相似三角形分类整理(超全)上课讲义

合集下载

数学讲义:相似三角形判定和性质

数学讲义:相似三角形判定和性质

15、八年级数学培佳班:相似判定和性质姓名一、知识梳理(1)本单元的知识结构数学的单元复习最重要就是梳理知识,穿线结网,形成清晰的知识链,就“相似三角形”这一单元而言,其知识网络大致如图所示:一、相似三角形判定的基本模型认识(一)A 字型、反A 字型(斜A 字型)(平行)B (不平行)(二)8字型、反8字型BCB C(蝴蝶型)(平行)(不平行) (三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景一线三等角的变形(五)一线三直角型:二、相似三角形判定的变化模型旋转型:由A字型旋转得到。

8字型拓展【典型例题】1.已知在平行四边形ABCD 中,AC =2AB ;求证:∠ABD =∠DAC2.已知:如图,在△ABC 中,∠ADE =∠B ,∠BAC =∠DAE .(1)求证:ACAEAB AD =; (2)当∠BAC =90°时,求证:EC ⊥BC .3、在Rt ABC ∆中, ∠ACB =90°, CD AB ⊥,垂足为D . E 、F 分别是AC 、BC 边上一点,且CE =13AC ,BF =13BC . (1 )求证∶AC BC =CDBD.(2 )求EDF ∠的度数.4、如图,在ABC △中,90BAC ∠=,AD 是BC 边上的高,点E 在线段DC 上,EF AB ⊥,EG AC ⊥,垂足分别为F G ,.求证:(1)EG CGAD CD =; (2)FD ⊥DG .EFEDC BA GF E D CBAC【三等角问题】(1)如图已知△ABC 中,AB=AC,∠APQ=∠B ,求证:△ABP ∽△PCQ变式:等边△ABC 的边长为6,点E 在AC 上,AE=2,BE 的中垂线交AB 于点P,交BC 于点F求 :BPBF的值.【重心问题】(重心问题)在∆ABC 中,矩形DEFG 的一边FG 在BC 上,点D 、E 分别在AB 、AC 上,AH 是BC 边上的高,BC=10,AH=6.(1)如图4,若DG=2DE ,求DE 的长;(2)如图5,对角线DF 与EG 的交点过∆ABC 的重心O ,求矩形DEFG 的面积.(面积问题)在平行四边形ABCD 中,AB=5,AD=3,平行四边形面积是10,点P 是AB 上一动点,(点P 不与点A 、点B 重合),过点P 作PQ ∥AD 交BD 于Q ,连结CQ ,设AP 的长为x ,四边形QPBC 的面积为y 。

《相似三角形》最全讲义(完整版)

《相似三角形》最全讲义(完整版)

相似三角形基本知识知识点一:放缩与相似形1. 图形的放大或缩小,称为图形的放缩运动。

2. 把形状相同的两个图形说成是相似的图形,或者就说是相似性注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。

⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。

⑶我们可以这样理解相似两个图形相似,其中一个图形可以看作是由另一个图形放大或缩到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.3. 相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是 1.知识点二:比例线段有关概念及性质(1)有关概念1、比:选用同一长度单位量得两条线段。

a、 b 的长度分别是m、n,那么就说这两条线段am 的比是a:b=m:n(或 b n )2、比的前项,比的后项:两条线段的比a:b中。

a叫做比的前项,b叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

ac3、比例:两个比相等的式子叫做比例,如 b dac4、比例外项:在比例 b d(或a:b=c:d)中a、d叫做比例外项。

ac5、比例内项:在比例 b d(或a:b=c:d)中b、c 叫做比例内项。

ac6、第四比例项:在比例 b d(或a:b=c:d)中, d 叫a、b、 c 的第四比例项。

ab7、比例中项:如果比例中两个比例内项相等,即比例为 b a(或a:b =b:c 时,我们把b叫做 a 和 d 的比例中项。

8. 比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 a c(或a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线bd 段。

(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)2)比例性质acad bc1. 基本性质 :bd(两外项的积等于两内项积)a cb d2. 反比性b d a c ( 把比的前项、后项交换 )3.更比性质 (交换比例的内项或外项 ) :a b,(交换内项 ) cdcd c,(交换外项 ) db a d b.(同时交换内外项 ) ca4.合比性质 :a c abc d(分子加(减)分母 ,分母不变) b d b d注意 :实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间注意:(1) 此性质的证明运用了“设 k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2) 应用等比性质时,要考虑到分母是否为零.(3) 可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成 立.AC1)定义:在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和BC (AC>BC ),如果AB2)黄金分割的几何作图 :已知:线段 AB.求作:点 C 使 C 是线段 AB 的黄金分割点发生同样和差变化比例仍成立.如:acbd5. 等比性质: 如果badc a ab c cd abcd分子分母分别相加,比值不变.)e m(b d f fnn 0) ,那么知识点三: 黄金分割BC ,AC,AB 被点 C 黄金分割,点 C 叫做线段 AB 的黄金分割2即 AC 2=AB ×BC ,那么称线段点,AC 与 AB 的比叫做黄金比。

