三角形面积等积变形测试题
四年级几何三角形的等积变形学生版
知识要点三角形的等积变形我们已经知道三角形面积的计算公式:三角形面积=底⨯高2÷从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积。
如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化。
但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化。
比如当高变为原来的3倍,底变为原来的13,则三角形面积与原来的一样。
这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化。
同时也告诉我们:面积相同三角形有无数多个不同的形状。
在实际问题的研究中,我们还会常常用到以下结论: ① 等底等高的两个三角形面积相等。
② 若两个三角形的高相等,其中一个三角形的底是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍。
若两个三角形的底相等,其中一个三角形的高是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍。
③夹在一组平行线之间的等积变形,如下图,ACD ∆和BCD ∆夹在一组平行线之间,且有公共底边CD 那么ACD BCD S S ∆∆=;反之,如果ACD BCD S S ∆∆=,则可知直线AB 平行于CD 。
ACDB等底等高【例 1】 如图,在ABC ∆中,D 是BC 中点,E 是AD 中点,连结BE 、CE ,那么与ABE ∆等积的三角形一共有哪几个三角形?EABDC【例 2】 如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积。
HBD F【例 3】 如图,在平行四边形ABCD 中,EF 平行AC ,连结BE 、AE 、CF 、BF 那么与BEC ∆等积的三角形一共有哪几个三角形?ABCEDF【例 4】 如图,ABCD 为平行四边形,EF 平行AC ,如果ADE ∆的面积为4平方厘米。
五大模型(三角型等积变形、共角模型
杨秀情——六年级秋季——配套练习【练练1】如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积.HGFE D CBA【练练2】图中的E 、F 、G 分别是正方形ABCD 三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是______;E D GCFBA【练练3】(2008年”希望杯”二试六年级)如图,E 、F 、G 、H 分别是四边形ABCD 各边的中点,FG 与FH 交于点O ,1S 、2S 、3S 及4S 分 别表示四个小四边形的面积.试比较13S S +与24S S +的大小.OS 4S 3S 2S 1H GFEDC BA【练练4】如图,三角形ABC 中,2DC BD =,3CE AE =,三角形ADE 的面积是20平方厘米,三角形ABC 的面积是多少?EDCBA【练练5】(2008年第一届“学而思杯”综合素质测评六年级2试)如图,45BC =,21AC =,ABC ∆被分成9个面积相等的小三角形,那么DI FK += .KJIH GFE DC B A【练练6】如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面积是 平方厘米.A B CDE F【练练7】(2009年四中小升初入学测试题)如图所示,平行四边形的面积是50平方厘米,则阴影部分的面积是 平方厘米.【练练8】如下图,长方形AFEB 和长方形FDCE 拼成了长方形ABCD ,长方形ABCD 的长是20,宽是12,则它内部阴影部分的面积是 .F E DCBA【练练9】(第三届“华杯赛”初赛试题)一个长方形分成4个不同的三角形,绿色三角形面积占长方形面积的15%,黄色三角形面积是221cm .问:长方形的面积是多少平方厘米?红绿黄红【练练10】如图,正方形ABCD 的边长为6,AE =1.5,CF =2.长方形EFGH 的面积为 .HGF EDCBA【练练11】如图所示,四边形ABCD 与AEGF 都是平行四边形,请你证明它们的面积相等.GFEDCB A【练练12】2008年春蕾杯五年级决赛如图,长方形ABCD 的边上有两点E 、F ,线段AF 、BF 、CE 、BE 把长方形分成若干块,其中三个小木块的面积标注在图上,阴影部分面积是 平方米。
小学四年级奥数题三角形的等积变形及答案【三篇】
