第24章 圆 单元检测题

合集下载

人教版九年级数学上册第24章《圆》单元测试卷(含答案解析)

人教版九年级数学上册第24章《圆》单元测试卷(含答案解析)

第24章《圆》单元测试卷一.选择题(共10小题)1.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个2.如图,AB是⊙O的直径,AB⊥CD于E,AB=10,CD=8,则BE为()A.2B.3C.4D.3.53.正六边形内接于圆,它的边所对的圆周角是()A.60°B.120°C.60°或120°D.30°或150°4.⊙O的半径r=5cm,直线l到圆心O的距离d=4,则直线l与圆的位置关系()A.相离B.相切C.相交D.重合5.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则的长度为()A.πB.πC.πD.π6.如图,⊙O是△ABC 的外接圆,BC 是直径,D在圆上,连接AD、CD,若∠ADC=35°,则∠ACB=()A.70°B.55°C.40°D.45°7.如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4,则图中阴影部分的面积为()A.π+1B.π+2C.2π+2D.4π+18.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O 上的一点,在△ABP中,PB=AB,则PA的长为()A.5B.C.5D.59.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6m,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.B.C.D.10.如图,AB是⊙O的直径,弦CD⊥AB,过点C作⊙O的切线与AB的延长线交于点P.若∠BCD=32°,则∠CPD的度数是()A.64°B.62°C.58°D.52°二.填空题(共8小题)11.如图,AB是⊙O的直径,点C、D在⊙O上,若∠ACD=25°,则∠BOD的度数为.12.如图,⊙O是△ABC的外接圆,BC为直径,BC=4,点E是△ABC的内心,连接AE并延长交⊙O于点D,则DE= .13.如图所示,点A在半径为20的圆O上,以OA为一条对角线作矩形OBAC,设直线BC交圆O于D、E两点,若OC=12,则线段CE、BD的长度差是.14.如图,半径为2的⊙O与含有30°角的直角三角板ABC的AC边切于点A,将直角三角板沿CA边所在的直线向左平移,当平移到AB与⊙O相切时,该直角三角板平移的距离为.15.如图,PA、PB切⊙O于A、B,点C在上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半径为5cm,则△PDE的周长是.16.△ABC中,AB=CB,AC=10,S=60,E为AB上一动点,连结CE,过A作AF△ABC⊥CE于F,连结BF,则BF的最小值是.17.如图,等边三角形△ABC内接于半径为1的⊙O,则图中阴影部分的面积是.18.如图,已知线段AB=6,C为线段AB上的一个动点(不与A、B重合),将线段AC绕点A逆时针旋转120°得到AD,将线段BC绕点B顺时针旋转120°得到BE,⊙O外接于△CDE,则⊙O的半径最小值为.三.解答题(共7小题)19.十一期间,小明一家一起去旅游,如图是小明设计的某旅游景点的图纸(网格是由相同的小正方形组成的,且小正方形的边长代表实际长度100m,在该图纸上可看到两个标志性景点A,B.若建立适当的平面直角坐标系,则点A (﹣3,1),B(﹣3,﹣3),第三个景点C(1,3)的位置已破损.(1)请在图中画出平面直角坐标系,并标出景点C的位置;(2)平面直角坐标系的坐标原点为点O,△ACO是直角三角形吗?请判断并说明理由.20.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC交⊙O于点F.(1)AB与AC的大小有什么关系?请说明理由;(2)若AB=8,∠BAC=45°,求:图中阴影部分的面积.21.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.22.如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.(1)求证:∠ACB+∠BAD=90°;(2)过点D作DE⊥AB于E,若∠ADC=2∠ACB,AC=4,求DE的长.23.如图,点I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,与BC相交于点E.(1)求证:DI=DB;(2)若AE=6cm,ED=4cm,求线段DI的长.24.如图,已知扇形AOB的圆心角为直角,正方形OCDE内接于扇形AOB.点C、E、D分别在OA、OB、弧AB上,过点A作AF⊥DE交ED的延长线于F,如果正方形的边长为1,求阴影部分M、N的面积和.25.如图:△A BC是圆的内接三角形,∠BAC与∠ABC的角平分线AE、BE相交于点E,延长AE交圆于点D,连接BD、DC,且∠BCA=60°.(1)求证:△BED为等边三角形;(2)若∠ADC=30°,⊙O的半径为,求BD长.参考答案一.选择题(共10小题)1.【解答】解:∵d=3<半径=4∴直线与圆相交∴直线m与⊙O公共点的个数为2个故选:C.2.【解答】解:连接OC.∵AB是⊙O的直径,AB=10,∴OC=OB=AB=5;又∵AB⊥CD于E,CD=8,∴CE=CD=4(垂径定理);在Rt△COE中,OE=3(勾股定理),∴BE=OB﹣OE=5﹣3=2,即BE=2;故选:A.3.【解答】解:圆内接正六边形的边所对的圆心角=360°÷6=60°,根据圆周角等于同弧所对圆心角的一半,边所对的圆周角的度数是60×=30°或180°﹣30°=150°.故选:D.4.【解答】解:∴⊙O的半径为5cm,如果圆心O到直线l的距离为4cm,∴5>4,即d<r,∴直线l与⊙O的位置关系是相交,故选:C.5.【解答】解:连接OE、OC,如图,∵DE=OB=OE,∴∠D=∠EOD=20°,∴∠CEO=∠D+∠EOD=40°,∵OE=OC,∴∠C=∠CEO=40°,∴∠BOC=∠C+∠D=60°,∴的长度==π,故选:A.6.【解答】解:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠D=35°,∴∠ACB=55°,故选:B.7.【解答】解:连接OD、AD,∵在△ABC中,AB=AC,∠ABC=45°,∴∠C=45°,∴∠BAC=90°,∴△ABC是Rt△BAC,∵BC=4,∴AC=AB=4,∵AB为直径,∴∠ADB=90°,BO=DO=2,∵OD=OB,∠B=45°,∴∠B=∠BDO=45°,∴∠DOA=∠BOD=90°,∴阴影部分的面积S=S△BOD +S扇形DOA=+=π+2.故选:B.8.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选:D.9.【解答】解:连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=3米,∵∠AOB=90°,CD∥OB,∴CD⊥OA,在Rt△OCD中,∵OD=6,OC=3,∴CD===3米,∵sin∠DOC===,∴∠DOC=60°,∴S阴影=S扇形AOD﹣S△DOC=﹣×3×3 =(6π﹣)平方米.故选:A.10.【解答】解:连接OC,∵CD⊥AB,∠BCD=32°,∴∠OBC=58°,∵OC=OB,∴∠OCB=∠OBC=58°,∴∠COP=64°,∵PC是⊙O的切线,∴∠OCP=90°,∴∠CPO=26°,∵AB⊥CD,∴AB垂直平分CD,∴PC=PD,∴∠CPD=2∠CPO=52°故选:D.二.填空题(共8小题)11.【解答】解:由圆周角定理得,∠AOD=2∠ACD=50°,∴∠BOD=180°﹣50°=130°,故答案为:130°.12.【解答】解:如图,连接BD,CD,EC.∵点E是△ABC的内心,∴∠DAB=∠DAC,∠ECA=∠ECD,∵∠DCB=∠DAB,∠DEC=∠EAC+∠ECA,∠ECD=∠ECB+∠DCB,∴∠DEC=∠DCE,∴DE=DC,∵BC是直径,∴∠BDC=90°,∵∠DAB=∠DAC,∴=,∴BD=DC,∵BC=4,∴DC=DB=2,∴DE=2,故答案为2.13.【解答】解:如图,设DE的中点为M,连接OM,则OM⊥DE.∵在Rt△AOB中,OA=20,AB=OC=12,∴OB===16,∴OM===,在Rt△OCM中,CM===,∵BM=BC﹣CM=20﹣=,∴CE﹣BD=(EM﹣CM)﹣(DM﹣BM)=BM﹣CM=﹣=.故答案为:.14.【解答】解:根据题意画出平移后的图形,如图所示:设平移后的△A′B′C′与圆O相切于点D,连接OD,OA,AD,过O作OE⊥AD,可得E为AD的中点,∵平移前圆O与AC相切于A点,∴OA⊥A′C,即∠OAA′=90°,∵平移前圆O与AC相切于A点,平移后圆O与A′B′相切于D点,即A′D与A′A为圆O的两条切线,∴A′D=A′A,又∠B′A′C′=60°,∴△A′AD为等边三角形,∴∠DAA′=60°,AD=AA′=A′D,∴∠OAE=∠OAA′﹣∠DAA′=30°,在Rt△AOE中,∠OAE=30°,AO=2,∴AE=AO•cos30°=,∴AD=2AE=2,∴AA′=2,则该直角三角板平移的距离为2.故答案为:2.15.【解答】解:连接OA、OB,如下图所示:∵PA、PB为圆的两条切线,∴由切线长定理可得:PA=PB,同理可知:DA=DC,EC=EB;∵OA⊥PA,OA=5,PO=13,∴由勾股定理得:PA=12,∴PA=PB=12;∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;∴△PDE的周长=PD+DA+PE+EB=PA+PB=24,故此题应该填24cm.16.【解答】解:过B作BD⊥AC于D,∵AB=BC,∴AD=CD=AC=5,∵S=60,△ABC∴,即,BD=12,∵AF⊥CE,∴∠AFC=90°,∴F在以AC为直径的圆上,∵BF+DF>BD,且DF=DF',∴当F在BD上时,BF的值最小,此时BF'=12﹣5=7,则BF的最小值是7,故答案为:7.17.【解答】解:连接OB、OC,连接A O并延长交BC于H,则AH⊥BC,BH=CH.∵△ABC是等边三角形,OB=OA=1,∴BH=OB,∴BH=CH=,∴BC=,=•()2=,∴S△ABC∴S=π•12﹣=π﹣,阴故答案为π﹣.18.【解答】解:如图,连接OD、OA、OC、OB、OE.∵OA=OA,OD=OC,AD=AC,∴△OAD≌△OAC,∴∠OAC=∠OAD=∠CAD=60°,同法可证:∠OBC=∠OBE=∠ABE=60°,∴△AOB是等边三角形,∴当OC⊥AB时,OC的长最短,此时OC=OA•sin60°=3,故答案为3.三.解答题(共7小题)19.【解答】解:(1)如图;(2)△ACO是直角三角.理由如下:∵A(﹣3,1),C(1,3),∴OA==,OC==,AC==2,∵OA2+OC2=AC2,∴△AOC是直角三角形,∠AOC=90°.20.【解答】解:(1)AB=AC.理由是:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,又∵DC=BD,∴AB=AC;(2)连接OD、过D作DH⊥AB.∵AB=8,∠BAC=45°,∴∠BOD=45°,OB=OD=4,∴DH=2∴△OBD 的面积=扇形OBD的面积=,阴影部分面积=.21.【解答】(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.22.【解答】(1)证明:延长AD交⊙O于点F,连接BF.∵AF为⊙O的直径,∴∠ABF=90°,∴∠AFB+∠BAD=90°,∵∠AFB=∠ACB,∴∠ACB+∠BAD=90°.(2)证明:如图2中,过点O作OH⊥AC于H,连接BO.∵∠AOB=2∠ACB,∠ADC=2∠ACB,∴∠AOB=∠ADC,∴∠BOD=∠BDO,∴BD=BO,∴BD=OA,∵∠BED=∠AHO,∠ABD=∠AOH,∴△BDE≌△AOH,(AAS),∴DE=AH,∵OH⊥AC,∴AH=CH=AC,∴AC=2DE=4,∴DE=2.23.【解答】(1)证明:连接BI.∵点I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI.又∵∠DBI=∠CBI+∠DBC,∠DIB=∠ABI+∠BAI,∠DBC=∠DAC=∠BAI,∴∠DBI=∠DIB,∴DI=DB.(2)∵∠DBC=∠DAC=∠BAI,∠ADB=∠BDA,∴△BDE∽△ABD,∴,即BD2=D E•AD=DE•(AE+DE)=4×(6+4)=40,DI=BD=(cm).24.【解答】解:连接OD,∵正方形的边长为1,即OC=CD=1,∴OD=,∴AC=OA﹣OC=﹣1,∵DE=DC,BE=AC,弧BD=弧AD=长方形ACDF的面积=AC•CD=﹣1.∴S阴25.【解答】(1)证明:∵∠BAC与∠ABC的角平分线AE、BE相交于点E,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠AEB=180°﹣(∠EAB+∠EBA)=180°﹣(∠CAB+∠CBA)=180°﹣(180°﹣∠BCA)=120°,∴∠DEB=60°,由圆周角定理得,∠BDA=∠BCA=60°,∴△BED为等边三角形;(2)∵∠ADC=30°,∠BDA=60°,∴∠BDC=90°,∴BC是⊙O的直径,即BC=4,∵AE平分∠BAC,∴=,∴BD=DC=4.。

人教版九年级数学上册第24章《圆》单元练习题(含答案)

人教版九年级数学上册第24章《圆》单元练习题(含答案)

人教版九年级数学上册第24章《圆》单元练习题(含答案)一、单选题1.如图,一个油桶靠在直立的墙边,量得0.8m,BC =并且,AB BC ⊥则这个油桶的底面半径是( )A .1.6mB .1.2mC .0.8mD .0.4m 2.在O 中,AB ,CD 为两条弦,下列说法:①若AB CD =,则AB CD =;②若AB CD =,则2AB CD =;③若2AB CD =,则弧AB=2弧CD ;④若2AOB COD ∠=∠,则2AB CD =.其中正确的有( )A .1个B .2个C .3个D .4个3.如图,点A 、B 、C 在⊙O 上,且∠ACB=100o ,则∠α度数为( )A .160oB .120oC .100oD .80o4.如图,在⊙O 中,CD 是直径,AB 是弦,AB ⊥CD 于E ,AB =8,OD =5,则CE 的长为( )A .4B .2C 2D .15.如图,ABC 内接于O ,CD 是O 的直径,40ACD ∠=︒,则B ∠=( )A .70°B .60°C .50°D .40°6.如图,AB 为⊙O 的直径,点 D 是弧 AC 的中点,过点 D 作 DE ⊥AB 于点 E ,延长 DE 交⊙O 于点 F ,若 AC =12,AE =3,则⊙O 的直径长为( )A .7.5B .15C .16D .187.如图,已知AB 、AD 是O 的弦,30B ∠=︒,点C 在弦AB 上,连接CO 并延长CO 交于O 于点D ,20D ∠=︒,则BAD ∠的度数是( )A .30°B .40°C .50°D .60°8.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A ,B 的读数分别为86°,30°,则∠ACB 的度数是( )A .28°B .30°C .36°D .56°9.如图,⊙O 是△ABC 的外接圆,将△ABC 绕点C 顺时针旋转至△EDC ,使点E 在⊙O 上,再将△EDC 沿CD 翻折,点E 恰好与点A 重合,已知∠BAC =36°,则∠DCE 的度数是( )A.24 B.27 C.30 D.3310.下列说法正确的是()①近似数2⨯精确到十分位;32.610--中,最小的是38-;②在2,2,38-,2③如图所示,在数轴上点P所表示的数为15-+;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在ABC内一点P到这三条边的距离相等,则点P是三个角平分线的交点.A.1 B.2 C.3 D.4二、填空题11.某圆的周长是12.56米,那么它的半径是______________,面积是__________.OA=,12.如图,A、B、C是O上的点,OC AB⊥,垂足为点D,且D为OC的中点,若7则BC的长为___________.13.如图,AB 、AC 是O 的弦,过点A 的切线交CB 的延长线于点D ,若35BAD ∠=︒,则C ∠=___________°.14.如图,在正五边形ABCDE 中,连结AC ,以点A 为圆心,AB 为半径画圆弧交AC 于点F ,连接DF .则∠FDC 的度数是 _____.15.如图,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于________度时,AC 才能成为⊙O 的切线.16.如图,ABC 是O 的内接三角形.若=45ABC ∠︒,2AC =,则O 的半径是______.三、解答题17.如图,在菱形ABCD 中,90BAD ∠>︒,P 为AC ,BD 的交点,O 经过A ,B ,P 三点.(1)求证:AB 为O 的直径.(2)请用无刻度的直尺在圆上找一点Q ,使得BP =PQ (不写作法,保留作图痕迹).18.请用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,Rt △ABC 中,∠C =90°.求作:一个⊙O ,使⊙O 与AB 、BC 所在直线都相切,且圆心O 在边AC 上.19.如图所示,AB 为⊙O 的直径,在△ABC 中,AB =BC ,AC 交⊙O 于点D ,过点D 作DE ⊥BC ,垂足为点E .(1)证明DE 是⊙O 的切线;(2)AD =8,P 为⊙O 上一点,P 到弦AD 的最大距离为8.①尺规作图作出此时的P 点,保留作图痕迹;②求DE 的长.20.如图,在Rt ABC △中,90ACB ∠=︒,延长CA 到点D ,以AD 为直径作O ,交BA 的延长线于点E ,延长BC 到点F ,使BF EF =.(1)求证:EF 是O 的切线;(2)若9OC =,4AC =,8AE =,求BE 的长.21.如图,点A ,B ,C ,D 在⊙O 上,AB =CD .求证:AC =BD ;<),点E是线段OP的中点.在22.如图,点P是O的直径AB延长线上的一点(PB OB=.求证:PC是O的切线.直径AB上方的圆上作一点C,使得EC EP23.如图,四边形ABCD内接于120,,,求证:ABC是等边三角形.O AB AC ADC=∠=︒24.如图,四边形ABCD是菱形,以AB为直径作⊙O,交CB于点F,点E在CD上,且CE=CF,连接AE.(1)求证:AE是⊙O的切线;(2)连接AC交⊙O于点P,若3AP ,BF=1,求⊙O的半径.25.如图,⊙O是以△ABC的边AC为直径的外接圆,∠ACB=54°,如图所示,D为⊙O上与点B关于AC的对称点,F为劣弧BC上的一点,DF交AC于N点,BD交AC于M点.(1)求∠DBC的度数;(2)若F为弧BC的中点,求MN ON.26.已知P为⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若∠APQ=∠BPQ(1)如图1,当∠APQ=45°,AP=1,2⊙O的半径。

初中数学人教版九年级上册 第二十四章 圆单元测试卷(含答案)

初中数学人教版九年级上册 第二十四章 圆单元测试卷(含答案)

