第3讲:割补法解图形问题

第3讲:割补法解图形问题
第3讲:割补法解图形问题

第三讲割补法解图形问题

知识清单

有些非特殊图形不能直接求解,通过“割补”后成为特殊图形易解;有些图形面积直接计算,计算量很大,耗时耗力还易错,通过“割补”变为简单图形,计算量小,准确度大大提高。

另外有些图形没有可供“割补”的多余部分,又无法用“分”的思想解,则需要用“补”的思想求解,“添补”成特殊图形,再计算。

典例解析

模块一:割补法解曲面图形问题

例题1:求阴影部分的面积。

例题2:求阴影部分的面积。

例题3:已知△ABC是直角三角形,AB长20厘米,∠BAC的度数是45度,求阴影部分的面积。

例题4:如图,正方形的边长为6cm,求阴影部分的面积。

模块二:割补法解多边形问题

例题1:在直角△ABC中,四边形DECF为正方形,若AD=5,DB=6,则△ADE与△BDF的面积之和为多少?

例题2:已知一个五边形的三条边的长和四个角的度数,如图所得,那么它的面积是多少?

针对演练

1、如图,已知一个四边形的两条边的长度和三个角的度数,这个四边形的面积是多少平方厘米?(单位:厘米)

2、如图,三个边长分别为5cm,6cm,4cm的正方形拼在一起,求阴影部分的面积。

3、求右图阴影部分的面积。

与圆有关的组合图形的面积

佛山市学习前线教育培训中心 佛山学习前线华杯训练 与圆有关的组合图形的面积 由圆(或圆的部分)与多边形组合而成的图形,自进行面积计算时,除了计算∏部分面积的和或计算图形中去掉某些部分的面积所得的差外,在计算中注意观察,进行移补、比较或其他的处理,往往能使问题的解决变得简便 例 1 右图半圆的直径是8厘米, 正方形的边长是4厘米,求图中 阴影部分的面积之和 【思路点拨】 图中有两个阴影部分,左边是边长4厘米的正方形减去扇形,右边是4 1 圆的弧形所成的弓形。但是,把两部分移补到一起, 就容易求得阴影部分面积之和。 解:把右边的弓形移补到左边的扇形内,正好成为一个等腰直角三角形(边 长4厘米的正方形的2 1),阴影部分的买面积之和是:4×4÷2=8(平方厘米) 答:图中阴影部分的面积之和是8平方厘米。 练一练1 右图半圆的直径是10厘米, 正方形的边长是5厘米,求阴影部分面 积之和。

例 2 右图正方形的边长18厘米, 图中的圆弧都是直径18厘米的圆 的一部分,求图中也阴影部分的面 积之和。 【思路点拨】 观察图形,看能否把 阴影部分适当分割移补,使得问题易于解决。 解:如图所示把上面的阴影部分按虚线分成 两块,分别按箭头方向移到下面,三块拼成 一个长方形的2 1,图中的阴影部分面积之和 是:18×18÷2=162(平方厘米) 答:图中阴影部分面积之和是162平方厘米。 练一练 2 在边长20厘米的正方形内的圆 弧都是直径为20厘米的圆的一部分,求图 中阴影部分的面积。 例 3 右图四个同样大小的圆的圆心正好能连接成 一个边长为12厘米的正方形,图中阴影部分的面积 是多少平方厘米? 【思路点拨】正方形中的空白部分是4个小扇形, 每个扇形相当与一个圆的4 1,把4个圆中的一个圆移入 这4个扇形中,连同图中心的阴影部分正好就是正方形。 解:阴影部分的面积等于2个圆的面积与正方形面积的和,是2×3.14×(12÷2)2+12×12=370.08(平方厘米) 答:图中阴影部分的面积是370.08平方厘米。 练一练 3 四个同样大小的圆心正好连接成一个边长为 14厘米的正方形。(如右图)求图中阴影部分的面积

四年级上册奥数讲义-第十一讲 割补法巧算面积-冀教版(无答案)

四年级第十一讲割补法巧算面积 ◆温故知新: 1. 用割补法把不规则图形变成规则图形计算面积。 2.正方形、等腰直角三角形、等边三角形、正六边形等已知图形分割成小块,与所求图形 面积相联系。 ◆练一练 1、在图中,五个小正方形的边长都是2厘米,求三角形ABC的面积。 2、图中小正方形和大正方形的边长分别是4厘米和6厘米。阴影部分的面积是多少平方厘 米? ◆例题展示 例题1图中的数字分别表示对应线段的长度,试求这个多边形的面积。(单位:厘米)

练习1如图所示,在正方形ABCD内部有一个长方形EFGH。已知正方形ABCD的边长是6厘米,图中线段AE AH 、都等于2厘米。求长方形EFGH的面积。 例题2如图所示,大正方形的边长为10厘米。连接大正方形的各边中点得到一个小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连。 请问:图中阴影部分的面积总和等于多少平方厘米? 练习2如图所示,大正方形的边长为10厘米。连接大正方形的各边中点得到一个小正方形,再连接大正方形的两条对角线。请问:图中阴影部分的面积总和 等于多少平方厘米?