小学四年级奥数题三角形的等积变形及答案【三篇】【第一篇】1. 三角形把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.分析分成8块的方法是:先取各边的中点并把它们连接起来,得到4个大小、形状相同的三角形,然后再把每一个三角形分成一半,得到如下左图所示的图形.分成9块的方法是:先把每边三等分,然后再把分点彼此连接起来,得到加上右图所示的符合条件的图形.2.比较比较下面两个积的大小:A=987654321×123456789,B=987654322×123456788.分析经审题可知A的第一个因数的个位数字比B的第一个因数的个位数字小1,但A的第二个因数的个位数字比B的第二个因数的个位数字大1.所以不经计算,凭直接观察不容易知道A和B哪个大.但是无论是对A或是对B,直接把两个因数相乘求积又太繁,所以我们开动脑筋,将A和B先进行恒等变形,再作判断.解: A=987654321×123456789=987654321×(123456788+1)=987654321×123456788+987654321.B=987654322×123456788=(987654321+1)×123456788=987654321×123456788+123456788.因为 987654321>123456788,所以 A>B.【第二篇】如图,四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积为6平方厘米,求三角形CDH的面积.三角形面积答案:通常求三角形的面积,都是先求它的底和高.题目中没有一条线段的长度是已知的,所以我们只能通过创造等积的方法来求.直接找三角形HDC 与三角形AFH 的关系还很难,而且也没有利用"四边形ABCD和四边形DEFG 是正方形"这一条件.我们不妨将它们都补上梯形DEFH 这一块.寻找新得到大三角形CEF 和大直角梯形DEFA 之间的关系.经过验算,可以知道它们的面积是相等的.从而得到三角形 HDC与三角形AFH面积相等,也是6平方厘米.【第三篇】如下图,BE=2AB,BC=CD。
四年级下册数学试题-思维训练:三角形等积变形(下)(含答案)全国通用
正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中阴影面积为多少平方厘米?两个正方形如图排列,面积相差60,求阴影部分梯形面积。
如图所示,已知正方形ABCD的边长为10厘米,EC=2×BE,那么,图中阴影部分的面积是________平方厘米。
例3例2例1三角形等积变形(下)如图,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积。
如图,ABCD为平行四边形,EF平行AC,如果△ADE的面积为4平方厘米。
求三角形CDF的面积。
如图,在四边形ABCD中,对角线AC、BD交于E,且AF=CE,BG=DE,如果四边形ABCD 面积是1,求△EFG的面积?例6例5例4测试题1.如图,长方形ABCD的面积是1,M是AD边的中点,N在AB边上,且2AN BN。
那么,阴影部分的面积是多少?2.如图,梯形ABCD被它的一条对角线BD分成了两部分。
三角形BDC的面积比三角形ABD 的面积大10平方分米。
已知梯形的上底与下底的长度之和是15分米,它们的差是5分米。
求梯形ABCD的面积。
ADB C 3.图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是()平方厘米。
4.正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中阴影面积为多少平方厘米?HGFEBA5.如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使2AF AC =,求三角形DEF 的面积。
答案1.A M连接BM ,因为M 是中点所以ABM ∆的面积为14又因为2AN BN =,所以ANM ∆的面积为1114312⨯=,又因为BDC ∆面积为12,所以阴影部分的面积为:115112212--= 2.bDCBA如右图,作AB 的平行线DE 。
小学数学《三角形的等积变形》练习题(含答案)
三角形ABC的面积=(12+4)×高÷2=8×高
三角形ADC的面积=4×高÷2=2×高
所以,三角形ABC的面积是三角形ABD面积的4/3倍;三角形ABD的面积是三角形ADC面积的3倍。
巩固理解结论:两个三角形等高时,面积的倍数=底的倍数
【例2】如右图,E在AD上,AD垂直BC,AD=12厘米,DE=3厘米。
而四边形CEFH是它们的公共部分,
所以三角形DHF的面积=三角形BCH的面积,
进而可得阴影面积=三角形BDF的面积=三角形BCD的面积= 10×10÷2=50(平方厘米)。
法2:连接CF,那么CF平行BD,
所以,阴影面积=三角形BDF的面积=三角形BCD的面积=50(平方厘米)。
附加题目
【附1】 如右图,四边形ABCD面积为1,且AB=AE,BC=BF,DC=CG,AD=DH.求四边形EFGH的面积.