人教版数学九上圆一、单选题1.下列语句中正确的是( )A.长度相等的两条弧是等弧B.圆上一条弧所对的圆心角等于它所对圆周角的一半C.垂直于圆的半径的直线是圆的切线D.三角形有且只有一个外接圆2.如图,OA,OC是⊙O的半径,点B在⊙O上,若AB∥OC,∠BCO=21°,则∠AOC的度数是( )A.42°B.21°C.84°D.60°3.如图,在矩形ABCD中,AD=8,以AD的中点O为圆心,以OA长为半径画弧与BC相切于点E,则阴影部分的面积为( )A.8―4πB.16―4πC.32―4πD.32―8π4.如图,⊙O的半径OD⊥弦AB于点C,连接BO并延长交⊙O于点E,连接CE,若AB=4,CD=1,则CE的长为( )A.13B.4C.10D.155.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是( )A.B.C.D.6.如图.将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,连接AC.若OA=2,则图中阴影部分的面积是( )A.2π3―32B.2π3―3C.π3―32D.π37.如图,⊙O是正△ABC的外接圆,△DOE是顶角为120°的等腰三角形,点O与圆心重合,点D,E 分别在圆弧上,若⊙O的半径是6,则图中阴影部分的面积是( )A.4πB.12π―9 3C.12π―923D.24π―9 38.如图,在正方形ABCD中,点E,F分别是边BC和CD上的动点(不与端点重合),∠EAF=45°,AF、AE分别与对角线BD交于点G和点H,连接EG.以下四个结论:(1)BE+DF=EF;(2)△AGE是等腰直角三角形;(3)S△AGH:S△AEF=1:2;(4)AB+BE=2BG,其中正确结论的个数是( )A.1B.2C.3D.49.【情境】如图是某数学项目学习小组设计的“鱼跃龙门”徽章图案,已知A,B,C,D,E是圆的5个等分点,连结BD,CE交于点F.设鱼头部分的四边形ABFE的面积为S1,鱼尾部分的△CDF的面积为S2.【问知】设S1:S2=n:1,则n的值为( )A.43―1B.3+5C.1+25D.35―110.如图,半径为5的圆中有一个内接矩形ABCD,AB>BC,点M是ABC的中点,MN⊥AB于点N,若矩形ABCD的面积为30,则线段MN的长为()A.10B.522C.702D.210二、填空题11.如图,在⊙O的内接五边形ABCDE中,∠EBD=31°,则∠A+∠C= °.12.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为 cm.13.如图,⊙O是△ABC的外接圆,∠A=45°,BC=2,则⊙O的直径为 .14.如图,将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,若OA=2,则OC的长为 .15.如图,半径为5的⊙O与y轴相交于A点,B为⊙O在x轴上方的一个动点(不与点A重合),C 为y轴上一点且∠OCB=60°,I为△BCO的内心,则△AIO的外接圆的半径的取值(或取值范围)为 .16.如图,已知△ABC是⊙O的内接三角形,⊙O的半径为2,将劣弧AC沿AC折叠后刚好经过弦BC的中点D.若∠ACB=60°,则弦AC的长为 .三、解答题17.如图,直径为1m的圆柱形水管有积水(阴影部分),水面的宽度AB为0.8m,求水的最大深度CD.18.如图,在⊙O中,半径OA⊥OB,∠B=28°,求∠BOC的度数.19.如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连结BD.(1)求证:∠BAD=∠CBD.(2)若∠AEB=125°,求BD的长.(结果保留π)20.如图,AB为⊙O的直径,弦CD⊥AB于E,连接AC,过A作AF⊥AC,交⊙O于点F,连接DF,过B作BG⊥DF,交DF的延长线于点G.(1)求证:BG是⊙O的切线:(2)若∠DFA=30°,DF=4,求阴影部分的面积.21.在直角坐标系中,以M(3,0)为圆心的⊙M交x轴负半轴于A,交x轴正半轴于B,交y轴于C、D.其中C点坐标为(0,4).(1)求点A坐标.(2)如图,过C作⊙M的切线CE,过A作AN⊥CE于F,交⊙M于N,求AN的长度.(3)在⊙M上,若∠CPM=45°,求出点P的坐标.22.圆内接四边形若有一组邻边相等,则称之为等邻边圆内接四边形.(1)如图1,四边形ABCD为等邻边圆内接四边形,AD=CD,∠ADC=60°,直接写出∠ABD的度数;(2)如图2,四边形ADBC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,若四边形ADBC为等邻边圆内接四边形,AD=BD,求CD的长.(3)如图3,四边形ABCD为等邻边圆内接四边形,BC=CD,AB为⊙O的直径,且AB=48.设BC= x,四边形ABCD的周长为y,试确定y与x的函数关系式,并求出y的最大值.答案解析部分1.【答案】D2.【答案】A3.【答案】D4.【答案】A5.【答案】D6.【答案】B7.【答案】B8.【答案】D9.【答案】B10.【答案】A11.【答案】21112.【答案】1613.【答案】2214.【答案】2π315.【答案】53316.【答案】621717.【答案】解:∵⊙O的直径为1m,∴OA=OD=0.5m.∵OD⊥AB,AB=0.8m,∴AC=0.4m,∴OC=OA2―AC2=0.52―0.42=0.3m,∴CD=OD―OC=0.5―0.3=0.2m.答:水的最大深度为0.2m.18.【答案】解:∵OA⊥OB,∴∠AOB=90°,∴∠A=90°﹣∠B=90°﹣28°=62°,∵OA=OC,∴∠ACO=∠A=62°,而∠ACO=∠BOC+∠B,∴∠BOC=62°﹣28°=34°.19.【答案】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD.∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:如图,连结OD.∵∠AEB= 125°,∴∠AEC= 55°.∵AB为⊙O的直径,∴∠ACE=90°,∴∠CAE= 35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴BD的长为70×π×3180=7 6π.20.【答案】(1)证明:∵C,A,D,F在⊙O上,AF⊥AC,∴∠D=∠CAF=90°,∵AB⊥CD,BG⊥DF,∴∠BED=∠G=90°,∴四边形BEDG中,∠ABG=90°,∴半径OB⊥BG,∴BG是⊙O的切线;(2)解:连接CF,∵∠CAF=90°,∴CF是⊙O的直径,∴OC=OF,∵直径AB⊥CD于E,∴CE=DE,∴OE是△CDF的中位线,∴OE=12DF=2,∵∠AFD=30°,∴∠ACD=∠AFD=30°,∴∠CAE=90°―∠ACE=60°,∵OA=OC,∴△AOC是等边三角形,∵CE⊥AB,∴E为AO的中点,∴OA=2OE=4,OB=4,AE=2,∴BE=OB+OE=6,DE=CE=23,∵∠BED=∠D=∠G=90°,∴四边形BEDG是矩形,∴S阴影=S矩形BEDG―S梯形OEDF―S扇形BOF=6×23―12×(2+4)×23―60π⋅42360=63―83π.21.【答案】(1)解:连接CM,∵M(3,0),C(0,4),∴OM=3,OC=4,∴CM=5,即⊙M的半径为5,∴MA=5,∴AO=AM-OM=2,∴A(―2,0);(2)连接CM,作MH⊥AN于H,∵CE为⊙M的切线,∴MC⊥EC,即∠MCE=90°.∵AN⊥CE于F,即∠AFC=90°.又∵MH⊥AN于H,即∠MHA=90°.∴在四边形FHMC中,∠CMH=90°=∠CMO+∠AMH.∵在Rt△AHM中,∠HAM+∠AMH=90°,∴∠HAM=∠CMO.∵在Rt△COM中,∠CMO+∠OCM=90°,∴∠OCM=∠AMH.∵在△AMH与△MCO中,{∠HAM=∠CMOMC=MA∠OCM=∠AMH∴△AMH≌△MCO(ASA),故AH=MO=3.即AN=HN+AH=3+3=6;(3)解:结合题意,可知PM=CM,△CMP为等腰三角形,同时因为∠CPM=45°=∠PCM,因此△CMP也是等腰直角三角形,即∠CMP=90°且CM=PM=5.①当P在CM右侧时,作PE垂直x轴于E.∵∠CMP=90°,∴∠CMO+∠PME=90°.又∵在Rt△PEM中,∠PME+∠MPE=90°,∴∠CMO=∠MPE.∴同理可得∠MCO=∠PME.在△MCO与△PME中,{∠CMO=∠MPECM=PM∠MCO=∠PME∴△MCO≌△PME(ASA)∴OM=PE=3,ME=OC=4,即存在P1(7,3);②当P在CM左侧时(设为P2),作PF垂直x轴于F.根据圆的对称性,结合①的结论,易证:△MCO≌△PMF,∴OM=PF=3,FM=OC=4,即存在P2(―1,―3).22.【答案】(1)解:60°(2)解:连接CD,过点A作AH⊥CD,交CD于点H.如图:在Rt△AHC中,∵∠ACH=∠ABD=45°,AC=6,∴CH=AH=32,此时△ADB为等腰直角三角形,AD=BD=52,在Rt△AHD中,∵AH=32,AD=52,∴DH=42,∴CD=CH+DH=72.(3)解:如图,连接OC,BD.∵BC=CD,OB=OD,∴OC垂直平分BD,∵O为AB中点,∴OF为△BDA的中位线,有OF=12AD,OF//AD,设OF=t,则CF=24―t,AD=2t,y=48+x+x+2t=2t+2x+48,在Rt△BFC中,B F2=B C2―C F2=x2―(24―t)2,在Rt△BFO中,B F2=B O2―O F2=242―t2,于是有:x2―(24―t)2=242―t2,整理得,t=―148x2+24,∴y=―124x 2+2x+96=―124(x―24)2+120,当x=24时,y max=120。

第24章 圆 单元测试卷(解析卷)

第24章 圆 单元测试卷(解析卷)

第24章圆单元测试卷参考答案与试题解析一.选择题(共10小题,每小题3分,计30分)1.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A.2B.4C.8D.16解:∵⊙O中最长的弦为8cm,即直径为8cm,∴⊙O的半径为4cm.故选:B.2.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=AP=8,则⊙O的直径为()A.10B.8C.5D.3解:连接OC,∵CD⊥AB,CD=8,∴PC=CD=×8=4,在Rt△OCP中,设OC=x,则OA=x,∵PC=4,OP=AP﹣OA=8﹣x,∴OC2=PC2+OP2,即x2=42+(8﹣x)2,解得x=5,∴⊙O的直径为10.故选:A.3.如图,AB是⊙O的直径,∠BOD=120°,点C为弧BD的中点,AC交OD于点E,DE=1,则AE的长为()A.B.C.D.解:连接OC.∵∠DOB=120°,∴∠AOD=60°,∵=,∴∠DOC=∠BOC=60°,∴=,∴OD⊥AC,设OA=r,则OE=r=DE=1,∴OA=2,∴AE==,故选:A.4.已知圆的半径为3,扇形的圆心角为120°,则扇形的弧长为()A.πB.2πC.3πD.4解:扇形的弧长==2π,故选:B.5.如图,AB是⊙O的直径,点C在⊙O上,半径OD∥AC,如果∠BOD=130°,那么∠B的度数为()A.30°B.40°C.50°D.60°解:∵∠BOD=130°,∴∠AOD=50°,又∵AC∥OD,∴∠A=∠AOD=50°,∵AB是⊙O的直径,∴∠C=90°,∴∠B=90°﹣50°=40°.故选:B.6.有下列结论:(1)三点确定一个圆;(2)弧的度数指弧所对圆周角的度数;(3)三角形的内心是三边中垂线交点,它到三角形各边的距离相等;(4)同圆或等圆中,弦相等则弦所对的弧相等.其中正确的个数有()A.0B.1C.3D.2解:(1)不在同一直线上的三点确定一个圆,故不符合题意;(2)弧的度数指弧所对圆心角的度数;故不符合题意;(3)三角形的内心是三角平分线交点,它到三角形各边的距离相等;故不符合题意;(4)同圆或等圆中,弦相等则弦所对的优弧或劣弧相等,故不符合题意;故选:A.7.圆柱底面半径为3cm,高为2cm,则它的体积为()A.97πcm3B.18πcm3C.3πcm3D.18π2cm3解:圆柱的体积=9π×2=18π(cm3).故选:B.8.如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为()A.12.5寸B.13寸C.25寸D.26寸解:设直径CD的长为2x,则半径OC=x,∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5寸,连接OA,则OA=x寸,根据勾股定理得x2=52+(x﹣1)2,解得x=13,CD=2x=2×13=26(寸).故选:D.9.已知五个正数的和等于1,用反证法证明:这五个正数中至少有一个大于或等于,先要假设这五个正数()A.都大于B.都小于C.没有一个小于D.没有一个大于解:已知五个正数的和等于1,用反证法证明这五个正数中至少有一个大于或等于,先要假设这五个正数都小于,故选:B.10.如图,正方形ABCD的边长为8.M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为()A.3B.4C.3或4D.不确定解:如图1中,当⊙P与直线CD相切时,设PC=PM=x.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8﹣x)2,∴x=5,∴PC=5,BP=BC﹣PC=8﹣5=3.如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,PB==4.综上所述,BP的长为3或4.故选:C.二.填空题(共6小题,每小题3分,计18分)11.如图,⊙O的半径为2,点A为⊙O上一点,如果∠BAC=60°,OD⊥弦BC于点D,那么OD 的长是1.解:∵OB=OC,OD⊥BC,∴∠BDO=90°,∠BOD=∠COD=BOC,∵由圆周角定理得:∠BAC=BOC,∴∠BOD=∠BAC,∵∠BAC=60°,∴∠BOD=60°,∵∠BDO=90°,∴∠OBD=30°,∴OD=OB,∵OB=2,∴OD=1,故答案为:1.12.如图的齿轮有30个齿,每两齿之间的间隔相等,则相邻两齿间的圆心角α等于12度.解:相邻两齿间的圆心角α==12°,故答案为:12.13.如图,AB是半圆O的直径,AB=12,AC为弦,OD⊥AC于D,OE∥AC交半圆O于点E,EF ⊥AB于F,若BF=3,则AC的长为6.解:AB是半圆O的直径,AB=12,∴OB=OA=6,∵BF=3,∴OF=OB﹣BF=3,∵OD⊥AC,∴AD=CD,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90°,∵OE∥AC,∴∠DAO=∠EOF,在△ADO和△OFE中,,∴△ADO≌△OFE(AAS),∴AD=OF=3,∴AC=2AD=6;故答案为:6.14.如图,⊙O与正六边形OABCDE的边OA、OE分别交丁点F、G,点M在FG上,则圆周角∠FMG的大小为度120°.解:在优弧FG上取一点T,连接TF,TG.∵ABCDEF是正六边形,∴∠AOE=120°∵∠T=∠FOG,∴∠T=60°,∵∠FMG+∠T=180°,∴∠FMG=120°,故答案为120°.15.如图,矩形ABCD中,AB=3,BC=2,E为BC的中点,AF=1,以EF为直径的半圆与DE交于点G,则劣弧的长为π.解:连接OG,DF,∵BC=2,E为BC的中点,∴BE=EC=1,∵AB=3,AF=1,∴BF=2,由勾股定理得,DF==,EF==,∴DF=EF,在Rt△DAF和Rt△FBE中,,∴Rt△DAF≌Rt△FBE(HL)∴∠ADF=∠BFE,∵∠ADF+∠AFD=90°,∴∠BFE+∠AFD=90°,即∠DFE=90°,∵FD=FE,∴∠FED=45°,∵OG=OE,∴∠GOE=90°,∴劣弧的长==π,故答案为:π.16.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的半径为2cm,则此时M、N两点间的距离是2 cm.解:根据题意得:EF=BC,MN=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段BC形成一半径为2cm的圆,线段BC 是圆的周长,BC=EF=2π×2=4π,∴的长=EF==,∴n=120°,即∠MON=120°,∵OM=ON,∴∠M=30°,过O作OG⊥MN于G,∵OM=2,∴OG=1,MG=,∴MN=2MG=2,故答案为:2.三.解答题(共10小题,计102分)17.(10分)已知:如图,BD、CE是△ABC的高,M为BC的中点.试说明点B、C、D、E在以点M为圆心的同一个圆上.证明:连接ME、MD,∵BD、CE分别是△ABC的高,M为BC的中点,∴ME=MD=MC=MB=BC,∴点B、C、D、E在以点M为圆心的同一圆上.18.(10分)如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于D,AD<BD,若CD=2cm,AB=5cm,求AD、AC的长.解:连接OC,∵AB=5cm,∴OC=OA=AB=cm,Rt△CDO中,由勾股定理得:DO==cm,∴AD=﹣=1cm,由勾股定理得:AC==,则AD的长为1cm,AC的长为cm.19.(10分)一些不便于直接测量的圆形孔道的直径可以用如下方法测量.如图,把一个直径为10mm。

第二十四章圆单元测试人教版2024—2025学年九年级上册秋季

第二十四章圆单元测试人教版2024—2025学年九年级上册秋季

第二十四章圆单元测试人教版2024—2025学年九年级上册秋季考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。

3.回答第II卷时,将答案写在第II卷答题卡上。

4.考试结束后,将本试卷和答题卡一并交回。

第I卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列说法中,正确的是()A.过圆心的直线是圆的直径B.直径是圆中最长的弦C.相等长度的两条弧是等弧D.顶点在圆上的角是圆周角2.某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为()A.700π平方厘米B.900π平方厘米C.1200π平方厘米D.1600π平方厘米3.如图,点A、点B、点C在⊙O上,∠BAC=130°,那么∠BOC是()A.160°B.120°C.100°D.200°4.如图,在⊙O中,弦AB的长为8,圆心O到AB的距离OE=4,则⊙O的半径长为()A.4B.C.5D.5.如图,AB是⊙O的直径,C,D是⊙O上两点,且∠BDC=35°,则∠BOC=()A.20°B.40°C.55°D.70°6.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=2.以A为圆心AC为半径画圆,交AB于点D,则阴影部分面积是()A.B.C.D.7.如图,点A、B、C都在⊙O上,若∠AOC=150°,则∠ABC的度数()A.30°B.150°C.105°D.110°8.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9 cm C.cm D.cm9.如图是唐代亭皋发明了“桨轮船”,该桨轮船的轮子被水面截得线AB为10,轮子的吃水深度CD为3,则该桨轮船的轮子半径为()A.B.C.D.610.刘徽(今山东滨州人)是魏晋时期我国伟大的数学家,中国古典数学理论的奠基者之一,被誉为“世界古代数学泰斗”.刘徽在注释《九章算术》时十分重视一题多解,其中最典型的是勾股容方和勾股容圆公式的推导,他给出了内切圆直径的多种表达形式.如图,Rt△ABC中,∠C=90°,AB,BC,CA的长分别为c,a,b.则可以用含c,a,b的式子表示出△ABC的内切圆直径d,下列表达式错误的是()A.d=a+b﹣c B.C.D.d=|(a﹣b)(c﹣b)|二、填空题(每小题3分,满分18分)11.将圆锥的侧面沿一条母线剪开后展平,所得扇形的面积为4πcm2,圆心角θ为90°,圆锥的底面圆的半径为.12.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CAD=°.13.如图,△ABC是⊙O的内接三角形,∠BAC=50°,⊙O半径为3,则的长为.14.若90°圆心角所对的弧长是3πcm,则此弧所在圆的半径是15.如图,四边形ABCD内接于⊙O,点E在AD的延长线上,若∠CDE=80°,则∠ABC 的度数是°.15.如图,动点E、F分别在正方形ABCD的边AD、BC上,AE=CF,过点C作CG⊥EF,垂足为G,连接BG,若AB=2,则线段BG长的最小值为.第II卷第二十四章圆单元测试人教版2024—2025学年九年级上册秋季考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________准考证号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.如图,△ABC中.∠ACB=90°,点O为AC边上一点,以点O为圆心,OC为半径作圆与AB相切于点D,连接CD.(1)求证:∠ABC=2∠ACD;(2)若AC=8,BC=6,求⊙O的半径.18.如图,在Rt△ABC中,∠C=90°,以点C为圆心,AC长为半径的⊙C与AB相交于点D.(1)若弧AD的度数为70°,则∠B=°;(2)若AC=6,BC=8,求线段BD的长.19.如图,在△ABC中,以AB为直径的⊙O交BC于点D,DE⊥AC,垂足为E.⊙O的两条弦FB,FD相交于点F,∠DAE=∠BFD.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CD=2,求扇形OBD的面积.20.如图,线段AB,CD是⊙O的两条弦,AB=CD,连结AD,AC.(1)证明:AM=DM.(2)若AB⊥CD于点M,且弦AC的弦心距为4,求⊙O的半径.21.如图,△ABC内接于⊙O,D是BC上一点,AD=AC.E是⊙O外一点,∠BAE=∠CAD,∠ADE=∠ACB,连接BE.(1)若AB=8,求AE的长;(2)求证:EB是⊙O的切线.22.如图,AB是半径为5的⊙O的直径,C是的中点,连接CD交AB于点E,连接AC,AD,OC.(1)求证:OC⊥AD.(2)若BE=1,求AD的长.(3)如图2,作CF⊥AB于点H,交AD于点F,射线CB交AD的延长线于点G,若OH=1,求AG的长.23.如图,AB是⊙O的直径,==2,连接AC、CD、AD.CD交AB于点F,过点B作⊙O的切线BM交AD的延长线于点E.(1)求证:AC=CD;(2)连接OE,若DE=2,求OE的长.24.如图,⊙O是△ABC的外接圆,AB为直径,过点C作⊙O的切线CD交BA延长线于点D,点E为上一点,且=.(1)求证:DC∥AE;(2)若EF垂直平分OB,DA=3,求阴影部分的面积.25.如图,在圆内接四边形ABCD中,AD<AC,∠ADC<∠BAD,延长AD至点E,使AE =AC,延长BA至点F,连结EF,使∠AFE=∠ADC.(1)若∠AFE=60°,CD为直径,求∠ABD的度数.(2)求证:①EF∥BC;②EF=BD.。

圆单元测试题

圆单元测试题

第24章圆测试卷一、选择题1.半径等于12的圆中,垂直平分半径的弦长为()(A)36。

(B)123(C)63(D)1832.已知OA平分∠BOC,P是OA上任意一点,假如以P为圆心的圆与OC相切,那么⊙P与OB的位置关系是()(A)相离(B)相切(C)相交(D)不能确定3.已知⊙O的半径为5cm,弦AB的长为5cm,则弦AB所对的圆心角∠AOB=A.45°B.50°C.55°D.60°4.以下四种说法:(1)等弧所对的圆心角相等;(2)两个圆心角相等,它们所对的弦也相等;(3)两条弦相等,它们所对的圆心角相等;(4)在等圆中,圆心角不等,所对的弦也不等,其中准确的说法是()A. (1) (3) B. (2) (4) C。

(1) (4) D。

(2) (3)5.如图(1),已知AB是⊙O的直径,点C,D是⌒BE上的三等分点,∠AOE=60°, 则∠COE等于()A.40° B.65° C.80° D.120°6.如图(2),A、B、C、D是⊙O上的四点,且AD=BC,则AB与CD的大小关系为()A.AB>CDB.AB=CDC.AB<CDD.不能确定7.如图(3),AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,则∠BCD的度数为()A.100° B.110° C.120° D.135°A B D BA8(1)(2)(3)(4)8.如图(4)所示,四边形ABCD的四个顶点都在⊙O上,且AB=AD, ∠CBD=30°∠BDC=20°,求∠ABD的度数.A.55°B.65°C.75°D.85°9.已知如图(5),四边形ABCD内接与⊙O,若∠A=60°,则∠DCP等于()A.50°B. 60°C. 70°D. 80°10.⊙O的半径为5,圆心的坐标为(0,0),点P的坐标为(4,2),则点P与⊙O的位置关系是 ( )A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.点P在⊙O内或⊙O外11.已知⊙O的半径为r,点P不在圆内,则点P到圆心O的距离d满足()(A)d<r (B)d≤r (C)d>r (D)d≥r12.在Rt△ABC中,∠C=90°,AC=9,BC=12,则其外接圆的半径为13.以下说法中,准确的是()A.经过三个点一定能够作一个圆B.经过四个点一定能够作一个圆C.经过圆心且平分弦的直线一定垂直于这条弦D.三角形的外心到三角形各顶点的距离都相等二.填空题14.如图(6)所示,从圆上一点P引两条互相垂直的弦PA,PB,假如圆心O到PA,PB的距离分别为8和6,则PA= PB= .(5)(6)(7)(8)(9)15.如图(7),M是CD的中点,EM⊥CD,若 CD=4cm, EM=6cm,则⌒CED所在圆的半径为 cm16.如图(8),AD和AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD,交AC于点B,若OB=5,则BC=17.若在⊙O内一条弦把圆周分为3:1两段弧,⊙O的半径为R,那么这条弦的长为18.在同一平面内,一点到圆上的最近距离为2,最远距离为10,则该圆的半径是19.如图(9),⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边三角形ABC的边长为20.如图(10),AB是⊙O的直径,BC切⊙O于B,AC交⊙O于P,E是BC边上的中点,连接PE,则PE 与⊙O相切吗?若相切,请加以证明,若不相切,请说明理由图(10)21.如图(11),在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心、OB长为半径的圆交BC于D,DE⊥AC交AC于E.求证:DE是⊙O的切线.图(11)22.如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:点E是⌒BD的中点;(2)求证:CD是⊙O的切线★★★变式1.如图,已知⊙O的半径为1,AB是⊙O的直径,BC是⊙O的切线, OC交⊙O于点OC,DF⊥AB于点G,交⊙O于点F,连接(1)求证:CD是⊙O的切线(2)若∠AFD=30°,P为直径AB的最小值为 .(3)求证:OA·AF=AG·OB+AG·CE(41AB·DF=AG·DC)CB。

人教版数学九年级上册《第24章圆》单元测试(含答案)

人教版数学九年级上册《第24章圆》单元测试(含答案)

