程|x2-4x|-a=0有四个不相等的实根,则实数a的取值范围是________.【解析】由|x2-4x|-a=0,得a=|x2-4x|,作出函数y=|x2-4x|的图象,则由图象可知,要使方程|x2-4x|-a=0有四个不相等的实根,则0<a<4.【答案】(0,4)8.已知函数f(x)=3x+x,g(x)=log3x+2,h(x)=log3x+x的零点依次为a,b,c,则a,b,c的大小关系是________.【解析】画出函数y=3x,y=log3x,y=-x,y=-2的图象,如图所示观察图象可知,函数f (x )=3x +x ,g(x )=log 3x +2,h (x )=log 3x +x 的零点依次是点A ,B ,C 的横坐标,由图象可知a <b <c .【答案】 a <b <c 三、解答题9.设函数f (x )=⎩⎨⎧x 2-4x (x ≥0)2x (x <0),(1)画出函数y =f (x )的图象;(2)讨论方程|f (x )|=a 的解的个数.(只写明结果,无需过程) 【解】 (1)函数y =f (x )的图象如图所示:(2)函数y =|f (x )|的图象如图所示:①0<a <4时,方程有四个解; ②a =4时,方程有三个解; ③a =0或a >4时,方程有二个解; ④a <0时,方程没有实数解. 10.已知函数f (x )=x 2-bx +3. (1)若f (0)=f (4),求函数f (x )的零点;(2)若函数f (x )一个零点大于1,另一个零点小于1,求b 的取值范围. 【解】 (1)由f (0)=f (4),得3=16-4b +3,即b =4,所以f (x )=x 2-4x +3,令f(x)=0,即x2-4x+3=0,得x1=3,x2=1,所以f(x)的零点是1和3.(2)因为f(x)的零点一个大于1,另一个小于1,如图.需f(1)<0,即1-b+3<0,所以b>4.故b的取值范围为(4,+∞).作业(二)一、选择题1.下面关于二分法的叙述中,正确的是()A.用二分法可求所有函数零点的近似值B.用二分法求方程的近似解时,可以精确到小数点后的任一位C.二分法无规律可循,无法在计算机上完成D.只能用二分法求函数的零点【解析】用二分法求函数零点的近似值,需要有端点函数值符号相反的区间,故选项A错误;二分法是一种程序化的运算,故可以在计算机上完成,故选项C错误;求函数零点的方法还有方程法、函数图象法等,故D错误.故选B.【答案】B2.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间() A.(1,1.25) B.(1.25,1.5)C.(1.5,2) D.不能确定【解析】∵f(1.5)·f(1.25)<0,由零点存在性定理知方程的根落在区间(1.25,1.5)内.故选B.【答案】 B3.若函数f (x )=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法计算,其参考数据如下:( ) A .1.25 B .1.375 C .1.42D .1.5【解析】 由表格可得,函数f (x )=x 3+x 2-2x -2的零点在(1.437 5,1.406 25)之间.结合选项可知,方程x 3+x 2-2x -2=0的一个近似根(精确度为0.05)可以是1.42.故选C.【答案】 C4.下列函数中,有零点但不能用二分法求零点近似解的是( ) ①y =3x 2-2x +5;②y =⎩⎨⎧-x +1,x ≥0,x +1,x <0;③y =2x +1;④y =x 3-2x +3;⑤y=12x 2+4x +8. A .①②③ B .⑤ C .①⑤D .①④【解析】 ⑤中y =12x 2+4x +8,Δ=0,不满足二分法求函数零点的条件.故选B .【答案】 B5.在用“二分法”求函数f (x )零点近似值时,第一次所取的区间是[-2,4],则第三次所取的区间可能是( )A .[1,4]B .[-2,1] C.⎣⎢⎡⎦⎥⎤-2,52 D.⎣⎢⎡⎦⎥⎤-12,1 【解析】 ∵第一次所取的区间是[-2,4],∴第二次所取的区间可能为[-2,1],[1,4],∴第三次所取的区间可能为⎣⎢⎡⎦⎥⎤-2,-12,⎣⎢⎡⎦⎥⎤-12,1,⎣⎢⎡⎦⎥⎤1,52,⎣⎢⎡⎦⎥⎤52,4. 【答案】 D二、填空题6.用二分法求方程x3-2x-5=0在区间(2,4)上的实数根时,取中点x1=3,则下一个有根区间是________.【解析】设函数f(x)=x3-2x-5.∵f(2)=-1<0,f(3)=16>0,f(4)=51>0,∴下一个有根区间是(2,3).【答案】(2,3)7.用二分法研究函数f(x)=x2+3x-1的零点时,第一次经过计算f(0)<0,f(0.5)>0,可得其中一个零点x0∈________,第二次应计算________.【解析】∵f(0)·f(0.5)<0,∴x0∈(0,0.5),取该区间的中点0.52=0.25.∴第二次应计算f(0.25).【答案】(0,0.5)f(0.25)8.某同学在借助计算器求“方程lgx=2-x的近似解(精确度为0.1)”时,设f(x)=lgx+x-2,算得f(1)<0,f(2)>0;在以下过程中,他用“二分法”又取了4个x的值,计算了其函数值的正负,并得出判断:方程的近似解是x≈1.8.那么他再取的x的4个值依次是________.【解析】第一次用二分法计算得区间(1.5,2),第二次得区间(1.75,2),第三次得区间(1.75,1.875),第四次得区间(1.75,1.812 5).【答案】 1.5,1.75,1.875,1.812 5三、解答题9.用二分法求函数f(x)=x3-3的一个正零点.(精确度为0.01)【解】由于f(1)=-2<0,f(2)=5>0,因此可取区间(1,2)作为计算的初始区间,用二分法逐次计算,列表如下:∵一个正零点.10.用二分法求方程x 2-5=0的一个近似正解.(精确度为0.1)【解】 令f (x )=x 2-5,因为f (2.2)=-0.16<0,f (2.4)=0.76>0,所以f (2.2)·f (2.4)<0,即这个函数在区间(2.2,2.4)内有零点x 0,取区间(2.2,2.4)的中点x 1=2.3,f (2.3)=0.29,因为f (2.2)·f (2.3)<0,所以x 0∈(2.2,2.3),再取区间(2.2,2.3)的中点x 2=2.25,f (2.25)=0.062 5,因为f (2.2)·f (2.25)<0, 所以x 0∈(2.2,2.25),由于|2.25-2.2|=0.05<0.1, 所以原方程的近似正解可取为2.25.[能力提升]1.在用二分法求函数f (x )的一个正实数零点时,经计算,f (0.64)<0,f (0.72)>0,f (0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为( )A .0.68B .0.72C .0.7D .0.6【解析】 已知f (0.64)<0,f (0.72)>0,则函数f (x )的零点的初始区间为[0.64,0.72],又0.68=12(0.64+0.72),且f (0.68)<0,所以零点在区间[0.68,0.72],且该区间的左、右端点精确到0.1所取的近似值都是0.7.因此,0.7就是所求函数的一个正实数零点的近似值.【答案】 C2.用二分法求函数f (x )=3x -x -4的一个零点,其参考数据如下:.【解析】 f (1.562 5)=0.003>0,f (1.556 2)=-0.029<0,方程3x -x -4=0的一个近似解在(1.556 2,1.562 5)上,且满足精确度为0.01,所以所求近似解可取为1.562 5.【答案】 1.562 53.函数f (x )=x 2+ax +b 有零点,但不能用二分法求出,则a ,b 的关系是________.【解析】 ∵函数f (x )=x 2+ax +b 有零点,但不能用二分法,∴函数f (x )=x 2+ax +b 的图象与x 轴相切,∴Δ=a 2-4b =0,∴a 2=4b .【答案】 a 2=4b4.已知函数f (x )=3ax 2+2bx +c ,a +b +c =0,f (0)>0,f (1)>0,证明a >0,并利用二分法证明方程f (x )=0在区间[0,1]内有两个实根.【证明】 ∵f (1)>0,∴3a +2b +c >0, 即3(a +b +c )-b -2c >0. ∵a +b +c =0,∴-b -2c >0, 则-b -c >c ,即a >c . ∵f (0)>0,∴c >0,则a >0. 在区间[0,1]内选取二等分点12, 则f ⎝ ⎛⎭⎪⎫12=34a +b +c =34a +(-a )=-14a <0. ∵f (0)>0,f (1)>0,∴函数f (x )在区间⎝ ⎛⎭⎪⎫0,12和⎝ ⎛⎭⎪⎫12,1上各有一个零点.又f (x )最多有两个零点,从而f (x )=0在[0,1]内有两个实根.作业(三)一、选择题1.y 1=2x ,y 2=x 2,y 3=log 2x ,当2<x <4时,有( ) A .y 1>y 2>y 3 B .y 2>y 1>y 3 C .y 1>y 3>y 2D .y 2>y 3>y 1【解析】在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2=x2,y1=2x,y3=log2x,故y2>y1>y3.【答案】 B2.某地区植被被破坏,土地沙漠化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y公顷关于年数x 的函数关系较为近似的是()A.y=0.2x B.y=110(x2+2x)C.y=2x10D.y=0.2+log16x【解析】用排除法,当x=1时,排除B项;当x=2时,排除D项;当x =3时,排除A项.【答案】 C3.高为H,满缸水量为V0的鱼缸的轴截面如图3-2-4所示,其底部碰了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为V,则函数V=f(h)的大致图象是()图3-2-4【解析】当h=H时,体积是V,故排除A,C.h由0到H变化的过程中,V的变化时增长速度越来越快,类似于指数型函数的图象,后来增长速度越来越慢,类似于对数型函数的图象,综合分析可知选B.【答案】 B4.函数y=2x-x2的图象大致是()【解析】分别画出y=2x,y=x2的图象,如图所示,由图象可知,有3个交点,∴函数y=2x-x2的图象与x轴有3个交点,故排除B,C;当x<-1时,y<0,故排除D,故选A.【答案】 A5.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x 倍,需经过y年,则函数y=f(x)的图象大致为()【解析】设该林区的森林原有蓄积量为a,由题意可得ax=a(1+0.104)y,故y=log1.104x(x≥1),所以函数y=f(x)的图象大致为D中图象,故选D.【答案】 D二、填空题6.函数y =x 2与函数y =x ln x 在区间(0,+∞)上增长较快的一个是________ . 【解析】 当x 变大时,x 比ln x 增长要快, ∴x 2要比x ln x 增长的要快. 【答案】 y =x 27.在不考虑空气阻力的情况下,火箭的最大速度v 米/秒和燃料的质量M 千克、火箭(除燃料外)的质量m 千克的函数关系式是v =2 000ln ⎝ ⎛⎭⎪⎫1+M m .当燃料质量是火箭质量的________倍时,火箭的最大速度可达12千米/秒.【解析】 当v =12 000时,2 000×ln ⎝ ⎛⎭⎪⎫1+M m =12 000,∴ln ⎝ ⎛⎭⎪⎫1+M m =6,∴M m =e 6-1. 【答案】 e 6-18.在某种金属材料的耐高温实验中,温度随着时间变化的情况由微机记录后显示的图象如图3-2-5所示.现给出下列说法:图3-2-5①前5min 温度增加的速度越来越快;②前5min 温度增加的速度越来越慢;③5min 以后温度保持匀速增加;④5min 以后温度保持不变.其中正确的说法是________.(填序号)【解析】 因为温度y 关于时间t 的图象是先凸后平,即5min 前每当t 增加一个单位增量,则y 相应的增量越来越小,而5min 后是y 关于t 的增量保持为0,则②④正确.【答案】 ②④ 三、解答题9.某人对东北一种松树的生长进行了研究,收集了其高度h (米)与生长时间t (年)的相关数据,选择h =mt +b 与h =log a (t +1)来刻画h 与t 的关系,你认为哪个符合?并预测第8年的松树高度.【解】由图可以看出用一次函数模型不吻合,选用对数型函数比较合理.将(2,1)代入到h =log a (t +1)中,得1=log a 3,解得a =3.即h =log 3(t +1). 当t =8时,h =log 3(8+1)=2,故可预测第8年松树的高度为2米.10.有甲,乙两家健身中心,两家设备和服务都相当,但收费方式不同.甲中心每小时5元;乙中心按月计算,一个月中30小时以内(含30小时)90元,超过30小时的部分每小时2元.某人准备下个月从这两家中选择一家进行健身活动,其活动时间不少于15小时,也不超过40小时.(1)设在甲中心健身活动x (15≤x ≤40)小时的收费为f (x )元,在乙中心健身活动x 小时的收费为g (x )元,试求f (x )和g (x );(2)问:选择哪家比较合算?为什么?【解】 (1)f (x )=5x,15≤x ≤40,g (x )=⎩⎨⎧90,15≤x ≤3030+2x ,30<x ≤40.(2)当5x =90时,x =18,即当15≤x <18时,f (x )<g (x );当x =18时,f (x )=g (x ),当18<x ≤40时,f (x )>g (x ).所以当15≤x <18时,选甲比较合算;当x =18时,两家一样合算;当18<x ≤40时,选乙比较合算. 作业(四)一、选择题1.某厂日产手套总成本y (元)与手套日产量x (副)的函数解析式为y =5x +4000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为( )A .200副B .400副C .600副D .800副【解析】 由5x +4 000≤10x ,解得x ≥800,即日产手套至少800副时才不亏本.【答案】 D2.某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B.(p +1)(q +1)-12 C .pq D.(p +1)(q +1)-1【解析】 设年平均增长率为x ,则有(1+p )(1+q )=(1+x )2,解得x =(1+p )(1+q )-1.【答案】 D3.某种细胞在正常培养过程中,时刻t (单位:分)与细胞数n (单位:个)的部分数据如下表:t 最接近于( )A .200B .220C .240D .260【解析】 由表中数据可以看出,n 与t 的函数关系式为n =2t 20,令n =1 000,则2t 20=1 000,而210=1 024,所以繁殖到1 000个细胞时,时刻t 最接近200分钟,故应选A.【答案】 A4.若镭经过100年后剩留原来质量的95.76%,设质量为1的镭经过x 年后剩留量为y ,则x ,y 的函数关系是( )A .y =()0.957 6x 100B .y =(0.957 6)100xC .y =⎝ ⎛⎭⎪⎫0.957 9100xD .y =1-(0.042 4)x 100【解析】 设镭一年放射掉其质量的t %,则有95.76%=1·(1-t )100,t =1-(0.957 6)1100,∴y =(1-t )x =(0.957 6)x 100.【答案】 A5.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧ c x ,x <A ,c A ,x ≥A (A ,c 为常数).已知工人组装第4件产品用时30 min ,组装第A件产品用时15 min ,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16 【解析】 由题意知,组装第A 件产品所需时间为c A =15,故组装第4件产品所需时间为c 4=30,解得c =60.将c =60代入c A=15,得A =16. 【答案】 D二、填空题6.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km.【解析】 设出租车行驶x km 时,付费y 元,则y =⎩⎨⎧ 9,0<x ≤3,8+2.15(x -3)+1,3<x ≤8,8+2.15×5+2.85(x -8)+1,x >8,由y =22.6,解得x =9.【答案】 9 7.用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则。