巩固理解结论:两个三角形等底时,面积的倍数=高的倍数
【例3】用两种不同的方法,把任意一个三角形分成四个面积相等的三角形.
分析:法1:如图(1),将BC边四等分,连接各等分点,则△ABD、△ADE、△AEF、△AFC面积相等。
法2:如图(2),D是BC的二等分点,E、F是AC、AB的中点,从而得到四个等积三角形△ADF、△BDF、△DCE、△ADE.
【例7】图中△AOB的面积为15cm2,线段OB的长度为OD的3倍,求梯形ABCD的面积.
分析:
【例8】(北京市第一届“迎春杯”刊赛)如右图.将三角形ABC的BA边延长1倍到D,CB边延长2倍到E,AC边延长3倍到F.如果三角形ABC的面积等于l,那么三角形DEF的面积是?
分析:连结AE、BF、CD(如右下图).由于三角形AEB与三角ABC的高相等,而底边EB=2BC,所以三角形AEB的面积是2.同理,三角形CBF的面积是3,三角形ACD的面积是1.
【小升初专项训练】04 等积变形
第5讲等积变形第一关三角形的等积变形【例1】如图,在等腰直角三角形ABC中,已知AB的长是7厘米,那么这个直角三角形的面积为 平方厘米。
【答案】12.25【例2】如图,E、F分别是梯形ABCD两腰上的中点,已知阴影部分的面积是43c㎡,那么梯形ABCD 的面积是多少?【答案】172【例3】如图:三条直线互相平行,l1与l3之间的距离是7厘米,l2上AB=4厘米.求阴影部分三角形的面积是多少平方厘米? 【答案】14【例4】你能看出下面两个阴影部分A与B面积的大小关系吗?(两个长方形面积相等)【答案】A与B的面积相等【例5】如图,在斜边长为20cm的直角三角形ABC中去掉一个正方形EDFB,留下两个阴影部分直角三角形AED和DFC.若AD=8cm,CD=12cm,则阴影部分面积为多少?给出答案并说明你的计算依据.【答案】48【例6】如图,在直角三角形中有一个正方形,已知BD=10厘米,DC=7厘米,阴影部分的面积是多少?【答案】35平方厘米【例7】如图,梯形ABCD的面积是36,下底长是上底长的2倍,阴影三角形的面积是多少?【答案】16【例8】下图中阴影部分甲的面积与阴影部分乙的面积哪个大?【答案】图中甲乙的面积相等【例9】如图,在三角形ABC中,D是BC上靠近C的三等分点,E是AD中点,已知三角形ABC的面积为1,那么图中两个阴影三角形面积之和是多少?【答案】0.4【例10】已知△ABC面积为5,且BD=2DC,AE=ED,求阴影部分面积.要求写出关键的解题推理过程.【答案】2【例11】如图,将一个梯形分成四个三角形,其中两个三角形的面积分别为10与12.已知梯形的上底长度是下底的.请问:阴影部分的总面积是多少?【答案】23【例12】如图,已知梯形ABCD中,CD=10,梯形ABCD的高是4,那么阴影部分的面积是多少。
【答案】20【例13】(1)如图1,阴影部分的面积是多少?(2)如图2,一个长方形长4厘米,宽3厘米.A为长方形内的任意一点,阴影部分的面积是多少?【答案】(1)100;(2)6【例14】如图,在图中△ABE、ADF和四边形AECF面积相等.阴影部分的面积是多少?【答案】15【例15】如图,两个正方形(单位:厘米)中阴影部分的面积是多少平方厘米?【答案】8【例16】由面积为1,2,3,4的矩形拼成如图的长方形,图中阴影部分的面积为多少?【答案】【例17】如图所示,正方形ABCD的对角线BD长20厘米,BDFE是长方形.那么,五边形ABEFD的面积是多少平方厘米。
小学数学《三角形的等积变形》练习题(含答案)
内容概述
我们已经知道三角形面积的计算公式:三角形面积=底×高÷2
从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.