人教版数学九年级上册《第24章圆》单元测试(含答案)(总分:120分,时间:100钟)一.选择题(共10小题,满分30分,每小题3分)1.在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()A.B.C.D.2.一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A.4 B.5 C.6 D.103.在半径为10cm圆中,两条平行弦分别长为12cm,16cm,则这两条平行弦之间的距离为()A.28cm或4cm B.14cm或2cm C.13cm或4cm D.5cm或13cm 4.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为48 5.如图,已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是()A.2.5 B.3.5 C.4.5 D.5.56.如图,在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径D,测得两根圆钢棒与地的两个接触点之间的距离为400mm,则工件直径D(mm)用科学记数法可表示为()mm.A.4×104B.0.4×105C.20000 D.4×102 7.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定8.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问锯几何?”用现代的数学语言表述是:“如图,CD为⊙O的直径,弦AB⊥CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意,CD长为()A.12寸B.13寸C.24寸D.26寸9.⊙O的半径为10cm,圆心角∠AOB=60°,那么圆心O到弦AB的距离为()A.10cm B.cm C.5cm D.cm 10.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°二.填空题(共6小题,满分18分,每小题3分)11.如图,四边形ABCD内接于半圆O,其中点A,D在直径上,点B,C在半圆弧上,AB∥CD,∠B=90°,若AO=3,∠BAD=120°,则BC=.12.如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为.13.如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是.14.如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,重复上述过程,经过10次后,所得到的正六边形是原正六边形边长的倍.15.在一个圆中,如果60°的圆心角所对弧长为6πcm,那么这个圆所对的半径为cm.16.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=4,则阴影部分图形的面积为.三.解答题(共8小题,满分72分)17.(8分)已知,有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角时90°的扇形ABC(如图),用剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?18.(8分)现将一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?19.(8分)如图,在⊙O中,点C是弧AB的中点,过点C分别作半径OA、OB的垂线,交⊙O于E、F两点,垂足分别为M、N,求证:ME=NF.20.(8分)如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE ⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.21.(10分)如图在Rt△ACB中,∠C=90°,点O在AB上,以O为圆心,OA长为半径圆与AC,AB分别交于点D,E,且∠CBD=∠A.(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若AD:AO=8:5,BC=3,求BD的长.22.(8分)如图,已知O为坐标原点,点A的坐标为(2,3),⊙A的半径为1,过A作直线l平行于x轴,点P在l上运动.(1)当点P运动到圆上时,求线段OP的长.(2)当点P的坐标为(4,3)时,试判断直线OP与⊙A的位置关系,并说明理由.23.(10分)已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.24.(12分)如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.参考答案一.选择题1.D.2.C.3.B.4.A.5.C.6.D.7.C.8.D.9.C.10.A.二.填空题11.3.12.<r≤3.13.相切.14.243.15.1816..三.解答题17.解:连接BC,AO,∵∠BAC=90°,OB=OC,∴BC是圆0的直径,AO⊥BC,∵圆的直径为1,∴AO=OC=,则AC==m,弧BC的长l==πm,则2πR=π,解得:R=.故该圆锥的底面圆的半径是m.18.解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3.19.证明:连接OC,∵OA⊥CE,OB⊥CF,∴EM=CM,NF=CN,∠CMO=∠CNO=90°,∵C为的中点,∴∠AOC=∠BOC,在△CNO与△CNO中,∵,∴△CNO≌△CNO,∴CM=CN,∴EM=NF.20.解:∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2,在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5;答:所在⊙O的半径DO为5m.21.解:(1)直线BD与⊙O的位置关系是相切.证明:连结OD,DE.∵∠C=90°,∴∠CBD+∠CDB=90°.∵∠A=∠CBD,∴∠A+∠CDB=90°.∵OD=OA,∴∠A=∠ADO.∴∠ADO+∠CDB=90°.∴∠ODB=180°﹣90°=90°.∴OD⊥BD.∵OD为半径,∴BD是⊙O的切线.(2)∵AD:AO=8:5,∴,∴由勾股定理得AD:DE:AE=8:6:10.∵∠C=90°,∠CBD=∠A.∴△BCD∽△ADE.∴DC:BC:BD=DE:AD:AE=6:8:10.∵BC=3,∴BD=22.解:(1)如图,设l与y轴交点为C.当点P运动到圆上时,有P1、P2两个位置,∴;.(2)连接OP,过点A作AM⊥OP,垂足为M.∵P(4,3),∴CP=4,AP=2.在Rt△OCP中.∵∠APM=∠OPC,∠PMA=∠PCO=90°,∴△PAM∽△POC.∴,,∴,∴直线OP与⊙A相离.23.(1)证明:连接OD,∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,∴∠B=∠C=∠ODB=60°,∴OD∥AC,∵DF⊥AC,∴∠CFD=∠ODF=90°,即OD⊥DF,∵OD是以边AB为直径的半圆的半径,∴DF是圆O的切线;(2)∵OB=OD=AB=6,且∠B=60°,∴BD=OB=OD=6,∴CD=BC﹣BD=AB﹣BD=12﹣6=6,∵在Rt△CFD中,∠C=60°,∴∠CDF=30°,∴CF=CD=×6=3,∴AF=AC﹣CF=12﹣3=9,∵FG⊥AB,∴∠FGA=90°,∵∠FAG=60°,∴FG=AFsin60°=.24.解:(1)如图,∵△ABC是等边三角形,∴∠B=∠A=∠C=60°.又∵EF∥AC,∴∠BFE=∠A=60°,∠BEF=∠C=60°,∴△BFE是等边三角形,PE=EB,∴EF=BE=PE=BF;(2)当点E是BC的中点时,四边形是菱形;∵E是BC的中点,∴EC=BE,∵PE=BE,∴PE=EC,∵∠C=60°,∴△PEC是等边三角形,∴PC=EC=PE,∵EF=BE,∴EF=PC,又∵EF∥CP,∴四边形EFPC是平行四边形,∵EC=PC=EF,∴平行四边形EFPC是菱形;(3)如图所示:当点E是BC的中点时,EC=1,则NE=ECcos30°=,当0<r<时,有两个交点;当r=时,有四个交点;当<r<1时,有六个交点;当r=1时,有三个交点;当r>1时,有0个交点.。

第24章 圆 人教版数学九年级上册单元测试卷(含答案)

第24章 圆 人教版数学九年级上册单元测试卷(含答案)

第二十四章 圆一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·北京通州区期末)如图,若OA⊥OB,则∠C=( )A.22.5°B.67.5°C.90°D.45°(第1题) (第2题)2.(2022·江苏镇江润州区段考改编)如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的值可以是( )A.3B.4C.5D.63.(2021·江苏常熟期中)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别是A(-3,0),B(-1,2),C(3,2),则△ABC的外心的坐标是( )A.(1,-2)B.(0,0)C.(1,-1)D.(0,-1)(第3题) (第4题)4.(2021·山东寿光期中)如图,若正方形ABCD的边长为6,则其外接圆半径OA与内切圆半径OE的比值为( )A.3B.2C.2D.35.(2022·湖北十堰期末)如图,点A,B,C,D都在☉O上,OA⊥BC,∠OBC=40°,则∠ADC 的度数为( ) A.40° B.30° C.25° D.50°6.(2022·浙江金华期中改编)如图,☉O 与正六边形OABCDE 的边OA ,OE 分别交于点F ,G ,点M 为劣弧FG 的中点.连接FM ,GM ,若FM=22,则☉O 的半径为( )A.2B.6C.22D.26(第6题) (第7题)7.(2022·浙江宁波江北区期末)如图,AB 是半圆O 的直径,C ,D 是半圆上两点,连接CA ,CD ,AD.若∠ADC=120°,BC=1,则BC 的长为( )A.π3B.π4C.π6D.2π38.(2022·江苏镇江期中)简易直尺、含60°角的直角三角板和量角器如图摆放(无重叠部分),A 为三角板与直尺的交点,B 为量角器与直尺的接触点,C 为量角器与三角板的接触点.若点A 处刻度为4,点B 处刻度为6,则该量角器的直径长为( )A.2B.23C.4D.439.如图,四边形ABCD 内接于☉O ,AD ∥BC ,直线EF 是☉O 的切线,B 是切点.若∠C=80°,∠ADB=54°,则∠CBF=( )A.45°B.46°C.54°D.60°10.如图(1),AB是半圆O的直径,点C是半圆O上异于A,B的一点,连接AC,BC.点P从点A出发,沿A→C→B以1 cm/s的速度运动到点B.图(2)是点P运动时,△PAB 的面积y(cm2)随时间x(s)变化的图象,则点D的横坐标为( )A.a+2B.2C.a+3D.3二、填空题(共5小题,每小题3分,共15分)11.(2022·山东济南天桥区期末)如图,☉A,☉B,☉C两两相离,且半径都为2,则图中阴影部分的面积之和为 .(结果保留π)(第11题) (第12题)12.(2022·江苏苏州姑苏区期中)如图,A,B,C,D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18°,则这个正多边形的边数为 .13.(2022·河北唐山期末改编)如图,△ABC内接于☉O,过点A作直线EF,已知∠B=∠EAC,根据弦AB的位置变化,试探究直线EF与☉O的位置关系.甲:如图(1),当弦AB过点O时,EF与☉O相切;乙:如图(2),当弦AB不过点O时,EF也与☉O相切.你认为 的判断正确.14.新风向关注数学文化在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB为☉O的直径,弦CD⊥AB于点E,AE=1寸,CD=10寸,则直径AB的长为 寸.(第14题) (第15题)15.如图,已知四边形ABCD是边长为4的正方形,以AB为直径向正方形内作半圆,P为半圆上一动点(不与点A,B重合),当PA= 时,△PAD为等腰三角形.三、解答题(共6小题,共55分)16.(7分)(2022·北京四中期中改编)某游乐园的摩天轮采用了国内首创的横梁结构,如图,摩天轮半径为44 m,中心O距离地面56 m,匀速运行一圈的时间为18 min.由于受到周边建筑物的影响,乘客与地面之间超过一定距离时,可视为最佳观赏位置.已知在运行的一圈里最佳观赏时长为12 min,求最佳观赏位置与地面的最小距离(即BD的长).17.(8分)(2021·浙江温州模拟)如图,已知AB是☉O的直径,弦CD⊥AB于点E,点M 是☉O上一动点,∠M=∠D,连接BC.(1)判断BC与MD的位置关系,并说明理由;(2)若MD恰好经过圆心O,求∠D的度数.18.(8分)(2022·山东临沂期末)如图,AB为☉O的直径,AC,DC为弦,∠ACD=60°,P 为AB延长线上的点,连接PD,∠APD=30°.(1)求证:DP是☉O的切线.(2)若☉O的半径为2,求图中阴影部分的面积.19.(10分)[与特殊平行四边形综合](2021·河南驻马店二模)如图,已知☉O的直径AB=2,C是AB上一个动点(不与点A,B重合),切线DC交AB的延长线于点D,连接AC,BC,OC.(1)请添加一个条件使△BAC≌△ODC,并说明理由.(2)若点C关于直线AB的对称点为E.①当AD= 时,四边形OCDE为正方形.②当∠CDB= °时,四边形ACDE为菱形.20.(10分)新风向探究性试题如图,已知AB是☉O的直径,BC与☉O相切于点B,CD 与☉O相切于点D,连接AD,OC.(1)求证:AD∥OC.(2)小聪与小明在做这个题目的时候,对∠CDA+∠AOC的值进行了探究:小聪说,∠CDA+∠AOC的值是一个固定值;小明说,∠CDA+∠AOC的值随∠A的度数的变化而变化.若∠CDA+∠AOC的值为y,∠A的度数为x,你认为他们之中谁的说法正确?若小聪的说法正确,请求出y;若小明的说法正确,请求出y与x之间的关系.21.(12分)新风向探究性试题【问题呈现】阿基米德折弦定理:如图(1),AB和BC是☉O的两条弦(即折线ABC是☉O的一条折弦),BC>AB,M是ABC的中点,则从点M 向BC作垂线,垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的过程. 图(1) 图(2) 图(3) 图(4)证明:如图(2),在CD上截取CG=AB,连接MA,MB,MC和MG.∵M是ABC的中点,∴MA=MC.①∵∠A=∠C,②∴△MAB≌△MCG,∴MB=MG.又MD⊥BC,∴BD=DG,∴CD=CG+DG=AB+BD,即CD=AB+BD.根据证明过程,分别写出步骤①,②的理由:① .② .【理解运用】在图(1)中,若AB=4,BC=6,则BD= .【变式探究】如图(3),AB,BC是☉O的两条弦,点M是AC的中点,MD⊥BC于点D,请写出CD,DB,BA之间存在的数量关系: .【实践应用】如图(4),△ABC内接于☉O,BC是☉O的直径,点D为圆周上一动点,满足∠DAC=45°.若AB=6,☉O的半径为5,求AD的长.第二十四章 圆·B卷1.D ∵OA⊥OB,∴∠AOB=90°,∴∠C=12∠AOB=【技巧】同圆中,同弧所对的圆周角等于圆心角的一半45°.2.B 连接BD,由勾股定理可得BD=AB2+AD2=42+32=5,由题意可知,3<r<5,因此只有B选项符合.3.A 如图,∵三角形的外心到三角形三个顶点的距离相等,∴线段BC,AB的垂直平分线的交点即为外心P,由图可知,点P的坐标为(1,-2).4.B 由题意结合题图可知,内切圆直径等于正方形边长,则OE=3.由正方形的性质可得OA=32,则OAOE =323=2.5.C ∵OA ⊥BC ,∴AC =AB .∵∠OBC=40°,∴∠AOB=50°,∴∠ADC=12∠AOB=12×50°=25°.6.C 连接OM ,由题意知∠FOG=120°.∵点M 为劣弧FG 的中点,∴∠FOM=60°.∵OM=OF ,∴△OFM 是等边三角形,∴OM=OF=FM=22,则☉O 的半径为22,故选C .7.A 如图,连接OC.∵∠ADC=120°,∴∠ABC=60°.∵OB=OC ,∴△OBC 为等边三角形,∴∠COB=60°,OB=OC=BC=1,∴BC 的长=60π·1180=π3.8.D 如图,添加点D ,连接OA ,OB ,由题意得AB=6-4=2,∵∠CAD=60°,∴∠BAC=120°.∵AB 与半圆O 相切于点B ,AC 与半圆O 相切于C ,∴∠BAO=60°,∠AOB=30°,∴OA=2AB=4,∴OB=OA 2-AB 2=42-22=23,∴量角器的直径长为43.9.B 如图,连接OD ,OB ,则∠BOD=2∠C=160°.∵OB=OD ,∴∠OBD=180°―160°2=10°.∵四边形ABCD 内接于☉O ,∴∠A=180°-∠C=100°.∵AD ∥BC ,∴∠A+∠ABC=180°,∴∠ABC=80°.在△ABD 中,∠ADB=54°,∴∠ABD=180°-54°-100°=26°,∴∠OBC=80°-26°-10°=44°.∵EF 是☉O 的切线,∴∠OBF=90°,∴∠CBF=90°-∠OBC=90°-44°=46°.故选B .∵AD ∥BC ,∴∠ADB+∠BDC+∠C=180°.∵∠C=80°,∠ADB=54°,∴∠BDC=46°.∵∠CBF 是弦切角,∴∠CBF=∠BDC=46°.(弦切角定理:弦切角的度数等于它所夹的弧所对的圆心角度数的一半,等于它所夹的弧所对的圆周角度数)10.A 从题图(2)看,当x=a 时,y 取得最大值a ,此时点P 运动到点C 处,即AC=a.∵∠ACB=90°,∴y=12×AC×BC=12BC×a=a ,解得BC=2.当点P 运动到点B 处时,y=0,即AC+BC=OD ,∵AC+BC=a+2,∴点D 的横坐标为a+2.11.2π 因为∠A+∠B+∠C=180°,所以阴影部分的面积之和等于半径为2的半圆的面积,为2π.12.10 如图,连接OA ,OB ,由题意知点A ,B ,C ,D 在以点O 为圆心,OA 的长为半径的同一个圆上.∵∠ADB=18°,∴∠AOB=2∠ADB=36°,∴这个正多边形的边数=360°÷36°=10.13.甲、乙 题图(1)中,∵AB 是☉O 的直径,∴∠C=90°,∴∠B+∠CAB=90°.∵∠EAC=∠B ,∴∠EAC+∠CAB=90°,∴EF ⊥AB.∵OA 是半径,∴EF 是☉O 的切线,故甲的判断正确.如图,作直径AM ,连接CM ,则∠ACM=90°,∠B=∠M.∵∠EAC=∠B ,∴∠EAC=∠M.∵∠CAM+∠M=90°,∴∠CAM+∠EAC=90°,∴EF 是☉O 的切线,故乙的判断正确.14.26 连接OC.∵CD ⊥AB ,AB 为☉O 的直径,CD=10,∴CE=12CD=5. 设OC=OA=x ,则OE=x-1.由勾股定理得OE 2+CE 2=OC 2,即(x-1)2+52=x 2,解得x=13,∴AB=26寸.15.22或85516.【参考答案】由题意得AB⊥OM,BO=44,×360°=120°,∠AOB=18―1218∴∠BOC=60°,∠OBC=30°,∴OC=1OB=22.2∵中心O距离地面56 m,∴OM=56,∴CM=OM-OC=34,∴BD=34 m,故最佳观赏位置与地面的最小距离为34 m.(7分) 17.【参考答案】(1)BC∥MD.(1分)理由:∵∠MBC=∠D,∠M=∠D,∴∠M=∠MBC,∴BC∥MD.(4分) (2)∵AB是☉O的直径,CD⊥AB于点E,∴∠D+∠EOD=90°.(6分)∵MD过圆心O,∴∠BOD=2∠M=2∠D,∴∠D+2∠D=90°,∴∠D=30°.(8分) 18.【参考答案】(1)证明:如图,连接OD.∵∠ACD=60°,∴∠AOD=120°,∴∠BOD=60°.∵∠APD=30°,∴∠ODP=90°,即PD⊥OD.∵OD是半径,∴PD是☉O的切线.(4分)(2)∵在Rt △POD 中,OD=2,∠OPD=30°,∴OP=4.由勾股定理得PD=23.∴S 阴影部分=S △POD -S扇形ODB =12×2×23-60π·22360=23-2π3.(8分)19.【参考答案】(1)添加条件∠A=30°.(1分)理由:∵AB 是☉O 的直径,∴∠ACB=90°.∵DC 是☉O 的切线,∴∠DCO=90°,∴∠ACB=∠DCO.(3分)∵OA=OC ,∴∠A=∠OCA=30°,∴∠BOC=60°.∵OC=OB ,∴△BOC 是等边三角形,∴BC=OC ,∠ABC=∠DOC=60°,∴△BAC ≌△ODC (ASA).(6分)或添加条件BC=1.(1分)∵AB 是☉O 的直径,∴∠ACB=90°.∵DC 是☉O 的切线,∴∠DCO=90°,∴∠ACB=∠DCO.(3分)∵OC=OB=12AB=1=BC ,∴△BOC 是等边三角形,∴∠ABC=∠DOC=60°,∴△BAC ≌△ODC (ASA).(6分)(答案不唯一,正确即可给分)(2)①2+1(8分)解法提示:∵AB=2,∴OA=OC=1.连接OE ,DE ,若四边形OCDE 是正方形,则△OCD 是等腰直角三角形,易得OD=2,∴AD=OD+OA=2+1.②30(10分)解法提示:∵DC 是☉O 的切线,∴∠DCO=90°,∴∠COD=90°-∠CDB.∵OC=OA ,∴∠CAB=12∠COD=90°―∠CDB2.连接AE ,若四边形ACDE 是菱形,则CA=CD ,∴∠CAB=∠CDB ,即90°―∠CDB2=∠CDB ,解得∠CDB=30°,∴当∠CDB=30°时,四边形ACDE 是菱形.20.【思路导图】(1)连接ODRt △ODC ≌Rt △OBC →∠DOC=∠BOC →∠DAO=∠BOC →AD ∥CO【参考答案】(1)如图,连接OD.(1分)∵BC 与☉O 相切于点B ,CD 与☉O 相切于点D ,∴∠ODC=∠OBC=90°.(2分)在Rt △ODC 和Rt △OBC 中,OD =OB ,OC =OC ,∴Rt △ODC ≌Rt △OBC ,∴∠DOC=∠BOC.(4分)∵∠DAO=12∠DOB ,∴∠DAO=∠BOC ,∴AD ∥CO.(5分)(2)小聪的说法正确.(6分)∵∠CDA+∠AOC=y ,∠A=x ,∴∠ODC+∠ODA+∠AOC=y ,∠ODA=∠OAD=x.∵∠ODC=90°,∴90°+x+∠AOC=y.由(1)得AD ∥CO ,∴∠OAD+∠AOC=180°,即x+∠AOC=180°,∴y=90°+x+∠AOC=90°+180°=270°.(10分)21.【参考答案】【问题呈现】①在同圆中,如果两条弧相等,那么它们所对的弦相等②同弧所对的圆周角相等(4分)【理解运用】1(6分)解法提示:∵CD=AB+BD ,∴CD=12(AB+BC )=12×(4+6)=5,∴BD=BC-CD=6-5=1.【变式探究】DB=AB+CD(8分)解法提示:如图,在DB 上截取BG=BA ,连接MA ,MB ,MC ,MG.∵M 是AC 的中点,∴AM=MC ,∠MBA=∠MBG.又MB=MB ,∴△MAB ≌△MGB ,∴MA=MG ,∴MC=MG.又DM ⊥BC ,∴DC=DG ,∴AB+DC=BG+DG ,即DB=AB+CD.【实践应用】∵BC是☉O的直径,∴∠BAC=90°.∵AB=6,☉O的半径为5,∴易得AC=8.(分类讨论思想)如图,连接AD,当∠DAC=45°时,有两种情况.①∠D1AC=45°,则D1是BC的中点.过点D1作D1G1⊥AC于点G1,则CG1+AB=AG1.∴AG1=1(6+8)=7,∴AD1=72.2②∠D2AC=45°,过点D2作D2G2⊥AC于点G2,同理易得CG2=AB+AG2,∴CG2=7,AG2=1,∴AD2=2.综上,AD的长为72或2.(12分)。

2023-2024学年人教版九年级数学上册第二十四章圆单元检测题(含答案)

2023-2024学年人教版九年级数学上册第二十四章圆单元检测题(含答案)