人教版高中数学必修1学案:集合的基本运算(含答案)
1.1.3集合的基本运算(一)1.理解并集、交集的含义,会求两个简单集合的并集与交集.2.体验通过实例的分析和阅读来自学探究集合间的关系与运算的过程,培养学生的自学阅读能力和自主探究能力.3.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”),即A∪B={x|x∈A,或x∈B}.2.一般地,由属于集合A且属于集合B的所有元素组成的集合,称为集合A与B的交集,记作A∩B(读作“A交B”),即A∩B={x|x∈A,且x∈B}.3.A∩A=__A__,A∪A=__A__,A∩∅=__∅__,A∪∅=A.4.若A⊆B,则A∩B=__A__,A∪B=__B__.5.A∩B⊆A,A∩B⊆B,A⊆A∪B,A∩B⊆A∪B.对点讲练求两个集合的交集与并集【例1】求下列两个集合的并集和交集.(1)A={1,2,3,4,5},B={-1,0,1,2,3};(2)A={x|x<-2},B={x|x>-5}.解(1)如图所示,A∪B={-1,0,1,2,3,4,5},A∩B={1,2,3}.(2)结合数轴(如图所示)得:A∪B=R,A∩B={x|-5<x<-2}.规律方法求两个集合的交集、并集依据它们的定义,借用Venn图或结合数轴分析两个集合的元素的分布情况,有利于准确写出交集、并集.变式迁移1(1)若集合A={x|x>-1},B={x|-2<x<2},则A∪B等于()A .{x |x >-2}B .{x |x >-1}C .{x |-2<x <-1}D .{x |-1<x <2} (2)若将(1)中A 改为A ={x |x >a },求A ∪B ,A ∩B . (1)答案 A解析 画出数轴,故A ∪B ={x |x >-2}.(2)解 如图所示,当a <-2时,A ∪B =A ,A ∩B ={x |-2<x <2}; 当-2≤a <2时,A ∪B ={x |x >-2},A ∩B ={x |a <x <2}; 当a ≥2时,A ∪B ={x |-2<x <2或x >a },A ∩B =∅.已知集合的交集、并集求参数【例2】 已知A ={x |2a ≤x ≤a +3},B ={x |x <-1或x >5}. (1)若A ∩B =∅,求a 的取值范围; (2)若A ∪B =R ,求a 的取值范围. 解 (1)由A ∩B =∅, ①若A =∅, 有2a >a +3,∴a >3. ②若A ≠∅,如图:∴⎩⎪⎨⎪⎧2a ≥-1a +3≤52a ≤a +3,解得-12≤a ≤2.综上所述,a 的取值范围是{a |-12≤a ≤2或a >3}.(2)由A ∪B =R ,如图所示,∴⎩⎪⎨⎪⎧2a ≤-1a +3≥5,解得a ∈∅. 规律方法 出现交集为空集的情形,应首先考虑集合中有没有空集,即分类讨论.其次,与不等式有关的集合的交、并运算中,数轴分析法直观清晰,应重点考虑.变式迁移2 已知集合A ={x |2<x <4},B ={x |a <x <3a }. (1)若A ∩B =∅,试求a 的取值范围; (2)若A ∩B ={x |3<x <4},试求a 的取值范围. 解 (1)如图,有两类情况,一类是B ≠∅⇒a >0. 此时,又分两种情况:①B 在A 的左边,如图B 所示; ②B 在A 的右边,如图B ′所示.B 或B ′位置均使A ∩B =∅成立, 即3a ≤2或a ≥4,解得0<a ≤23,或a ≥4.另一类是B =∅,即a ≤0时,显然A ∩B =∅成立. 综上所述,a 的取值范围是{a |a ≤23,或a ≥4}.(2)因为A ={x |2<x <4},A ∩B ={x |3<x <4}, 如图所示:集合B 若要符合题意,显然有a =3,此时B ={x |3<x <9},所以a =3为所求.交集、并集性质的运用【例3】 已知集合A ={x |1<ax <2},B ={x ||x |<1},且满足A ∪B =B ,求实数a 的取值范围.解 ∵A ∪B =B ,∴A ⊆B . (1)当a =0时,A =∅,满足A ⊆B . (2)当a >0时,A =⎩⎨⎧⎭⎬⎫x |1a <x <2a .∵A ⊆B ,∴⎩⎨⎧1a ≥-12a ≤1∴a ≥2.(3)当a <0时,A =⎩⎨⎧⎭⎬⎫x |2a <x <1a .∵A ⊆B ,∴⎩⎨⎧2a≥-11a ≤1∴a ≤-2.综合(1)(2)(3)知,a 的取值范围是 {a |a ≤-2或a =0或a ≥2}.规律方法 明确A ∩B =B 和A ∪B =B 的含义,根据问题的需要,将A ∩B =B 和A ∪B =B 转化为等价的关系式B ⊆A 和A ⊆B 是解决本题的关键.另外在B ⊆A 时易忽视B =∅时的情况.变式迁移3 设集合A ={-2},B ={x |ax +1=0,a ∈R },若A ∩B =B ,求a 的值. 解 ∵A ∩B =B ,∴B ⊆A . ∵A ={-2}≠∅, ∴B =∅或B ≠∅. 当B =∅时,方程ax +1=0无解,此时a =0. 当B ≠∅时,此时a ≠0,则B ={-1a },∴-1a∈A ,即有-1a =-2,得a =12.综上,得a =0或a =12.1.A ∪B 的定义中“或”的意义与通常所说的“非此即彼”有原则的区别,它们是“相容”的.求A ∪B 时,相同的元素在集合中只出现一次.2.A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B ,这两个性质非常重要.另外,在解决有条件A ⊆B 的集合问题时,不要忽视A =∅的情况.课时作业一、选择题 1.设集合A ={x |-5≤x <1},B ={x |x ≤2},则A ∩B 等于( ) A .{x |-5≤x <1} B .{x |-5≤x ≤2}C.{x|x<1} D.{x|x≤2}答案 A2.下列四个推理:①a∈(A∪B)⇒a∈A;②a∈(A∩B)⇒a∈(A∪B);③A⊆B⇒A∪B=B;④A∪B=A⇒A∩B=B.其中正确的个数是()A.1个B.2个C.3个D.4个答案 C解析②③④正确.3.设A={x|1≤x≤3},B={x|x<0或x≥2},则A∪B等于()A.{x|x<0或x≥1} B.{x|x<0或x≥3}C.{x|x<0或x≥2} D.{x|2≤x≤3}答案 A解析结合数轴知A∪B={x|x<0或x≥1}.4.已知A={x|x≤-1或x≥3},B={x|a<x<4},若A∪B=R,则实数a的取值范围是() A.3≤a<4 B.-1<a<4 C.a≤-1 D.a<-1答案 C解析结合数轴知答案C正确.5.满足条件M∪{1}={1,2,3}的集合M的个数是()A.1 B.2 C.3 D.4答案 B解析由已知得M={2,3}或{1,2,3},共2个.二、填空题6.已知A={(x,y)|x+y=3},B={(x,y)|x-y=1},则A∩B=________.答案{(2,1)}7.设集合A={x|-1≤x<2},B={x|x≤a},若A∩B≠∅,则实数a的取值范围为________.答案a≥-1解析由A∩B≠∅,借助于数轴知a≥-1.8.已知集合A={x|x<1或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},则2a-b=________.答案-4解析如图所示,可知a=1,b=6,2a-b=-4.三、解答题9.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.解∵B⊆(A∪B),∴x2-1∈A∪B.∴x2-1=3或x2-1=5.解得x=±2或x=±6.若x2-1=3,则A∩B={1,3}.若x2-1=5,则A∩B={1,5}.10.设集合A={x|x2-3x+2=0},B={x|x2-4x+a=0},若A∪B=A,求实数a的取值范围.解A={1,2},∵A∪B=A,∴B⊆A,集合B有两种情况:B=∅或B≠∅.(1)B=∅时,方程x2-4x+a=0无实数根,∴Δ=16-4a<0,∴a>4.(2)B≠∅时,当Δ=0时,a=4,B={2}⊆A满足条件;当Δ>0时,若1,2是方程x2-4x+a=0的根,由根与系数的关系知矛盾,无解,∴a=4.综上,a的取值范围是a≥4.【探究驿站】11.求满足P∪Q={1,2}的集合P,Q共有多少组?解可采用列举法:当P=∅时,Q={1,2};当P={1}时,Q={2},{1,2};当P={2}时,Q={1},{1,2};当P={1,2}时,Q=∅,{1},{2},{1,2},∴一共有9组.。
新人教A版高中数学【必修1】 1.1.1集合的表示第2课时课时作业练习含答案解析
第2课时集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法把集合的元素____________出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为__________.不等式x-7<3的解集为__________.所有偶数的集合可表示为________________.一、选择题1.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}2.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合3.将集合表示成列举法,正确的是()A.{2,3} B.{(2,3)}C.{x=2,y=3} D.(2,3)4.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}5.已知集合A={x∈N|-3≤x≤3},则有()A.-1∈A B.0∈AC.3∈A D.2∈A6.方程组的解集不可表示为()A.B.C.{1,2} D.{(1,2)}二、填空题7.用列举法表示集合A={x|x∈Z,86-x∈N}=______________.8.下列各组集合中,满足P=Q的有________.(填序号)①P={(1,2)},Q={(2,1)};②P={1,2,3},Q={3,1,2};③P={(x,y)|y=x-1,x∈R},Q={y|y=x-1,x∈R}.9.下列各组中的两个集合M和N,表示同一集合的是________.(填序号)①M={π},N={3.141 59};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.三、解答题10.用适当的方法表示下列集合①方程x(x2+2x+1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合;③不等式x-2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是()A.{x|x=1} B.{y|(y-1)2=0}C.{x=1} D.{1}13.已知集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},若x0∈M,则x0与N的关系是()A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能确定1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时集合的表示知识梳理1.一一列举 2.描述法 {x |x <10} {x ∈Z |x =2k ,k ∈Z }作业设计1.B [{x ∈N +|x -3<2}={x ∈N +|x <5}={1,2,3,4}.]2.D [集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.]3.B [解方程组⎩⎪⎨⎪⎧ x +y =5,2x -y =1.得⎩⎪⎨⎪⎧x =2,y =3. 所以答案为{(2,3)}.]4.B [方程x 2-2x +1=0可化简为(x -1)2=0,∴x 1=x 2=1,故方程x 2-2x +1=0的解集为{1}.]5.B6.C [方程组的集合中最多含有一个元素,且元素是一对有序实数对,故C 不符合.]7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N , ∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}.8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集.9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x (x 2+2x +1)=0的解为0和-1,∴解集为{0,-1};②{x |x =2n +1,且x <1 000,n ∈N };③{x |x >8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下: 集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3,所以B ={y |y ≥3}.集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P 是抛物线y =x 2+3上的点}.12.C [由集合的含义知{x |x =1}={y |(y -1)2=0}={1},而集合{x =1}表示由方程x =1组成的集合,故选C.]13.A [M ={x |x =2k +14,k ∈Z },N ={x |x =k +24,k ∈Z },∵2k +1(k ∈Z )是一个奇数,k +2(k ∈Z )是一个整数,∴x 0∈M 时,一定有x 0∈N ,故选A.]。
《创新设计》学业水平考试2016-2017学年高一数学人教版必修1(浙江专用)课时作业1.1.2第1课时