如果三角形的底不变,高越大(小),三角形面积也就越大(小);
如果三角形的高不变,底越大(小),三角形面积也就越大(小);
这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1/3,则三角形面积与原来的一样。这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.
于是:三角形ABD的面积=12×高÷2=6×高
三角形ABC的面积=(12+4)×高÷2=8×高
三角形ADC的面积=4×高÷2=2×高
所以,三角形ABC的面积是三角形ABD面积的4/3倍;三角形ABD的面积是三角形ADC面积的3倍。
巩固理解结论:两个三角形等高时,面积的倍数=底的倍数
【例2】如右图,E在AD上,AD垂直BC,AD=12厘米,DE=3厘米。
【例6】如右图所示,在平行四边形ABCD中,E为AB的中点,AF=2CF,三角形AFE(图中阴影部分)的面积为8平方厘米.平行四边形的面积是多少平方厘米?
【例7】图中△AOB的面积为15cm2,线段OB的长度为OD的3倍,求梯形ABCD的面积.
【例8】(北京市第一届“迎春杯”刊赛)如右图.将三角形ABC的BA边延长1倍到D,CB边延长2倍到E,AC边延长3倍到F.如果三角形ABC的面积等于l,那么三角形DEF的面积是?
例题精讲
专项练习—等积变形
专项练习—等积变形1. 已知直角三角形的两条直角边长分别是21和28,求这个三角形内的最大正方形的边长?2. 如图,四边形ABCD 是等腰梯形,ADBE 是平行四边形,面积等于8,还知道三角形BCE 的面积是2,那么三角形CDE 的面积是多少?3. 开发商准备在一块地面上盖商品房,这块长方形地形情况如图,甲处比乙处高50厘米.现在要把这块地推平整,要从甲处取下多少厘米厚的土填在乙处上?ED CBA50厘米100米60米30米乙甲4. 如图,折线A ﹣B ﹣C ﹣D 的每一条线段都平行于矩形的边,它把矩形分成面积相等的两部分.点E 在矩形的边上,使得线段AE 也平分矩形的面积.已知线段AB =30,BC =24,CD =10,求DE 的长.5. 如图是直角三角形中有一个内接正方形,求图中阴影部分的面积.单位:厘米.提示:分拆图形时常用“分割、填补、组合、旋转”等方法.6. 雨哗哗地不停地下着.如果在雨地放一个如图1那样的长方体的容器(单位:厘米),雨水将它灌满要用1小时.雨水灌满图2容器各需多长时间?E D CBA图2图1107. 把一个底面直径是4厘米的圆柱底面分成许多相等的扇形,然后沿着直径切开,拼成一个和它体积相等的长方体,这个长方体的表面积比原来圆柱的表面积增加了20平方厘米,这个长方体的体积是多少立方厘米?8. 如图,O 是半圆的圆心,AC =BC ,CD =DB ,AB =12厘米,求阴影部分的面积.9. 如图,直角梯形ABCD 中,AB =12,BC =8,CD =9,且三角形AED 、三角形FCD 和四边形EBFD 的面积相等,求三角形DEF 的面积.BAFEDCBA10.边长分别为8cm和6cm的两个正方形ABCD与BEFG如图并排放在一起.连接DE交BG于P,则图中阴影部分APEG的面积是多少?11.有一个长方体铁块,长8分米,宽4分米,高3分米.把它完全铸成一个圆柱,圆柱的底面半径是5分米,高是多少分米?(保留一位小数)12.有两个高度相等的容器A和B,已知A容器半径是6厘米,B容器的半径是8厘米,现在把A容器装满水,然后全部倒入B容器中,测得B容器中的水深比A容器高的3 4低了3厘米.求A、B两个容器的高是多少厘米?E13. 如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为多少平方厘米?14. 如图,有边长分别是15分米和20分米的两个正方形,一条直线把这两个相连的正方形分成甲、乙、丙、丁四部分.甲三角形的面积比丙三角形的面积大多少平方分米?15. 如图,ABCD 是等腰梯形,上底和下底分别是16厘米和24厘米,高是12厘米.阴影部分的面积是多少?丁丙乙甲CD。