第二十四章圆单元检测题一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法中,正确的是( )A.过圆心的线段叫直径B.长度相等的两条弧是等弧C.与半径垂直的直线是圆的切线D.圆既是中心对称图形,又是轴对称图形2.已知☉O的半径为6,圆心O到直线l的距离为7,则直线l与☉O的位置关系是( )A.相离B.相交C.相切D.无法确定3.(2023自贡)如图所示,△ABC内接于☉O,CD是☉O的直径,连接BD,∠DCA=41°,则∠ABC的度数是( )第3题图A.41°B.45°C.49°D.59°4.圆锥的底面圆的半径r=3,高h=4,则圆锥的侧面积是( )A.10πB.15πC.30πD.45π5.如图所示,☉O的直径为10,弦AB的长为6,P为弦AB上的动点,则线段OP的取值范围是( )第5题图A.3<OP<5B.3≤OP≤5C.4<OP<5D.4≤OP≤56.如图所示,四边形ABCD内接于☉O,F是CD上一点,且DF=BC,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为( )A.45°B.50°C.55°D.60°7.如图所示,☉O是△ABC的外接圆,∠BAC=60°,若☉O的半径OC为2,则弦BC的长为( )第7题图A.4B.23C.338.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为( )2 B.22-22 D.2-29.(2022娄底改编)如图所示,等边三角形内切圆中的黑色部分和白色部分关于等边三角形ABC 的内心成中心对称,则圆中的黑色部分的面积与△ABC 的面积之比是( )第9题图3π18 B.3183π9 D.3910.(2022广大附中一模)如图所示,点A,B 的坐标分别为A(2,0), B(0,2),点C 为坐标平面内一点,BC=1,点M 为线段AC 的中点,连接OM,则OM 的最大值为( )2+1 B.2+12C.22+1D.22-12二、填空题:本大题共5小题,每小题3分,共15分.11.用反证法证明命题:“已知△ABC,AB=AC,求证:∠B<90°.”第一步应先假设 .12.如图所示,C为AB的中点,CN⊥OB于点N,CD⊥OA于点M,CD=4 cm,则CN= cm.13.已知圆心角为120°的扇形的面积为12π cm2,则扇形的弧长是 cm.14.如图所示,☉O的半径为1,PA,PB是☉O的两条切线,切点分别为A,B.连接OA,OB,AB,PO,若∠APB=60°,则△PAB的周长为 .第14题图15.小明很喜欢钻研问题,一次数学老师拿来一个残缺的圆形瓦片(如图所示),让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量得AB的中点C到AB的距离CD=1.6 cm,AB=6.4 cm,则求得圆形瓦片所在圆的半径为 cm.第15题图三、解答题(一):本大题3小题,第16题10分,第17,18题各7分,共24分.16.(1)(2022湘潭节选)如图所示,在☉O中,直径AB与弦CD相交于点E,连接AC,BD,AD.若AD=3,∠C=30°,求☉O的半径.(2)如图所示,扇形OAB的圆心角为120°,半径OA为6 cm.若把扇形纸片OAB卷成一个圆锥形无底纸帽,求这个纸帽的高OH.17.如图所示,四边形ABCD内接于☉O,AB=AD,∠C=110°,若点E在AD 上,求∠E的度数.18.(2022珠海一模改编)如图所示,已知AB是☉O的直径,直线CD是☉O的切线,过点A作AD⊥CD,垂足为D,直线CD与AB的延长线交于点E.当AB=2BE,且CE=3时,求AD的长.四、解答题(二):本大题3小题,每小题9分,共27分.19.(原创)综合与实践素材:一张三角形纸板.操作:如图(1)所示,将一块三角形纸板ABC,准备裁剪成一个面积最大的圆形,已知∠C=90°,BC=3,AC=4.如图(2)所示,作△ABC的内切圆☉O,切点分别为D,E,G,连接OG,OD,OE.解决问题:请求出裁剪出的最大圆形面积.20.(2022眉山改编)如图所示,AB为☉O的直径,点C是☉O上一点,CD 与☉O相切于点C,过点B作BD⊥DC,连接AC,BC.(1)求证:BC平分∠ABD;(2)若BC=23,AB=4,求阴影部分的面积.21.(2022新疆节选)如图所示,☉O是△ABC的外接圆,AB是☉O的直径,点D在☉O上,AC=CD,连接AD,延长DB交过点C的切线于点E.求证:(1)∠ABC=∠CAD;(2)BE⊥CE.五、解答题(三):本大题2小题,每小题12分,共24分.22.(2022金华)综合探究如图(1)所示,正五边形ABCDE内接于☉O,阅读以下作图过程,并回答下列问题:作法如图(2)所示.1.作直径AF.2.以F为圆心,FO为半径作圆弧,与☉O交于点M,N.3.连接AM,MN,NA.(1)求∠ABC的度数;(2)△AMN是正三角形吗?请说明理由;(3)从点A开始,以DN长为半径,在☉O上依次截取点,再依次连接这些分点,得到正n边形,求n的值.23.(2022宁波)综合运用如图(1)所示,☉O为锐角三角形ABC的外接圆,点D在BC上,AD交BC 于点E,点F在AE上,满足∠AFB-∠BFD=∠ACB,FG∥AC交BC于点G,BE=FG,连接BD,DG.设∠ACB=α.(1)用含α的代数式表示∠BFD;(2)求证:△BDE≌△FDG;(3)如图(2)所示,若AD为☉O的直径,当AB的长为2时,求AC的长.答案:一、选择题1.D2.A3.C4.B5.D6.B7.B8.B9.A 10.B二、填空题11.∠B≥90° 12.2 13.4π 14.33 15.4三、解答题(一)16.(1)解:∵∠C=∠B,∠C=30°,∴∠B=30°.∵AB是☉O的直径,AD=3,∴∠ADB=90°.∴AB=6.∴☉O的半径为3.(2)如图所示,设圆锥底面圆的半径为r,所以2πr=4π,解得r=2,在Rt△OHC中,HC=2,OC=6,所以OH=OC2-H C2=42(cm).17.解:如图所示,连接BD,∵∠C+∠BAD=180°,∠C=110°,∴∠BAD=180°-110°=70°.∵AB=AD,∴∠ABD=∠ADB.×(180°-70°)=55°.∴∠ABD=12∵四边形ABDE是☉O的内接四边形,∴∠E+∠ABD=180°.∴∠E=180°-55°=125°.18.解:如图所示,连接OC,∵直线CD为☉O的切线,∴∠OCE=90°.∵AB=2BO,AB=2BE,∴BO=BE=CO.设BO=BE=CO=x,∴OE=2x.在Rt△OCE中,根据勾股定理,得OC2+CE2=OE2,即x2+(3)2=(2x)2.∴x=1.∴AE=3,∠E=30°.∴AD=32.四、解答题(二)19.解:∵∠C=90°,BC=3,AC=4,OG=OE=OD,∴AB=32+42=5.∴S △ABC =12AC×BC=12AC×OG+12BC×OE+12AB×OD=12OG×C △ABC ,即12AC×BC=12OG×C △ABC .∴12×3×4=12×OG×(3+4+5),解得OG=1,∴裁剪出的最大圆形面积为π×12=π.20.(1)证明:连接OC,如图所示,∵CD 与☉O 相切于点C,OC 为半径,∴OC ⊥CD.∵BD ⊥CD,∴OC ∥BD.∴∠OCB=∠DBC.∵OC=OB,∴∠OCB=∠OBC.∴∠DBC=∠OBC.∴BC 平分∠ABD.(2)解:如图所示,作CE ⊥AO 于点E,∵AB是直径,AB=4,∴∠ACB=90°,OA=OC=2.在Rt△ABC中,AC=AB2-B C2=42-(23)2=2,∴AO=CO=AC=2.∴△AOC是等边三角形.∴∠AOC=60°.∵CE⊥OA,∴OE=12OA=1.∴CE=3.∴阴影部分的面积S=60×π×22360-12×2×3=2π3-3.21.证明:(1)∵AC=CD,∴∠CAD=∠ADC.∵∠ABC=∠ADC,∴∠ABC=∠CAD.(2)如图所示,连接OC,∵CE与☉O相切于点C,∴∠OCE=90°.∵四边形ADBC是圆内接四边形,∴∠CAD+∠DBC=180°.∵∠DBC+∠CBE=180°,∴∠CAD=∠CBE.∵∠ABC=∠CAD,∴∠CBE=∠ABC.∵OB=OC,∴∠OCB=∠ABC.∴∠OCB=∠CBE.∴OC∥BE.∴∠E=180°-∠OCE=90°.∴BE⊥CE.五、解答题(三)22.解:(1)∵五边形ABCDE是正五边形,∴∠ABC=(5-2)×180°=108°,5即∠ABC=108°.(2)△AMN是正三角形.理由如下:如图所示,连接ON,NF,由题意,得FN=ON=OF,∴△FON是等边三角形.∴∠NFA=60°.∴NMA=60°.同理,得∠ANM=60°,∴∠MAN=60°.∴△MAN是正三角形.(3)∵∠AMN=60°,∴∠AON=120°.×2=144°,∵∠AOD=360°5∴∠NOD=∠AOD-∠AON=144°-120°=24°.∵360°÷24°=15,∴n的值是15.23.(1)解:∵∠AFB-∠BFD=∠ACB=α,①又∵∠AFB+∠BFD=180°,②②-①,得2∠BFD=180°-α,.∴∠BFD=90°-α2,(2)证明:由(1),得∠BFD=90°-α2∵∠ADB=∠ACB=α,.∴∠FBD=180°-∠ADB-∠BFD=90°-α2∴∠BFD=∠FBD.∴DB=DF.∵FG∥AC,∴∠CAD=∠DFG.∵∠CAD=∠DBE,∴∠DFG=∠DBE.在△BDE 和△FDG 中,{DB =DF ,∠DBE =∠DFG ,BE =FG ,∴△BDE ≌△FDG(SAS).(3)解:∵△BDE ≌△FDG,∴∠FDG=∠BDE=α,DE=DG.∴∠BDG=∠BDF+∠EDG=2α.∵DE=DG,∴∠DGE=12(180°-∠FDG)=90°-α2.∴∠DBG=180°-∠BDG-∠DGE=90°-3α2.∵AD 是☉O 的直径,∴∠ABD=90°.∴∠ABC=∠ABD-∠DBG=3α2.∴AC 与AB 所对的圆心角度数之比为3∶2.∴AC 与AB 的长度之比为3∶2.∵AB =2,∴AC =3.。

人教版九年级数学上册《第二十四章圆》单元检测卷带答案

人教版九年级数学上册《第二十四章圆》单元检测卷带答案

人教版九年级数学上册《第二十四章圆》单元检测卷带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知点A为⊙O内的一点,且⊙O的半径为5cm,则线段OA的长度可能是()A.3cm B.5cm C.6cm D.7cm⌢的中点,半径OC交弦AB于点D,已知OC=5,AB=8,则CD的长为()2.如图,在⊙O中,点C为ABA.2B.√5C.√7D.33.如图,点A、B、C在⊙O上∠ACB=55°,则∠ABO的度数是()A.30°B.35°C.40°D.55°4.如图,⊙O中,CD是切线,切点是D,直线CO交⊙O于B、A,∠A=15°,则∠C的度数是()A.45°B.65°C.60°D.70°5.如图,点O是△ABC内切圆的圆心,已知∠ABC=50°,∠ACB=80°,则∠BOC的度数是()A.100°B.115°C.125°D.130°6.如图,四边形ABCD是⊙O的内接四边形,AB是⊙O的直径,若∠BEC=20°,则∠ADC的度数为()A.100°B.110°C.120°D.130°7.如图,过正六边形内切圆圆心的两条直线夹角为60°,圆的半径为√3,则图中阴影部分面积之和为()A.π−√3B.π−23√3C.√3−23πD.√3−12π8.如图,AB是⊙O的直径,C是⊙O上一点,连接AC,OC,若AB=6,∠A=30°,则BC⌢的长为()A.6πB.2πC.32πD.π二、填空题9.如图,AB是⊙O的直径,弦CD⊥AB交于点E,若OE=4,CE=3,则⊙O的半径为.10.如图,四边形ABCD内接于⊙O,点M在AD的延长线上∠CDM=71°,则∠AOC=.11.如图,AB是⊙O的直径,DE切⊙O于点E,BD⊥DE于点D,交⊙O于点C.若AB=5,BC=3,则CD=.12.如图,在正八边形ABCDEFGH中,连接AC、AE,则∠CAE的度数是.13.如图:一把折扇的骨架长是 30 厘米,扇面宽为 20 厘米,完全展开时圆心角为135°,扇面的面积为平方厘米.三、解答题14.如图,在△ABC中AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E.(1)求证:BE=CE;(2)若AB=6,∠BAC=54°,求AD⏜的长.15.如图,AB是⊙O的直径,C是BD⏜的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF.(2)若CD=6,AC=8,求⊙O的半径及CE的长.16.如图,在△ABC中BA=BC,以AB为直径作⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为E.(1)求证:AD=CD;(2)求证:DE为⊙O的切线.17.如图,水平放置的圆柱形排水管的截面半径为12cm,截面中有水部分弓形的高为6cm.(1)求截面中弦AB的长;(2)求截面中有水部分弓形的面积.18.如图,直角三角形ABC中,∠C=90°,点E为AB上一点,以AE为直径的⊙O上一点D在BC上,且AD平分∠BAC.(1)证明:BC是⊙O的切线;(2)若BD=4,BE=2,求AB的长.参考答案1.A2.A3.B4.C5.B6.B7.D8.D9.510.142°11.112.45°13.187.5π14.(1)证明:如图,连接AE.∵AB是圆O的直径∴∠AEB=90°即AE⊥BC.又∵AB=AC∴AE是边BC上的中线∴BE=CE;(2)解:∵AB=6∴OA=3.又∵OA=OD,∠BAC=54°∴∠AOD=180°−2×54°=72°∴AD⏜的长为:72×π×3180=6π5.15.(1)证明:∵AB是⊙O的直径∴∠ACB=90°∴∠A=90°-∠ABC.∵CE⊥AB∴∠ECB=90°-∠ABC∴∠ECB=∠A.又∵C是BD⌢的中点∴CD⌢=BC⌢∴∠DBC=∠A∴∠ECB=∠DBC∴CF= BF ;(2)解:∵BC⌢=CD ⌢ ∴BC=CD=6.在Rt △ABC 中,AB= √BC 2+AC 2=√62+82=10 ∴⊙O 的半径为5;∵S △ABC = 12AB ×CE= 12BC ×AC∴CE= BC×AC AB =6×810=245.16.(1)证明:∵AB 为直径∴∠ADB =90° ∵BA =BC ∴AD =CD ;(2)证明:连接OD ,如图∵AD =CD ,AO =OB∴OD 为△BAC 的中位线∴OD ∥BC ∴DE ⊥BC ∴OD ⊥DE ∴DE 为⊙O 的切线.17.(1)解:如图:作OC ⊥AB 交⊙O 于D ,连结OB∴OB=12cm.∵O是圆心OC⊥AB∴AB=2BC∵CD=6cm∴OC=OD−CD=12−6=6(cm)∴BC=√OB2−OC2=√122−62=6√3(cm)∴AB=2BC=12√3cm.即弦AB长12√3cm.(2)解:连结OA∵OC⊥AB,OB=2OC∴∠BOC=60°∴∠AOB=120°∴S弓形=120360π×122−12×12√3×6=48π−36√3(cm2).即截面中有水部分弓形的面积为(48π−36√3)cm2.18.(1)证明:连接ODAD平分∠BAC ∴∠1=∠2∵OA=OD ∴∠2=∠3 ∴∠1=∠3∴AC//OD∵∠C=90°∴∠ODE=90°,即OD⊥BC ∵OD是半径∴BC是⊙O的切线(2)解:设OD=OE=r在Rt△ODB中,BD=4,BE=2,故OB=r+2由勾股定理,得:r2+42=(r+2)2解之,得:r=3故OD=OA=OE=3,AB=6+2=8.。

第二十四章 圆单元测试试题(含答案)

第二十四章 圆单元测试试题(含答案)

24章 《圆》单元测试(时间120分钟 总分150分)姓名:__________________ 班级:_________________一、选择题(共12个小题,每小题4分,共48分,在给出的4个选项中只有一个选项符合题意) 1、下列说法:①平分弦的直径垂直于弦;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线;⑤三角形的内心到三条边的距离相等。

其中不正确的有( )个 A 、1 B 、2 C 、3 D 、42、如图,AB ,AC 为⊙O 的切线,B 和C 是切点,延长OB 到D ,使BD =OB ,连接AD.如果∠DAC =78°,那么∠ADO 等于( )A 、70°B 、64°C 、62°D 、51°3、已知☉O 的半径为5,且圆心O 到直线l 的距离是方程x 2-4x-12=0的一个根,则直线l 与圆的位置关系是( )A 、相交B 、相切C 、相离D 、无法确定4、如图,在直角坐标系中,一个圆经过坐标原点O ,交坐标轴于点E ,F ,OE =8,OF =6,则圆的直径长为( )A 、12B 、10C 、14D 、155、如图,直线PA PB ,是O 的两条切线,A B ,分别为切点,120APB =︒∠,10OP = 厘米,则弦AB 的长为( ) A 、53厘米B 、5厘米C 、103厘米D 、532厘米 6、如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE 的度数是( )A 、55°B 、60°C 、65°D 、70°7、已知A 、B 、C 三点在⊙O 上,且AB 是⊙O 内接正三角形的边长,AC 是⊙O 内接正方形的边长,则∠BAC 的度数为( )A 、15°或105°B 、75°或15°C 、75°D 、105°8、如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切……按这样的规律进行下去,正六边形A 10B 10C 10D 10E 10F 10的边长为( )A 、24329B 、81329C 、8129D 、813289、在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作,如图所示.若AB=4,AC=2,S 1﹣S 2=,则S 3﹣S 4的值是( )A 、B 、C 、D 、10、如图,点A ,B ,C 均在⊙O 上,若∠A=66°,则∠OCB 的度数是( )A 、24°B 、28°C 、33°D 、48°11、如图,从一张腰长为60cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )A 、10cmB 、15cmC 、10cmD 、20cm12、如图,已知A 、B 两点的坐标分别为(﹣2,0)、(0,1),⊙C 的圆心坐标为(0,﹣1),半径为1,E 是⊙C 上的一动点,则△ABE 面积的最大值为( ) A 、2+B 、3+C 、3+D 、4+二、填空题(共6小题,每小题4分,共24分)13、如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若 BC =6,AB =10,OD ⊥BC 于点D ,则OD 的长为 .14、已知一条弧的长是3πcm ,弧的半径是6cm ,则这条弧所对的圆心角是 度15、已知一圆锥的底面半径为1cm ,母线长为4cm ,则它的侧面积为________cm 2(结果保留π). 16、如图,四边形ABCD 内接于半圆O ,其中点A ,D 在直径上,点B ,C 在半圆弧上,AB ∥CD ,∠B=90°,若AO=3,∠BAD=120°,则BC= .17、如图,在扇形OAB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB ︵于点E ,以点O 为圆心,OC 的长为半径作CD ︵交OB 于点D.若OA =2,则阴影部分的面积为________.18、如图,在⊙O 中,C ,D 分别是OA ,OB 的中点,MC ⊥AB ,ND ⊥AB ,M ,N 在⊙O 上.下列结论:①MC =ND ;②AM ︵=MN ︵=NB ︵;③四边形MCDN 是正方形;④MN =12AB ,其中正确的结论是________(填序号).三、解答题(共8小题,共78分)19、(8分)如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=l ,求⊙O的半径.20、(8分)如图,在⊙O中,点C是弧AB的中点,过点C分别作半径OA、OB的垂线,交⊙O于E、F两点,垂足分别为M、N,求证:ME=NF.21、(8分)如图,已知在⊙O 中AB=43,AC 是⊙O 的直径,AC⊥BD 于F,∠A=30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD 围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.22、(8分)已知一个圆的半径为6cm,这个圆的内接正六边形的周长和面积各是多少?23、(10分)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线; (2)若DE=1,BC=2,求劣弧的长l.24、(10分)如图,公路MN与公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否受到噪音影响?说明理由;如果受影响,且知拖拉机的速度为18km/h,那么学校受影响的时间是多少秒?25、(12分)已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图1),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图2),设另一交点为E,连接AE,若AE∥OC.①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.26、(14分)如图,已知∠xOy=90°,线段AB=10,若点A在Oy上滑动,点B随着线段AB在射线Ox上滑动(A,B与O不重合),Rt△AOB的内切圆☉K分别与OA,OB,AB切于点E,F,P.(1)在上述变化过程中,Rt△AOB的周长,☉K的半径,△AOB外接圆半径,这几个量中不会发生变化的是什么?并简要说明理由.(2)当AE=4时,求☉K的半径r.(3)当Rt△AOB的面积为S,AE为x,试求S与x之间的函数关系,并求出S最大时直角边OA的长.【参考答案】 1.D 2.B 3.C 4.B 5.D 6.C 7.B 8.C 9.D 10.D 11.D 12.A 13. 414. 90015. 4π 16. 3.17.32+π12(提示:连接OE.∵点C 是OA 的中点,∴OC =12OA =1.∵OE =OA =2,∴OC =12OE.∵CE ⊥OA ,∴∠OEC =30°.∴∠COE =60°.在Rt △OCE 中,CE =OE 2-OC 2=3,∴S △OCE =12OC ·CE =32.∵∠AOB=90°,∴∠BOE =∠AOB -∠COE =30°.∴S 扇形BOE =30π×22360=π3.又S 扇形COD =90π×12360=π4.因此S 阴影=S 扇形BOE +S △OCE -S 扇形COD =π3+32-π4=π12+32.)20.证明:连接OC ,∵OA ⊥CE ,OB ⊥CF ,∴EM=CM ,NF=CN ,∠CMO=∠CNO=90°, ∵C 为的中点, ∴∠AOC=∠BOC , 在△CNO 与△CNO 中,∵,∴△CNO≌△CNO,∴CM=CN,∴EM=NF.21.(1)过O 作OE⊥AB 于E,∴AE=23,又∠A=30°,∴AO=4,∠BOC=60°,则有∠BOD=120°,∴S阴影=120360·π·42=163π;(2)∵BCD=120180·π×4=83=2πr,∴r=43,即底面圆半径为43.22.解:如图所示,⊙O 中内接正六边形,OA=6cm.∵正六边形内接于⊙O,∴中心角∠AOB=60°,∴△AOB 是等边三角形,∴AB=OA=6cm,∴周长为::6 AB=36cm.过O 点作OD⊥AB,∴∠AOD=30°,∴AD=12OA=3cm,∴由勾股定理可得OD=33cm,∴S△OAB=12×6×33=93(cm2),∴S正六边形=6×93=543 (cm2).23.(1)证明:连接OC,∵OA=OC,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF是⊙O的切线;(2)解:连接OD ,DC , ∵∠DAC= 21∠DOC ,∠OAC= 21∠BOC , ∴∠DAC=∠OAC ,∵ED=1,DC=2, ∴∠ECD=30°, ∴∠OCD=60°, ∵OC=OD ,∴△DOC 是等边三角形,∴∠BOC=∠COD=60°,OC=2, ∴l==32π. 24.解:学校受到噪音影响.理由如下: 作AH ⊥MN 于H ,如图, ∵PA=160m ,∠QPN=30°,∴AH=21PA=80m , 而80m <100m ,∴拖拉机在公路MN 上沿PN 方向行驶时,学校受到噪音影响, 以点A 为圆心,100m 为半径作⊙A 交MN 于B 、C ,如图, ∵AH ⊥BC ,∴BH=CH ,在Rt △ABH 中,AB=100m ,AH=80m , BH==60m ,∴BC=2BH=120m ,∵拖拉机的速度=18km/h=5m/s , ∴拖拉机在线段BC 上行驶所需要的时间=5120=24(秒), ∴学校受影响的时间为24秒.25.解:(1)如图①,连接OC ,∵OC=OA ,CD=OA ,∴OC=CD ,∴∠ODC=∠COD ,∵CD是☉O的切线,∴∠OCD=90°,∴∠ODC=45°.(2)如图②,连接OE.∵CD=OA,∴CD=OC=OE=OA,∴∠1=∠2,∠3=∠4.∵AE∥OC,∴∠2=∠3.设∠ODC=∠1=x,则∠2=∠3=∠4=x,∴∠AOE=∠OCD=180°-2x.①AE=OD.理由如下:在△AOE与△OCD中,∴△AOE≌△OCD(SAS),∴AE=OD.②∠6=∠1+∠2=2x.∵OE=OC,∴∠5=∠6=2x.∵AE∥OC,∴∠4+∠5+∠6=180°,即x+2x+2x=180°,∴x=36°,∴∠ODC=36°.26.解:(1)不会发生变化的是△AOB的外接圆半径.理由如下:∵∠AOB=90°,∴AB是△AOB的外接圆的直径.∵AB的长不变,∴△AOB的外接圆半径不变.(2)设☉K的半径为r,☉K与Rt△AOB相切于点E,F,P,连接EK,KF,∴∠KEO=∠OFK=∠O=90°,∴四边形EOFK是矩形.又∵OE=OF,∴四边形EOFK是正方形,∴OE=OF=r,∵☉K是Rt△AOB的内切圆,切点分别为点E,F,P,∴AE=AP=4,PB=BF=6,∴(4+r)2+(6+r)2=100,解得r=-12(不符合题意),r=2.(3)设AO=b,OB=a,∵☉K与Rt△AOB三边相切于点E,F,P,∴OE=r=,即2(b-x)+10=a+b,∴10-2x=a-b,∴100-40x+4x2=a2+b2-2ab.∵S=ab,∴ab=2S,∵a2+b2=102,∴100-40x+4x2=100-4S,∴S=-x2+10x=-(x-5)2+25.∴当x=5时,S最大,即AE=BF=5,∴OA==5.。