例题3如图所示,正六边形ABCDEF的面积是6平方厘米,M是AB中点,N是CD中点,P是EF中点。请问三角形MNP的面积是多少平方厘米? 练习3 如图所示,正六边形ABCDEF的面积是36平方厘米,M、N、P、Q、R、S分别是AB、BC、CD、DE、EF、FA的中点。请问:阴影正六边形MNPQRS的面积是 多少平方厘米? 例题4 如图,把两个相同的正三角形的各边分别五等分和七等分,并连接这些分点。 已知图a中阴影部分的面积是294平方分米。请问:图b中阴影部分的面积 是多少平方分米?

数学人教版九年级下册用割补法求坐标系中图形的面积

中考数学小专题复习 ----用割补法求坐标系中三角形的面积(教学设计) 广州市绿翠现代实验学校东陈云兰 【学习背景】 本学期我校初三数学中考总复习资料选用的是《三段六步专题设计》,“三段六步”指的是复习总结教学模式的一个实操性基本程序,三段是指回顾激活原有知识,思考重建认知结构、提取新知迁移巩固三个阶段。经过中考第一轮的基础复习,常会遇到在平面直角坐标系中求与三角形面积有关的综合题。为了能够更好地掌握此类题目的解题方法和解题技巧,特安排此节单课时专题复习课。目的是通过选取与任教班级学生学情相符的一些例题,通过典例分析和巩固练习,学会研究问题时把数和形结合起来考虑,利用割补的方法把一些不能直接计算的三角面积形转化成可以直接计算的三角形,从而求出相关的面积。 【学情分析】 本班学生是初二重新再分班后的第二层次,有一定的基础,但严重缺乏尖子生和自觉学习能力,每次考试均分在100±5分左右,120分以上的同学也就五六个。对最后三大题存在畏难情绪,尤其是对一些少见或稍难的题型,没有较好的解题思路去分析问题和解决问题,所以掌握一种最基础最常见的解题方法(割补法),学会在最后三题的第1,2问多拿分,以增强学生的信心和提升数学中考成绩。 【教学目标】 1、理解并会用割补法求平面直角坐标系中三角形的面积。 2、体会数学中的转化思想和数形结合思想。 【教学重点】 利用割补的方法求面积。 【教学难点】 具有一定的观察能力和化归能力 教学环节:

1、新课引入 例、已知点A(-3,0),点C(0,3),且点B的坐标为(-1,4),计算△ABC的面积。 B C A 2、探究割补(假设如果△ABC的某边和该边上的高无法从已知三点坐标直接求出,必须通过图形的割补,你有何解决方法?)

六年级奥数题:圆和组合图形(A)

一、填空题 1.算出圆内正方形的面积为 . 2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是 平方厘米. 3.一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是 . 4.如图所示,以B 、C 为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是 厘米.(保留两位小数) 5.三角形ABC 是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米. A B 长

6. , 等腰直角三角形的面积为 . 7.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是 度. 8.图中扇形的半径OA =OB =6厘米.45=∠AOB , AC 垂直OB 于C ,那么图中阴影部分的面积是 平方厘米 9.右图中正方形周长是20厘米.图形的总面积是 平方厘米. 10.在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米. 45

二、解答题 11. ABC 是等腰直角三角形. D 是半圆周的中点, BC 是半圆的直径,已知:AB =BC =10, 那么阴影部分的面积是多少?(圆周率14.3=π) 12.如图,半圆S 1的面积是14.13平方厘米,圆S 2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米? 13.如图,已知圆心是O ,半径r =9厘米,1521=∠=∠,那么阴影部分的面积是多少平方厘米? )14.3(≈π 14.右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?

(完整版)活用割补法求面积1

在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。 例1求下列各图中阴影部分的面积: 分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于右下图中AB 弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。 π×4×4÷4-4×4÷2=4.56。 (2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。 如下图所示,将右边的阴影部分平移到左边正方形中。可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。 分析与解:阴影部分是一个梯形。我们用三种方法解答。 (1)割补法 从顶点作底边上的高,得到两个相同的直角三角形。将这两个直角三角 (2)拼补法 将两个这样的三角形拼成一个平行四边形(下页左上图)。 积和平行四边行面积同时除以2,商不变。所以原题阴影部分占整个图形面