基 础 过 关1.若二次函数的图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式可能为( ) A.f (x )=x 2-1 B.f (x )=-(x -1)2+1 C.f (x )=(x -1)2+1D.f (x )=(x -1)2-1解析 设f (x )=(x -1)2+c ,由于点(0,0)在图象上,所以f (0)=(0-1)2+c =0,所以c =-1,所以f (x )=(x -1)2-1. 答案 D2.已知函数y =f (x )的对应关系如下表,函数y =g (x )的图象是如图的曲线ABC ,其中A (1,3),B (2,1),C (3,2),则f (g (2))的值为( )A.3D.0解析 由函数y =g (x )的图象知,g (2)=1,根据y =f (x )的对应表格知f (1)=2,因此f (g (2))=f (1)=2. 答案 B3.若2f (x )+f ⎝ ⎛⎭⎪⎫1x =2x +12(x ≠0),则f (2)=( )A.52B.25C.43D.34解析 令x =2,得2f (2)+f ⎝ ⎛⎭⎪⎫12=92;令x =12,得2f ⎝ ⎛⎭⎪⎫12+f (2)=32.消去f ⎝ ⎛⎭⎪⎫12,得f (2)=52. 答案 A4.某班连续进行了5次数学测试,其中智方同学的成绩如表所示,在这个函数中,定义域是________,值域是________.解析 {1,2,3,4,5},值域是{85,88,93,86,95}.答案 {1,2,3,4,5} {85,88,93,86,95}5.已知f (x )是一次函数,且其图象过点A (-2,0),B (1,5)两点,则f (x )=________. 解析 据题意设f (x )=ax +b (a ≠0),又图象过点A (-2,0),B (1,5).所以⎩⎨⎧-2a +b =0,a +b =5,解得a =53,b =103.所以f (x )=53x +103. 答案 53x +1036.判断右面的图象是否为函数?如果是,求出定义域、值域和解析式.解 是.观察图象知函数的定义域为[-1,2],值域为[-1,1].当-1≤x ≤0时,设f (x )=ax +b (a ≠0),则⎩⎨⎧0=-a +b ,1=b ,∴⎩⎨⎧a =1,b =1,∴f (x )=x +1; 当0<x ≤2时,设f (x )=kx (k ≠0), 则-1=2k ,∴k =-12,∴f (x )=-12x . 综上所述,f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,-12x ,0<x ≤2.7.已知f (x )=ax 2+bx +c ,若f (0)=0,且f (x +1)=f (x )+x +1,求函数y =f (x )的解析式.解 ∵f (0)=c =0,∴f (x +1)=a (x +1)2+b (x +1) =ax 2+(2a +b )x +a +b ,又f (x )+x +1=ax 2+bx +x +1=ax 2+(b +1)x +1, ∴⎩⎨⎧2a +b =b +1,a +b =1⇒⎩⎪⎨⎪⎧a =12,b =12.∴f (x )=12x 2+12x .8.用长为l 的铁丝弯成下部为矩形、上部为半圆形的框架(如图所示),若矩形底边AB 长为2x ,求此框架围成的面积y 与x 的函数关系式,并写出其定义域.解 ∵AB =2x ,∴lCD ︵=πx ,AD =l -2x -πx 2,∴y =2x ·l -2x -πx 2+πx 22=-⎝ ⎛⎭⎪⎫π2+2x 2+lx .由⎩⎪⎨⎪⎧2x >0,l -2x -πx 2>0,解得0<x <l π+2,∴定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |0<x <l π+2. 能 力 提 升9.如图,△ABC 为等腰直角三角形,∠ABC =90°.直线l 与AB 相交.且l ⊥AB ,直线l 截这个三角形所得的位于直线右侧的图形面积为y .点A 到直线l 的距离为x .则y =f (x )的图象大致为( )解析 设等腰直角△ABC 的直角边长为a ,依题意,y =f (x )=a 22-x 22,0≤x ≤a .所以y =f (x )的图象是开口向下的二次函数的一段. 答案 C10.已知f (x )+3f (-x )=2x +1,则f (x )的解析式是( ) A.f (x )=x +14 B.f (x )=-2x +14 C.f (x )=-x +14D.f (x )=-x +12解析 因为f (x )+3f (-x )=2x +1,① 所以把①中的x 换成-x 得 f (-x )+3f (x )=-2x +1.② 由①②解得f (x )=-x +14. 答案 C11.已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,则函数f (x )的解析式为________.解析 设f (x )=ax +b (a ≠0),则由3f (x +1)-f (x )=2x +9得3[a (x +1)+b ]-(ax+b )=2x +9,即2ax +3+2b =2x +9,比较对应项系数得⎩⎨⎧2a =2,3+2b =9,解得⎩⎨⎧a =1,b =3,所以f (x )=x +3. 答案 f (x )=x +312.已知函数f (2x +1)=3x +2,且f (a )=4,则a =________.解析 令2x +1=t ,则x =t -12.将x =t -12代入f (2x +1)=3x +2得f (t )=3·t -12+2=32t +12.∴f (a )=32a +12.又f (a )=4,∴32a +12=4,∴a =73. 答案 7313.画出二次函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0)、f (1)、f (3)的大小; (2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域.解 f (x )=-(x -1)2+4的图象,如图所示: (1)f (0)=3,f (1)=4,f (3)=0,所以f (1)>f (0)>f (3).(2)由图象可以看出,当x 1<x 2<1时,函数的图象由左至右呈上升趋势. 函数f (x )的函数值随着x 的增大而增大, 所以f (x 1)<f (x 2).(3)由图象可知二次函数f (x )的最大值为f (1)=4,则函数f (x )的值域为(-∞,4].探 究 创 新14.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y 有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.解 因为对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),所以令y =x ,有f (0)=f (x )-x (2x -x +1), 即f (0)=f (x )-x (x +1). 又f (0)=1,所以f (x )=x (x +1)+1=x 2+x +1.。
【人教A版】高中数学必修一:全册作业与测评(含答案) 课时提升作业(三) 1.1.2
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业(三)集合间的基本关系(25分钟60分)一、选择题(每小题5分,共25分)1.下列四个结论中,正确的是( )A.0={0}B.0∈{0}C.0⊆{0}D.0∈{∅}【解析】选B.{0}是含有1个元素0的集合,故0∈{0}.【补偿训练】如果M={x|x+1>0},则( )A.∅∈MB.∅=MC.{0}∈MD.{0}⊆M【解析】选D.M={x|x+1>0}={x|x>-1},所以{0}⊆M.2.(2015·惠州高一检测)下列四个集合中,是空集的是( )A.{x|x+3=3}B.{(x,y)|y2=-x2,x,y∈R}C.{x|x2≤0}D.{x|x2-x+1=0,x∈R}【解析】选 D.对A,{x|x+3=3}={0};对B,{(x,y)|y2=-x2,x,y∈R}={(0,0)};对C,{x|x2≤0}={0};对D,由于Δ=(-1)2-4=-3<0,即方程x2-x+1=0无解,故{x|x2-x+1=0,x∈R}=∅.3.(2015·浏阳高一检测)已知集合A={x|3≤x2≤5,x∈Z},则集合A的真子集个数为( )A.1个B.2个C.3个D.4个【解析】选C.由题意知,x=-2,2,即A={-2,2},故其真子集有3个.【误区警示】本题易忽视真子集这一条件而误选D.4.已知集合M={x|y2=2x,y∈R}和集合P={(x,y)|y2=2x,y∈R},则两个集合间的关系是( )A.M PB.P MC.M=PD.M,P互不包含【解析】选D.由于两集合代表元素不同,即M表示数集,P表示点集,因此M与P 互不包含,故选D.【误区警示】解答本题易忽视集合的属性而误选C.5.(2015·临沂高一检查)已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是( )【解析】选B.由N={x|x2+x=0}={-1,0},得N M.二、填空题(每小题5分,共15分)6.已知集合A={x|x2-3x+2=0},B={1,2},C={x|x<8,x∈N},用适当符号填空:A B,A C,{2} C,2 C.【解析】A={1,2},B={1,2},C={0,1,2,3,4,5,6,7},所以A=B,A C,{2}C,2∈C.答案:= ∈7.(2015·玉溪高一检测)已知集合A={x|-2≤x≤3},B={x|x≥m},若A⊆B,则实数m的取值范围为.【解题指南】根据集合间的关系,借助数轴求解.【解析】将集合A,B表示在数轴上,如图所示,所以m≤-2.答案:m≤-2=1},则A,B的关系是.8.设x,y∈R,A={(x,y)|y=x},B={(x,y)|yx=1}={(x,y)|y=x,且x≠0},故B A.【解析】因为B={(x,y)|y答案:B A【误区警示】解答本题易忽视集合B中x≠0而误认为A=B.三、解答题(每小题10分,共20分)9.已知集合A={(x,y)|x+y=2,x,y∈N},试写出A的所有子集.【解析】因为A={(x,y)|x+y=2,x,y∈N},所以A={(0,2),(1,1),(2,0)}.所以A的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.10.(2015·成都高一检测)若集合A={x|(k+1)x2+x-k=0}有且仅有两个子集,求实数k的值.【解析】集合A有且仅有两个子集说明A中仅有一个元素,那么对于方程(k+1)x2+x-k=0,若k+1=0,即k=-1,方程即为x+1=0,x=-1,此时A={-1},满足题意; 若k+1≠0,则需Δ=0,即12-4(k+1)(-k)=0,,此时A={-1},满足题意.解得k=-12.所以实数k的值为-1或-12(20分钟40分)一、选择题(每小题5分,共10分)1.(2015·枣庄高一检测)集合A={2n+1|n∈Z},集合B={4k±1|k∈Z},则A与B 间的关系是( )A.A∈BB.A BC.A∉BD.A=B【解析】选 D.因为整数包括奇数与偶数,所以n=2k或2k-1(k∈Z),当n=2k 时,2n+1=4k+1,当n=2k-1时,2n+1=4k-1,故A=B.2.集合B={a,b,c},C={a,b,d};集合A满足A⊆B,A⊆C.则满足条件的集合A的个数是( )A.8B.2C.4D.1【解析】选C.因为A⊆B,A⊆C,所以集合A中的元素只能由a或b构成.所以这样的集合共有22=4个.即:A=∅或A={a}或A={b}或A={a,b}.【补偿训练】若集合A={1,3,x},B={x2,1}且B⊆A,则满足条件的实数x的个数是( )A.1B.2C.3D.4【解析】选C.因为B⊆A,所以x2∈A,又x2≠1,所以x2=3或x2=x,所以x=±√3或x=0.故选C.二、填空题(每小题5分,共10分)3.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M与P的关系为.【解析】因为xy>0,所以x,y同号,又x+y<0,所以x<0,y<0,即集合M表示第三象限内的点.而集合P也表示第三象限内的点,故M=P.答案:M=P4.(2015·抚州高一检测)若A={1,2},B={x|x⊆A},则B= .【解题指南】正确解答本题的关键是弄清集合B的含义,即它是由集合A的所有子集组成的集合.【解析】由于x⊆A,即x是集合A的子集,故B={∅,{1},{2},{1,2}}.答案:{∅,{1},{2},{1,2}}三、解答题(每小题10分,共20分)5.已知A={x|x<-1或x>2},B={x|4x+a<0},当B⊆A时,求实数a的取值范围. 【解析】因为A={x|x<-1或x>2},},B={x|4x+a<0}={x|x<−a4≤-1,即a≥4,因为A⊇B,所以-a4所以a的取值范围是a≥4.【拓展延伸】由集合间关系求解参数的三部曲第一步:弄清两个集合之间的关系,谁是谁的子集;第二步:看集合中是否含有参数,若含参数应考虑参数使该集合为空集的情形;第三步:将集合间的包含关系转化为方程(组)或不等式(组),求出相关的参数的值或取值范围.6.已知集合A={2,4,6,8,9},B={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集,若各元素都减2后,则变为B 的一个子集,求集合C.【解析】由题设条件知C ⊆{0,2,4,6,7},C ⊆{3,4,5,7,10},所以C ⊆{4,7},又因为C 非空,所以C={4},{7}或{4,7}.【补偿训练】已知集合A={1,1+d,1+2d},集合B={1,q,q 2},若A=B,求实数d 与q 的值.【解析】由A=B,得①{1+d =q,1+2d =q 2,或②{1+d =q 2,1+2d =q.解①,得{q =1,d =0.此时A=B={1}与A,B 中含有3个元素矛盾,舍去.解②,得{q =−12,d =−34或{q =1,d =0(舍去), 当q=-12,d=-34时,A=B={1,14,−12},符合题意.所以q=-12,d=-34. 关闭Word 文档返回原板块。
高中数学 第一章 导数及其应用 课时作业1 1.1.1 变化率问题 1.1.2 导数的概念课件 新
C.4+2Δx
D.4+2(Δx)2
解析:∵Δy=f(1+Δx)-f(1)=2(1+Δx)2-1-1=2(Δx)2+ 4Δx,∴ΔΔyx=2Δx+4.
3.函数 f(x)=x2 在 x0 到 x0+Δx 之间的平均变化率为 k1,在
x0-Δx 到 x0 之间的平均变化率为 k2,则 k1、k2 的大小关系是( D )
13.已知 f(x)=x2+2.求: (1)f(x)在 x=1 处的导数; (2)f(x)在 x=a 处的导数.
解:(1)因为ΔΔyx=f1+ΔΔxx-f1 =1+Δx2+Δ2x-12+2=2+Δx, 当 Δx 趋近于 0 时,2+Δx 趋近于 2, 所以 f(x)在 x=1 处的导数等于 2.
(2)因为ΔΔyx=fa+ΔΔxx-fa =a+Δx2+2-a2+2
值为 2.
15.服药后,人体血液中药物的质量浓度 y(单位:μg/mL)与 时间 t(单位:min)的函数是 y=f(t),假设函数 y=f(t)在 t=10 和 t =100 处的导数分别为 f′(10)=1.5 和 f′(100)=-0.6,试解释它 们的实际意义.
解:f′(10)=1.5 表示服药后 10 min 时,血液中药物的质 量浓度上升的速度为 1.5 μg/(mL·min).也就是说,如果保持这 一速度,每经过 1 min,血液中药物的质量浓度将上升 1.5 μg/mL.