第二十四章 圆单元测试卷(含解析)

第二十四章 圆单元测试卷(含解析)

人教版九年级数学《第24章圆》综合测试卷答案解析一、选择题(本题共10个小题,每小题3分,共30分)1、下列说法正确的是()A.三点确定一个圆B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等【解答】解:A、不共线的三点确定一个圆,所以A选项错误;B、一个三角形只有一个外接圆,所以B选项正确;C、过半径的外端与半径垂直的直线是圆的切线,所以C选项错误;D、三角形的内心到三角形三边的距离相等,所以D选项错误.故选B.2、如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.5【解答】解:连接OA,∵AB⊥OP,∴AP==3,∠APO=90°,又OA=5,∴OP===4,故选C.3、已知⊙O的半径为5cm,直线L上有一点P,OP=5cm,则直线L与⊙O的位置关系为()A.相交 B.相离 C.相切 D.相交或相切【解答】解:当OP垂直于直线L时,即圆心O到直线L的距离d=5cm=r,⊙O 与L相切;当OP不垂直于直线L时,即圆心O到直线L的距离d<5cm=r,⊙O与直线L相交.故直线L与⊙O的位置关系是相切或相交.故选:D.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70°C.120°D.140°【解答】解:过A作⊙O的直径,交⊙O于D;在△OAB中,OA=OB,则∠BOD=∠OBA+∠OAB=2×32°=64°,同理可得:∠COD=∠OCA+∠OAC=2×38°=76°,故∠BOC=∠BOD+∠COD=140°.故选D4、如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D、E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.5、如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm【解答】解:过O作OE⊥AB于E,∵OA=OD=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选D.6、如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为()A.4 B.8 C.2 D.4【解答】解:∵⊙O的直径AB=12,∴OB=AB=6,∵BP:AP=1:5,∴BP=AB=×12=2,∴OP=OB﹣BP=6﹣2=4,∵CD⊥AB,∴CD=2PC.如图,连接OC,在Rt△OPC中,∵OC=6,OP=4,∴PC===2,∴CD=2PC=2×2=4.故选D.7、如图,AB,CD是⊙O的两条互相垂直的直径,点O1,O2,O3,O4分别是OA、OB、OC、OD的中点,若⊙O的半径为2,则阴影部分的面积为()A.8 B.4 C.4π+4 D.4π﹣4 【解答】解:如图所示:可得正方形EFMN,边长为2,正方形中两部分阴影面积为:22﹣π×12=4﹣π,∴正方形内空白面积为:4﹣2(4﹣π)=2π﹣4,∵⊙O的半径为2,∴O1,O2,O3,O4的半径为1,∴小圆的面积为:π×12=π,扇形COB的面积为: =π,∴扇形COB中两空白面积相等,∴阴影部分的面积为:π×22﹣2(2π﹣4)=8.故选A.8、如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A .15°B .20°C .25°D .30° 【解答】解;如图, 由四边形的内角和定理,得∠BOA =360°﹣90°﹣90°﹣80°=100°, 由=,得∠AOC =∠BOC =50°. 由圆周角定理,得 ∠ADC =∠AOC =25°, 故选:C .9、已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( ) A .25cm B .45cm C .25cm 或45cm D .23cm 或43cm【解答】解:连接AC ,AO ,∵⊙O 的直径CD=10cm ,AB ⊥CD ,AB=8cm , ∴AM=1AB=1×8=4cm ,OD=OC=5cm , 当C 点位置如图1所示时, ∵OA=5cm ,AM=4cm ,CD ⊥AB , ∴OM=22AM OA -=2245-=3cm , ∴CM=OC+OM=5+3=8cm ,∴AC=22CM AM +=2284+=45cm ; 当C 点位置如图2所示时,同理可得OM=3cm , ∵OC=5cm , ∴MC=5﹣3=2cm ,在Rt △AMC 中,AC=22CM AM +=2224+=25cm . 故选:C .10、如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,点C 是的中点,则下列结论不成立的是( )A .OC ∥AEB .EC=BC C .∠DAE=∠ABED .AC ⊥OE【解答】解:A 、∵点C 是的中点,∴OC ⊥BE ,∵AB 为圆O 的直径, ∴AE ⊥BE ,∴OC ∥AE ,本选项正确; B 、∵=,∴BC=CE ,本选项正确; C 、∵AD 为圆O 的切线, ∴AD ⊥OA ,∴∠DAE+∠EAB=90°,∵∠EBA+∠EAB=90°,∴∠DAE=∠EBA,本选项正确;D、AC不一定垂直于OE,本选项错误,故选D二、填空题(本大题共8小题,每小题3分,共24分)11.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD= 80°.【解答】解:∵AB∥CD,∴∠C=∠ABC=40°,∴∠BOD=2∠C=80°.故答案为80°.12、已知一个扇形的半径为60cm,圆心角为150°,用它围成一个圆锥的侧面,那么圆锥的底面半径为25 cm.【解答】解:扇形的弧长是: =50πcm,设底面半径是rcm,则2πr=50π,解得:r=25.故答案是:25.13、如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为.【解答】解:∵五边形ABCDE是正五边形,∴∠EAB=∠ABC=()518025⨯-=108°,∵BA=BC,∴∠BAC=∠BCA=36°,同理∠ABE=36°,∴∠AFE=∠ABF+∠BAF=36°+36°=72°,故答案为:72°.14、如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为【解答】解:如图,∵AB是⊙O的直径,直线PA与⊙O相切于点A,∴∠PAO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠PAO=25°.16、如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是3<r<5 .【解答】解:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.故答案为:3<r<5.17、如图是一块△ABC余料,已知AB=20cm,BC=7cm,AC=15cm,现将余料裁剪成一个圆形材料,则该圆的最大面积是【解答】解:如图1所示,S△ABC=•r•(AB+BC+AC)==21r,过点A作AD⊥BC交BC的延长线于点D,如图2,设CD=x,由勾股定理得:在Rt△ABD中,AD2=AB2﹣BD2=400﹣(7+x)2,在Rt△ACD中,AD2=AC2﹣x2=225﹣x2,∴400﹣(7+x)2=225﹣x2,解得:x=9,∴AD=12,∴S△ABC==×7×12=42,∴21r=42,∴r=2,该圆的最大面积为:S=πr2=π•22=4π(cm2),18、如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为2.【解答】解;连接AC、OE、OF,作OM⊥EF于M,∵四边形ABCD是正方形,∴AB=BC=4,∠ABC=90°,∴AC是直径,AC=4,∴OE=OF=2,∵OM⊥EF,∴EM=MF,∵△EFG是等边三角形,∴∠GEF=60°,在RT△OME中,∵OE=2,∠OEM=∠GEF=30°,∴OM=,EM=OM=,∴EF=2.故答案为2.三、解答题(共66分)19、(6分)如图,AB 是⊙O 的直径,点D 在⊙O 上,∠DAB=45°,BC ∥AD ,CD ∥AB .若⊙O 的半径为1,求图中阴影部分的面积(结果保留π).【解答】解:连接OD , ∵OA=OD ,∠A=45°, ∴∠A=∠ADO=45°, ∴∠DOB=90°,即OD ⊥AB , ∵BC ∥AD ,CD ∥AB ,∴四边形ABCD 是平行四边形, ∴CD=AB=2 ∴S 梯形OBCD=()()2321212=⨯+=⨯+OD CD OB ,∴图中阴影部分的面积S=S 梯形OBCD ﹣S 扇形OBD=23﹣3601902⨯π=23﹣4π.20、(8分)如图,AB 和CD 分别是⊙O 上的两条弦,过点O 分别作ON ⊥CD 于点N ,OM ⊥AB 于点M ,若ON=AB ,证明:OM=CD .【解答】证明:设圆的半径是r ,ON=x ,则AB=2x ,在直角△CON中,CN==,∵ON⊥CD,∴CD=2CN=2,∵OM⊥AB,∴AM=AB=x,在△AOM中,OM==,∴OM=CD.21、(8分)如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.【解答】解:(1)∵CD是圆O的直径,CD⊥AB,∴=,∴∠C=∠AOD,∵∠AOD=∠COE,∴∠C=∠COE,∵AO⊥BC,∴∠C=30°.(2)连接OB,由(1)知,∠C=30°,∴∠AOD=60°,∴∠AOB=120°,在Rt△AOF中,AO=1,∠AOF=60°,∴AF=,OF=,∴AB=,∴S阴影=S扇形OADB﹣S△OAB=﹣××=π﹣.22、(10分)如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=,BE=2.求证:(1)四边形FADC是菱形;(2)FC是⊙O的切线.【解答】证明:(1)连接OC,∵AB是⊙O的直径,CD⊥AB,∴CE=DE=CD=×4=2,设OC=x,∵BE=2,∴OE=x﹣2,在Rt△OCE中,OC2=OE2+CE2,∴x2=(x﹣2)2+(2)2,解得:x=4,∴OA=OC=4,OE=2,∴AE=6,在Rt△AED中,AD==4,∴AD=CD,∵AF是⊙O切线,∴AF⊥AB,∵CD⊥AB,∴AF∥CD,∵CF∥AD,∴四边形FADC是平行四边形,∵AD=CD,∴平行四边形FADC是菱形;(2)连接OF,AC,∵四边形FADC是菱形,∴FA=FC,∴∠FAC=∠FCA , ∵AO=CO , ∴∠OAC=∠OCA ,∴∠FAC+∠OAC=∠FCA+∠OCA , 即∠OCF=∠OAF=90°, 即OC ⊥FC , ∵点C 在⊙O 上, ∴FC 是⊙O 的切线.23、(10分)如图,在正六边形ABCDEF 中,对角线AE 与BF 相交于点M ,BD 与CE 相交于点N . (1)求证:AE=FB ;(2)在不添加任何辅助线的情况下,请直接写出所有与△ABM 全等的三角形.【解答】证明:(1)∵正六边形ABCDEF , ∴AF=EF=AB ,∠AFE=∠FAB , 在△AFE 与△BAF 中,⎪⎩⎪⎨⎧=∠=∠=FE AB FAB AFE AF AF , ∴△AFE ≌△BAF (SAS ),∴AE=FB ;(2)与△ABM 全等的三角形有△DEN ,△FEM ,△CBN ; ∵六边形ABCDEF 是正六边形, ∴AB=DE ,∠BAF=120°, ∴∠ABM=30°, ∴∠BAM=90°,同理∠DEN=30°,∠EDN=90°, ∴∠ABM=∠DEN ,∠BAM=∠EDN , 在△ABM 和△DEN 中,⎪⎩⎪⎨⎧∠=∠=∠=∠DEN ABM DEAB EDN BAM , ∴△ABM ≌△DEN (ASA ).同理利用ASA 证明△FEM ≌△ABM ,△CBN ≌△ABM .24、(12分)如图,已知等边△ABC ,以边BC 为直径的半圆与边AB ,AC 分别交于点D 、E ,过点D 作DF ⊥AC 于点F ,(1)判断DF 与⊙O 的位置关系,并证明你的结论;(2)过点F 作FH ⊥BC 于点H ,若等边△ABC 的边长为8,求AF ,FH 的长.【解答】解:(1)DF 与⊙O 相切.理由如下: 连接OD .∵△ABC 是等边三角形, ∴∠A=∠B=∠C=60°, ∵OD=OB ,∴△ODB 是等边三角形,∴∠DOB=60°,∴∠DOB=∠C=60°,∴OD∥AC.∵DF⊥AC,∴DO⊥DF,∴DF与⊙O相切;(2)连接CD.∵CB是⊙O直径,∴DC⊥AB.又∵AC=CB=AB,∴D是AB中点,∴AD=.在直角三角形ADF中,∠A=60°,∠ADF=30°,∠AFD=90°,∴,∴FC=AC﹣AF=8﹣2=6.∵FH⊥BC,∴∠FHC=90°.∵∠ACB=60°,∴∠HFC=30°,∴,∴FH==3.25、(12分)如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.【解答】(1)PN与⊙O相切.证明:连接ON,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN.∵∠AMO=∠PMN,∴∠PNM=∠AMO.∴∠PNO=∠PNM+∠ONA=∠AMO+∠OAN=90°.即PN与⊙O相切.(2)成立.证明:连接ON,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN.在Rt △AOM 中, ∵∠OMA+∠OAM=90°, ∴∠PNM+∠ONA=90°. ∴∠PNO=180°﹣90°=90°. 即PN 与⊙O 相切.(3)解:连接ON ,由(2)可知∠ONP=90°. ∵∠AMO=15°,PM=PN ,∴∠PNM=15°,∠OPN=30°, ∴∠PON=60°,∠AON=30°. 作NE ⊥OD ,垂足为点E ,则NE=ON •sin60°=1×=.S 阴影=S △AOC +S 扇形AON ﹣S △CON =OC •OA+CO •NE =×1×1+π﹣×1× =+π﹣.中小学教育资源及组卷应用平台。

人教版九年级数学上《第二十四章圆》单元测试题含答案

人教版九年级数学上《第二十四章圆》单元测试题含答案

第二十四章 圆一、填空题(每题3分,共18分)1.如图24-Z -1所示,在⊙O 中,若∠A =60°,AB =3 cm ,则OB =________ cm.图24-Z -12.如图24-Z -2,AB 是⊙O 的直径,∠AOC =130°,则∠D =________°.图24-Z -23.如图24-Z -3所示,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿的半径为________厘米.图24-Z -34.如图24-Z -4,P A ,PB 分别切⊙O 于A ,B 两点,C 是AB ︵上的一点,∠P =40°,则∠ACB 的度数为________.图24-Z-45.如图24-Z-5,把半径为4 cm的半圆围成一个圆锥的侧面,使半圆圆心为圆锥的顶点,那么这个圆锥的高是________cm(结果保留根号).图24-Z-56.如图24-Z-6,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A,B,C,如果AB=1,那么曲线CDEF的长为________.图24-Z-6二、选择题(每题4分,共32分)7.如图24-Z-7,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()图24-Z-7A.40°B.50°C.80°D.100°8.已知⊙O的半径为3,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是() A.相交B.相切C.相离D.不能确定9.如图24-Z -8,在⊙O 中,AB 为直径,BC 为弦,CD 为切线,连接OC .若∠BCD =50°,则∠AOC 的度数为( )图24-Z -8A .40°B .50°C .80°D .100°10.一个扇形的半径为2,扇形的圆心角为48°,则它的面积为( ) A.8π15 B.4π15 C.16π15 D.π211.已知圆锥的底面积为9π cm 2,母线长为6 cm ,则圆锥的侧面积是( ) A .18π cm 2 B .27π cm 2 C .18 cm 2 D .27 cm 212.一元钱硬币的直径约为24 mm ,则用它能完全覆盖住的正六边形的边长最大不能超过( )A .12 mmB .12 3 mmC .6 mmD .6 3 mm13.如图24-Z -9,半圆的直径BC 恰与等腰直角三角形ABC 的一条直角边完全重合,若BC =4,则图中阴影部分的面积是( )图24-Z -9A .2+πB .2+2πC .4+πD .2+4π12.如图24-Z -10,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )图24-Z -10A.252π B .13π C .25π D .25 2 三、解答题(共50分)15.(10分)如图24-Z -11,在⊙O 中,AB ︵=AC ︵,∠ACB =60°.求证:∠AOB =∠BOC =∠AOC .图24-Z -1116.(12分)如图24-Z-12,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.图24-Z-1217.(12分)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图24-Z-13①,求∠T和∠CDB的大小;(2)如图②,当BE=BC时,求∠CDO的大小.图24-Z -1318.(16分)如图24-Z -14,AB 是以BC 为直径的半圆O 的切线,D 为半圆上一点,AD =AB ,AD ,BC 的延长线相交于点E .(1)求证:AD 是半圆O 的切线; (2)连接CD ,求证:∠A =2∠CDE ; (3)若∠CDE =27°,OB =2,求BD ︵的长.图24-Z -14教师详解详析【作者说卷】本试卷的重点是圆的基本概念、与圆有关的位置关系及应用.难点是如何构建垂径定理模型解决问题,切线的判定与性质的综合应用,亮点是既注重解决生活中的实际问题,又培养学生认真读题的习惯.知识与 技能圆的相 关性质 垂径定理 及其应用与圆有关的 位置关系题号1,2,4,7,9,153,168知识与技能 扇形、弧长、圆锥 综合运用 题号 5,6,10,11,13,1417,181.32.25 [解析] ∵AB 是⊙O 的直径,∠AOC =130°, ∴∠BOC =180°-∠AOC =50°, ∴∠D =12∠BOC =25°.故答案为25. 3.134[解析] 如图所示,设该圆的半径为x 厘米,已知弦长为6厘米,根据垂径定理,得AB =3厘米.根据勾股定理,得OA 2-OB 2=AB 2,即x 2-(x -2)2=32,解得x =134.4.110° [解析] 如图所示,连接OA ,OB ,∵PA ,PB 是切线, ∴∠OAP =∠OBP =90°,∴∠AOB =360°-90°-90°-40°= 140°, ∴∠ADB =70°.又∵圆内接四边形的对角互补,∴∠ACB =180°-∠ADB =180°-70°=110°.5.2 3 [解析] 设圆锥的底面圆半径为r cm ,高为h cm ,则2πr =4π,r =2,根据勾股定理,得h =16-4=2 3.故答案是2 3.6.4π [解析] lCD ︵=120π×1180=2π3,lDE ︵=120π×2180=4π3,lEF ︵=120π×3180=2π,所以曲线CDEF 的长=2π3+4π3+2π=4π.7.D8.A [解析] ∵⊙O 的半径为3,圆心O 到直线l 的距离为2, 又∵3>2,即d <r ,∴直线l 与⊙O 的位置关系是相交.9.C [解析] ∵CD 为⊙O 的切线,∴∠OCD =90°. ∵∠BCD =50°,∴∠OCB =40°. ∵OB =OC ,∴∠OBC =∠OCB =40°, ∴∠AOC =2∠OBC =80°.故选C .10.A [解析] 根据扇形面积公式:S =n πr 2360=48π×4360=8π15.故选A .11.A [解析] 因为圆锥的底面积为9π cm 2,所以圆锥的底面圆的半径为3 cm ,圆锥的底面周长为6π cm ,根据扇形面积公式得S =12lR =12×6π×6=18π(cm 2).12.A [解析] 如图,已知圆的半径r 为12 mm ,△OBC 是等边三角形,所以BC =12 mm ,所以正六边形的边长最大不超过12 mm .故选A .13.A [解析] 如图,连接DO.∵△ABC 为等腰直角三角形,∴∠CBA =45°,∴∠DOC =90°.利用分割的方法,得到阴影部分的面积等于三角形BOD 的面积加扇形COD 的面积,所以阴影部分的面积=12×2×2+90360π×22=2+π.14.A [解析] 如图,连接BD ,B ′D.∵AB =5,AD =12, ∴BD =52+122=13, ∴BB′︵的长l =90×π×13180=132π.∵BB″︵的长l′=90×π×12180=6π,∴点B 在两次旋转过程中经过的路径的长是132π+6π=252π.故选A . 15.证明:∵AB ︵=AC ︵,∴AB =AC ,∴△ABC 是等腰三角形.∵∠ACB =60°,∴△ABC 是等边三角形,∴AB =BC =CA ,∴∠AOB =∠BOC =∠AOC.16.解:(1)∵AB 是⊙O 的直径,弦CD ⊥AB ,CD =16,∴DE =12CD =8. ∵BE =4,∴OE =OB -BE =OD -4.在Rt △OED 中,OE 2+DE 2=OD 2,即(OD -4)2+82=OD 2,解得OD =10.∴⊙O 的直径是20.(2)∵弦CD ⊥AB ,∴∠OED =90°,∴∠EOD +∠D =90°.∵∠M =∠D ,∠EOD =2∠M ,∴∠EOD +∠D =2∠M +∠D =3∠D =90°,∴∠D =30°.17.解:(1)如图①,连接AC ,∵AB 是⊙O 的直径,AT 是⊙O 的切线,∴AT ⊥AB ,即∠TAB =90°.∴∠T=90°-∠ABT=40°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABT=40°,∴∠CDB=∠CAB=40°.(2)如图②,连接AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°.∵OA=OD,∴∠ODA=∠OAD=65°.∵∠ADC=∠ABC=50°,∴∠CDO=∠ODA-∠ADC=15°.18.解:(1)证明:连接OD,BD.∵AB是以BC为直径的半圆O的切线,∴AB⊥BC,即∠ABO=90°.∵AB=AD,∴∠ABD=∠ADB.∵OB=OD,∴∠ABD +∠DBO =∠ADB +∠BDO ,即∠ABO =∠ADO =90°.又∵OD 是半圆O 的半径,∴AD 是半圆O 的切线. (2)证明:由(1)知∠ADO =∠ABO =90°,∴∠A =360°-∠ADO -∠ABO -∠BOD =180°-∠BOD =∠DOC. ∵AD 是半圆O 的切线,∴∠ODE =90°,∴∠ODC +∠CDE =90°.∵BC 是⊙O 的直径,∴∠ODC +∠BDO =90°,∴∠BDO =∠CDE.∵∠BDO =∠OBD ,∴∠DOC =2∠BDO ,∴∠DOC =2∠CDE ,∴∠A =2∠CDE.(3)∵∠CDE =27°,∴∠DOC =2∠CDE =54°,∴∠BOD =180°-54°=126°.∵OB =2,∴BD ︵的长=126×π×2180=75π.。