(3)等分法 将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形, 注意,后两种方法对任意三角形都适用。也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。 例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。 分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。可以从等腰直角三角形与正方形之间的联系上考虑。将四个同样的等腰直角三角形拼成一个正方形(上页右下图),图中阴影部分是边长9厘米与边长5厘米的两个正方形面积之差,也是所求梯形面积的4倍。所以所求梯形面积是(9×9-5×5)÷4=14(厘米2)。 例4在左下图的直角三角形中有一个矩形,求矩形的面积。

五年级奥数:第22讲 用割补法求面积

五年级奥数:第22讲用割补法求面积在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。 例1求下列各图中阴影部分的面积: 分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。 π×4×4÷4-4×4÷2=4.56。 (2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。 如下图所示,将右边的阴影部分平移到左边正方形中。可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。 例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。 分析与解:阴影部分是一个梯形。我们用三种方法解答。

(1)割补法 从顶点作底边上的高,得到两个相同的直角三角形。将这两个直角三角 (2)拼补法 将两个这样的三角形拼成一个平行四边形(下页左上图)。 积和平行四边行面积同时除以2,商不变。所以原题阴影部分占整个图形面 (3)等分法 将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形, 注意,后两种方法对任意三角形都适用。也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。 例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。

立体几何割补法

立体几何割补法 立体几何中的割补法解题技巧 邹启文 ※ 高考提示 立体几何中常用割补法解题.特别是高考中的立体几何题很多可用割补法解,有时解起来 还比较容易. ※ 解题钥匙 例1 (2005湖南高考,理5)如图,正方体ABCD—ABCD的棱长为1,O是底面ABCD11111111 的中心,则O到平面ACD的距离为( ) 11 2231A、 B、 C、 D、 4222 分析:求点到面的距离通常是过点做面的垂线,而由于该图的局限性显然不太好做垂线,考虑O为AC的中点,故将要求的距离 11 与A到面ACD的距离挂钩,从而与棱锥知识挂钩,所以可在该 111 图中割出一个三棱锥A—ACD而进行解题。 111 解:连AC,可得到三棱锥A—ACD,我们把这个正方体的其 1111

它部分都割去就只剩下这个三棱锥,可以知道所求的距离正好为这个三棱锥的高的一半。这个三棱锥底面为直角边为1与的直 2角三角形。这个三棱维又可视为三棱锥C—AAC,后者高为1,底为腰是1的等腰直角三角111 2形,利用体积相等,立即可求得原三棱锥的高为,故应选B。 2 例2 (2007湖南高考,理8)棱长为1的正方体ABCD—ABCD1111 的8个顶点都在球O的表面上,E,F分别是棱AA、DD的中点, 11则直线EF被球O截得的线段长为( ) 22A、 B、1 C、1+ D、 222 分析:在该题中我们若再在正方体上加上一个球,则该图形变得复杂而烦琐,而又考虑到面AADD截得的球的截面为圆,且EF 11 在截面内,故可连接球心抽出一个圆锥来。 解:如图,正方体ABCD—ABCD,依题O亦为此正方体的中心,补侧面 1111 可得圆锥0—AD(如下图), AD为平面AD,球0截平面A D1111 其底面圆心正为线段AD之中点,亦为线段EF之中点,割去正方体和球 1 的其它部分,只看这个圆锥,容易看出球O截直线EF所得线段长就等于这个圆锥底面圆的直径AD之长,故选D。 1

割补法巧算面积

割补法巧算面积

————————————————————————————————作者:————————————————————————————————日期: ?

割补法巧算面积 知识精讲: 分割法:把不规则的的大图形化为规则的小图形 添补法:把不规则图形周围添上规则的小图形,使总面积便于计算 例题1 图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米) 练习1 如图中的每个数字分别表示所对应的线段的长度(单位:米).这个图形的面积等于多少平方 米? 例题2 如图,在正方形ABCD内部有一个长方形.EFGH.已知正方形ABCD的边长是6厘米,图中线段AE、AH都等于2厘米.求长方形EFGH的面积. 练习2 正方形ABCD的边长是8厘米,它的内部有一个三角形AEF(如图),线段DF=3.6厘米,BE=2.8厘米,那么三角形AEF的面积等于平方厘米. 例题3 如图中,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等份,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?

练习3. 1.如图所示,正方形ABCD的边长acm,则图中阴影部分的面积为cm2. 例题4. 如图1和图2,把两个相同的正三角形的各边分别五等分和七等分,并连接这些分点.已知图1中阴影部分的面积是294平方分米.请问:图2中的阴影部分的面积是多少平方分米? 练习4 7.如图所示,将三个相同的长方形从上到下排列,依次进行两等分、三等分、四等分,各取出其中的一份画上阴影,则阴影部分的面积占全部面积的几分之几? 选做题 例5 如图,在两个相同的等腰直角三角形中各作一个正方形,如果正方形A的面积是36平方厘米,那么正方形B的面积是多少平方厘米? 例6.