三角形面积等积变形
三角形面积等积变形小学四年级阶段训练——三角形的等积变形一、填空:1.如图所示,已知矩形ABCD中,BE=1EC,则△ABE和△ABC的面积,则△2ABC的面积是△ABE的面积的()倍。
C(第1题)(第2题)2.如图所示,梯形ABCD中共有8个三角形,其中,面积相等的三角形有()对。
3.如图所示,已知平行四边形ABCD中,BC=3厘米,BC边的高AE是2厘米,则△ACD的面积是()平方厘米。
O(第3题)(第4题)4.如图所示,平行四边形MNOP中,Q是OP上任意一点,则S△MRQ( )S△NRO, S△MRN( )S△NRO,(填“>”“<”或“=”)5.如图所示,平行四边形ABCD中,E、F分别为AD,CD的中点,那么与△BFC面积相等的三角形有()个。
(第5题)(第6题)26.如图所示,△ABC中,D为BC中点,且DE=AD,则△ABC的面积等于5△CDE面积的()倍。
7.如图所示,在长方形ABCD中,阴影部分面积(>,<,=)空白部分面积表示()8.如图所示,△ABC与△BCD中,AE=ED,且AD⊥BC,把BC八等分,点F为第一个八等分点,E恰为第二个八等分点,则与△ABF面积相等的三角形有()个。
9.如图所示,已知BC长是5,其他数据如图所示,则画阴影线的两个三角形的面积之和是()(第7题)(第8题)(第9题)二.如图,已知在△ABC中,BE=3AE,AD=2CD,若△ADE的面积为2厘米。
求三角形ABC的面积。
三、如图,平行四边形ABCD中,直线DE交AB于F,若三角形ABE的面积是2平方厘米,求三角形CEF的面积。
四、如图所示,AD平行于BE,三角形ABC的面积是8平方厘米。
求四边形ACDE的面积。
小升初数学几何综合 (学生版)
习题课2之三角形面积、一半模型、等积变形一、面积公式长方形面积=长×宽(正方形面积=边长×边长=对角线2÷2)1.如图,有一块长方形田地被分成了五小块,分别栽种了茄子、黄瓜、豆角、莴笋和苦瓜.其中栽种茄子的面积是16平方米,栽种黄瓜的面积是28平方米,栽种豆角的面积是32平方米,栽种莴笋的面积是72平方米,而且左上角栽种茄子的田地恰好是一个正方形.请问:剩下的栽种苦瓜的田地面积是多少?2.如图,在正方形ABCD中,对角线AC的长度为8厘米,那么正方形的面积是多少平方厘米?平行四边形面积=底×高3.如图,小、中、大三个正方形从左到右依次紧挨着摆放,边长分别是3、7、9.图中两个阴影平行四边形的面积分别是多少?4.如图,两个边长10厘米的正方形相互错开3厘米,那么图中阴影平行四边形的面积是多少?5.如图,从梯形ABCD中分出两个平行四边形ABEF和CDFG.其中ABEF的面积等于60平方米,且AF的长度为10米,FD的长度为4米.平行四边形CDFG的面积等于多少平方米?三角形面积=底×高÷26.如图,把大、小两个正方形拼在一起,它们的边长分别是8厘米和6厘米,那么左图和右图中阴影部分的面积分别是多少平方厘米?7.如图,平行四边形ABCD中,AD的长度为20厘米,高CH的长度为9厘米;E是底边BC上的一点,且BE长6厘米,那么两个阴影三角形的面积之和是多少平方厘米?8.图中,平行四边形ABCD的面积是32平方厘米,三角形CED是一个直角三角形.