人教版九年级数学(上)第二十四章《圆》单元检测卷含答案

人教版九年级数学(上)第二十四章《圆》单元检测卷含答案

人教版九年级数学(上)第二十四章《圆》单元检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列说法错误的是A.直径是弦B.最长的弦是直径C.垂直于弦的直径平分弦D.经过三点可以确定一个圆2.如图,已知☉O的半径为7,弦AB的长为12,则圆心O到AB的距离为A.√5B.2√5C.2√7D.√133.已知☉O的半径为5,且圆心O到直线l的距离是方程x2-4x-12=0的一个根,则直线l与圆的位置关系是A.相交B.相切C.相离D.无法确定4.如图,☉O的半径OC=5 cm,直线l⊥OC,垂足为点H,且l交☉O于A,B两点,AB=8 cm,当l与☉O相切时,l需沿OC所在直线向下平移A.1 cmB.2 cmC.3 cmD.4 cm5.如图,在△ABC中,已知AB=AC=5 cm,BC=8 cm,点D是BC的中点,以点D为圆心作一个半径为3 cm的圆,则下列说法正确的是A.点A在☉D外B.点A在☉D上C.点A在☉D内D.无法确定6.如图,☉O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切☉O于点Q,则PQ的最小值为A.√13B.√5C.3D.27.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为A.(60°,4)B.(45°,4)C.(60°,2√2)D.(50°,2√2)8.如图,Rt△ABC的内切圆☉O与两直角边AB,BC分别相切于点D,E,过劣弧DE(不包括端点D,E)上任一点P作☉O的切线MN与AB,BC分别交于点M,N,若☉O的半径为r,则Rt△MBN 的周长为A.rB.3r2rC.2rD.529.如图,正六边形ABCDEF是边长为2 cm的螺母,点P是FA延长线上的点,在A,P之间拉一条长为12 cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为A.13π cmB.14π cmC.15π cmD.16π cm10.如图,在△ABC中,AB=8 cm,BC=4 cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的点C'处,那么AC边扫过的图形(图中阴影部分)面积是A.20π cm2B.(20π+8) cm2C.16π cm2D.(16π+8) cm2二、填空题(本大题共4小题,每小题5分,满分20分)11.一个直角三角形的两边长分别为3,4,则这个三角形外接圆的半径长为2或2.5.12.如图是考古学家发现的古代钱币的一部分,合肥一中的小明正好学习了圆的知识,他想求其外圆半径,连接外圆上的两点A,B,并使AB与内圆相切于点D,作CD⊥AB交外圆于点C.测得CD=10 cm,AB=60 cm,则这个钱币的外圆半径为50cm.13.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是2√3.14.如图,点C在以AB为直径的半圆上,AB=4,∠CBA=30°,点D在AO上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F,下列结论:①CE=CF;②线段EF的最小值为√3;③当AD=1时,EF与半圆相切;④当点D从点A运动到点O时,线段EF扫过的面积是4√3.其中正确的序号是①③.三、(本大题共2小题,每小题8分,满分16分)15.如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.AB=24 cm,CD=8 cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.解:(1)作弦AC的垂直平分线与弦AB的垂直平分线交于O点,以O为圆心OA长为半径作圆O就是此残片所在的圆,如图.(2)连接OA,设OA=x,AD=12,OD=x-8,根据勾股定理,得x2=122+(x-8)2,解得x=13.∴圆的半径为13 cm.⏜上一点,且∠BPC=60°.试16.如图,已知CD是☉O的直径,弦AB⊥CD,垂足为点M,点P是AB判断△ABC的形状,并说明你的理由.解:△ABC为等边三角形.⏜=BC⏜,∴AC=BC,理由如下:∵AB⊥CD,CD为☉O的直径,∴AC又∵∠BPC=∠BAC=60°,∴△ABC为等边三角形.四、(本大题共2小题,每小题8分,满分16分)17.如图,在△ABC中,∠C=90°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E.⏜的度数;(1)若∠A=25°,求BD(2)若BC=9,AC=12,求BD的长.解:(1)延长BC交☉O于点N,∵在△ABC中,∠C=90°,∠A=25°,∴∠B=65°,∴∠B所对的弧BDN的度数是130°,⏜的度数是180°-130°=50°.∴BD(2)延长AC交☉O于点M,在Rt△BCA中,由勾股定理得AB=√AC2+BC2=√122+92=15,∵BC=9,AC=12,∴CM=CE=BC=9,AM=AC+CM=21,AE=AC-CE=3,由割线定理得AD×AB=AE×AM,∴(15-BD)×15=21×3,解得BD=54.518.如图,在△ABC中,AB=AC,内切圆O与边BC,AC,AB分别相切于点D,E,F.(1)求证:BF=CE;(2)若∠C=30°,CE=2√3,求AC.解:(1)∵AF,AE是☉O的切线,∴AF=AE.又∵AB=AC,∴AB-AF=AC-AE,即BF=CE.(2)连接AO,OD.∵O是△ABC的内心,∴OA平分∠BAC.∵☉O是△ABC的内切圆,D是切点,∴OD⊥BC.又∵AC=AB,∴A,O,D三点共线,即AD⊥BC.∵CD,CE是☉O的切线,∴CD=CE=2√3.在Rt△ACD中,由∠C=30°,设AD=x,则AC=2x,由勾股定理得CD2+AD2=AC2,即(2√3)2+x2=(2x)2,解得x=2.∴AC=2x=2×2=4.五、(本大题共2小题,每小题10分,满分20分)19.如图,已知ED为☉O的直径且ED=4,点A(不与点E,D重合)为☉O上一个动点,线段AB经过点E,且EA=EB,F为☉O上一点,∠FEB=90°,BF的延长线交AD的延长线于点C.(1)求证:△EFB≌△ADE;(2)当点A在☉O上移动时,直接回答四边形FCDE的最大面积为多少.解:(1)连接FA ,∵∠FEB=90°,∴EF ⊥AB , ∵BE=AE ,∴BF=AF ,∵∠FEA=∠FEB=90°,∴AF 是☉O 的直径,∴AF=DE , ∴BF=ED ,在Rt △EFB 与Rt △ADE 中,{BE =AE ,BF =DE ,∴Rt △EFB ≌Rt △ADE.(2)∵Rt △EFB ≌Rt △ADE ,∴∠B=∠AED ,∴DE ∥BC ,∵ED 为☉O 的直径,∴AC ⊥AB ,∵EF ⊥AB ,∴EF ∥CD ,∴四边形FCDE 是平行四边形,∴E 到BC 的距离最大时,四边形FCDE 的面积最大,即点A 到DE 的距离最大,∴当A 为ED ⏜的中点时,点A 到DE 的距离最大是2,∴四边形FCDE 的最大面积=4×2=8.20.如图,点P 是正方形ABCD 内的一点,连接PA ,PB ,PC.将△PAB 绕点B 顺时针旋转90°到△P'CB 的位置.(1)设AB 的长为a ,PB 的长为b (b<a ),求△PAB 旋转到△P'CB 的过程中边PA 所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC 的长.解:(1)∵将△PAB绕点B顺时针旋转90°到△P'CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP'=π(a2-b2).4(2)连接PP',根据旋转的性质可知△APB≌△CP'B,∴BP=BP'=4,P'C=PA=2,∠PBP'=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32.又∵∠BP'C=∠BPA=135°,∴∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,即△PP'C是直角三角形,PC=√P'P2+P'C2=6.六、(本题满分12分)21.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC.①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.解:(1)如图①,连接OC ,∵OC=OA ,CD=OA ,∴OC=CD ,∴∠ODC=∠COD , ∵CD 是☉O 的切线,∴∠OCD=90°,∴∠ODC=45°.(2)如图②,连接OE.∵CD=OA ,∴CD=OC=OE=OA ,∴∠1=∠2,∠3=∠4. ∵AE ∥OC ,∴∠2=∠3.设∠ODC=∠1=x ,则∠2=∠3=∠4=x ,∴∠AOE=∠OCD=180°-2x.①AE=OD.理由如下:在△AOE 与△OCD 中,{OA =OC ,∠AOE =∠OCD ,OE =CD ,∴△AOE ≌△OCD (SAS),∴AE=OD.②∠6=∠1+∠2=2x. ∵OE=OC ,∴∠5=∠6=2x.∵AE ∥OC ,∴∠4+∠5+∠6=180°,即x+2x+2x=180°,∴x=36°,∴∠ODC=36°.七、(本题满分12分)22.如图,已知∠xOy=90°,线段AB=10,若点A 在Oy 上滑动,点B 随着线段AB 在射线Ox 上滑动(A ,B 与O 不重合),Rt △AOB 的内切圆☉K 分别与OA ,OB ,AB 切于点E ,F ,P.(1)在上述变化过程中,Rt△AOB的周长,☉K的半径,△AOB外接圆半径,这几个量中不会发生变化的是什么?并简要说明理由.(2)当AE=4时,求☉K的半径r.(3)当Rt△AOB的面积为S,AE为x,试求S与x之间的函数关系,并求出S最大时直角边OA的长.解:(1)不会发生变化的是△AOB的外接圆半径.理由如下:∵∠AOB=90°,∴AB是△AOB的外接圆的直径.∵AB的长不变,∴△AOB的外接圆半径不变.(2)设☉K的半径为r,☉K与Rt△AOB相切于点E,F,P,连接EK,KF,∴∠KEO=∠OFK=∠O=90°,∴四边形EOFK是矩形.又∵OE=OF,∴四边形EOFK是正方形,∴OE=OF=r,∵☉K是Rt△AOB的内切圆,切点分别为点E,F,P,∴AE=AP=4,PB=BF=6,∴(4+r)2+(6+r)2=100,解得r=-12(不符合题意),r=2.(3)设AO=b,OB=a,∵☉K与Rt△AOB三边相切于点E,F,P,∴OE=r=a+b-10,即2(b-x)+10=a+b,∴10-2x=a-b,∴100-40x+4x2=a2+b2-2ab.2∵S=1ab,∴ab=2S,∵a2+b2=102,∴100-40x+4x2=100-4S,2∴S=-x2+10x=-(x-5)2+25.∴当x=5时,S最大,即AE=BF=5,∴OA==5√2.√2八、(本题满分14分)23.如图,点P在射线AB的上方,且∠PAB=45°,PA=2,点M是射线AB上的动点(点M不与点A重合),现将点P绕点A按顺时针方向旋转60°到点Q,将点M绕点P按逆时针方向旋转60°到点N,连接AQ,PM,PN,作直线QN.(1)求证:AM=QN.(2)直线QN与以点P为圆心,以PN的长为半径的圆是否存在相切的情况?若存在,请求出此时AM的长,若不存在,请说明理由.(3)当以点P为圆心,以PN的长为半径的圆经过点Q时,直接写出劣弧NQ与两条半径所围成的扇形的面积.解:(1)如图1,连接PQ,由点P绕点A按顺时针方向旋转60°到点Q,可得AP=AQ,∠PAQ=60°,∴△APQ为等边三角形,∴PA=PQ,∠APQ=60°,由点M绕点P按逆时针方向旋转60°到点N,可得PM=PN,∠MPN=60°,∴∠APM=∠QPN,则△APM≌△QPN(SAS),∴AM=QN.(2)存在.理由如下:如图2,由(1)中的证明可知△APM≌△QPN,∴∠AMP=∠QNP,∵直线QN与以点P为圆心,以PN的长为半径的圆相切,∴∠AMP=∠QNP=90°,即PN⊥QN.在Rt△APM中,∠PAB=45°,PA=2,∴AM=√2.(3)由(1)知△APQ是等边三角形,∴PA=PQ,∠APQ=60°.∵以点P为圆心,以PN的长为半径的圆经过点Q,∴PN=PQ=PA.∵PM=PN,∴PA=PM,∵∠PAB=45°,∴∠APM=90°,∴∠MPQ=∠APM-∠APQ=30°.∵∠MPN=60°,∴∠QPN=90°,∴劣弧NQ与两条半径所围成的扇形的面积是扇形QPN的面积,而此扇形的圆心角∠QPN=90°,半径为PN=PM=PA=2.∴劣弧NQ与两条半径所围成的扇形的面积=90π·22360=π.。

第24章 圆单元测试卷(解析卷)

第24章 圆单元测试卷(解析卷)

第24章圆单元测试卷参考答案与试题解析一.选择题(共10小题,每小题3分,满分30分)1.下列说法中正确的是()A.弦是直径B.弧是半圆C.半圆是圆中最长的弧D.直径是圆中最长的弦解:A、错误.弦不一定是直径.B、错误.弧是圆上两点间的部分.C、错误.优弧大于半圆.D、正确.直径是圆中最长的弦.故选:D.2.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,则⊙O 的半径为()A.8.5B.7.5C.9.5D.8解:连接OA,∵AB⊥OD,∴AC=AB=4,设⊙O的半径为x,则OC=x﹣1,由勾股定理得,OA2=AC2+OC2,即x2=16+(x﹣1)2,解得,x=,答:⊙O的半径为.故选:A.3.已如△ABC的面积18cm2,其周长为24cm,则△ABC内切圆半径为()A.1cm B.cm C.2cm D.cm解:设△ABC的内切圆的半径为rcm.由题意:×24×r=18,解得r=,故选:B.4.如图,MN是⊙O的直径,点A是半圆上的三等分点,点B是劣弧AN的中点,点P 是直径MN上一动点.若MN=2,AB=1,则△PAB周长的最小值是()A.2+1B.+1C.2D.3解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,OA,OB,PA,AA′,∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=,∴A′B=2.∴PA+PB=PA′+PB=A′B=2,∴△PAB周长的最小值是2+1=3,故选:D.5.在Rt△ABC中,∠C=90°,AC=8cm,AB=10cm,以C为圆心,以9cm长为直径的⊙C与直线AB的位置关系为()A.相交B.相离C.相切D.相离或相交解:∵AC=8cm,AB=10cm,∴BC==6,S△ABC=AC×BC=×6×8=24,∴AB上的高为:24×2÷10=4.8,即圆心到直线的距离是4.8,∵r=4.5,∴4.8>4.5∴⊙C与直线AB相离,故选:B.6.如图,AB是⊙O的直径,半径OC⊥AB,过OC的中点D作弦EF∥AB,则∠ABE 的度数是()A.30°B.15°C.45°D.60°解:如图连接OE,设CD=DO=x,则r=2x,∵在Rt△EDO中,=2,∴∠DEO=30°,∵EF∥AB,∴∠FEB=∠EBA,∵EO=BO,∴∠BEO=∠EBA,∴∠FEB=∠BEO∴∠EBA=15°.故选:B.7.已知扇形半径为3,弧长为π,则它所对的圆心角的度数为()A.120°B.60°C.40°D.20°解:根据l==π,解得:n=60°,故选:B.8.如图,已知点平面直角坐标系内三点A(3,0)、B(5,0)、C(0,4),⊙P经过点A、B、C,则点P的坐标为()A.(6,8)B.(4,5)C.(4,)D.(4,)解:∵⊙P经过点A、B、C,∴点P在线段AB的垂直平分线上,∴点P的横坐标为4,设点P的坐标为(4,y),作PE⊥OB于E,PF⊥OC与F,由题意得,=,解得,y=,故选:C.9.下列关于圆的叙述正确的有()①对角互补的四边形是圆内接四边形;②圆的切线垂直于圆的半径;③正多边形中心角的度数等于这个正多边形一个外角的度数;④过圆外一点所画的圆的两条切线长相等.A.1个B.2个C.3个D.4个解:对角互补的四边形是圆内接四边形,所以①正确;圆的切线垂直于过切点的半径,所以②错误;正多边形中心角的度数等于这个正多边形一个外角的度数,所以③正确;过圆外一点所画的圆的两条切线长相等,所以④正确.故选:C.10.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为()A.15m B.17m C.18m D.20m解:连结OA,如图,∵CD⊥AB,∴AD=BD=AB=×24=12,在Rt△OAD中,OA=5,OD==5,∴CD=OC+CD=13+5=18(m).故选:C.二.填空题(共6小题,每小题3分,满分18分)11.用反证法证明“三角形中最多有一个内角是直角”,应假设三角形中最少有两个内角是直角.解:用反证法证明“三角形中最多有一个内角是直角”,应假设三角形中最少有两个内角是直角,故答案为:三角形中最少有两个内角是直角.12.如图,在中⊙O,AB是直径,弦AE的垂直平分线交⊙O于点C,CD⊥AB于D,BD=1,AE=4,则AD的长为4.解:弦AE的垂直平分线交⊙O于点F,∴AF=AE=2,∠AFO=90°,∵CD⊥AB,∴∠ODC=∠AFO=90°,∵OA=OC,∠AOF=∠COD,∴△AOF≌△COD(AAS),∴CD=AF=2,设⊙O的半径为r,则OD=r﹣1,由勾股定理得:OC2=OD2+CD2,r2=(r﹣1)2+22,r=,∴AD=AB﹣1=2×﹣1=4,故答案为:4.13.如图,AB是⊙O的直径,C、D为半圆的三等分点,CE⊥AB于点E,∠ACE的度数为30°.解:如图,连接OC.∵AB是直径,==,∴∠AOC=∠COD=∠DOB=60°,∵OA=OC,∴△AOC是等边三角形,∴∠A=60°,∵CE⊥OA,∴∠AEC=90°,∴∠ACE=90°﹣60°=30°.故答案为30°14.如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为5.解:如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为:5.15.如图,点A,B,C,D是⊙O上的四个点,点B是的中点.如果∠ABC=60°,那么∠ADB=60°.解:∵点A,B,C,D是⊙O上的四个点,∠ABC=60°,∴∠ADC=120°,∵点B是的中点.∴∠ADB=60°,故答案为:60°16.如图,在△ABC中,∠A=60°,BC=5cm,△ABC的外接圆为⊙O,则该⊙O的直径是cm.解:作直径BD,连接CD,由圆周角定理得,∠D=∠A=60°,∠BCD=90°,则BD==,故答案为:.三.解答题(共10小题,满分102分)17.(10分)已知:如图,BD、CE是△ABC的高,M为BC的中点.试说明点B、C、D、E在以点M为圆心的同一个圆上.证明:连接ME、MD,∵BD、CE分别是△ABC的高,M为BC的中点,∴ME=MD=MC=MB=BC,∴点B、C、D、E在以点M为圆心的同一圆上.18.(10分)如图,在⊙O中,=2,AD⊥OC于D.求证:AB=2AD.证明:延长AD交⊙O于E,∵OC⊥AD,∴,AE=2AD,∵,∴,∴AB=AE,∴AB=2AD.19.(10分)如图,AB为⊙O直径,弦CD⊥AB于E,△COD为等边三角形.(1)求∠CDB的大小.(2)若OE=3,直接写出BE的长2﹣3.解:(1)∵△OCD是等边三角形∴OC=OD=CD,∠OCD=∠ODC=∠COD=60°∵OB⊥CD∴∠COB=30°∵∠COB=2∠CDB∴∠CDB=15°(2)∵sin∠OCD==∴∴OC=2∴BE=OB﹣BE=2﹣3故答案为2﹣3.20.(10分)如图,为一圆洞门.工匠在建造过程中需要一根横梁AB和两根对称的立柱CE、DF来支撑,点A、B、C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AB=2,EF=,=120°.(1)求出圆洞门⊙O的半径;(2)求立柱CE的长度.解:(1)作OH⊥AB于H,连接OB、OA.∵的度数为120°,AO=BO,∴∠BOH=×120°=60°,∴AH=BH=,在Rt△BOH中,sin∠BOH=,∴OB=2,即圆洞门⊙O的半径为2;(2)作OM⊥EC于M,连接OC.∵Rt△BOH中,OH=1,∵EH=,易证四边形OMEH是矩形,∴OM=EH=,ME=OH=1,在Rt△OMC中,CM==,∴CE=ME+CM=1+=,∴立柱CE的长度为.21.(10分)如图,在平面直角坐标系中,O(0,0),A(0,﹣6),B(8,0)三点在⊙P上.(1)求⊙P的半径及圆心P的坐标;(2)M为劣弧的中点,求证:AM是∠OAB的平分线.解:(1)∵∠AOB=90°,∴线段AB是⊙P的直径,∵A(0,﹣6),B(8,0),PA=PB,∴P(4,﹣3).(2)∵=,∴∠OAM=∠MAB,∴AM是∠OAB的平分线.22.(10分)如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.(1)求证:∠ACB+∠BAD=90°;(2)过点D作DE⊥AB于E,若∠ADC=2∠ACB,AC=4,求DE的长.(1)证明:延长AD交⊙O于点F,连接BF.∵AF为⊙O的直径,∴∠ABF=90°,∴∠AFB+∠BAD=90°,∵∠AFB=∠ACB,∴∠ACB+∠BAD=90°.(2)证明:如图2中,过点O作OH⊥AC于H,连接BO.∵∠AOB=2∠ACB,∠ADC=2∠ACB,∴∠AOB=∠ADC,∴∠BOD=∠BDO,∴BD=BO,∴BD=OA,∵∠BED=∠AHO,∠ABD=∠AOH,∴△BDE≌△AOH,(AAS),∴DE=AH,∵OH⊥AC,∴AH=CH=AC,∴AC=2DE=4,∴DE=2.23.(10分)如图正方形ABCD内接于⊙O,E为CD任意一点,连接DE、AE.(1)求∠AED的度数.(2)如图2,过点B作BF∥DE交⊙O于点F,连接AF,AF=1,AE=4,求DE的长度.解:(1)如图1中,连接OA、OD.∵四边形ABCD是正方形,∴∠AOD=90°,∴∠AED=∠AOD=45°.(2)如图2中,连接CF,CE,CA,BD,作DH⊥AE于H.∵BF∥DE,AB∥CD,∴∠BDE=∠DBF,∠BDC=∠ABD,∴∠ABF=∠CDE,∵∠CFA=∠AEC=90°,∴∠DEC=∠AFB=135°,∵CD=AB,∴△CDE≌△ABF,∴AF=CE=1,∴AC==,∴AD=AC=,∵∠DHE=90°,∴∠HDE=∠HED=45°,∴DH=HE,设DH=EH=x,在Rt△ADH中,∵AD2=AH2+DH2,∴=(4﹣x)2+x2,解得x=或(舍弃),∴DE=DH=24.(10分)如图,AB是⊙O的直径,点C是圆上一点,连接CA、CB,过点O作弦BC的垂线,交于点D,连接AD.(1)求证:∠CAD=∠BAD;(2)若⊙O的半径为1,∠B=50°,求的长.(1)证明:∵点O是圆心,OD⊥BC,∴,∴∠CAD=∠BAD;(2)连接CO,∵∠B=50°,∴∠AOC=100°,∴的长为:L=.25.(10分)如图,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE∥AD,CE交BA的延长线于点E,BC=8,AD=3.(1)求CE的长;(2)求证:△ABC为等腰三角形.(3)求△ABC的外接圆圆心P与内切圆圆心Q之间的距离.(1)解:∵AD 是边BC 上的中线, ∴BD=CD , ∵CE ∥AD ,∴AD 为△BCE 的中位线, ∴CE=2AD=6;(2)证明:∵CE ∥AD ,∴∠BAD=∠E ,∠CAD=∠ACE , 而∠BAD=∠CAD , ∴∠ACE=∠E , ∴AE=AC , 而AB=AE , ∴AB=AC ,∴△ABC 为等腰三角形. (3)如图,连接BP 、BQ 、CQ , 在Rt △ABD 中,AB==5,设⊙P 的半径为R ,⊙Q 的半径为r , 在Rt △PBD 中,(R ﹣3)2+42=R 2,解得R=,∴PD=PA ﹣AD=﹣3=,∵S △ABQ +S △BCQ +S △ACQ =S △ABC ,∴•r•5+•r•8+•r•5=•3•8,解得r=, 即QD=,∴PQ=PD +QD=+=.答:△ABC 的外接圆圆心P 与内切圆圆心Q 之间的距离为.26.(12分)如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;(3)求证:CD=HF.(1)证明:(1)如图,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)证明:∵∠C=∠BHE=90°,∠EBC=∠EBA,∴BEC=∠BEH,∵BF是⊙O是直径,∴∠BEF=90°,∴∠FEH+∠BEH=90°,∠AEF+∠BEC=90°,∴∠FEH=∠FEA,∴FE平分∠AEH.。