-
h(t0)
=
-
9.8t0·Δt
+
6.5Δt
-
4.9(Δt)2
,
∴
Δh Δt
=
-
9.8t0
+
6.5
-
4.9Δt,则
h′(t0)=lim Δt→0
(人教A版)高中数学必修一(全册)课时同步练习汇总
(人教A版)高中数学必修一(全册)课时同步练习汇总[课时作业][A组基础巩固]1.已知集合M={3,m+1},且4∈M,则实数m等于()A.4B.3C.2 D.1解析:由题设可知3≠4,∴m+1=4,∴m=3.答案:B2.若以集合A的四个元素a、b、c、d为边长构成一个四边形,则这个四边形可能是()A.梯形B.平行四边形C.菱形D.矩形解析:由集合中元素互异性可知,a,b,c,d互不相等,从而四边形中没有边长相等的边.答案:A3.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}解析:∵x-3<2,∴x<5,又∵x∈N+,∴x=1,2,3,4.答案:B4.若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为()A.5 B.4C.3 D.2解析:利用集合中元素的互异性确定集合.当x=-1,y=0时,z=x+y=-1;当x=1,y=0时,z=x+y=1;当x=-1,y=2时,z=x+y=1;当x=1,y=2时,z=x+y=3,由集合中元素的互异性可知集合{z|z=x+y,x∈A,y∈B}={-1,1,3},即元素个数为3.答案:C5.由实数x,-x,|x|,x2,-3x3所组成的集合中,最多含有的元素个数为()A.2个B.3个C.4个D.5个解析:确定集合中元素的个数,应从集合中元素的互异性入手考虑.若是相同的元素,则在集合中只能出现一次.因为x2=|x|,-3x3=-x,所以当x=0时,这几个数均为0.当x>0时,它们分别是x,-x,x,x,-x.当x<0时,它们分别是x,-x,-x,-x,-x.均最多表示两个不同的数,故所组成的集合中的元素最多有2个.故选A. 答案:A6.设a,b∈R,集合{0,ba,b}={1,a+b,a},则b-a=________.解析:由题设知a≠0,则a+b=0,a=-b,所以ba=-1,∴a=-1,b=1,故b-a=2.答案:27.已知-5∈{x|x2-ax-5=0},则集合{x|x2-4x-a=0}中所有元素之和为________.解析:由-5∈{x|x2-ax-5=0}得(-5)2-a×(-5)-5=0,所以a=-4,所以{x|x2-4x+4=0}={2},所以集合中所有元素之和为2.答案:28.设P,Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P ={0,2,5},Q={1,2,6},则P+Q中元素的个数为________.解析:∵P+Q={a+b|a∈P,b∈Q},P={0,2,5},Q={1,2,6},∴当a=0时,a+b的值为1,2,6;当a=2时,a+b的值为3,4,8;当a=5时,a+b的值为6,7,11. ∴P+Q={1,2,3,4,6,7,8,11},故P+Q中有8个元素.答案:89.集合A={x|kx2-8x+16=0},若集合A只有一个元素,试求实数k的值,并用列举法表示集合A.解析:(1)当k=0时,原方程变为-8x+16=0,x=2.此时集合A={2}.(2)当k≠0时,要使一元二次方程kx2-8x+16=0有一个实根.只需Δ=64-64k=0,即k=1.此时方程的解为x1=x2=4,集合A={4},满足题意.综上所述,实数k的值为0或1.当k=0时,A={2};当k=1时,A={4}.10.已知集合A含有两个元素a-3和2a-1,(1)若-3∈A,试求实数a的值;(2)若a∈A,试求实数a的值.解析:(1)因为-3∈A,所以-3=a-3或-3=2a-1.若-3=a-3,则a=0.此时集合A含有两个元素-3,-1,符合题意.若-3=2a-1,则a=-1.此时集合A含有两个元素-4,-3,符合题意,综上所述,满足题意的实数a的值为0或-1.(2)因为a∈A,所以a=a-3或a=2a-1.当a=a-3时,有0=-3,不成立.当a=2a-1时,有a=1,此时A中有两个元素-2,1,符合题意.综上知a=1.[B组能力提升]1.有以下说法:①0与{0}是同一个集合;②由1,2,3组成的集合可以表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}是有限集.其中正确说法是()A.①④B.②C.②③D.以上说法都不对解析:0∈{0};方程(x-1)2(x-2)=0的解集为{1,2};集合{x|4<x<5}是无限集;只有②正确.答案:B2.已知集合P={x|x=a|a|+|b|b,a,b为非零常数},则下列不正确的是()A.-1∈P B.-2∈P C.0∈P D.2∈P解析:(1)a>0,b>0时,x=a|a|+b|b|=1+1=2;(2)a<0,b<0时,x=a|a|+b|b|=-1-1=-2;(3)a,b异号时,x=0.答案:A3.已知集合M={a|a∈N,且65-a∈N},则M=________.解析:5-a整除6,故5-a=1,2,3,6,a∈N所以a=4,3,2.答案:{4,3,2}4.当x∈A时,若x-1∉A且x+1∉A,则称x为A的一个“孤立元素”,所有孤立元素组成的集合称为“孤星集”,则集合A={0,1,2,3,5}中“孤立元素”组成的“孤星集”为________.解析:由“孤立元素”的定义知,对任意x∈A,要成为A的孤立元素,必须是集合A中既没有x-1,也没有x+1,因此只需逐一考查A中的元素即可.0有1“相伴”,1,2则是前后的元素都有,3有2“相伴”,只有5是“孤立的”,从而集合A={0,1,2,3,5}中“孤立元素”组成的“孤星集”为{5}.故填{5}.答案:{5}5.已知集合A={x|ax2+2x+1=0,a∈R}.(1)若1∈A,求a的值;(2)若集合A中只有一个元素,求实数a组成的集合;(3)若集合A中含有两个元素,求实数a组成的集合.解析:(1)因为1∈A,所以a×12+2×1+1=0,所以a=-3.(2)当a=0时,原方程为2x+1=0,解得x=-12,符合题意;当a≠0时,方程ax2+2x+1=0有两个相等实根,即Δ=22-4a=0,所以a=1.故当集合A只有一个元素时,实数a组成的集合是{0,1}.(3)由集合A中含有两个元素知,方程ax2+2x+1=0有两个不相等的实根,即a≠0且Δ=22-4a>0,所以a≠0且a<1.故当集合A中含有两个元素时,实数a组成的集合是{a|a≠0且a<1}.6.设S是由满足下列条件的实数所构成的集合:①1∉S;②若a∈S,则11-a∈S.请解答下列问题:(1)若2∈S,则S中必有另外两个数,求出这两个数;(2)求证:若a∈S,且a≠0,则1-1a∈S.解析:(1)∵2∈S,2≠1,∴11-2=-1∈S.∵-1∈S,-1≠1,∴11-(-1)=12∈S.又∵12∈S,12≠1,∴11-12=2∈S.∴集合S中另外两个数为-1和12.(2)由a∈S,则11-a∈S,可得11-11-a∈S,即11-11-a=1-a1-a-1=1-1a∈S.∴若a∈S,且a≠0,则1-1a∈S.[课时作业][A组基础巩固]1.已知M={1,2,3,4},N={2,3},则有()A.M⊆N B.N MC.N∈M D.M=N解析:由子集的概念可知N M.答案:B2.已知集合A={1,3,m},B={1,m},若B⊆A,则m=() A.0或 3 B.0或3C.1或 3 D.0或1或 3解析:(1)m=3,此时A={1,3,3},B={1,3},满足B⊆A.(2)m=m,即m=0或m=1.①m=0时,A={0,1,3},B={0,1},满足B⊆A;②m=1时,A={1,3,1},B={1,1},不满足互异性,舍去.答案:B3.已知集合A ={x |ax 2+2x +a =0,a ∈R},若集合A 有且仅有2个子集,则a 的取值是( ) A .1B .-1C .-1或0或1D .0或1解析:由题设可知集合A 中只有一个元素,(1)a =0时,原方程等价转化为2x =0,即x =0,满足题设; (2)⎩⎨⎧a ≠0Δ=4-4a 2=0得a =±1. 答案:C4.已知集合A ={x |x =k 2+14,k ∈Z},集合B ={x |x =k 4+12,k ∈Z},则A 与B 的关系为( ) A .A B B .BAC .A =BD .以上答案都不对解析:对两集合中的限制条件通分,使分母相同.观察分子的不同点及其关系. 集合A 中:x =k 2+14=2k +14; 集合B 中:x =k 4+12=k +24;而{2k +1}表示奇数集,{k +2}表示整数集, ∴A B . 答案:A5.满足{x |x 2+1=0}A ⊆{x |x 2-1=0}的集合A 的个数是( )A .1B .2C .3D .4解析:{x |x 2+1=0}=∅,{x |x 2-1=0}={-1,1},故集合A 是集合{-1,1}的非空子集,所以A 的个数为22-1=3.故选C. 答案:C6.已知集合M ={(x ,y )|x +y <0,且xy >0},集合P ={(x ,y )|x <0,且y <0},那么集合M 与P 之间的关系是________. 解析:M 中的元素满足{ x +y <0xy >0,即{ x <0y <0,∴M =P .答案:M=P7.已知集合A={x||x|≤2,x∈R},B={x|x≥a},且A⊆B,则实数a的取值范围是________.解析:因为A={x||x|≤2,x∈R}={x|-2≤x≤2,x∈R},B={x|x≥a},A⊆B,所以a≤-2.答案:a≤-28.已知集合A{1,2,3},且A中至多有一个奇数,则所有满足条件的集合A为________.解析:集合A是集合{1,2,3}的真子集,且A中至多有一个奇数,那么当集合A 中有0个奇数时,集合A=∅,{2};当集合A中有1个奇数时,集合A={1},{3},{1,2},{2,3}.综上,A=∅,{1},{2},{3},{1,2},{2,3}.答案:∅,{1},{2},{3},{1,2},{2,3}9.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求实数m 的取值范围.解析:A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B⊆A.①若B=∅,则m+1>2m-1,解得m<2,此时有B⊆A;②若B≠∅,则m+1≤2m-1,即m≥2,由B⊆A,得{m≥2m+1≥-2,2m-1≤5解得2≤m≤3.由①②得m≤3.∴实数m的取值范围是{m|m≤3}.10.已知集合M={a-3,2a-1,a2+1},N={-2,4a-3,3a-1},若M=N,求实数a的值.解析:因为M=N,所以(a-3)+(2a-1)+(a2+1)=-2+(4a-3)+(3a-1),即a2-4a+3=0,解得a=1或a=3.当a=1时,M={-2,1,2},N={-2,1,2},满足M=N;当a=3时,M={0,5,10},N={-2,9,8},不满足M=N,舍去.故所求实数a的值为1.[B组能力提升]1.集合A={x|x=(2n+1)π,n∈N}与B={x|x=(4n±1)π,n∈N}之间的关系是() A.A B B.B AC.A=B D.不确定解析:对于集合A,当n=2k时,x=(4k+1)π,k∈N;当n=2k+1时,x=[4(k +1)-1]π=(4m-1)π,m∈N,其中m=k+1.所以A中的元素形如(4k±1)π,k∈N.答案:C2.定义集合A*B={x|x∈A,且x∉B},若A={1,2,3,4,5},B={2,4,5},则A*B 的子集个数为()A.1 B.2C.3 D.4解析:由题意知A*B={1,3},∴A*B的子集个数为22=4个.答案:D3.已知M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},则集合M与N之间的关系是________.解析:∵y=(x-1)2-2≥-2,∴M={y|y≥-2}.∴N M.答案:N M4.定义集合A,B之间的运算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B}.若A={1,2,3},B={1,2},则集合A*B中的最大元素为________,集合A*B的所有子集的个数为________.解析:当x1=1时,x1+x2的值为2,3;当x1=2时,x1+x2的值为3,4;当x1=3时,x1+x2的值为4,5;∴A*B={2,3,4,5}.故A*B中的最大元素为5,所有子集的个数为24=16.答案:5165.已知集合A={x∈R|x2-2x-8=0},B={x∈R|x2+ax+a2-12=0},B⊆A,求实数a的取值集合.解析:A={-2,4},因为B⊆A,所以B=∅,{-2},{4},{-2,4}.若B =∅,则a 2-4(a 2-12)<0,即a 2>16,解得a >4或a <-4.若B ={-2},则(-2)2-2a +a 2-12=0且Δ=a 2-4(a 2-12)=0,解得a =4. 若B ={4},则42+4a +a 2-12=0且Δ=a 2-4(a 2-12)=0, 此时a 无解;若B ={-2,4},则⎩⎨⎧-a =4-2,a 2-12=-2×4.所以a =-2.综上知,所求实数a 的集合为{a |a <-4或a =-2或a ≥4}. 6.已知集合A ={x |x 2-3x -10≤0},(1)若B ⊆A ,B ={x |m -6≤x ≤2m -1,m 为常数},求实数m 的取值范围; (2)若A ⊆B ,B ={x |m -6≤x ≤2m -1,m 为常数},求实数m 的取值范围; (3)若A =B ,B ={x |m -6≤x ≤2m -1,m 为常数},求实数m 的取值范围. 解析:(1)由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5}.∵B ⊆A ,∴①若B =∅,则m -6>2m -1,即m <-5,此时满足B ⊆A ; ②若B ≠∅,则⎩⎨⎧m -6≤2m -1,-2≤m -6,2m -1≤5,解得-5≤m ≤3.由①②可得,m <-5或-5≤m ≤3. (2)若A ⊆B ,则依题意应有⎩⎨⎧2m -1>m -6,m -6≤-2,2m -1≥5,解得⎩⎨⎧m >-5,m ≤4,m ≥3,故3≤m ≤4.(3)若A =B ,则必有⎩⎨⎧m -6=-2,2m -1=5,此方程组无解,即不存在m 的值使得A =B .[课时作业] [A 组 基础巩固]1.(2016·高考全国卷Ⅱ)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A ∪B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}解析:B ={x |(x +1)(x -2)<0,x ∈Z }={x |-1<x <2,x ∈Z }={0,1},又A ={1, 2,3},所以A ∪B ={0,1,2,3}. 答案:C2.设S ={x |2x +1>0},T ={x |3x -5<0},则S ∩T =( ) A .∅ B .{x |x <-12} C .{x |x >53}D .{x |-12<x <53}解析:S ={x |2x +1>0}={x |x >-12},T ={x |3x -5<0}={x |x <53},则S ∩T ={x |-12<x <53}. 答案:D3.已知集合A ={(x ,y )|x +y =0,x ,y ∈R},B ={(x ,y )|x -y =0,x ,y ∈R},则集合A ∩B 的元素个数是( ) A .0 B .1 C .2D .3解析:解方程组⎩⎨⎧x +y =0,x -y =0,⎩⎨⎧x =0,y =0.∴A ∩B ={(0,0)}.答案:B4.设集合M ={x ∈Z|-10≤x ≤-3},N ={x ∈Z||x |≤5},则M ∪N 中元素的个数为( ) A .11 B .10 C .16D .15 解析:先用列举法分别把集合M ,N 中的元素列举出来,再根据并集的定义写出M ∪N .∵M ={x ∈Z|-10≤x ≤-3}={-10,-9,-8,-7,-6,-5,-4,-3},N ={x ∈Z||x |≤5}={-5,-4,-3,-2,-1,0,1,2,3,4,5},∴M ∪N ={-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5}.∴M ∪N 中元素的个数为16. 答案:C5.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},且B ≠∅,若A ∪B =A ,则( ) A .-3≤m ≤4 B .-3<m <4 C .2<m <4D .2<m ≤4解析:∵A ∪B =A ,∴B ⊆A .又B ≠∅, ∴⎩⎨⎧m +1≥-2,2m -1≤7m +1<2m -1即2<m ≤4. 