用割补法求面积

用割补法求面积 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

第25讲用割补法求面积 在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。 例1求下列各图中阴影部分的面积: 分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。 π×4×4÷4-4×4÷2=。 (2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。 如下图所示,将右边的阴影部分平移到左边正方形中。可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。 例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。 分析与解:阴影部分是一个梯形。我们用三种方法解答。 (1)割补法 从顶点作底边上的高,得到两个相同的直角三角形。将这两个直角三角 (2)拼补法 将两个这样的三角形拼成一个平行四边形(下页左上图)。 积和平行四边行面积同时除以2,商不变。所以原题阴影部分占整个图形面 (3)等分法 将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形, 注意,后两种方法对任意三角形都适用。也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。 例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。 分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。可以从等腰直角三角形与正方形之间的联系上考虑。将四个同样的等腰直角三角形拼成一个正方形(上页右下图),图中阴影部分是边长9厘米与边长5厘米的两个正方形面积之差,也是所求梯形面积的4倍。所以所求梯形面积是(9×9-5×5)÷4=14(厘米2)。 例4在左下图的直角三角形中有一个矩形,求矩形的面积。 分析与解:题中给出了两个似乎毫无关联的数据,无法沟通与矩形的联系。我们给这个直角三角形再拼补上一个相同的直角三角形(见右上图)。因为A与A′,B与B′面积分别相等,所以甲、乙两个矩形的面积相等。乙的面积是4× 6=24,所以甲的面积,即所求矩形的面积也是24。 例5下图中,甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的面积大40厘米2。求乙正方形的面积。 分析与解:如果从甲正方形中“挖掉”和乙正方形同样大的正方形丙,所剩的A,B,C三部分之和就是40厘米2(见左下图)。 把C割下,拼补到乙正方形的上面(见右上图),这样A,B,C三块就合并成一个长20厘米的矩形,面积是40厘米2,宽是40÷20=2(厘米)。这个宽恰好是两个正方形的边长之差,由此可求出乙正方形的边长为(20-2)÷2=9(厘米),从而乙正方形的面积为9×9=81(厘米2)。 练习22 1.求下列各图中阴影部分的面积:

小学奥数——用割补法求面积

小学奥数解析十三用割补法求面积 在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。 例1求下列各图中阴影部分的面积: 分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。 π×4×4÷4-4×4÷2=4.56。 (2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。 如下图所示,将右边的阴影部分平移到左边正方形中。可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。 例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。 分析与解:阴影部分是一个梯形。我们用三种方法解答。 (1)割补法 从顶点作底边上的高,得到两个相同的直角三角形。将这两个直角三角

(2)拼补法 将两个这样的三角形拼成一个平行四边形(下页左上图)。 积和平行四边行面积同时除以2,商不变。所以原题阴影部分占整个图形面 (3)等分法 将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形, 注意,后两种方法对任意三角形都适用。也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。 例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。 分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。可以从等腰直角三角形与正方形之间的联系上考虑。将四个同样的等腰直角三角形拼成一个正方形(上页右下图),图中阴影部分是边长9厘米与边长5厘米的两个正方形面积之差,也是所求梯形面积的4倍。所以所求梯形面积是(9×9-5×5)÷4=14(厘米2)。 例4在左下图的直角三角形中有一个矩形,求矩形的面积。 分析与解:题中给出了两个似乎毫无关联的数据,无法沟通与矩形的联系。我们给这个直角三角形再拼补上一个相同的直角三角形(见右上图)。因为A与A′,B与B′

六年级奥数题圆和组合图形

陆老师奥数培训讲义 圆和组合图形(六年级)报名电话:例1】.如图,阴影部分的面积是多少 2 1 2 例 2】.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大多少平方厘米. 例】 3.在一个半径是厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是多少平方厘米 (π取,结果精确到1平方厘米) 例4】.右图中三角形是等腰直角三角形,阴影部分的面积 是 (平方厘米). 例5】.如图所求,圆的周长是厘米,圆的面 积与长方形的面积正好相等.图中阴影部分的 π 周长是厘米.) .3 (= 14 练习题

1.如图,15 1= ∠的圆的周长为厘米,平行四边形的面积为100平方厘米.阴影部分的面积是多少平方厘米. 2.有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图).图中黑点是这些圆的圆心.如果圆周率1416 .3 = π,那么花瓣图形的面积是多少平方厘米. 3.已知:ABC D是正方形, ED=DA=AF=2厘米,阴影部分的面积是多少平方厘米. 4.图中,扇形BAC的面积是半圆ADB的面积的 3 1 1倍,那么,CAB ∠是多少度./ 5.右图中的正方形的边长是2厘米,以圆弧为分界线的甲、乙两部分的面积差(大减小)是多少平方厘米 (π取 E D C B A G F O D C A B 2 甲 乙