《第24章 圆》单元检测试卷及答案(共六套)

《第24章 圆》单元检测试卷及答案(共六套)

《第24章圆》单元检测试卷(一)姓名:________班级:_______得分:______一选择题:1.下列说法不正确的是()A.圆是轴对称图形,它有无数条对称轴B.圆的半径、弦长的一半、弦上的弦心距能组成一直角三角形,且圆的半径是此直角三角形的斜边C.弦长相等,则弦所对的弦心距也相等D.垂直于弦的直径平分这条弦,并且平分弦所对的弧2.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A.116°B.32°C.58°D.64°第2题图第3题图第4题图3.如图是我市环北路改造后一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为4m,水面最深地方的高度为1m,则该输水管的半径为()A.2mB.2.5mC.4mD.5m4.如图,⊙O的直径CD垂直于弦AB于点E,且CE=2,OB=4,则AB的长为()A. B.4 C.6 D.5.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm 的长为半径作圆,则⊙C与AB的位置关系是( )A.相离B.相切C.相交D.相切或相交第5题图第6题图6.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.40°B.50°C.60°D.70°7.如图,Rt△AB′C′是Rt△ABC以点A为中心逆时针旋转90°而得到的,其中AB=1,BC=2,则旋转过程中弧CC′的长为( )A.πB.π C.5π D.π第7题图第8题图第9题图8.如图,PA,PB是⊙O的切线,A,B是切点,点C是劣弧AB上的一个点,若∠P=40°,则∠ACB度数是( )A.80°B.110°C.120°D.140°9.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()A.2.3B.2.4C.2.5D.2.610.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是()A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分第10题图第11题图第12题图11.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A.2mB.3mC.6mD.9m12.如图,以AC为斜边在异侧作Rt△ABC和Rt△ADC,∠ABC=∠ADC=90°,∠BCD=45°,AC=2,则BD的长度为()A.1B.C.D.13.如图,半径为1的圆O与正五边形ABCDE相切于点A、C,劣弧AC的长度为()A.πB.πC.πD.π第13题图第14题图第15题图14.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB 于点D,连接CD,则阴影部分的面积为()A.π﹣1B.2π﹣1C.π﹣1D.π﹣215.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为()A. B. C.或 D.或或17.把一张圆形纸片和一张含45°角的扇形纸片如图所示的方式分别剪得一个正方形,如果所剪得的两个正方形边长都是1,那么圆形纸片和扇形纸片的面积比是()A.4:5B.2:5C.:2D.:18.如图,点A、B分别在x轴、y轴上(),以AB为直径的圆经过原点O,C是的中点,连结AC,BC.下列结论:①; ②若4,OB =2,则△ABC的面积等于5; ③若,则点C的坐标是(2,),其中正确的结论有()A.3个B.2个C.1个D.0个19.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A 点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()20.如图,以为圆心,半径为2的圆与轴交于、两点,与轴交于、两点,点为⊙上一动点,,垂足为.当点从点出发沿顺时针运动到点时,点所经过的路径长为()(A)(B)(C)(D)二填空题:21.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(2008•庆阳)图中△ABC 外接圆的圆心坐标是_______.第21题图第22题图第23题图22.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E=_______.23.如图,AB为⊙O的直径,∠E=20°,∠DBC=50°,则∠CBE= °.24.在Rt△ABC中,∠C=90°,AC=5,BC=12,若以C点为圆心、r为半径所作的圆与斜边AB只有一个公共点,则r的范围是.第24题图第25题图第26题图25.如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2,若扇形OEF的面积为3π,则菱形OABC的边长为________.26.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________。

第24章《圆》单元复习测试题(含答案)

第24章《圆》单元复习测试题(含答案)

九年级数学第二十四章《圆》单元复习测试题(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.已知AB是半径为6的圆的一条弦,则AB的长不可能是()A.8 B.10 C.12 D.142.已知⊙O的半径为4,点O到直线l的距离为2,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法判断3.在圆内接四边形ABCD中,∠A=80°,则∠A的对角∠C=()A.20°B.40°C.80°D.100°4.如题4图,在⊙O中,AB=AC.若∠B=75°,则∠A的度数为()题4图A.15°B.30°C.75°D.60°5.如题5图,AB为⊙O的直径,点C,D在⊙O上.若∠CAB=36°,则∠D的度数为()题5图A.72°B.54°C.45°D.36°6.已知半径为9的扇形的弧长为6π,该扇形的面积为()A.18πB.27πC.36πD.54π7.如题7图,点I为△ABC的外心,且∠BIC=150°,则∠A的度数为()题7图A.70°B.75°C.140°D.150°8.如题8图,AB是⊙O的直径,P A切⊙O于点A,连接PO并延长,交⊙O于点C,连接AC.若AB =8,∠P=30°,则AC=()A .43B .42C .4D .39.小英家的圆形镜子被打碎了,她拿了如题9图(网格中的每个小正方形边长为1)所示的一块碎片到玻璃店,配制成形状、大小与原来 一致的镜面,则这个镜面的半径是( )A .2B .5C .22D .310.如题10图,将矩形ABCD 绕点A 逆时针旋转90°得到矩形AEFG ,点D 的旋转路径为DG .若AB =2,BC =4,则阴影部分的面积为( )A .π2B .8π3C .4π3+43D .4π3+23二、填空题(本大题7小题,每小题4分,共28分)11.已知⊙O 的半径为5cm ,点P 在⊙O 内,则OP ________5cm.(填“>”“<”或“=”) 12.如题12图,⊙O 的半径为6,OA 与弦AB 的夹角是30°,则弦AB 的长是__________.13.如题13图,从⊙O 外一点P 引⊙O 的两条切线P A ,PB ,切点分别是A ,B ,若P A =6cm ,C 是AB 上一动点(点C 与A ,B 两点不重合),过点C 作⊙O 的切线,分别交P A ,PB 于点D ,E ,则△PED 的周长是________cm.14.如题14图,正五边形ABCDE 内接于⊙O ,点F 在DE 上,则∠CFD =________.题14图15.用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面(接缝处忽略不计),则这个圆锥的底面圆的半径为________.16.如题16图,AB 是⊙O 的弦,AB =8,C 是⊙O 上一动点,且∠ACB =45°.若点M ,N 分别是AB ,AC 的中点,则MN 长的最大值是________.题16图17.如题17图,直线l 1∥l 2,⊙O 与l 1和l 2分别相切于点A 和点B ,直线MN 与l 1相交于点M ,与l 2相交于点N ,⊙O 的半径为1,∠1=60°,直线MN 从图中位置向右平移.下列结论:①l 1和l 2的距离为2;②MN =433 ;③当直线MN 与⊙O 相切时,∠MON =90°;④当AM +BN =433 时,直线MN 与⊙O 相切.其中正确的结论是____________.(填序号)题17图三、解答题(一)(本大题3小题,每小题6分,共18分)18.如题18图,点A ,B ,C ,D 在⊙O 上,BD =AC .求证:AB =CD .题18图19.用铁皮制作如题19图所示的圆锥形容器盖,求这个容器盖所需铁皮的面积(结果保留π),并求制作容器盖的扇形的圆心角.题19图20.如题20图,在△ABC 中,AB =AC .(1)求作一点P ,使得点P 为△ABC 外接圆的圆心;(保留作图痕迹,不要求写作法) (2)在(1)的条件下,连接AP ,BP ,延长AP 交BC 于点D ,若∠BAC =50°,求∠PBC 的度数.题20图四、解答题(二)(本大题3小题,每小题8分,共24分)21.如题21图,隧道的截面由半圆和矩形构成,矩形的长BC为12m,宽AB为3m,若该隧道内设双行道,现有一辆货运卡车高8m,宽2.3m,则这辆货运卡车能否通过该隧道?请说明理由.题21图22.如题22图,已知△ABC内接于⊙O,AD为⊙O的直径,点C在劣弧AB上(不与点A,B重合),设∠DAB=α,∠ACB=β,小明同学通过画图和测量得到以下近似数据:α30°35°40°50°60°80°β120°125°130°140°150°170°试判断α与β之间的关系,并给出证明.题22图23.在如题23图所示的网格中,每个小正方形的顶点叫格点,且边长均为1,△ABC的三个顶点均在格点上,以点A为圆心的EF与BC相切于点D,分别交AB,AC于点E,F.(1)求△ABC三边的长;(2)求图中由线段EB,BC,CF及EF所围成的阴影部分的面积.题23图五、解答题(三)(本大题2小题,每小题10分,共20分)24.如题24图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E,D,OB与⊙O交于点F,连接DF,DC.已知OA=OB,CA=CB,DE=10,DF=6.(1)求证:①AB是⊙O的切线;②∠EDC=∠FDC.(2)求CD的长.题24图25.阅读以下材料,并回答问题:若一个三角形两边平方的和等于第三边平方的两倍,我们称这样的三角形为奇异三角形.(1)命题“等边三角形一定是奇异三角形”是________命题;(填“真”或“假”)(2)在△ABC中,∠C=90°,△ABC的内角∠A,∠B,∠C所对边的长分别为a,b,c,且b>a,若Rt △ABC 是奇异三角形,求a ∶b ∶c 的值;(3)如题25图,已知AB 是⊙O 的直径,C 是⊙O 上一点(点C 与点A ,B 不重合),D 是ADB 的中点,点C ,D 在直径AB 的两侧,若存在点E ,使得AE =AD ,CB =CE .求证:△ACE 是奇异三角形.题25图参考答案1.D 2.A 3.D 4.B 5.B 6.B 7.B 8.A 9.B 10.D 11.< 12.63 13.12 14.36° 15.1 16.42 17.①②③④ 18.证明:∵BD =AC ,∴BD =AC .∴BD -AD =AC -AD ,即AB =CD .∴AB =CD .19.解:由图可知圆锥的底面圆的直径为80 cm ,母线长为50 cm , ∴圆锥的底面圆的周长为80π cm.∴圆锥形容器盖的侧面展开图的弧长为80π cm. ∴面积为 12 ×80π×50=2 000π(cm 2).设制作容器盖的扇形的圆心角为n °. ∴n π×50180=80π.解得n =288.答:这个容器盖所需铁皮的面积为2 000π cm 2,制作容器盖的扇形的圆心角为288°. 20.解:(1)如答题20图,点P 即为△ABC 外接圆的圆心.答题20图(2)∵点P 为△ABC 外接圆的圆心,AB =AC ,∠BAC =50°, ∴AD ⊥BC ,∠BAP =∠CAP =25°,P A =PB . ∴∠BPD =2∠BAP =50°,∠BDP =90°. ∴∠PBD =90°-50°=40°,即∠PBC =40°.21.解:这辆货运卡车能通过该隧道.理由如下:如答题21图,设点O 为AD 的中点,在AD 上取点G ,使得OG =2.3,过点G 作GF ⊥BC 于点F ,延长FG 交半圆于点E ,则GF =AB =3,半圆的半径OE =12 AD =12BC =6.答题21图∴EG =OE 2-OG 2 =62-2.32 ≈5.54.∴EF =EG +GF ≈5.54+3=8.54>8. ∴这辆货运卡车能通过该隧道. 22.解:β-α=90°.证明:如答题22图,连接BD .答题22图∵AD 为⊙O 的直径,∴∠DBA =90°. ∵∠DAB =α,∴∠D =90°-α. ∵B ,D ,A ,C 四点共圆, ∴∠ACB +∠D =180°. ∵∠ACB =β,∴β+90°-α=180°.∴β-α=90°.23.解:(1)由图可得AB =22+62 =210 ,AC =62+22 =210 , BC =42+82 =45 .(2)由(1)得AB 2+AC 2=(210 )2+(210 )2=(45 )2=BC 2. ∴∠BAC =90°. 如答题23图,连接AD ,则AD ⊥BC ,BD =DC =12BC =25 .答题23图∴AD =AB 2-BD 2 =(210)2-(25)2 =25 . ∴S 阴=S △ABC -S 扇形AEF =12 AB ·AC -90π360 ·AD 2=20-5π.24.(1)证明:①如答题24图,连接OC .∵OA =OB ,CA =CB ,∴OC ⊥AB . ∵OC 为⊙O 的半径, ∴AB 是⊙O 的切线.②∵OA =OB ,CA =CB ,∴∠AOC =∠BOC . ∴EC =FC .∴∠EDC =∠FDC .答题24图(2)解:如答题24图,过点O 作ON ⊥DF 于点N ,延长DF 交AB 于点M . ∵ON ⊥DF ,OD =OF ,DF =6, ∴DN =NF =12 DF =3,∠DON =∠FON .在Rt △ODN 中,OD =12 DE =5,DN =3,∴ON =OD 2-DN 2 =4.∵∠AOC =∠BOC ,∠DON =∠FON , ∴∠BOC +∠FON =12 ×180°=90°.∴∠OCM =∠CON =∠MNO =90°. ∴四边形OCMN 是矩形.∴CM =ON =4,MN =OC =12DE =5.在Rt △CDM 中,CM =4,DM =DN +MN =8, ∴CD =DM 2+CM 2 =82+42 =45 . 25.(1)解:真. (2)解:∵∠C =90°,∴a 2+b 2=c 2.①∵Rt △ABC 是奇异三角形,且b >a ,∴a 2+c 2=2b 2.② 由①②,得b =2 a ,c =3 a .∴a ∶b ∶c =1∶2 ∶3 . (3)证明:如答题25图,连接BD .答题25图∵AB是⊙O的直径,∴∠ACB=∠ADB=90°.在Rt△ACB中,AC2+CB2=AB2,在Rt△ADB中,AD2+BD2=AB2.∵点D是ADB的中点,∴AD=BD.∴AD=BD.∴AB2=AD2+BD2=2AD2.∴AC2+CB2=2AD2.又CB=CE,AE=AD,∴AC2+CE2=2AE2.∴△ACE是奇异三角形。

人教新版九年级上学期第24章《圆》单元测试卷(含详解)

人教新版九年级上学期第24章《圆》单元测试卷(含详解)