答案:D6.已知集合M ={0,1,2},N ={x |x =2a ,a ∈M },则集合M ∩N =________. 解析:由M ={0,1,2},知N ={0,2,4}, M ∩N ={0,2}. 答案:{0,2}7.已知集合A ={(x ,y )|y =ax +3},B ={(x ,y )|y =3x +b },A ∩B ={(2,5)},则a =________,b =________. 解析:∵A ∩B ={(2,5)}. ∴5=2a +3.∴a =1. ∴5=6+b .∴b =-1. 答案:1 -18.若集合A ={1,3,x },集合B ={x 2,1},且A ∪B ={1,3,x },则这样的x 值的个数为________.解析:∵A ∪B =A ,∴B ⊆A ,∴x 2∈A . 令x 2=3,得x =±3,符合要求. 令x 2=x ,得x =0或x =1.当x =1时,不满足集合中元素的互异性. ∴x =±3或x =0. 答案:39.设A ={x |-1<x <2},B ={x |1<x <3},求A ∪B ,A ∩B . 解析:如图所示:A ∪B ={x |-1<x <2}∪{x |1<x <3}={x |-1<x <3}. A ∩B ={x |-1<x <2}∩{x |1<x <3}={x |1<x <2}.10.已知集合A ={x |x 2+x -6=0},B ={x |mx +1=0},若B ⊆A ,求实数m 的取值范围.解析:由x 2+x -6=0,得A ={-3, 2},∵B ⊆A ,且B 中元素至多一个, ∴B ={-3},或B ={2},或B =∅.(1)当B ={-3}时,由(-3)m +1=0,得m =13; (2)当B ={2}时,由2m +1=0,得m =-12; (3)当B =∅时,由mx +1=0无解,得m =0. ∴m =13或m =-12或m =0.[B 组 能力提升]1.定义A -B ={x |x ∈A 且x ∉B },若A ={1,2,4,6,8,10},B ={1,4,8},则A -B =( ) A .{4,8} B .{1,2,6,10} C .{2,6,10}D .{1}解析:由题设信息知A -B ={2,6,10}. 答案:C2.(2016·高考全国卷Ⅰ)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( )A.⎝ ⎛⎭⎪⎫-3,-32 B.⎝ ⎛⎭⎪⎫-3,32C.⎝ ⎛⎭⎪⎫1,32D.⎝ ⎛⎭⎪⎫32,3 解析:∵x 2-4x +3<0,∴1<x <3,∴A ={x |1<x <3}.∵2x -3>0,∴x >32,∴B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >32.∴A ∩B ={x |1<x <3}∩⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >32=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪32<x <3. 故选D. 答案:D3.已知集合A ={x ||x +2|<3},集合B ={x |m <x <2},且A ∩B =(-1,n ),则m =________,n =________.解析:A ={x ||x +2|<3}={x |-5<x <1},由图形直观性可知m =-1,n =1. 答案:-1 14.已知A ={x |-2<x <a +1},B ={x |x ≤-a 或x ≥2-a },A ∪B =R ,则实数a 的取值范围是________.解析:本题给出了两个待定的集合,且已知A ∪B =R ,结合数轴表示可求出参数a 的取值范围.如图所示,因为A ∪B =R ,所以应满足⎩⎨⎧-a ≥-2,2-a ≤a +1,解得⎩⎪⎨⎪⎧a ≤2,a ≥12,所以12≤a ≤2.答案:⎩⎨⎧a ⎪⎪⎪⎭⎬⎫12≤a ≤25.设方程x 2+px -12=0的解集为A ,方程x 2+qx +r =0的解集为B ,且A ≠B ,A ∪B ={-3,4},A ∩B ={-3},求p ,q ,r 的值. 解析:∵A ∩B ={-3}, ∴-3∈A ,代入x 2+px -12=0得p =-1, ∴A ={-3,4}∵A ≠B ,A ∪B ={-3,4}, ∴B ={-3} 即方程x 2+qx +r =0 有两个相等的根x =-3, ∴q =6,r =9.6.已知集合A ={x |x 2-3x +2=0},B ={x |x 2-ax +a -1=0},C ={x |x 2-mx +2=0},且A ∪B =A ,A ∩C =C ,求实数a 、m 的值或范围. 解析:x 2-3x +2=0得x =1或2,故A ={1,2},∵A ∪B =A , ∴B ⊆A ,B 有四种可能的情况:∅,{1},{2},{1,2}. ∵x 2-ax +a -1=(x -1)[x -(a -1)]∴必有1∈B ,因而a -1=1或a -1=2,解得a =2或a =3.又∵A ∩C =C ,∴C ⊆A .故C 有四种可能的情况:∅,{1},{2},{1,2}. ①若C =∅,则方程x 2-mx +2=0(※)的判别式 Δ=m 2-8<0,得-22<m <22;②若C ={1},则方程(※)有两个等根为1, ∴⎩⎨⎧1+1=m 1×1=2不成立;③若C ={2},同上②也不成立; ④若C ={1,2},则⎩⎨⎧1+2=m ,1×2=2.得m =3.综上所述,有a =2或a =3;m =3或-22<m <2 2.[课时作业][A组基础巩固]1.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于() A.M∪N B.M∩NC.(∁U M)∪(∁U N) D.(∁U M)∩(∁U N)解析:M∪N={1,2,3,4},M∩N=∅,(∁U M)∪(∁U N)={1,2,3,4,5,6},(∁U M)∩(∁U N)={5,6},故选D.答案:D2.已知集合A,B均为集合U={1,3,5,7,9}的子集,若A∩B={1,3},(∁U A)∩B ={5},则集合B等于()A.{1,3} B.{3,5}C.{1,5} D.{1, 3,5}解析:如图所以B={1,3,5}.答案:D3.已知集合A={x|x<3或x≥7},B={x|x<a}.若(∁U A)∩B≠∅,则a的取值范围为()A.a>3 B.a≥3C.a≥7 D.a>7解析:因为A={x|x<3或x≥7},所以∁U A={x|3≤x<7},又因(∁U A)∩B≠∅,则a>3.答案:A4.已知M,N为集合I的非空真子集,且M,N不相等,若N∩∁I M=∅,则M∪N=()A.M B.NC.I D.∅解析:因为N∩∁I M=∅,所以N⊆M,则M∪N=M,选A.答案:A5.已知集合I,M,N的关系如图所示,则I,M,N的关系为()A.(∁I M)⊇(∁I N)B.M⊆(∁I N)C.(∁I M)⊆(∁I N)D.M⊇(∁I N)解析:由题图知M⊇N,∴(∁I M)⊆(∁I N).答案:C6.已知集合A={x|0≤x≤5},B={x|2≤x<5},则∁A B=________.解析:∁A B={x|0≤x<2或x=5}.答案:{x|0≤x<2或x=5}7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________. 解析:∵U={0,1,2,3},∁U A={1,2}.∴A={x|x2+mx=0}={0,3}.∴0,3是方程x2+mx=0的两根,∴0+3=-m,即m=-3.答案:-38.已知全集U={x|-1≤x≤4},A={x|-1≤x≤1},B={x|0<x≤3},求∁U A,(∁U B)∩A.解析:∵U={x|-1≤x≤4},A={x|-1≤x≤1},B={x|0<x≤3},结合数轴(如图).可知∁U A ={x |1<x ≤4},∁U B ={x |3<x ≤4或-1≤x ≤0}.结合数轴(如图).可知(∁U B )∩A ={x |-1≤x ≤0}.9.设A ={x |2x 2+ax +2=0},B ={x |x 2+3x +2a =0},且A ∩B ={2}. (1)求a 的值及集合A ,B ;(2)设全集U =A ∪B ,求(∁U A )∪(∁U B ); (3)写出(∁U A )∪(∁U B )的所有子集.解析:(1)由交集的概念易得,2是方程2x 2+ax +2=0和x 2+3x +2a =0的公共解,则a =-5,此时A =⎩⎨⎧⎭⎬⎫12,2,B ={}-5,2.(2)由并集的概念易得,U =A ∪B =⎩⎨⎧⎭⎬⎫-5,12,2. 由补集的概念易得,∁U A ={-5},∁U B =⎩⎨⎧⎭⎬⎫12.所以(∁U A )∪(∁U B )=⎩⎨⎧⎭⎬⎫-5,12.(3)(∁U A )∪(∁U B )的所有子集即集合⎩⎨⎧⎭⎬⎫-5,12的所有子集:∅,⎩⎨⎧⎭⎬⎫12, {-5},⎩⎨⎧⎭⎬⎫-5,12. 10.设全集U ={a 2-2,2, 1},A ={a,1},求∁U A . 解析:由补集的定义可知A ⊆U .若a =2;则a 2-2=2,集合U 中的元素不满足互异性,所以a ≠2. 若a 2-2=a ,则a =2或a =-1, 因为a ≠2,所以a =-1.此时,U ={-1,2,1},A ={-1,1},所以∁U A ={2}.[B 组 能力提升]1.已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 是非空集合,则A ∩B 的元素个数为( ) A .mn B .m +n C .n -mD .m -n解析:画出Venn 图,如图.∵U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )=∁U (A ∩B )中有n 个元素,∴A ∩B 中有m -n 个元素.答案:D2.设U为全集,对集合X,Y,定义运算“*”,X*Y=∁U(X∩Y).对于任意集合X,Y,Z,则(X*Y)*Z=()A.(X∪Y)∩∁U Z B.(X∩Y)∪∁U ZC.(∁U X∪∁U Y)∩Z D.(∁U X∩∁U Y)∪Z解析:依题意得(X*Y)=∁U(X∩Y)=(∁U X)∪(∁U Y),(X*Y)*Z=∁U[ (X*Y)∩Z]=∁U[∁(X∩Y)∩Z]={∁U[∁U(X∩Y)]}∪(∁U Z)=(X∩Y)∪(∁U Z).U答案:B3.设U={n|n是小于9的正整数},A={n∈U|n是奇数},B={n∈U|n是3的倍数},则∁U(A∪B)=________.解析:U={1,2,3,4,5,6,7,8}.则A={1,3,5,7},B={3,6}∴A∪B={1,3,5,6,7}∴∁U(A∪B)={2,4,8}.答案:{2,4,8}4.设集合A={x|0≤x≤4},B={y|y=x-3,-1≤x≤3},则∁R(A∩B)=________. 解析:∵A={x|0≤x≤4},B={y|-4≤y≤0},∴A∩B={0},∴∁R(A∩B)={x|x∈R,且x≠0}.答案:{x|x∈R,且x≠0}5.某班共有30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,求喜爱篮球运动但不喜爱乒乓球运动的人数.解析:设全集U={全班30名学生},A={喜爱篮球运动的学生},B={喜爱乒乓球运动的学生},画出Venn图如图所示:设既喜爱篮球运动又喜爱乒乓球运动的人数为x,则喜爱篮球运动但不喜爱乒乓球运动的人数为15-x,喜爱乒乓球运动但不喜爱篮球运动的人数为10-x,则有(15-x)+x+(10-x)+8=30,解得x=3.所以喜爱篮球运动但不喜爱乒乓球运动的人数为15-x=15-3=12.6.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁U A )∩B ={2}, A ∩(∁U B )={4},U =R ,求实数a 、b 的值.解析:因为(∁U A )∩B ={2},A ∩(∁U B )={4},知2∈B ,但2∉A,4∈A ,但4∉B . 将x =2和x =4分别代入B ,A 两集合的方程中得 ⎩⎨⎧ 22-2a +b =0,42+4a +12b =0,即⎩⎨⎧4-2a +b =0,4+a +3b =0.解得a =87,b =-127.[课时作业] [A 组 基础巩固]1.函数y =f (x )的图象与直线x =1的公共点有( ) A .0个 B .1个 C .0或1个D .无数个解析:当x =1在函数f (x )的定义域内时,函数y =f (x )的图象与直线x =1有一个公共点(1,f (1));当x =1不在定义域内时,函数y =f (x )的图象与直线x =1没有公共点. 答案:C2.已知四组函数:①f (x )=x ,g (x )=(x )2;②f (x )=x ,g (x )=3x 3;③f (n )=2n -1, g (n )=2n +1(n ∈N);④f (x )=x 2-2x -1,g (t )=t 2-2t -1. 其中是同一函数的为( ) A .没有 B .仅有② C .②④D .②③④解析:对于第一组,定义域不同;对于第三组,对应法则不同;对于第二、四组,定义域与对应法则都相同.故选C. 答案:C3.y =x 2(-1≤x ≤2)的值域是( ) A .[1,4]B .[0,1]C.[0,4] D.[0,2]解析:由图可知f(x)=x2(-1≤x≤2)的值域是[0,4].答案:C4.函数y=2-xx-1的定义域为()A.(-∞,2] B.(-∞,2) C.(-∞,1)∪(1,2) D.(-∞,1)∪(1,2]解析:要使函数y=2-xx-1有意义,则{2-x≥0,x-1≠0,解得x≤2且x≠1,所以所求函数的定义域为(-∞,1)∪(1,2].答案:D5.图中可以表示以M={x|0≤x≤1}为定义域,以N={y|0≤y≤1}为值域的函数的图象的是()解析:根据函数的定义,在定义域[0,1]内任意一个元素都有唯一的函数值与它对应,同样,对于值域[0,1]中的任意一个函数值,在定义域内也一定有自变量和它对应.A中函数值域不是[0,1],B中函数定义域不是[0,1],故可排除A,B;再结合函数的定义,可知对于集合M中的任意一个x,N中都有唯一的元素与之对应,故排除D.故选C.答案:C6.下列说法正确的有________.(只填序号)①函数值域中的每一个数都有定义域中的一个数与之对应;②函数的定义域和值域一定是无限集合;③若函数的定义域只有一个元素,则值域也只有一个元素;④对于任何一个函数,如果x不同,那么y的值也不同;⑤f(a)表示当x=a时,函数f(x)的值,这是一个常量.解析:函数是一个数集与另一个数集间的特殊对应关系,所给出的对应是否可以确定为y是x的函数,主要是看其是否满足函数的三个特征.①是正确的.函数值域中的每一个数一定有定义域中的一个数与之对应,但不一定只有一个数与之对应.②是错误的.函数的定义域和值域不一定是无限集合,也可以是有限集,但一定不是空集,如函数f(x)=1,x=1的定义域为{1},值域为{1}.③是正确的.根据函数的定义,定义域中的每一个元素都能在值域中找到唯一元素与之对应.④是错误的.当x不同时,函数值y的值可能相同,如函数y=x2,当x=1和-1时,y都为1.⑤是正确的.f(a)表示当x=a时,函数f(x)的值是一个常量.故填①③⑤.答案:①③⑤7.已知函数f (x )=2x 2-mx +3,若f (x )的定义域为R ,则m 的取值范围是________.解析:由已知得2x 2-mx +3≥0对x ∈R 恒成立,即Δ=m 2-24≤0,∴-26≤m ≤2 6.答案:[-26,26]8.若函数f (x )的定义域为[2a -1,a +1],值域为[a +3,4a ],则a 的取值范围为________.解析:由区间的定义知 ⎩⎨⎧2a -1<a +1a +3<4a ⇒1<a <2.答案:(1,2)9.若f (x )的定义域为[-3,5],求φ(x )=f (-x )+f (x )的定义域.解析:由f (x )的定义域为[-3,5],得φ(x )的定义域需满足⎩⎨⎧-3≤-x ≤5,-3≤x ≤5即⎩⎨⎧-5≤x ≤3,-3≤x ≤5解得-3≤x ≤3.所以函数φ(x )的定义域为[-3,3]. 10.试求下列函数的定义域与值域: (1)f (x )=(x -1)2+1,x ∈{-1,0,1,2,3}; (2)f (x )=(x -1)2+1; (3)f (x )=5x +4x -1; (4)f (x )=x -x +1.解析:(1)函数的定义域为{-1,0,1,2,3},则f (-1)=[(-1)-1]2+1=5,同理可得f (0)=2,f (1)=1,f (2)=2,f (3)=5,所以函数的值域为{1,2,5}. (2)函数的定义域为R ,因为(x -1)2+1≥1,所以函数的值域为{y |y ≥1}. (3)函数的定义域是{x |x ≠1},y =5x +4x -1=5+9x -1,所以函数的值域为{y |y ≠5}. (4)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域是{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),于是f (t )=t 2-1-t =⎝ ⎛⎭⎪⎫t -122-54.