———————————————答 案—————————————————————— 例1. 6. 两个扇形面积相等,故阴影部分面积等于一个长为3,宽为2的长方形面积,为6个平方单位. 例2. . 小圆的半径为2)14(6=-÷(厘米),大圆的半径为842=?(厘米).大圆的面积比小圆的面积大4.18814.3)28(22=?-(平方厘米). 例3. 57. 305.57214.3)22(14.35.422=??÷-?(平方厘米)≈57(平方厘米). 例4. . 从圆中可以看出,阴影部分的面积是两个半圆的面积与三角形面积之差,即 26.1062 1 )26(14.322=?-÷?(平方厘米). 例5. . 设圆的半径为r ,则圆面积即长方形面积为2r π,故长方形的长为r DC π=. 阴影部分周长r r r r r r AD BA BC DC ππππ245241)(?=?+-++=+++= 5.204.1645 =?= (厘米). 练习题 1. 6 5 48(平方厘米). 如图,连结OA 、AC ,过A 点作CD 的垂线交CD 于E .三角形ACD 的面积为502100=÷(平方厘米). 又圆半径为10)214.3(28.6=?÷(厘米),因为151=∠又OA=OD ,故30215=?=∠AOC ,扇形AOC 的面积为 6 1 261014.3360302=??(平方厘米).三角形AOC 的面积为25250=÷(平方厘米).方形面积为611256126=-(平方厘米),从而阴影部分的面积为6 5 4861150=-(平 方厘米). 2. . ⌒

中考复习数学思想方法之二:割补法“补形”在初中几何问题中的应用

中考复习数学思想方法之一:割补法“补形”在初中几何问题中的应用 平面几何中的“补形”就是根据题设条件,通过添加辅助线,将原题中的图形补成某种熟悉的,较规则的,或者较为简单的几何基本图形,使原题转化为新的易解的问题.从“补形”的角度思考问题,常能得到巧妙的辅助线,而使解题方向明朗化,所以,补形是添加辅助线的重要方法.下面举例加以说明,供参考. 例1 如图1,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于. 解析题中六边形是不规则的图形,现将它补形为较规则的正三角形,分别向两方延长AB、CD、EF相交于G、H、I (如图2). ∵六边形ABCDEF的六个内角都相等, ∴六边形的各角为120°, ∴△AFI、△BCG、△DEH均是正三角形,从而△GHI为正三角形,则有 GC=BC=3,DH=EH=DE=2, IF=AF, IH=GH=GC+CD+DH =3+3+2=8, ∴IE=IH-EH=8-2=6. ∴六边形的周长等于: AB+BC+CD+DE+EF+F A =AB+BC+CD+DE+IE =1+3+3+2+6=15. 注:本题亦可补成平行四边形求解,如图3. 例2 如图4,在Rt△ABC中,AC=BC,AD是∠A的平分线,过点B作AD的垂线交AD的延长线于点E,求证:AD=2BE. 解析从等腰三角形的性质得到启示:顶角平分线垂直底边且平分底边.结合AE平分∠CAB,B E⊥AE,启发我们补全一个等腰三角形.所以延长BE交AC的延长线于点F(如

图5),易证△ABF 为等腰三角形,∴ BF =2BE ,再证△ACD ≌△BCF ,全等的条件显然满足,故结论成立. 例3 某片绿地的形状如图6所示,其中∠A =60°,A B ⊥BC ,C D ⊥AD ,AB =200m ,CD =100m ,求AD ,BC 的长. 解析 由题设∠A=60°,A B ⊥BC ,可将四边形补成图7所示的直角三角形. 易得∠E =30°,AE =400,CE =200,然后再由勾股定理或三角函数求出BE , DE 由此得到AD =400-200。 例4 如图8,在平面直角坐标系中直线y =x -2与y 轴相交于点A ,与反比例函数在第一象限内的图像相交于点B (m ,2). (1) 求反比例函数的关系式; (2) 将直线y =x -2向上平移后与反比例函数图像在第一象限内交于点C ,且△ABC 的面积为18,求平移后的直线的函数关系式. 解析 (1) 所求解析式为y =8 x ; (2) 本题方法不一,下面着重对此题进行分析解答.

割补法求面积

割补法求面积 阴影面积的计算是本章的一个中考热点,计算不规则图形的面积,首先应观察图形的特点,通过分割、接补将其化为可计算的规则图形进行计算. 一、补:把所求不规则图形,通过已知的分割线把原图形分割成的图形进行适当的组合,转化为可求面积的图形. 例题1 如图1,将半径为2cm 的⊙O 分割成十个区域,其中弦AB 、CD 关于点O 对称,EF 、GH 关于点O 对称,连接PM ,则图中阴影部分的面积是_____cm 2(结果用π表示). 解析:如图1,根据对称性可知:S 1=S 2,S 3=S 4,S 5=S 6,S 7=S 8,因此阴影部分的面积占整个圆面积的 21,应为:ππ222 12=?(cm 2). 练习:如图2,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为_______. 答案:2π. 二、割:把不规则的图形的面积分割成几块可求的图形的面积和或差. 例题2 如图3,在Rt △ABC 中,已知∠BCA=90°,∠BAC=30°,AB=6cm ,把△ABC 以点B 为中心旋转,使点C 旋转到AB 边的延长线上的点C′处,那么AC 边扫过的图形(图中阴影部分)的面积是_______cm 2(不取近似值). 解析:把所求阴影部分的面积分割转化,则 S 阴影=(S 扇形BAA′+S △A′C′B )-(S △ACB +S 扇形BCC′)