已知AE=5厘米,CE=4厘米,那么阴影部分的面积是多少平方厘米?9.如图,在平行四边形ABCD中,三角形BCE的面积是42平方厘米,BC的长度为14厘米,AE的长度为9厘米,那么平行四边形ABCD的面积是多少平方厘米?三角形BCE的面积又是多少平方厘米?10.如图,小正方形ABCD放在大正方形EFGH的上面.已知小正方形的边长为4厘米,且梯形AEHD的面积是28平方厘米,那么梯形AFGD的面积多少平方厘米?二、几何变换和模型田字模型11.一块长方形的土地被分割成4个小长方形,其中三块的面积如图所示(单位:平方米),剩下一块的面积应该是多少平方米?12.如图8-11,有9个小长方形,其中的5个小长方形的面积分别为4、8、12、16、20平方米。
小学五年级数学思维专题训练—等积变形(含答案解析)
小学五年级数学思维专题训练—等积变形例1.长方形ABCD的面积是40平方厘米,E、F、G、H分别为AD、AH、DH、BC的中点,三角形EFG的面积是平方厘米例 2.梯形ABCD中,AE与DC平行,S ABE∆=15,S BCF∆= .例3。
如下图所示,长方形ABCD内的阴影部分的面积之和为70,AB=8,AD= 15.四边EFGO 的面积为。
例4.如下图所示,在平行四边形ABCD中,已知三角形ABP.BPC的面积分别是73、100,求三角形BPD的面积.例5.如下图所示,BD是平行四边形ABCD的对角线,EF平行于BD,如果三角形ABE的面积是12平方厘米,那么三角形AFD的面积是平方厘米。
例6.如下图所示,已知AE=EC,CD=DB,S ABC =60,求四边形FDCE的面积.例7.如右图所示,正方形ABC D和正方形ECGF并排放置,BF与CD相交于点H,已知AB=6厘米,则阴影部分的面积是平方厘米.例8.如下图所示,E、F、G、H分别是四边形ABCD各边的中点,EG与FH交于点O,S1、S2、S3及S4分别表示4个小四边形的面积.试比较S1+S3与S2+S4的大小.例9.将长15厘米、宽9厘米的长方形的长和宽都分成三等份,长方形内任意一点与分点及顶点连结,如右图所示,则阴影部分的面积是 平方厘米.例10.右图所示ABCD 是个直角梯形(∠DAB=∠ABC= 900),以 , AD 为一边向外作长方形ADEF ,其面积为6.36平方厘米,连接BE 交AD 于P ,再连接PC .则图中阴影部分的面积是 平方厘米。
A.6.36B.3.18C.2.12D.1.59例11.如下图所示,平行四边形内有两个大小一样的正六边形,那么阴影部分的面积占平行四边形面积的 。
A .21B .32C .52D .125例12.如下图所示,矩形ABCD 的面积是24平方厘米,三角形ADM 与三角形BCN 的面积之和是7.8平方厘米,则四边形PMON 的面积是 平方厘米.例13.一个矩形分成4个不同的三角形(如下图),绿色三角形面积占矩形面积的15%,黄色三角形的面积是21平方厘米.问:矩形的面积是多少平方厘米?例14.如下图所示,正方形每条边上的三个点(端点除外)都是这条边的四等分点,则阴影部分的面积是正方形面积的。
三角形面积、等积变形测试题
三角形面积和等积变形测试题姓名得分
1. 右图中,四边形ABCD的面积是320平方厘米,四边形ABED
2.是个正方形,已知BC等于CE的3倍,求三角形ECD的面积。
2.已知三角形ABC中,BC=3.5cm,AD=2cm,AC=2.8cm求BE的长度。
3.已知三角形ABC中,DC=BD,阴影部分的
面积是36平方厘米,求:三角形的面积。
4.如下左图,D、E、F分别是BC、AD、BE的三等分点,
5.已知S△ABC=27平方的面积:
6.如图,由两个边长分别是4cm和3cm