又t ≥0,故f (t )≥-54.所以函数的值域是⎩⎨⎧⎭⎬⎫y |y ≥-54. [B 组 能力提升]1.函数y =5+4x -x 2的值域为( ) A .(-∞,3) B .[3,+∞) C .[0,9]D .[0,3]解析:由函数性质可得5+4x -x 2≥0的值域开方即是.结合函数图象(图略)可得y ∈[0,3],故选D. 答案:D2.已知f (x )的定义域是[0,+∞),则函数(x -2)0+f (x -1)的定义域是( ) A .[0,2)∪(2,+∞) B .[1,2)∪(2,+∞) C .[-1,2)∪(2,+∞) D .[1,+∞)解析:{ x -2≠0x -1≥0得1≤x 且x ≠2.答案:B3.已知函数f (x ),g (x )分别由下表给出:x 123 f (x )1 31x 1 2 3 g (x )321则f (g (1))的值为________;满足f (g (x ))>g (f (x ))的x 的值是________. 解析:g (1)=3,f (g (1))=f (3)=1; f (g (1))=1,f (g (2))=3, f (g (3))=1,g (f (1))=3, g (f (2))=1,g (f (3))=3,∴满足f (g (x ))>g (f (x ))的x 值为x =2. 答案:1 24.在实数的原有运算中,我们定义新运算“⊕”如下:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )-(2⊕x ),x ∈[-2,2],则函数f (x )的值域为________.解析:由题意知,f (x )=⎩⎨⎧-1,x ∈[-2,1]x 2-2,x ∈(1,2].当x ∈[-2,1]时,f (x )=-1; 当x ∈(1,2]时,f (x )∈(-1,2]. ∴当x ∈[-2,2]时,f (x )∈[-1,2]. 答案:[-1,2]5.如图,某灌溉渠的横断面是等腰梯形,底宽为2 m ,渠深为1.8 m ,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A (m 2)表示成水深h (m)的函数; (2)确定函数的定义域和值域; (3)画出函数的图象.解析:(1)由已知,横断面为等腰梯形,下底为2 m ,上底为(2+2h )m ,高为h m ,∴水的面积A =[2+(2+2h )]h 2=h 2+2h (m 2).(2)定义域为{h |0<h <1.8}.值域由二次函数A =h 2+2h (0<h <1. 8)求得. 由函数A =h 2+2h =(h +1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A<6.84.故值域为{A|0<A<6.84}.(3)由于A=(h+1)2-1,对称轴为直线h=-1,顶点坐标为(-1,-1),且图象过(0,0)和(-2,0)两点,又考虑到0<h<1.8,∴A=h2+2h的图象仅是抛物线的一部分,如图所示.6.对于函数f(x),若f(x)=x,则称x为f(x)的“不动点”,若f(f(x))=x,则称x 为f(x)的“稳定点”,函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f(x)=x},B={x|f(f(x))=x}.(1)求证:A⊆B;(2)设f(x)=x2+ax+b,若A={-1,3},求集合B.解析:(1)若A=∅,则A⊆B显然成立.若A ≠∅,设t ∈A , 则f (t )=t ,f (f (t ))=t ,t ∈B , 从而A ⊆B ,故A ⊆B 成立. (2)∵A ={-1,3}, ∴f (-1)=-1,且f (3)=3. 即⎩⎨⎧(-1)2-a +b =-132+3a +b =3,∴⎩⎨⎧a -b =23a +b =-6,∴⎩⎨⎧a =-1b =-3,∴f (x )=x 2-x -3.∵B ={x |f (f (x ))=x },∴(x 2-x -3)2-(x 2-x -3)-3=x , ∴(x 2-x -3)2-x 2=0, 即(x 2-3)(x 2-2x -3)=0, ∴(x 2-3)(x +1)(x -3)=0, ∴x =±3或x =-1或x =3. ∴B ={-3,-1,3,3}.[课时作业]单 [A 组 基础巩固]1.函数y =ax 2+a 与y =ax (a ≠0)在同一坐标系中的图象可能是( )解析:当a>0时,二次函数的图象开口向上,且与y轴交于(0,a)点,在y轴上方,反比例函数的图象在第一、三象限,没有满足此条件的图象;当a<0时,二次函数的图象开口向下,且与y轴交于(0,a)点,在y轴下方,反比例函数的图象在第二、四象限;综合来看,只有选项D满足条件.答案:D2.已知f(x-1)=x2-2,则f(2)=()A.6 B.2C.7 D.9解析:f(2)=f(3-1)=32-2=9-2=7.答案:C3.已知f(x)是反比例函数,且f(-3)=-1,则f(x)的解析式为()A.f(x)=-3x B.f(x)=3xC.f(x)=3x D.f(x)=-3x解析:设f(x)=kx(k≠0),∵f(-3)=k-3=-1,∴k=3,∴f(x)=3 x.答案:B4.已知函数f(x)满足2f(x)+f(-x)=3x+2,则f(2)=()A .-163B .-203 C.163D.203解析:因为2f (x )+f (-x )=3x +2,① 所以2f (-x )+f (x )=-3x +2,② ①×2-②得f (x )=3x +23. 所以f (2)=3×2+23=203. 答案:D5.已知x ≠0时,函数f (x )满足f (x -1x )=x 2+1x 2,则f (x )的表达式为( ) A .f (x )=x +1x (x ≠0) B .f (x )=x 2+2(x ≠0) C .f (x )=x 2(x ≠0) D .f (x )=(x -1x )2(x ≠0)解析: f (x -1x )=x 2+1x 2=(x -1x )2+2, ∴f (x )=x 2+2(x ≠0). 答案:B6.已知函数f (x )对任意实数a ,b 都满足:f (a +b )=f (a )+f (b ),且f (2)=3,则f (3)=________.解析:∵f (2)=f (1)+f (1)=2f (1)=3, ∴f (1)=32,∴f (3)=3f (1)=3×32=92或f (3)=f (2)+f (1)=92. 答案:927.已知函数f (2x +1)=3x +2,且f (a )=4,则a =________.解析:因为f (2x +1)=32(2x +1)+12,所以f (a )=32a +12.又f (a )=4,所以32a +12=4,则a =73. 答案:738.已知f (x )=x +2,则f (x )=________. 解析:令x =t ,则x =t 2且t ≥0. ∴f (t )=t 2+2, ∴f (x )=x 2+2 (x ≥0) 答案:f (x )=x 2+2 (x ≥0)9.已知f (x )是一次函数,且f (f (x ))=4x +3,求f (x )的解析式. 解析:设f (x )=ax +b (a ≠0),∴f (f (x ))=af (x )+b =a (ax +b )+b =a 2x +ab +b . ∴a 2x +ab +b =4x +3. ∴⎩⎨⎧ a 2=4,ab +b =3.∴⎩⎨⎧a =2,b =1,或⎩⎨⎧a =-2,b =-3.∴f (x )=2x +1或f (x )=-2x -3.10.已知函数f (x )是二次函数,且它的图象过点(0,2),f (3)=14,f (-2)=8+52,求f (x )的解析式.解析:设f (x )=ax 2+bx +c (a ≠0),则由题意,得⎩⎨⎧c =2,9a +3b +c =14,2a -2b +c =8+52,解得⎩⎨⎧c =2,a =3,b =-5.所以f (x )=3x 2-5x +2.[B 组 能力提升]1.对于任意的两个实数对(a ,b )和(c ,d ),规定(a ,b )=(c ,d ),当且仅当a =c ,b =d ;运算“⊗”为(a ,b )⊗(c ,d )= (ac -bd ,bc +ad );运算“⊕”为:(a ,b )⊕(c ,d )=(a +c ,b +d ).设p ,q ∈R ,若(1,2)⊗(p ,q )=(5,0),则(1,2)⊕(p ,q )=( ) A .(4,0) B .(2,0) C .(0,2)D .(0,-4)解析:由题设可知:⎩⎨⎧ p -2q =5.2p +q =0,解得⎩⎨⎧p =1,q =-2, ∴(1,2)⊕(p ,q )=(1+p,2+q )=(2,0). 答案:B2.已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=13x 2-4x +6 C .f (x )=6x +9 D .f (x )=2x +3解析:用3-x 代替原方程中的x 得f (3-x )+2f [3-(3-x )]=f (3-x )+2f (x )= (3-x )2=x 2-6x +9,∴⎩⎨⎧f (x )+2f (3-x )=x 2 ①f (3-x )+2f (x )=x 2-6x +9 ②①-②×2得-3f (x )=-x 2+12x -18, ∴f (x )=13x 2-4x +6. 答案:B 3.设f (3x )=9x +52,则f (1)=________.解析:令3x =1,则x =13.∴f (1)=9×13+52=4=2.答案:24.已知函数f (x )=x 2+2x +a ,f (bx )=9x 2-6x +2,其中x ∈R ,a ,b 为常数, 则方程f (ax +b )=0的解集为________.解析:f (bx )=(bx )2+2bx +a =b 2x 2+2bx +a =9x 2-6x +2,∴⎩⎨⎧b 2=9,2b =-6,a =2,解得⎩⎨⎧a =2,b =-3,∴f(ax+b)=f(2x-3)=4x2-8x+5.∵Δ=64-4×4×5=-16<0,∴方程f(ax+b)=0的解集为∅.答案:∅5.画出函数f(x)=-x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域.解析:因为函数f(x)=-x2+2x+3的定义域为R,列表:(1)根据图象,容易发现f(0)=3,f(1)=4,f(3)=0,所以f(3)<f(0)<f(1).(2)根据图象,容易发现当x1<x2<1时,有f(x1)<f(x2).(3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].6.已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x-1)=f(3-x)且方程f(x)=2x有等根.(1)求f (x )的解析式;(2)是否存在实数m ,n (m <n ),使f (x )的定义域和值域分别为[m ,n ]和[4m,4n ].如果存在,求出m ,n 的值;如果不存在,请说明理由.解析:(1)∵二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)与方程f (x )=2x 有等根,即方程ax 2+bx -2x =0有等根, ∴Δ=(b -2)2=0,得b =2.由f (x -1)=f (3-x ),知此函数图象的对称轴方程为x =-b2a =1,得a =-1, 故f (x )=-x 2+2x .(2)∵f (x )=-(x -1)2+1≤1, ∴4n ≤1,即n ≤14.而抛物线y =-x 2+2x 的对称轴为x =1, ∴若满足题设条件的m ,n 存在,则{ f (m )=4m ,f (n )=4n , 即⎩⎨⎧-m 2+2m =4m ,-n 2+2n =4n⇒⎩⎨⎧m =0或m =-2,n =0或n =-2,又m <n ≤14,∴m =-2,n =0,这时,定义域为[-2,0],值域为[-8,0]. 由以上知满足条件的m ,n 存在,m =-2,n =0.[课时作业] [A 组 基础巩固]1.已知函数f (x )=⎩⎨⎧2x ,x >0,x +1,x ≤0.若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3解析:因为f (1)=2,所以由f (a )+f (1)=0,得f (a )=-2,所以a 肯定小于0, 则f (a )=a +1=-2,解得a =-3,故选A. 答案:A2.给出如图所示的对应:其中构成从A 到B 的映射的个数为( ) A .3 B .4 C .5D .6解析:①是映射,是一对一;②③是映射,满足对于集合A 中的任意一个元素在集合B 中都有唯一的元素和它对应;④⑤不是映射,是一对多;⑥不是映射,a 3、a 4在集合B 中没有元素与之对应. 答案:A3.函数f (x )=⎩⎨⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A .RB .[0,2]∪{3}C .[0,+∞)D .[0,3]解析:f (x )图象大致如下:由图可知值域为[0,2]∪{3}. 答案:B4.已知函数f (x )=⎩⎨⎧2x ,x ≥0,x 2,x <0,则f (f (-2))的值是( )A . 4B .-4C .8D .-8解析:∵-2<0,∴f (-2)=(-2)2=4,∴f (f (-2))=f (4); 又∵4≥0,∴f (4)=2×4=8. 答案:C5.下列对应是从集合M 到集合N 的映射的是( )①M =N =R ,f :x →y =1x ,x ∈M ,y ∈N ;②M =N =R ,f :x →y =x 2, x ∈M ,y ∈N ;③M =N =R ,f :x →y 1|x |+x ,x ∈M ,y ∈N ;④M =N =R ,f :x →y =x 3,x ∈M ,y ∈N . A .①② B .②③ C .①④D .②④解析:根据映射的定义进行判断.对于①,集合M 中的元素0在N 中无元素与之对应,所以①不是映射.对于③,M 中的元素0及负实数在N 中没有元素与之对应,所以③不是映射.对于②④,M 中的元素在N 中都有唯一的元素与之对应,所以②④是映射.故选D. 答案:D6.若函数f (x )=⎩⎨⎧3x 2-4,x >0,π,x =0,0,x <0,则f (f (0))=________.解析:∵f (0)=π,∴f (f (0))=f (π)=3π2-4.答案:3π2-47.已知f (x )=⎩⎨⎧2x ,x >0,f (x +1),x ≤0,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43的值等于________.解析:∵43>0,∴f ⎝ ⎛⎭⎪⎫43=2×43=83;-43≤0,∴f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-43+1=f ⎝ ⎛⎭⎪⎫-13;-13≤0,∴ f ⎝ ⎛⎭⎪⎫-13 =f ⎝ ⎛⎭⎪⎫-13+1=f ⎝ ⎛⎭⎪⎫23; 23>0,∴f⎝ ⎛⎭⎪⎫23=2×23=43, ∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=83+43=4.答案:48.设f :A →B 是从A 到B 的一个映射,f :(x ,y )→(x -y ,x +y ),那么A 中的元素(-1,2)的象是________,B 中的元素(-1,2)的原象是________. 解析:(-1,2)→(-1-2,-1+2)=(-3,1). 设(-1,2)的原象为(x ,y ),则⎩⎨⎧x -y =-1,x +y =2,解得⎩⎪⎨⎪⎧x =12,y =32.答案:(-3,1) (12,32)9.作函数y =|x +3|+|x -5|图象,并求出相应的函数值域. 解析:因为函数y =|x +3|+|x -5|,y =⎩⎨⎧-2x +2 (x ≤-3),8 (-3<x <5),2x -2 (x ≥5).所以y =|x +3|+|x -5|的图象如图所示:由此可知,y =|x +3|+|x -5|的值域为[8,+∞). 10.已知(x ,y )在映射f 的作用下的象是(x +y ,xy ), 求:(1)(3,4)的象;(2)(1,-6)的原象. 解析:(1)∵x =3,y =4,∴x +y =7,xy =12. ∴(3,4)的象为(7,12).(2)设(1,-6)的原象为(x ,y ),则有⎩⎨⎧x +y =1,xy =-6,解得⎩⎨⎧ x =-2,y =3或⎩⎨⎧x =3,y =-2.