=S 扇形BAA′-S 扇形BCC′ 360 312036061202 2?-?=ππ=π9. 练习:如图4,正方形ABCD 的边长为1,点E 为AB 的中点,以E 为圆心,1为半径作圆,分别交AD 、BC 于M 、N 两点,与DC 切于P 点,∠MEN =60°.则图中阴影部分的面积是_________. 答案:4361-- π. 三、先割后补:先把所求图形分割,然后重新组合成一个规则图形. 例题3 如图5,ABCD 是边长为8的一个正方形,EF 、HG 、EH 、FG 分别与AB 、AD 、BC 、DC 相切,则阴影部分的面积=______. 解析:连接EG 、FH ,由已知可得S 1=S 2,S 3=S 4,所以可把S 1补至S 2,S 3补至S 4. 这样阴影部分的面积就转化为正方形面积的21,因此阴影部分的面积为3282 12=?. 练习:如图6,AB 是⊙O 的直径,C 、D 是AB 上的三等分点,如果⊙O 的半径为1,P 是线段AB 上的任意一点,则图中阴影部分的面积为( ) A .3π B .6π C .2π D .3 2π 答案:A .

立体几何巧思妙解之割补法

立体几何巧思妙解之割补法 在立体几何解题中,对于一些不规则几何体,若能采用割补法,往往能起到化繁为简、一目了然的作用。 一 、求异面直线所成的角 例1、如图1,正三棱锥S-ABC 的侧棱与底面边长相等,如果E 、F 分别为SC 、AB 的中点,那么异面直线EF 与SA 所成的角等于( ) 000090604530A B C D 分析:平移直线法是求解异面直线所成角最基本的方法。如图1,只要AC 的中点G ,连EG ,FG ,解△EFG 即可.应该是情理之中的事。若把三棱锥巧妙补形特殊的正方体,定会叫人惊喜不已。 巧思妙解:如图2,把正三棱锥S-ABC 补成一个正方体11AGBH A CB S -, 1//,EF AA ∴Q 异面直线EF 与SA 所成的角为0145A AS ∠=。故选C 。 二、体积问题 例2、如图3,已知三棱锥子P —ABC ,234,10,241PA BC PB AC PC AB ======,则三棱锥子P —ABC 的体积为( )。 4080160240A B C D 分析:若按常规方法利用体积公式求解,底面积可用海伦公式求出,但顶 点到底面的高无法作出,自然无法求出。若能换个角度来思考,注意到三 棱锥的有三对边两两相等,若能把它放在一个特定的长方体中,则问题不 难解决。 巧思妙解:如图4所示,把三棱锥P —ABC 补成一个长方体AEBG —FPDC ,易 知三棱锥P —ABC 的各边分别是长方体的面对角线。 PE=x,EB=y,EA=z 不妨令,则由已知有: 2222221001366,8,10164x y x z x y z y z ?+=?+=?===??+=? ,从而知 416810468101606 P ABC AEBG FPDC P AEB C ABG B PDC A FPC AEBG FPDC P AEB V V V V V V V V --------=----=-=??-????= 例3、如图5,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形, 且BCF ADE ??、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为 ( ) (A ) 32 (B )33 (C )34 (D )23

高中物理运用割补法解电场强度问题

高中物理运用割补法解电场强度问题 所谓割补法,就是在求解电场强度时根据给出的条件建立起物理模型,如果这个模型是一个完整的标准模型,则容易解决,但有时由题给的条件建立起的模型不是一个完整的标准模型,比如说A不是一个标准的、完整的模型,可设法补上一个B,补偿的原则是使A+B成为一个完整的模型,从而使A+B变得易于求解,而且补上的B也必须容易求解,那样待求的A便可从两者的差中获得,这种转换思维角度的方法常常使一些难题的求解变得简单明了。我们只学到有关点电荷的电场强度、匀强电场的电场强度的计算公式,但不能看成点电荷的带电体产生的电场强度,没有现成公式能用,这时我们就可用割补法使带电体变成标准模型来求解。例、如图所示,用金属AB弯成半径r=1m的圆弧,但在A、B之间留出宽度d=2cm的间隙,将Q=3.13×10-9C的正电荷分布于金属丝上,求圆心处的电场强度。分析:我们可以应用割补思维,假设将图中圆环缺口补上,并且它的电荷密度与缺了口的环体原有电荷密度一样,这样就形成了一个电荷均匀分布的完整带电环,环上处于同一直径两端的微小部分可视为两个相对应的点电荷,它们产生的电场在圆心O处叠加后合电场强度为零,根据对称性可知,带电圆环在圆心O处的总电场强度E=0。至于补上的带电小段,由题给条件