人教新版九年级上学期第24章《圆》单元测试卷(含详解)一.选择题1.下随有关圆的一些结论:①任意三点确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂直于弦;并且平分弦所对的弧,④圆内接四边形对角互补其中错误的结论有()A.1个B.2个C.3个D.4个2.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°3.一个点到圆的最小距离为3cm,最大距离为8cm,则该圆的半径是()A.5cm或11cm B.2.5cmC.5.5cm D.2.5cm或5.5cm4.如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=65°,则∠DAO+∠DCO =()A.90°B.110°C. 120°D.165°5.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是()A.πB. +C.D. +6.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值为()A.1 B.C.D.7.如图所示,已知AB为⊙O的弦,且AB⊥OP于D,PA为⊙O的切线,A为切点,AP=6cm,OP=4cm,则BD的长为()A. cm B.3cm C. cm D.2cm8.如图,在菱形ABCD中,以AB为直径画弧分别交BC于点F,交对角线AC于点E,若AB =4,F为BC的中点,则图中阴影部分的面积为()A.B.C.D.9.如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=70°,则∠ABC的度数是()A.20°B.70°C.30°D.90°10.如图,AB是⊙O的弦,作OC⊥OA交⊙O的切线BC于点C,交AB于点D.已知∠OAB=20°,则∠OCB的度数为()A.20°B.30°C.40°D.50°11.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为()A.B.πC.D.312.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF的值是()A.4 B.2C.4D.值不确定二.填空题13.把一个半径为12,圆心角为150°的扇形围成一个圆锥(按缝处不重叠),那么这个圆锥的高是.14.(1)已知一个直角三角形的面积为12cm2,周长为12cm,那么这个直角三角形外接圆的半径是cm,内切圆半径是cm.(2)等边△ABC的边长为10cm,则它的外接圆的半径是cm,内切圆半径是cm.15.在圆内接四边形ABCD中,弦AB=AD,AC=2016,∠ACD=60°,则四边形ABCD的面积为.16.已知⊙O的半径为1cm,弦AB=cm,AC=cm,则∠BAC=.17.如图,CD是⊙O的直径,点A是半圆上的三等分点,B是弧AD的中点,P点为直线CD 上的一个动点,当CD=6时,AP+BP的最小值为.三.解答题18.AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连接BC,若∠P=30°.(1)求∠B的度数;(2)若PC=2,求BC的长.19.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,BD=CD,过点D 作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为2,CF=1,求的长(结果保留π).20.如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.21.某隧道施工单位准备在双向道路中间全程增加一个宽为1米的隔离带,已知隧道截面是一个半径为4米的半圆形,点O是其圆心,AE是隔离带截面,问一辆高3米,宽1.9米的卡车ABCD能通过这个隧道吗?请说明理由.22.如图,AB是⊙O的直径,AC⊥AB,E为⊙O上的一点,AC=EC,延长CE交AB的延长线于点D.(1)求证:CE为⊙O的切线;(2)若OF⊥AE,OF=1,∠OAF=30°,求图中阴影部分的面积.(结果保留π)23.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2.(1)求直径AB的长;(2)求阴影部分图形的周长和面积.24.如图,在Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为的中点,CE交AB于点H,且AH=AC,AF平分线∠CAH.(1)求证:BE∥AF;(2)若AC=6,BC=8,求EH的长.25.如图所示,△ABC内接于⊙O,AC是直径,D在⊙O上,且AC平分∠BCD,AE∥BC,交CD于E,F在CD的延长线上,且AE=EF.连接AF.(1)求证:AF是⊙O的切线;(2)连接BF交AE于G,若AB=12,AE=13,求AG的长.参考答案一.选择题1.解:①任意三点确定一个圆;错误,应该的不在同一直线上的三点可以确定一个圆;②相等的圆心角所对的弧相等;错误,应该是在同圆或等圆中;③平分弦的直径垂直于弦;并且平分弦所对的弧,错误,此弦不是直径;④圆内接四边形对角互补;正确;故选:C.2.解:∵∠AOC=140°,∴∠BOC=40°,∵∠BOC与∠BDC都对,∴∠D=∠BOC=20°,故选:A.3.解:当点P在圆内时,最近点的距离为3cm,最远点的距离为8cm,则直径是11cm,因而半径是5.5cm;当点P在圆外时,最近点的距离为3cm,最远点的距离为8m,则直径是5cm,因而半径是2.5cm.故选:D.4.解:∵OA=OB=OC,∴∠ABO=∠BAO,∠OBC=∠OCB,∵∠ABC=65°=∠ABO+∠OBC,∴∠BAO+∠BCO=65°,∵∠ADC=65°,∴∠DAO+∠DCO=360°﹣(∠ADC+∠BAO+∠BCO+∠ABC)=360°﹣(65°+65°+65°)=165°,故选:D.5.解:∵AB为直径,∴∠ACB =90°,∵AC =BC =,∴△ACB 为等腰直角三角形,∴OC ⊥AB ,∴△AOC 和△BOC 都是等腰直角三角形,∴S △AOC =S △BOC ,OA =,∴S 阴影部分=S 扇形OAC ==π.故选:A . 6.解:∵正六边形的任一内角为120°, ∴∠1=30°(如图),∴a =2cos ∠1=,∴a =2. 故选:D .7.解:∵PA 为⊙O 的切线,A 为切点, ∴∠PAO =90°,在直角△APO 中,OA ==2,∵AB ⊥OP ,∴AD =BD ,∠ADO =90°,∴∠ADO =∠PAO =90°,∵∠AOP =∠DOA ,∴△APO ∽△DAO ,∴=,即=, 解得:AD =3(cm ),∴BD =3cm .故选:B .8.解:如图,取AB 的中点O ,连接AF ,OF . ∵AB 是直径,∴∠AFB =90°,∴AF ⊥BF ,∵CF =BF ,∴AC =AB ,∵四边形ABCD 是菱形,∴AB =BC =AC ,∴△ABC 是等边三角形,∴AE =EC ,易证△CEF ≌△BOF ,∴S 阴=S 扇形OBF ==,故选:D .9.解:连接AC ,如图,∵BC 是⊙O 的直径,∴∠BAC =90°,∵∠ACB =∠ADB =70°,∴∠ABC =90°﹣70°=20°.故答案为20°.故选:A .10.解:连接OB,∵BC是⊙O的切线,∴∠OBC=90°,∵OA=OB,∴∠OAB=∠OBA=20°,∴∠DBC=70°,∵∠AOC=90°,∴∠ODA=∠BDC=70°,∴∠OCB=40°,故选:C.11.解:∵四边形AECD是平行四边形,∴AE=CD,∵AB=BE=CD=3,∴AB=BE=AE,∴△ABE是等边三角形,∴∠B=60°,∴的弧长为=π,故选:B.12.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG=∠BCH=30°时,PE+PF=4.故选:A.二.填空题(共5小题)13.解:设这个圆锥的底面圆的半径为r,根据题意得2πr=,解得r=5,所以圆锥的高==.故答案为.14.解:(1)如果设这个直角三角形的直角边是a,b,斜边是c,那么由题意得:S=ab=12,a+b+c=12,△∴ab=24,a+b=12﹣c,根据勾股定理得a2+b2=c2,(a+b)2﹣2ab=c2,(12﹣c)2﹣48=c2,解得c=,所以直角三角形外接圆的半径是cm;设内切圆的半径是r,则×12r=12,解得:r=cm.故答案是:,;(2)连接OC和OD,如图:由等边三角形的内心即为中线,底边高,角平分线的交点所以OD⊥BC,∠OCD=30°,OD即为圆的半径.又由BC=10cm,则CD=5cm在直角三角形OCD中:=tan30°代入解得:OD=CD=,则CO=×10=;故答案为:,.15.解:过A作AE⊥BC于E,AF⊥CD于F.∵∠ADF+∠ABC=180(圆的内接四边形对角之和为180),∠ABE+∠ABC=180,∴∠ADF=∠ABE.∵∠ABE=∠ADF,AB=AD,∠AEB=∠AFD,∴△AEB≌△AFD,∴四边形ABCD的面积=四边形AECF的面积,AE=AF.又∵∠E=∠AFC=90°,AC=AC,∴Rt△AEC≌Rt△AFC(HL).∵∠ACD=60°,∠AFC=90°,∴∠CAF =30°,∴CF =1008,AF =,∴四边形ABCD 的面积=2S △ACF =2×CF ×AF =88144.故答案为:88144.16.解:当圆心O 在弦AC 与AB 之间时,如图(1)所示,过O 作OD ⊥AC ,OE ⊥AB ,连接OA ,由垂径定理得到:D 为AB 中点,E 为AC 中点,∴AE =AC =cm ,AD =AB =cm ,∴cos ∠CAO =,cos ∠BAO ==, ∴∠CAO =45°,∠BAO =30°,此时∠BAC =∠CAO +∠BAO =45°+30°=75°;当圆心在弦AC 与AB 一侧时,如图(2)所示,同理得:∠BAC =∠CAO ﹣∠BAO =45°﹣30°=15°,综上,∠BAC =15°或75°.故答案为:15°或75°.17.解:作点A 关于CD 的对称点A ′,连接A ′B ,交CD 于点P ,则PA +PB 最小, 连接OA ′,AA ′.∵点A与A′关于CD对称,点A是半圆上的一个三等分点,∴∠A′OD=∠AOD=60°,PA=PA′,∵点B是弧AD的中点,∴∠BOD=30°,∴∠A′OB=∠A′OD+∠BOD=90°,又∵OA=OA′=3,∴A′B=.∴PA+PB=PA′+PB=A′B=3.故答案为:3.三.解答题(共8小题)18.解:(1)∵PA是⊙O的切线,∴OA⊥PA,∴∠P=30°,∴∠POA=60°,∴∠B=∠POA=×60°=30°,(2)如图,连接AC,∵AB是⊙O的直径,∴∠ACB=90°且∠B=30°,∴BC=AC,设OA=OB=OC=x,在Rt△AOP中,∠P=30°,∴PO=2OA,∴2+x=2x,x=2.即OA=OB=2.又在Rt△ABC中,∠B=30°,∴AC=AB=×4=2,∴BC=tan60°•AC=AC=2.19.(1)证明:连接OD,如图所示.∵DF是⊙O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)解:连接BE,∵AB是直径,∴BE⊥AC,∵DF⊥AC,∴==,∵FC=1,∴EC=2,∵OD=AC=2,∴AC=4,∴AE=EC=2,∴AB=BC,∵AB=AC=4,∴AB=BC=AC,∴△ABC是等边三角形,∴∠BAC=60°,∵OD∥AC,∴∠BOD=∠BAC=60°,∴的长:=.20.(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠AED=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣DI=9﹣6=3.21.解:如图所示:连接OC,∵OA=AE=0.5m,∴OB=1.9+0.5=2.4m,∴BC===3.2>3m ∴一辆高3米,宽1.9米的卡车能通过隧道.22.(1)证明:连接OE,∵AC=EC,OA=OE,∴∠CAE=∠CEA,∠FAO=∠FEO,∵AC⊥AB,∴∠CAD=90°,∴∠CAE+∠EAO=90°,∴∠CEA+∠AEO=90°,即∠CEO=90°,∴OE⊥CD,∴CE为⊙O的切线;(2)解:∵∠OAF=30°,OF=1∴AO=2;∴AF=即AE=;∴;∵∠AOE=120°,AO=2;∴;=.∴S阴影23.解:(1)设CD交AB于E.∵∠BOC=2∠CDB,∠CDB=30°,∴∠COB=60°,∵OC=OB,∴△BOC是等边三角形,∴∠CBO=60°,∵CD⊥AB,CD=2,∴CE=ED=,∴OC=EC÷os30°=2,∴AB=2OC=4.(2)连接BC,OD,∵∠CBO=∠BOD=60°,∴BC∥OD,∴S△BCD =S△BCO,∴S阴=S扇形OBC==π,阴影部分的周长=2+2+=2+2+π.24.(1)证明:∵AH=AC,AF平分线∠CAH∴∠HAF=∠CAF,AF⊥EC,∴∠HAF+∠ACH=90°∵∠ACB=90°,即∠BCE+∠ACH=90°,∴∠HAF=∠BCE,∵E为的中点,∴,∴∠EBD=∠BCE,∴∠HAF=∠E BD,∴BE∥AF;(2)解:连接OH、CD.∵BC为直径,∴∠BDC=90°,∵∠ACB=90°,AC=6,BC=8,∴AB=,∵AH=AC=6∴BH=AB﹣AH=10﹣6=4,∵∠EBH=∠ECB,∠BEH=∠CEB∴△EBH∽△ECB,∴,EB=2EH,由勾股定理得BE2+EH2=BH2,即(2EH)2+EH2=42,∴EH=.25.证明:(1)∵AC平分∠BCD∴∠ACB=∠ACD,∵AE∥BC∴∠ACB=∠CAE=∠ACD∴AE=CE,且AE=EF∴AE=CE=EF∴△CAF是直角三角形∴∠CAF=90°∴AF是⊙O的切线(2)连接AD,∵AC是直径∴∠ABC=90°=∠ADC∵∠ACB=∠ACD,AC=AC,∠ABC=∠ADC=90°∴△ABC≌△ADC(AAS)∴AB=AD=12,BC=CD在Rt△AED中,DE==5∵AE=CE=EF=13∴CF=2EF,CD=BC=CE+DE=18,∵AE∥BC∴=∴EG=9∴AG=AE﹣EG=13﹣9=4人教版九年级上册第24章数学圆单元测试卷(含答案)(1)一、知识梳理(一)点、直线与圆的位置关系:(可用什么方法判断?) 1.2.已知圆O 的半径为8cm ,若圆心O 到直线l 的距离为8cm ,那么直线l 和圆O 的位置关系是( )A .相离B .相切C .相交D .相交或相离(二)圆心角、弧、弦之间的关系 1.下列说法中,正确的是( )A .等弦所对的弧相等B .等弧所对的弦相等C .圆心角相等,所对的弦相等D .弦相等所对的圆心角相等 2.(三)圆周角定理及其推理1.如图,若AB 是⊙O 的直径,AB=10cm ,∠CAB=30°,则BC= cm 。

人教版九年级数学上册 第24章《圆》 单元检测卷一

人教版九年级数学上册 第24章《圆》 单元检测卷一

人教版九年级数学上册第24章《圆》单元检测卷一.选择题1. 如图,△ABC内接于⊙O,∠A=40°,则∠BCO的度数为()A.30°B.40°C.50°D.80°⏜上,若∠OAB=20∘,则∠ACB=( )2. 如图,点C在ACBA.50∘B.60∘C.70∘D.80∘3. 正八边形的中心角是()A:40° B:45° C:50° D:60°4. 如图,⊙O的直径CD⊥AB,∠AOC=50∘,则∠CDB大小为( )A.25∘B.30∘C.40∘D.50∘5. 如图,AB是⊙O的直径,弦CD交AB于点P,AP=4,BP=8,∠APC=45°,则CD的长为( )A.34B.26C.342D.126. 如图,已知△ABC ,AB=BC ,以AB 为直径的圆交AC 于点D ,过点D 的⊙O 的切线交 BC 于点E .若CD=5,CE=4,则⊙O 的半径是()A .3B .4C .625D .825 7. 如图,正方形 ABCD 的边长为 2,点 E 是 BC 边上一点,以 AB 为直径在正方形内作半圆 O ,将 △DCE 沿 DE 翻折,点 C 刚好落在半圆 O 的点 F 处,则 CE 的长为 ( )A . 23B . 35C . 34D . 47 8. 一个形如圆锥冰淇淋纸筒,其底面直径为6cm ,母线长为10cm ,围成这样的冰淇淋纸筒所需纸的面积是( )A .60πcm 2B .15πcm 2C .28πcm 2D .30πcm 29. 如图,正方形ABCD 内接于☉O ,点P 为劣弧BC ⌒ 上一点(P 不与B 、C 重合),则∠BPC=( ) A:135° B:130° C:125° D:120°10. 如图,AB 是⊙O 的直径,AB=4,C 为 AB ⏜ 的三等分点(更靠近A 点),点P 是⊙O 上个动点,取弦AP的中点D ,则线段CD 的最大值为( )A . 2B . 7C . 32D .1311. 如图,在平面直角坐标系 xOy 中,点 P 的坐标为 (0,−6),⊙P 的半径为 2,⊙P 沿 y 轴以 2 个单位长度 /s 的速度向正方向运动,当 ⊙P 与 x 轴相切时 ⊙P 运动的时间为 ( )A . 2 sB . 3 sC . 2 s 或 4 sD . 3 s 或 4 s12. 如图,在活动课上,老师画出边长为2的正方形ABCD ,让同学们按以下步骤完成画图:(1)画出AD 的中点E ,连接BE ;(2)以点E 为圆心,EB 长为半径画弧,交DA 的延长线于点F ;(3)以AF 为边画正方形AFGH ,点H 在AB 边上.在画出的图中有一条线段的长是方程x 2+2x ﹣4=0的一个根.这条线段是( )A .线段BHB .线段BEC .线段AED .线段AH二.填空题 13. 已知 ∠AOB =30∘,M 为 OB 上一点,OM =6 cm ,以 M 为圆心 cm 为半径的圆与 OA 相切.14. 如图,在平面直角坐标系中,点A 的坐标为(0,-3),半径为1的动圆⊙A 沿y 轴正方向运动,若运动后⊙A 与x 轴相切,则点A 的运动距离为____________.15. 如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点F,交AD边于点E,若△CDE的周长为12,则直角梯形ABCE的周长为.16. 如图,过⊙O外一点P作⊙O的两条切线PA,PB,切点分别为A,B.下列结论:①OP垂直平分 AB;②∠O=∠APB;③△ACP≌△BCP;④若∠APB=80°,则∠ABO=40°;⑤PA=AB.其中,正确的结论是(填序号).三.解答题17. 如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D.求证:AC是⊙O的切线.18. 如图,⊙O是△ABC的外接圆,AB=AC,过点A作AP∥BC,交BO的延长线于点P.求证:AP是⊙O的切线.19. 如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA延长线于点E,连接AD,DE.(1) 求证:D是BC的中点.(2) 若DE=3,AD=1,求⊙O的半径.20. 如图,在△ABC中,AB=AC,以AB为直径作圆O,交BC于点D,交AC于点E.(1)求证:BD=CD.(2)若弧DE=50°,求∠C的度数.21. 已知图①中△ABC是等腰直角三角形,∠C=90°,点A、C在圆上;图②中△ABC是等腰直角三角形,∠C=90°,点A、B、E、F在圆上,=.(1)仅用无刻度的直尺......,在图①中作出圆的一条直径;(2)仅用无刻度的直尺......,在图②中作出圆的一条直径.22. 如图①,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P,且∠APC=∠BCP.(1)求证:∠BAC=2∠ACD;(2)过图①中的点D作DE⊥AC,垂足为E(如图②),当BC=6,AE=2时,求⊙O的半径.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十四章圆单元检测
一.填空题
1.如图,AB 是⊙O 的直径,若AB =4㎝,∠D =30°,则AC = ㎝.
2.已知⊙O 的直径AB 为2cm,那么以AB 为底,第三个顶点在圆周上的三角形中,
面积最大的三角形的面积等于 ㎝2.
3. 如图,ΔABC 是⊙O 的内接三角形,BC =4cm, ∠A =30°,则ΔOBC 的面积为 cm 2.
4.已知矩形ABCD 中,AB =6cm ,AD =8cm ,若以A 为圆心作圆,使B 、C 、D 三点中至少有一点在圆内,且至少有一点在圆外,则⊙A 的半径r 的取值范围是 .
5.如图,已知∠AOB =30°,M 为OB 边上一点,以M 为圆心、2cm 为半径作⊙M . 若点M 在OB 边上运动,则当OM = cm 时,⊙M 与OA 相切.
6.两圆相切,圆心距为5,其中一个圆的半径为4,则另一个圆的半径为 .
7.在半径为10 cm 的圆中,72°的圆心角所对的弧长为 cm.
8. 将一个弧长为12πcm, 半径为10cm 的扇形铁皮围成一个圆锥形容器(不计接缝), 那么这个圆锥形容器的高为_____cm. 9.若圆锥侧面积是底面积的2倍,则这个圆锥的侧面展开图的圆心角是 .
10.如图,已知圆柱体底面圆的半径为π
2
,高为2,AB 、CD 分别是两底面的直
径,AD 、BC 是母线,若一只小虫从A 点出发,从侧面爬行到C 点,则小虫爬行
的最短的路线的长度是 (结果保留根式).
二.选择题
11.已知⊙O 的半径为2cm, 弦AB 的长为23,则这条弦的中点到弦所对优弧的中点的距离为( )
A.1cm
B.3cm
C.(2+2)cm
D.(2+3 )cm
12.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为直径,则∠A +∠B +∠C =( )度.
A .30
B .45
C .60
D .90 13.⊿ABC 中,∠C =90°,AB =5,BC =4,以A 为圆心,以3为半径,则点C 与⊙A 的位置关系为( )
A
B
C
D
O (第1题)
O
B
A
M
5题图
O
C
A
B
3题图
第10题 第10题
O
A
E
B D
12题图
A.点C 在⊙A 内
B.点C 在⊙A 上
C.点C 在⊙A 外
D.点C 在⊙A 上或点C 在⊙A 外
14.设⊙O 的半径为r ,圆心O 到直线L 的距离为d ,若直线L 与⊙O 有交点,则d 与r 的关系为( )
A.d =r
B.d <r
C.d >r
D.d ≤r
15.以点P (1,2)为圆心,r 为半径画圆,与坐标轴恰好有三个交点,则r 应满足( )
A. r =2或5
B. r =2
C. r =5
D. 2≤r ≤5
16.如图中的正方形的边长都相等,其中阴影部分面积相等的图形的个数是( )
A .1个
B .2个
C .3个
D .4个
17.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B 点从开始至结束所走过的路径长度为( ) A.23π B.3
4π C.4 D.2+23π 18.如图,半径为2的两个等圆⊙O 1与⊙O 2外切于点P ,过O 1作⊙O 2的两条切线,切点分别为A 、B ,与⊙O 1分别交于C 、D ,则APB 与CPD
的弧长之和为
( )
A.π2
B.π23
C.π
D.π2
1
19.现有一圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( ) A
.4cm B .3cm C .2cm D .1cm 20.两个等圆⊙O 1和⊙O 2相交于A
,B 两点,且⊙O 1经过点O 2,则四边形O 1A O 2B 是( )
A 、两个邻边不相等的平行四边形 B
、菱形 C 、矩形 D 、正方形 三、解答题
21.如图,⊙O 是△ABC 的外接圆,AB 为直径,AC =CF ,CD ⊥AB 于D ,且交
⊙O 于G ,AF 交CD 于E . (1)求∠ACB 的度数;
(2)求证:AE =CE ;
(第18题图)
17题图
A B B 第21题
22.如图,点A 是一个半径为300m 的圆形森林公园的中心,在森林公园附近有B ,C 两个村庄,现要在B ,C 两村庄之间修一条长为1000m 的笔直公路将两村连通,现测得∠ABC =45°,∠ACB =30°,问此公路是否
会穿过该森林公园?并通过计算进行说明.
23.如图,AB 是⊙O 的直径,CB 、CE 分别切⊙O 于点B 、D ,
CE 与BA 的延长线交于点E ,连结OC 、OD .
(1)求证:△OBC ≌△ODC ; (2)已知DE =a ,AE =b ,BC =c ,请你思考后,选用以上适当的数,设计出计算⊙O 半径r 的一种方案:①你选用的已知数是 ; ① 写出求解过程.(结果用字母表示)
24.已知:如图,∠MAN =30°,O 为边AN 上一点,以O 为圆心、2为半径作⊙O ,交AN 于D 、E 两点,
设AD =x ,
⑴.如图⑴当x 取何值时,⊙
O 与AM 相切; ⑵.如图⑵当x 为何值时,⊙O 与AM 相交于B 、C 两点,
且∠BOC=90°.
25.如图中(1)、(2)、…(m )分别是边长均大于2的三角形、四边形、…、凸n 边形.分别
以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧……、n 条弧.
⑴图⑴中3条弧的弧长的和为_________;
第23题
第22题 第24题图(
1) 第24题图(2)
⑵中4条弧的弧长的和为___________; ⑵求图(m )中n 条弧的弧长的和 (用n 表示).
26.在一次科学探究实验中,小明将半径为5cm 的圆形滤纸片按图1所示的步骤进行折叠,并围成圆锥形.
(1)取一漏斗,上部的圆锥形内壁(忽略漏斗管口处)的母线OB 长为6cm ,开口
圆的直径为6cm.当滤纸片重叠部分三层,且每层为1
4
圆时,滤纸围成的圆锥形
放入该漏斗中,能否紧贴此漏斗的内壁(忽略漏斗管口处),请你用所学的数学知识说明;
(2)假设有一特殊规格的漏斗,其母线长为6cm ,开口圆的直径为7.2cm ,现将同样大小的滤纸围成重叠部分为三层的圆锥形,放入此漏斗中,且能紧贴漏斗内壁.问重叠部分每层的面积为多少?
第二十四章 单元检测答案 一.填空题
1.2
2.1
3.43
4.6<r <10
5.4
6.1或9
7.4
8.8
9.180° 10.22 二.选择题
11.B 12.D 13.B 14.D 15.A 16.C 17.B 18.A 19.C 20.B 三.解答题
21.(1)90° (2)略
22.过A 作AD ⊥BC 交BC 于D .求得AD =500(3-1)>300,所以此公路不会穿过
A
B
C
A
B
C
D
A A A A A A A 1
2
3
4
5
6
n
图9-1
图9-2
图9-m
(2) (3)(1)
第25题
该森林公园.
23.(1)略 (2)答案不唯一.现提供两例:一 .①a 和b ②r =b
b a 22
2- 二. ①
a 、
b 、
c ②r =
a
bc 24.(1)x =2 (2)x =22-2
25.(1)π;2π (2)(n-2)π 26. (1) 通过计算得知滤纸围成的漏斗与真正的漏斗“展开”圆心角都是180°,
所以能. (2)5π。

相关文档
最新文档