的正方形组成,求阴影部分的面积。
7.求右图中阴影部分的面积。
(单位:dm)
8.长方形ABCD中,三角形ABE、ADF,四边形AECF
的面积都相等,求三角形AEF的面积。
9.如下左图,在平行四边形ABCD中,E、F分别
是AC、BC的三等分点,且SABCD=54平方厘米,求S△BEF。
10.如图,已知△ABC的面积为12,M为AB边的中点。
MD与EC平行。求△EBD的面积。
★★
一块长方形的菜地,长为15米,宽为12米,请用经过A点的两条直线把这个长方形分成面积
等积变形例题
解 在直角三角形CDH和直角三角形EKD 中,CD=DE 又∵∠EDK=180°-∠CDH-90° ∠DCH=180°-∠CDH-90° ∴ DCH与 EDK完全相等。 而ABCD是等腰梯形
K A
E
故CH=(BC-AD) ÷2 =(35-23) ÷2
23
D F
=6(厘米) ∴DK=CH=6厘米
B
35
求绿色四边形的面积。 解 连BF,则四边形BCDF为梯形。 4 6 6 ∵S黄÷S红=6÷4=1.5 ∴S白÷S红=1.5×1.5=2.25 ∴S白=S红×2.25=4 ×2.25=9(平方厘米) ∴S绿=S白+S黄-S红 =9+6-4=11(平方厘米) 答:绿色四边形ABEF的面积为11平方厘米。
S KGE=S C D S DGE=S F G P 所以 阴影部分面积= H A B 解:14÷4=3.5(厘米) 正方形BEFG的周长=14厘米, E K
FGE BGE
正方形BEFG的面积
3.5×3.5=12.25(平方厘米) 求阴影部分面积。 答:图中阴影部分面积是 12.25平方厘米。
分析与解: 分析与解:
答:丙、丁两个三角形面 积之和是甲、乙两个三角 形面积之和的1.25倍。
分析与解:
等积变形
例5
G
F
∵∠DAB=∠GAE=90° ∴ ∠GAD+ ∠EAB =360°-90 °×2 =180°
D
A C
E
∴三角形BAE绕A点顺时针旋转, 使AB与AD重合,这时,点E落 在点H,且G,A,H在一条直线上。 ∵AG=AE=AH,三角形DAH与 三角形DAG等底同高, ∴S DAH=S DAG 答:内圈三角形石板的总面积 与外圈石板的总面积一样大。
三角形的等积变形2
习题十三解答一、选择题:1.(D) 2.(D) 3.(D) 4.(A) 5.(C).提示:以KH为边,再在对边的五个点A、B、C、D、E中任取一点为顶点,可分别构成5个面积为3平方厘米的三角形.同理,以JG、AD、BE为边也各自可以构成5个面积为3平方厘米的三角形.又因为△AFI、△BFJ、△CFK、△ELI、△DLH和△CLG也是面积为3平方厘米的三角形.所以面积为3平方厘米的三角形一共有26个.二、填空题:提示:如右图连结BD,设Ⅰ=S△BEG,Ⅱ=S△CEG,Ⅲ=S△CFG,Ⅳ=S△DFG,设S1=Ⅰ+Ⅱ,S2=Ⅲ+Ⅳ,S3=S△BDG.∵Ⅲ=Ⅳ∴F为CD中点,有:S△BCF=S△BDF,又∵Ⅲ=Ⅳ,∴ S△BGD=S△BCG,即 S3=S1,由已知Ⅰ为Ⅱ的2倍,∴BE=2EC,S△BDE=2S△CDE,两边分别减去Ⅰ和2Ⅱ,可得:S△BDG=2S△CDG,即 S3=2S2,因此:4.甲∶乙∶丙=1∶2∶6,提示:∵ EF∥BC, AB=2AE∴ AC=3AF,BC=3EF,∵甲∶乙=1∶2,又∵(甲+乙)∶丙=1∶2∴甲∶乙∶丙=1∶2∶6.三、解答题:4.如右图所示,连结AB'、AC,∴ S△AA'B'=S△ABB'即 S△A'BB'=2S△ABC同理 S△D'DC'=2S△ADC∴ S△A'BB'+S△C'DD'=2△C'DD'=2S四边形ABCD同理 S△AA'D'+S△B'CC'=2S四边形ABCD∴四边形A'B' C' D' 的面积=5×S四边形ABCD=5.5.解:连结AG、CG,如右图所示,∵ AF=EC,有S△AGF=S△CGE,又∵ED=BG,有S△AED=S△ABG且 S△CDE=S△BCG,由此可见:△EFG的三个部分中S△ABG补到了S △EAD,S△AFG补到了S△CEG之后,又将其中的S△BCG补到了S△CDE 而S△AEG的位置不变,由此一来相当于将△EFG等积变形到了四边形ABCD,两者面积相同,即:S△EFG=1.。