故(1,-6)的原象为(-2,3)或(3,-2).[B 组 能力提升]1.若已知函数f (x )=⎩⎨⎧x +2,x ≤-1,x 2,-1<x <2,2x ,x ≥2,且f (x )=3,则x 的值是( )A .1B .1或32 C .±3D. 3解析:由x +2=3,得x =1>-1,舍去.由x 2=3,得x =±3,-1<3<2,-3<-1,-3舍去. 由2x =3,得x =32<2,舍去. 所以x 的值为 3. 答案:D2.已知函数f (x )=⎩⎨⎧x +2,x ≤0-x +2,x >0,则不等式f (x )≥2x 的解集是( )A .(-∞,23] B .(-∞,0] C .(0,23]D .(-∞,2)解析:(1)当x >0时,f (x )=-x +2≥2x ,得3x ≤2,即0<x ≤23; (2)当x ≤0时,f (x )=x +2≥2x ,得x ≤2,又x ≤0,∴x ≤0; 综上所述,x ≤23. 答案:A3.已知集合A =Z ,B ={x |x =2n +1,n ∈Z},C =R ,且从A 到B 的映射是 f :x →y =2x -1,从B 到C 的映射是f :x →y =13x +1,则从A 到C 的映射是________. 解析:根据题意,f :A →B ,x →y =2x -1 f :B →C ,y →z =13y +1. 所以,从A 到C 的映射是f :x →z =13(2x -1)+1=16x -2,即从A 到C 的映射是f :x →y =16x -2. 答案:f :x →y =16x -24.已知f (x )=⎩⎨⎧x +2(x ≤-2),x 2(-2<x <2),2x (x ≥2),若f (a )=8,则a =________.解析:当a ≤-2时,由a +2=8,得a =6.不合题意.当a ≥2时,由2a =8,得a =4,符合题意. 当-2<a <2时,a 2=8,a =±22,不合题意. 答案:45.已知直线y =1与曲线y =x 2-|x |+a 有四个交点,求a 的取值范围. 解析:y =x 2-|x |+a =⎩⎨⎧x 2-x +a ,x ≥0x 2+x +a ,x <0如图,在同一直角坐标系内画出直线y =1与曲线y =x 2-|x |+a ,观图可知,a 的取值必须满足⎩⎪⎨⎪⎧a >14a -14<1,解得1<a <54.6.等腰梯形ABCD 的两底分别为AD =2a ,BC =a ,∠BAD =4 5°,作直线 MN ⊥AD 交AD 于M ,交折线ABCD 于N .设AM =x ,试将梯形ABCD 位于直线MN 左侧的面积y 表示为x 的函数.解析:作BH ⊥AD ,H 为垂足,CG ⊥AD ,G 为垂足,依题意,则有AH =a 2,AG =32a ,∠A =∠D =45°. (1)当M 位于点H 的左侧时,N ∈AB , 由于AM =x ,∠A =45°,∴MN =x . ∴y =S △AMN =12x 2(0≤x ≤a 2).(2)当M 位于H 、G 之间时,由于AM =x ,AH =a 2,BN =x -a2, ∴y =S 直角梯形AMNB =12·a 2[x +(x -a 2)]=12ax -a 28(a 2<x ≤32a ). (3)当M 位于点G 的右侧时, 由于AM =x ,DM =MN =2a -x ,∴y =S 梯形ABCD -S △MDN =12·a 2(2a +a )-12(2a -x )2=3a 24-12(4a 2-4ax +x 2)=-12x 2+2ax -5a 24(32a <x ≤2a ).综上有y =⎩⎪⎨⎪⎧12x 2(0≤x ≤a 2),12ax -a 28(a 2<x ≤32a ),-12x 2+2ax -5a 24(32a <x ≤2a ).[课时作业] [A 组 基础巩固]1.若函数f (x )在区间(a ,b ]上是增函数,在区间(b ,c )上也是增函数,则函数f (x )在区间(a ,c )上( ) A .必是增函数 B .必是减函数C .是增函数或是减函数D .无法确定单调性 答案:D2.如果函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,则实数a 的取值范围是( ) A .[-3,+∞) B .(-∞,-3] C .(-∞,5]D .[3,+∞)解析:二次函数开口向上,对称轴为x =-2(a -1)2=1-a ,要使f (x )在(-∞,4]上是减函数,需满足1-a ≥4,即a ≤-3. 答案:B3.函数y =|x +2|在区间[-3,0]上是( ) A .递减 B .递增 C .先减后增D .先增后减解析:y =|x +2|的图象是由y =|x |图象向左平移2个单位得来,由图可知y =|x +2|在[-3,-2]上递减,在[-2,0]上递增. 答案:C4.函数f (x )=x -1x 在(0,+∞)上( ) A .递增 B .递减 C .先增再减D .先减再增解析:∵y =x 在(0,+∞)上递增,y =-1x 在(0,+∞)上也递增, ∴f (x )=x -1x 在(0,+∞)上递增. 答案:A5.下列函数中,满足“对任意x 1,x 2∈(0,+∞),都有f (x 1)-f (x 2)x 1-x 2>0”的是( )A .f (x )=2x B .f (x )=-3x +1 C .f (x )=x 2+4x +3D .f (x )=x 2-4x +3解析:∵x 1,x 2∈(0,+∞)时, f (x 1)-f (x 2)x 1-x 2>0恒成立,∴f (x )在(0,+∞)是增函数. 答案:C6.函数f (x )=2x 2-mx +3,当x ∈[2,+∞)时是增函数,当x ∈(-∞,2]时是减函数,则f (1)=________.解析:f (x )=2(x -m 4)2+3-m 28,由题意m4=2,∴m =8. ∴f (1)=2×12-8×1+3=-3. 答案:-37.函数y =-(x -3)|x |的递增区间是________. 解析:y =-(x -3)|x | =⎩⎨⎧-x 2+3x (x >0),x 2-3x (x ≤0).作出该函数的图象,观察图象知递增区间为⎣⎢⎡⎦⎥⎤0,32.答案:⎣⎢⎡⎦⎥⎤0,328.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是________.解析:由f (x )在[1,2]上单调递减可得a ≤1;由g (x )在[1,2]上单调递减可得a >0 ∴a ∈(0,1]. 答案:(0,1]9.函数f (x )是定义在(0,+∞)上的减函数,对任意的x ,y ∈(0,+∞), 都有f (x +y )=f (x )+f (y )-1,且f (4)=5. (1)求f (2)的值; (2)解不等式f (m -2)≤3.解析:(1)∵f (4)=f (2+2)=2f (2)-1=5, ∴f (2)=3.(2)由f (m -2)≤3,得f (m -2)≤f (2). ∵f (x )是(0,+∞)上的减函数. ∴⎩⎨⎧m -2≥2,m -2>0解得m ≥4. ∴不等式的解集为{m |m ≥4}.10.求函数f (x )=|x 2-6x +8|的单调区间.解析:先作出y =x 2-6x +8的图象,然后x 轴上方的不变,x 轴下方的部分关于x 轴对称翻折,得到如图f (x )=|x 2-6x +8|的图象,由图象可知f (x )的增区间为[2,3],[4,+∞];减区间为(-∞,2],[3,4].[B 组 能力提升]1.已知f (x )=x 2+bx +4,且f (1+x )=f (1-x ),则f (-2),f (2),f (3)的大小关系为( )A .f (-2)<f (2)<f (3)B .f (-2)>f (2)>f (3)C .f (2)<f (-2)<f (3)D .f (2)<f (3)<f (-2)解析:∵f (x )=x 2+bx +4,且f (1+x )=f (1-x ),∴f (x )图象开口向上且关于x =1对称,∴f (x )在[1,+∞)上递增,而f (-2)=f (1-3)=f (1+3)=f (4),∴f (2)<f (3)<f (4)=f (-2).。
高中数学 1.1.1第1课时 集合的含义课时作业(含解析)新人教A版必修1
课时作业(一) 集合的含义[学业水平层次]一、选择题1.(2014·遵义高一检测)以下各组对象不能组成集合的是( )A.中国古代四大发明B.地球上的小河流C.方程x2-1=0的实数解D.周长为10cm的三角形【解析】因为没有明确的标准确定什么样的河流称为小河流,故地球上的小河流不能组成集合.【答案】 B2.设集合A只含有一个元素a,则有( )A.0∈A B.a∉A C.a∈A D.a=A【解析】∵集合A中只含有一个元素a,故a属于集合A,∴a∈A.【答案】 C3.由实数x,-x,|x|,x2,-3x3所组成的集合,最多含( )A.2个元素B.3个元素C.4个元素D.5个元素【解析】由于|x|=±x,x2=|x|,-3x3=-x,并且x,-x,|x|之中总有两个相等,所以最多含2个元素.1【答案】 A4.集合A中含有三个元素2,4,6,若a∈A,且6-a∈A,那么a为( )A.2 B.2或4 C.4 D.0【解析】若a=2,则6-2=4∈A;若a=4,则6-4=2∈A若a=6,则6-6=0∉A,故选B【答案】 B二、填空题5.以方程x2-5x+6=0和方程x2-x-2=0的解为元素的集合中共有________个元素.【解析】方程x2-5x+6=0的解是2,3;方程x2-x-2=0的解是-1,2.由集合元素的互异性知,以这两个方程的解为元素的集合中共有3个元素.【答案】 36.(2014·石家庄高一检测)集合P中含有两个元素分别为1和4,集合Q中含有两个元素1和a2,若P与Q相等,则a=________ 【解析】∵P与Q相等,∴a2=4,∴a=±2,经检验知a=±2满足题意,故a=±2,【答案】±27.(2014·天津高一检测)集合A中的元素y满足y∈N且y=-x2+1,若t∈A,则t的值为________.【解析】因为y=-x2+1≤1,且y∈N,所以y的值为0,1,即集合A中的元素为0,1.又t∈A,所以t=0或1.23 【答案】 0或1三、解答题8.集合A 是由形如m +3n (m ∈Z,n ∈Z)的数构成的,判断12-3是不是集合 A 中的元素.【解】 由分母有理化,得12-3=2+ 3.由题意可知m =2,n =1,均有m ∈Z,n ∈Z ,∴2+3∈A ,即12-3∈A .9.已知集合A 含有两个元素1,2,集合B 表示方程x 2+ax +b =0的解的集合,且集合A 与集合B 相等,求a ,b 的值.【解】 ∵集合A 与集合B 相等,且1∈A ,2∈A ,∴1∈B ,2∈B ,∴1,2是方程x 2+ax +b =0的两个实数根,∴⎩⎪⎨⎪⎧1+2=-a ,1×2=b ,∴⎩⎪⎨⎪⎧a =-3,b =2.[能力提升层次]1.若一个集合中的三个元素a ,b ,c 是△ABC 的三边长,则此三角形一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形【解析】 △ABC 的三边长两两不等,故选D.【答案】 D2.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( )4 A .2 B .3C .0或3D .0,2,3均可【解析】 由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾;若m 2-3m +2=2,则m =0或m =3,当m =0时,与m ≠0相矛盾,当m =3时,此时集合A 的元素为0,3,2,符合题意.【答案】 B3.已知集合A 中含有两个元素1和a 2,则a 的取值范围是________.【解析】 由集合中元素的互异性,可知a 2≠1,所以a ≠±1,即a ∈R 且a ≠±1.【答案】 a ∈R 且a ≠±14.已知数集A 满足条件:若a ∈A ,则11-a ∈A (a ≠1),如果a =2,试求出A 中的所有元素.【解】 ∵2∈A ,由题意可知,11-2=-1∈A .由-1∈A 可知,11-(-1)=12∈A ;由12∈A 可知,11-12=2∈A .故集合A 中共有3个元素,它们分别是-1,12,2.。
【创新设计】高中数学(人教版必修一)配套练习:1.1集 合习题课(含答案解析)
§1.1 习题课课时目标1.巩固和深化对基础知识的理解与掌握.2.重点掌握好集合间的关系与集合的基本运算.1.若A={x|x+1>0},B={x|x-3<0},则A∩B等于()A.{x|x>-1} B.{x|x<3}C.{x|-1<x<3} D.{x|1<x<3}2.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于()A.{x|x<-5或x>-3} B.{x|-5<x<5}C.{x|-3<x<5} D.{x|x<-3或x>5}3.设集合A={x|x≤13},a=11,那么()A.a A B.a∉AC.{a}∉A D.{a} A4.设全集I={a,b,c,d,e},集合M={a,b,c},N={b,d,e},那么(∁I M)∩(∁I N)等于()A.∅B.{d}C.{b,e} D.{a,c}5.设A={x|x=4k+1,k∈Z},B={x|x=4k-3,k∈Z},则集合A与B的关系为____________.6.设A={x∈Z|-6≤x≤6},B={1,2,3},C={3,4,5,6},求:(1)A∪(B∩C);(2)A∩(∁A(B∪C)).一、选择题1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆PC.P⊆∁R Q D.Q⊆∁R P2.符合条件{a}P⊆{a,b,c}的集合P的个数是()A.2 B.3C.4 D.53.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则下列关系正确的是() A.M=P B.M PC.P M D.M与P没有公共元素4.如图所示,M,P,S是V的三个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩S)∩(∁S P) D.(M∩P)∪(∁V S)5.已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的范围是()A.{a|3<a≤4} B.{a|3≤a≤4}C.{a|3<a<4} D.∅二、填空题6.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范围是________.7.集合A={1,2,3,5},当x∈A时,若x-1∉A,x+1∉A,则称x为A的一个“孤立元素”,则A中孤立元素的个数为____.8.已知全集U={3,7,a2-2a-3},A={7,|a-7|},∁U A={5},则a=________. 9.设U=R,M={x|x≥1},N={x|0≤x<5},则(∁U M)∪(∁U N)=________________.三、解答题10.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.11.某班50名同学参加一次智力竞猜活动,对其中A,B,C三道知识题作答情况如下:答错A者17人,答错B者15人,答错C者11人,答错A,B者5人,答错A,C者3人,答错B,C者4人,A,B,C都答错的有1人,问A,B,C都答对的有多少人?能力提升12.对于k∈A,如果k-1∉A且k+1∉A,那么k是A的一个“孤立元”,给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有几个?13.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都是集合U={x|0≤x≤1}的子集,定义b-a为集合{x|a≤x≤b}的“长度”,求集合M∩N的长度的最小值.1.在解决有关集合运算题目时,关键是准确理解交、并、补集的意义,并能将题目中符号语言准确转化为文字语言.2.集合运算的法则可借助于Venn图理解,无限集的交集、并集和补集运算可结合数轴,运用数形结合思想.3.熟记一些常用结论和性质,可以加快集合运算的速度.4.在有的集合题目中,如果直接去解可能比较麻烦,若用补集的思想解集合问题可变得更简单.§1.1 习题课双基演练1.C [∵A ={x|x>-1},B ={x|x<3},∴A∩B ={x|-1<x<3},故选C.]2.A [画出数轴,将不等式-3<x ≤5,x<-5,x>5在数轴上表示出来,不难看出M ∪N ={x|x<-5或x>-3}.]3.D4.A [∵∁I M ={d ,e},∁I N ={a ,c},∴(∁I M)∩(∁I N)={d ,e}∩{a ,c}=∅.]5.A =B解析 4k -3=4(k -1)+1,k ∈Z ,可见A =B.6.