可视作点电荷,它在圆心O处的电场强度E1是可求的,设题中待求电场强度为E2,则E1+E2=E=0,便可求得E2。本题中如果在A、B之间留出宽度比较大的间隙,则不能运用上面的方法求圆心处的电场强度,因为此时AB段带电体不能当作点电荷来处理,库仑定律不能直接使用。解析:设原缺口环所带电荷的线密度为,,则补上的金属小段的带电荷量,求出它在O处的电场强度。设待求的电场强度为E2,因为E1+E2=0,可得E2=-E1=-9×10-2N/C负号表示E2与E1反向,背向球心向左。

与圆有关的组合图形的面积计算

与圆有关的组合图形 的面积计算 --------------------------------------------------------------------------作者: _____________

1.计算下面图形中阴影部分的面积。(单位:厘米) 2.求下面图形中阴影部分的面积。(单位:分米) 3.计算下面各图形中阴影部分的面积。(单位:厘米)

1.计算下面图中阴影部分的面积。(单位:米) 2.下面两个圆中直角等腰三角形的面积都是5平方厘米,求圆的面积。 3.已知扇形的面积是3.14平方厘米,求图中阴影部分的面积。

4.如图,已知直角等腰三角形ABC的底边AC长20厘米,求阴影部分的面积。 5.如图,已知扇形DEC的半径为18厘米,扇形BCF的半径为6厘米,四边 形ABCD为长方形。求阴影部分的面积。 6.如图,三个圆的半径分别为1厘米、2厘米、3厘米,AB与CD垂直且过这 三个圆的共有圆形O,图中阴影部分的面积是多少? 7.如图,O为圆心,CO垂直于AB,C为另一个圆的圆心,AC=BC,三角形 ABC的面积为45平方厘米,求阴影部分的面积。 1.图中五个相同的圆的圆心连线构成一个边长为10厘米的正五边形,求五边形的 内阴影部分的面积。

2.如图,两个圆形AOB与叠放一起,POQ是面积为5平方厘米的正 方形,那么叠合后的图中阴影部分的面积为多少平方厘米? 3.计算图中阴影部分的面积。(单位:厘米) 4.如图,已知六个 圆的面积相等,而阴影部分的面积为60平方厘米。六个圆的面积为多少平方厘米? 5.如图,已知大正方形的面积为100平方厘米,小正方形的面积为50平方 厘米,求阴影部分的面积。 6.如图,圆O的半径是15厘米,∠AOB=90°,∠COD=120°,CD=26厘米,求 阴影部分的面积。

利用割补法解几何题

利用割补法巧解几何题 温州实验中学:江瑛 割补法在初中数学竞赛中经常用到,实际上它也广泛应用于一般几何证明题中。下面我就从四个方面来说明割补法在几何证明中的重要性: 一.利用垂直与特殊角割补成特殊三角形 例1:四边形ABCD中,∠B=∠D=90°, ∠A=135°,AD=2,BC=6 H 求四边形ABCD面积 解: D A B C 例2:四边形ABCD中,AB=8,BC=1,∠DAB H =30°,∠ABC=60°,四边形ABCD 面积为5√3, D 求AD长 C 解: B A D 思考题: 1.已知:四边形ABCD中,AB=2,CD=1, C ∠A=60°,∠B=∠D=90° 求四边形ABCD面积 A B 2.四边形ABCD中,∠ABC =135°, D ∠BCD=120°,AB=2√6, BC=5√3,CD=6 求AD长 A C B

二.利用角平分线与垂直割补全等 例1:△ABC是等腰Rt三角形,∠A=90°,AB=AC, F BD平分∠ABC,CE⊥BD交BD延长线于E 求证:BD=2CE 解: A E D B C 思考题: 1.已知:AB=3AC,AD平分∠BAC, BD⊥AD,AD交于BC于O C D 求证:OA=OD O A B 2.已知:锐角△ABC中,∠B=2∠C A ∠B的平分线与AD垂直 求证:AC=2BD D B C 三.利用互补割补全等 例1:五边形ABCDE中,∠ABC=∠AED C D =90°AB=CD=AE=BC+DE=1 求五边形ABCDE面积 B 解: E F A