几个超级难的小学等积变形几何题
几个超级难的小学等积变形几何题例1、图中ABCD是个直角梯形,以AD为一边向外作长方形ADEF,其面积为6.36平方厘米。
连接BE交AD于P,再连接PC。
则图中阴影部分的面积是多少平方厘米?阴影面积由①+②组成∵②、③是等底等高的三角形∴ ②=③∴只要求①+③就行了∵ ①+③与AED是等底等高的三角形∴阴影面积=AED的面积=长方形面积的一半=6.36÷2=3.18例2、如图,正方形ABCD和正方形ECGF并排放置,BF与CD 相交于H,已知AB=6,则阴影部分的面积是多少?阴影面积由①+②组成∵②、③是等底等高的三角形∴ ②=③所以只要求①+③就行了(还是无法求,还得等积变形)在梯形BDFC中,∵①+③与①+④是等底等高的∴S阴= ①+④=ABCD的一半=6×6÷2=18例3、如图,长方形 ABCD =120,S阴=80 。
求四边形EFGH的面积。
∵②③④与ABE是等底等高的,①③⑤与DEC也是等底等高的∴②③④+ ①③⑤=ABE+DEC=半个长方形面积=60∵ ②③④ + ①③⑤+S阴=长方形面积+ ③(③重复算了一遍)∴60+80=120+③∴③=20例4、S△MBE=13cm²,S△FGD=35cm²,SAENF =49㎝²,ABCD为平行四边形,求S阴。
分析:解题关键在于对平行四边形的一半模型熟悉。
∵S阴+①+②=半个平行四边形(13+49+ ①)+(35+ ②)=半个平行四边形∴ S阴+①+②= (13+49+ ①)+(35+ ②)∴S阴=13+49+35=97。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形面积和等积变形测试题
姓名得分1. 右图中,四边形ABCD 的面积是320平方厘米,四边形ABED 2. 是个正方形,已知BC 等于CE 的3倍,求三角形ECD 的面积。
2.已知三角形ABC 中,BC =3.5cm,AD =2cm,AC =2.8cm 求BE 的长度。
3.已知三角形ABC 中,DC =BD,阴影部分的 面积是36平方厘米,求:三角形的面积。
4.
如下左图,D 、E 、F 分别是BC 、AD 、BE 的三等分点, 5. 已知S △ABC=27平方厘米,求S △DEF 。
5.求下面阴影部分的面积:
6.如图,由两个边长分别是4cm 和3cm
的正方形组成,求阴影部分的面积。
7.求右图中阴影部分的面积。
(单位:dm) 8.长方形ABCD 中,三角形ABE 、ADF,四边形AECF
的面积都相等,求三角形AEF 的面积。
9.如下左图,在平行四边形ABCD 中,E 、F 分别 是AC 、BC 的三等分点,且SABCD=54平方厘米,求S △BEF 。
10.如图,已知△ABC 的面积为12,M 为AB 边的中点。
MD 与EC 平行。
求△EBD 的面积。
★★
一块长方形的菜地,长为15米,宽为12米,请用经过A 点的两条直
A
B C D E A
B C D E A B C D 3
E
A C F
D B 12dm 9dm
线把这个长方形分成面积
相等的三部分。
说明怎样划分。
C
D 15。