解 ∵A ={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}(1)又∵B∩C ={3},∴A ∪(B∩C)={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}.(2)又∵B ∪C ={1,2,3,4,5,6},∴∁A (B ∪C)={-6,-5,-4,-3,-2,-1,0}∴A∩(∁A (B ∪C))={-6,-5,-4,-3,-2,-1,0}.作业设计1.B [Q ={x|-2<x<2},可知B 正确.]2.B [集合P 内除了含有元素a 外,还必须含b ,c 中至少一个,故P ={a ,b},{a ,c},{a ,b ,c}共3个.]3.B [∵a ∈N *,∴x =a 2+1=2,5,10,….∵b ∈N *,∴y =b 2-4b +5=(b -2)2+1=1,2,5,10,….∴M P.]4.C [阴影部分是M ∩S 的部分再去掉属于集合P 的一小部分,因此为(M ∩S)∩(∁S P).]5.B [根据题意可画出下图.∵a +2>a -1,∴A≠∅.有⎩⎪⎨⎪⎧a -1≤3,a +2≥5.解得3≤a≤4.] 6.a≤2解析 如图中的数轴所示,要使A∪B=R,a≤2.7.1解析当x=1时,x-1=0∉A,x+1=2∈A;当x=2时,x-1=1∈A,x+1=3∈A;当x=3时,x-1=2∈A,x+1=4∉A;当x=5时,x-1=4∉A,x+1=6∉A;综上可知,A中只有一个孤立元素5.8.4解析∵A∪(∁U A)=U,由∁U A={5}知,a2-2a-3=5,∴a=-2,或a=4.当a=-2时,|a-7|=9,9∉U,∴a≠-2.a=4经验证,符合题意.9.{x|x<1或x≥5}解析∁U M={x|x<1},∁U N={x|x<0或x≥5},故(∁U M)∪(∁U N)={x|x<1或x≥5}或由M∩N={x|1≤x<5},(∁U M)∪(∁U N)=∁U(M∩N)={x|x<1或x≥5}.10.解(1)∵B={x|x≥2},∴A∩B={x|2≤x<3}.(2)∵C={x|x>-a2},B∪C=C⇔B⊆C,∴-a2<2,∴a>-4.11.解由题意,设全班同学为全集U,画出Venn图,A表示答错A的集合,B表示答错B的集合,C表示答错C的集合,将其集合中元素数目填入图中,自中心区域向四周的各区域数目分别为1,2,3,4,10,7,5,因此A∪B∪C中元素数目为32,从而至少错一题的共32人,因此A,B,C全对的有50-32=18人.12.解依题意可知,“孤立元”必须是没有与k相邻的元素,因而无“孤立元”是指在集合中有与k相邻的元素.因此,符合题意的集合是:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}共6个.13.解 在数轴上表示出集合M 与N ,可知当m =0且n =1或n -13=0且m +34=1时,M∩N 的“长度”最小.当m =0且n =1时,M∩N ={x|23≤x≤34},长度为34-23=112;当n =13且m =14时,M∩N ={x|14≤x≤13},长度为13-14=112. 综上,M∩N 的长度的最小值为112.。
必修一课时作业全体答案
Book 1 unit 1课时作业(一)答案第一部分:I 1. entirely 2. series 3. thunder 4. dusty 5. curtainII.1. upset 2. exactly 3. power 4. outdoors 5. ignored 6. recovered 7. lonely 8. settled 9. grateful10. looseIII. 1. ignore 2. points 3. power 4. add 5 concerned about第二部分:选择填空1-5 AADAA 6-10 DAACC 11-15 CBDDC第三部分: 阅读理解1-4BBDB课时作业(二)答案第一部分单词拼写1. teenagers2. overcoat3. disagreed4. set5. joined完成句子1.settle down2.suffered great pain3.has got tired of dong4.is getting along well with5.recovered第二部分:完型填空: 16-20 BAACD 21-25ADBBA 26-30 ACDBA 31-35 DBAAD课时作业(三)答案第一部分单项填空1-15 BABCD BCCBC ADCAB第二部分阅读1-8 BCDC BBAC课时作业(四)答案I. 1. that she hadn’t meant to hurt me2. whether / if I would stay at home alone that weekend3. what I wanted to get as a present on my birthday4. what they would eat that day5. he was sure Robin could win the match the next dayII. 1. Why are you so worried about the exam?2. I have lived in this city for about three years.3. Will you ask for leave since you are not well?4. What’s the matter with you?5. I can lift up the big stone,III. 1. so that; could2. with; in his hand3. didn’t recognize; until4. happened to see5. It is the second time thatI. 1. 第二个I前加whether 2. did改为do;was改为is3. that改为why / whether / if4. will he改为he would5. didn’t hear改为hadn’t heard第二部分选择填空ADCDC BDCDD CBDBD完形填空36-40 ADBCA 41-45 DDABA 46-50 DCDDC 51-55 BACCDBook 1 unit 2 课时作业(一)答案第一部分1. Western2. vocabulary3. native4. included5.gas6.international7. modern8. government9. cultures 10.present(二)单项选择1-5 ACDBB 6-10 DDBDB(四)阅读理解31-35 DDCAC课时作业(二)答案第一部分(一).根据首字母提示完成句子。
2021-2022学年高一数学(人教A版必修一)课时作业:1-1集合 习题课
课时作业(七)1.(2021·广东理)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N=()A.{1,4}B.{-1,-4}C.{0} D.∅答案 D2.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素的个数为()A.3 B.4C.5 D.6答案 A3.集合M={x|x=1+a2,a∈N*},P={x|x=a2-4a+5,a∈N*},则下列关系中正确的是()A.M P B.P MC.M=P D.M P且P M答案 A解析P={x|x=1+(a-2)2,a∈N*},当a=2时,x=1而M中无元素1,P 比M多一个元素.4.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=()A.{x|0≤x≤1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}答案 B5.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩(∁N B)=()A.{1,5,7} B.{3,5,7}C.{1,3,9} D.{1,2,3}答案 A6.已知方程x2-px+15=0与x2-5x+q=0的解集分别为S与M,且S∩M ={3},则p+q的值是()A.2 B.7C.11 D.14答案 D解析由交集定义可知,3既是集合S中的元素,也是集合M中的元素.亦即是方程x2-px+15=0与x2-5x+q=0的公共解,把3代入两方程,可知p=8,q=6,则p+q的值为14.7.已知全集R,集合A={x|(x-1)(x+2)(x-2)=0},B={y|y≥0},则A∩(∁R B)为()A.{1,2,-2} B.{1,2}C.{-2} D.{-1,-2}答案 C解析A={1,2,-2},而B的补集是{y|y<0},故两集合的交集是{-2},选C.8.集合P={1,4,9,16,…},若a∈P,b∈P,则a⊕b∈P,则运算⊕可能是()A.除法B.加法C.乘法D.减法答案 C解析当⊕为除法时,14∉P,∴排解A;当⊕为加法时,1+4=5∉P,∴排解B;当⊕为乘法时,m2·n2=(mn)2∈P,故选C;当⊕为减法时,1-4∉P,∴排解D.9.设全集U=Z,集合P={x|x=2n,n∈Z},Q={x|x=4m,m∈Z},则U 等于()A.P∪Q B.(∁U P)∪QC.P∪(∁U Q) D.(∁U P)∪(∁U Q)答案 C10.设S,P为两个非空集合,且S P,P S,令M=S∩P,给出下列4个集合:①S;②P;③∅;④S∪P.其中与S∪M能够相等的集合的序号是()A.①B.①②C.②③D.④答案 A11.设集合I={1,2,3},A是I的子集,若把满足M∪A=I的集合M叫做集合A的“配集”,则当A={1,2}时,A的配集的个数是()A.1 B.2C.3 D.4答案 D解析A的配集有{3},{1,3},{2,3},{1,2,3}共4个.12.已知集合A,B与集合A@B的对应关系如下表:A {1,2,3,4,5}{-1,0,1}{-4,8}B {2,4,6,8}{-2,-1,0,1}{-4,-2,0,2}A@B {1,3,6,5,8}{-2}{-2,0,2,8} 若A={-2 011,0,2 012},B={-2 011,0,2 013},试依据图表中的规律写出A@B=________.答案{2 012,2 013}13.已知A={2,3},B={-4,2},且A∩M≠∅,B∩M=∅,则2________M,3________M.答案∉∈解析∵B∩M=∅,∴-4∉M,2∉M.又A∩M≠∅且2∉M,∴3∈M.14.若集合A={1,3,x},B={1,x2},且A∪B={1,3,x},则x=________.答案±3或0解析由A∪B={1,3,x},B A,∴x2∈A.∴x2=3或x2=x.∴x=±3或x=0,x=1 (舍).15.已知A⊆M={x|x2-px+15=0,x∈R},B⊆N={x|x2-ax-b=0,x∈R},又A∪B={2,3,5},A∩B={3},求p,a和b的值.解析由A∩B={3},知3∈M,得p=8.由此得M={3,5},从而N={3,2},由此得a=5,b=-6.►重点班·选做题16.已知某校高一班级有10个班,集合A={某校高一(1)的同学},B={某校高一(1)班的男生},D={某校高一班级(1)-(10)班}.(1)若A为全集,求∁A B;(2)若D为全集,能否求出∁D B?为什么?解析(1)∁A B={某校高一(1)班的女生}.(2)不能求出∁D B,由于D的元素是某校高一班级各班,而B的元素是同学,∴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[基础巩固](25分钟,60分)
一、选择题(每小题5分,共25分)
1.已知集合P={x|x2=1},Q={x|ax=1},若Q⊆P,则a的值是()
A.1B.-1
C.1或-1 D.0,1或-1
解析:由题意,当Q为空集时,a=0;当Q不是空集时,由Q ⊆P,a=1或a=-1.
答案:D
2.已知集合M={y|y=x2-2x-1,x∈R},集合N={x|-2≤x≤4},则集合M与N之间的关系是()
A.M>N B.M N
C.N M D.M⊆N
解析:因为y=(x-1)2-2≥-2,
所以M={y|y≥-2},所以N M.
答案:C
3.已知集合A={1,2,3},B={3,x2,2},若A=B,则x的值是() A.1 B.-1
C.±1 D.0
解析:由A=B得x2=1,所以x=±1,故选C.
答案:C
4.已知集合A={-1,0,1},则含有元素0的A的子集的个数为()
A.2 B.4
C.6 D.8
解析:根据题意,含有元素0的A的子集为{0},{0,1},{0,-1},{-1,0,1},共4个.
答案:B
5.设A={x|2<x<3},B={x|x<m},若A⊆B,则m的取值范围是()
A.m>3 B.m≥3
C .m <3
D .m ≤3
解析:因为A ={x |2<x <3},B ={x |x <m },A ⊆B , 将集合A ,B 表示在数轴上,如图所示,所以m ≥3.
答案:B
二、填空题(每小题5分,共15分)
6.已知集合A ={x |x -3>0},B ={x |2x -5≥0},则这两个集合的关系是________.
解析:A ={x |x -3>0}={x |x >3},B ={x |2x -5≥0}=⎩⎨⎧⎭
⎬⎫x ⎪⎪⎪
x ≥52. 结合数轴知A B .
答案:A B
7.设集合A ={1,3,a },B ={1,a 2-a +1},且B ⊆A ,则a 的值为________.
解析:∵A ={1,3,a },B ={1,a 2-a +1},且B ⊆A , ∴a 2-a +1∈A ,∴a 2-a +1=3或a 2-a +1=a . 由a 2-a +1=3,得a =2或a =-1; 由a 2-a +1=a ,得a =1.
经检验,a =1时集合A ,B 不满足集合中元素的互异性,舍去. 故a =-1或a =2. 答案:-1或2
8.已知A ={x |-3<x <5},B ={x |x >a },A ⊆B ,则实数a 的取值范围是________.
解析:在数轴上画出集合A .
又因为A ⊆B ,所以a <-3, 当a =-3时也满足题意,
所以a ≤-3.
答案:{a |a ≤-3}
三、解答题(每小题10分,共20分)
9.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,试求a 与b 的值.
所以A={1,2}.
因为B⊆A,
所以对B分类讨论如下:①若B=∅,即方程ax-2=0无解,此时a=0;
②若B≠∅,则B={1}或B={2}.
当B={1}时,有a-2=0,即a=2;
当B={2}时,有2a-2=0,即a=1.
综上可知,符合题意的实数a所组成的集合C={0,1,2}.
[能力提升](20分钟,40分)
11.世界羽毛球锦标赛于2018年7月30日至8月5日在中国南京举行,若集合A={参加羽毛球锦标赛的运动员},集合B={参加羽毛球锦标赛的男运动员},集合C={参加羽毛球锦标赛的女运动员},则下列关系正确的是()
A.A⊆B B.B⊆C
C.C⃘A D.B A
解析:易知集合B,C是集合A的子集,且是真子集,而B,C 之间没有关系,因此只有D选项正确,
答案:D
12.已知集合A={1,3,5},则集合A的所有子集的元素之和为________.
解析:集合A的子集分别是:∅,{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5}.注意到A中的每个元素出现在A的4个子集,即在其和中出现4次.故所求之和为(1+3+5)×4=36.
答案:36
13.已知集合A={1,3,x2},B={x+2,1}.是否存在实数x,使得B⊆A?若存在,求出集合A,B;若不存在,说明理由.解析:假设存在实数x,使B⊆A,
则x+2=3或x+2=x2.
(1)当x+2=3时,x=1,此时A={1,3,1},不满足集合元素的互
异性.故x ≠1.
(2)当x +2=x 2时,即x 2-x -2=0,故x =-1或x =2. ①当x =-1时,A ={1,3,1},与集合元素的互异性矛盾,故x ≠-1.
②当x =2时,A ={1,3,4},B ={4,1},显然有B ⊆A .
综上所述,存在x =2,使A ={1,3,4},B ={4,1}满足B ⊆A . 14.已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围.
解析:∵B ⊆A ,
(1)当B =∅时,m +1≤2m -1, 解得m ≥2. (2)当B ≠∅时, 有⎩⎪⎨⎪
⎧
-3≤2m -1,m +1≤4,2m -1<m +1,
解得-1≤m <2. 综上得m ≥-1.
即实数m 的取值范围为{m |m ≥-1}.。