例2:在四边形ABCD中,已知:AB= A E AD,∠BAD=∠BCD=90°,AH⊥ BC,且AH=1 求四边形ABCD面积 D 解: B H C 思考题: 1.五边形ABCDE中,AB=AE, A BC+DE=CD,∠ABC+∠AED =180°,连AD E 求证:AD平分∠CDE D B C 2:△ABC为边长是1的正三角形,△BDC是顶角 A ∠BDC=120°的等腰三角形,以D为顶点, 作一个60°两边分别交AB于M、 交AC于N,连MN。 求△AMN周长 M N B C D

高斯小学奥数四年级下册含答案第05讲_割补法巧算面积

第五讲割补法巧算面积 在上一讲中,我们学习了如何计算格点图形的面积,介绍了正方形格点图形和三角形格点图形的面积计算公式.根据公式,我们可以求出正方形格点图形的面积是最小正方形面积的几倍,或者求出三角形格点图形面积是最小正三角形面积的几倍.随着几何学习的步步深入,大家会发现除了用公式法直接求面积之外,还有很多间接求面积的方法.尤其是对于不规则图形,我们并不知道这些图形的面积公式,但是可以把它们通过分割、添补等各种方式变换为规则的图形.

例题1 图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米) 「分析」这是一个不规则图形,我们能不能把它切成很多规则的小块,一块一块地求面积呢? 练习1 图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米) 我们可以看到,在没有格点的情况下,割补的方法仍然可以使用.我们将来做几何面积计算时,就要视情况灵活运用割补法. 例题2 如图所示,在正方形ABCD 内部有一个长方形EFGH .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 都等于2厘米.求长方形EFGH 的面积. 「分析」所求长方形的长、宽都是未知且不可求的,但是正方形面积以及周围四个直角三角形面积都是可以计算出来的,那么长方形面积怎么计算呢? 1 2 2 3 4 5 3 2 4 3 4 12 4 9 D G

如图所示,在正方形ABCD 内部有三角形CEF .已知正方形ABCD 的边长是6厘米,图中线段AE 、AF 都等于2厘米.求三角形CEF 的面积. 例题3 如图所示,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米? 「分析」阴影部分零零散散,能不能通过割补的方法把它变成规则的图形嗯? 练习3 如图所示,大正三角形的面积为10平方厘米.连接大正三角形的各边中点得到四个小正三角形,取各个小正三角形的中心,再将每个小正三角形的中心和顶点相连,得到三个一样的小三角形,那么图中阴影部分的面积总和等于多少平方厘米? 例题4 如图,把两个相同的正三角形的各边分别三等分和四等分,并连接这些等分点.已知图1中阴影部分的面积是48平方分米.请问:图2中阴影部分的面积是多少平方分米? 「分析」图1和图2中最小正三角形的面积是不一样的,但两个大正三角形面积却是一 样的,你能求出大正三角形的面积吗? D 图2

用割补法求面积

第25讲用割补法求面积 在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。 例1求下列各图中阴影部分的面积: 分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。 π×4×4÷4-4×4÷2=。 (2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。 如下图所示,将右边的阴影部分平移到左边正方形中。可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。 例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。 分析与解:阴影部分是一个梯形。我们用三种方法解答。 (1)割补法 从顶点作底边上的高,得到两个相同的直角三角形。将这两个直角三角 (2)拼补法 将两个这样的三角形拼成一个平行四边形(下页左上图)。

积和平行四边行面积同时除以2,商不变。所以原题阴影部分占整个图形面 (3)等分法 将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形, 注意,后两种方法对任意三角形都适用。也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。 例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。 分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。可以从等腰直角三角形与正方形之间的联系上考虑。将四个同样的等腰直角三角形拼成一个正方形(上页右下图),图中阴影部分是边长9厘米与边长5厘米的两个正方形面积之差,也是所求梯形面积的4倍。所以所求梯形面积是(9×9-5×5)÷4=14(厘米2)。 例4在左下图的直角三角形中有一个矩形,求矩形的面积。 分析与解:题中给出了两个似乎毫无关联的数据,无法沟通与矩形的联系。我们给这个直角三角形再拼补上一个相同的直角三角形(见右上图)。因为A与A′,B与B′面积分别相等,所以甲、乙两个矩形的面积相等。乙的面积是4×6=24,所以甲的面积,即所求矩形的面积也是24。 例5下图中,甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的面积大40厘米2。求乙正方形的面积。 分析与解:如果从甲正方形中“挖掉”和乙正方形同样大的正方形丙,所剩的A,B,C三部分之和就是40厘米2(见左下图)。 把C割下,拼补到乙正方形的上面(见右上图),这样A,B,C三块就合并成一个长20厘米的矩形,面积是40厘米2,宽是40÷20=2(厘米)。这个宽恰好是两个正方形的边长之差,由此可求出乙正方形的边长为(20-2)÷2=9(厘米),从而乙正方形的面积为9×9=81(厘米2)。 练习22

相关文档
最新文档