相似三角形的性质和应用___辅导讲义

相似三角形的性质和应用___辅导讲义

课题相似三角形的性质和应用教学目标1、经历相似三角形性质“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的探究过程.2、掌握“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的两个性质.3、会运用上述两个性质解决简单的几何问题.重点、难点1、本节教学的重点是关于相似三角形的周长和面积的两个性质及对应线段的性质.2、相似三角形的性质的证明,要用到相似三角形的判定及性质,过程比较复杂,是本节教学的难点.知识框架相似三角形相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。

相似用符号“∽”来表示,读作“相似于”。

相似三角形对应边的比叫做相似比(或相似系数),相似三角形的基本定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似用数学语言表述如下:∵DE∥BC,∴△ADE∽△ABC相似三角形的等价关系:(1)反身性:对于任一△ABC,都有△ABC∽△ABC(2)对称性:若△ABC∽△ABC,则△ABC∽△ABC(3)传递性:若△ABC∽△ABC并且△ABC∽△ABC则△ABC∽△ABC3、三角形相似的判定(1)三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似(2)直角三角形相似的判定方法AB CDE①以上各种判定方法均适用 ②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直 角边对应成比例,那么这两个直角三角形相似③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

相似三角形知识点讲义

相似三角形知识点讲义

相似三角形知识点讲义知识点1 相似图形形状相同的图形叫相似图形,或者说是相似形,在相似多边形中,最简单的是相似三角形.如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

知识点2 比例线段的相关概念两条线段长度的比叫做这两条线段的比。

如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm ba =,或写成n m b a ::=.注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位.在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段. 注意:(1)当两个比例式的每一项都对应相同,两个比例式才是同一比例式.(2)比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad cb =.例题⒈若AB =1m ,CD =25cm ,则AB ∶CD = ;若线段AB=m, CD=n ,则AB ∶CD= . ⒉若MN ∶PQ =4∶7,则PQ ∶MN= , MN= PQ , PQ= MN 。

知识点3 比例的性质 基本性质:(1)bc ad d c b a =⇔=::; (2)b a c b c c a ⋅=⇔=2::. 注意:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.更比性质(交换比例的内项或外项):()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项反比性质(把比的前项、后项交换):cd a b d c b a =⇒=. 合比性质:ddc b b ad c b a ±=±⇒=. 注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a 等等. 等比性质:如果)0(≠++++====n f d b n m f e d c b a ,那么b a n f d b m e c a =++++++++ .注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立. 例1若线段a ,b ,c ,d 成比例,其中a =5㎝,b =7㎝,c =4㎝,则,d = . 例2若a·b=c·d 则有a ∶d= ;若m ∶x=n ∶y, 则x ∶y= . 例3已知4x -5y =0,则(x +y )∶(x -y )的值为 .例4若x ∶y ∶z =2∶7∶5,且x -2y +3z=6,则x= ,y= ,z= ; 例5设x 3 =y 5 =z 7 ,则x+y y =__ _,y+3z 3y-2z =__ __.;其中032≠+-f d b .例6若kba c ca b cb a =+=+=+,求k 的值。

相似三角形详细讲义

相似三角形详细讲义

知识梳理相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于”.相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注意:①对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.相似三角形的基本定理定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:用数学语言表述是:BC DE // ,ADE ∽ABC . 相似三角形的等价关系(1)反身性:对于任一ABC 有ABC ∽ABC .(2)对称性:若ABC ∽'''C B A ,则'''C B A ∽ABC .(3)传递性:若ABC ∽C B A '',且C B A ''∽C B A ,则ABC ∽C B A . 三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹 角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似.(在遇到两个三角形的三边都知道的情况优先考虑,把边长分别从小到大排列,然后分别计算他们的比值是否相等来判断是否相似)6、判定直角三角形相似的方法: (1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

相似三角形模型(全)课件

相似三角形模型(全)课件

在解题过程中,可以根据题目的条件 选择适当的方法来证明或推导结论。
全等三角形可以用来证明两个三角形 完全重合,而相似三角形则可以用来 研究两个三角形的形状和大小关系。
05
相似三角形的证明方法
利用角角相似的证明方法
01
02
03
总结词
通过比较两个三角形的对 应角,如果两个三角形有 两组对应的角相等,则这 两个三角形相似。
相似三角形的对应角相等
总结词
如果两个三角形相似,则它们的 对应角相等。
详细描述
根据相似三角形的定义,如果两 个三角形对应的角都相等,则这 两个三角形是相似的。因此,相 似三角形的对应角必然相等。
相似三角形的对应边成比例
总结词
如果两个三角形相似,则它们的对应边之间存在一定的比例关系。
详细描述
由于两个三角形相似,它们的对应角相等,根据三角形的性质,对应的边之间 必然存在一定的比例关系,这个比例关系是固定的,与三角形的形状和大小无 关。
相似三角形的面积比等于边长比的平方
总结词
如果两个三角形相似,则它们的面积之比等于对应边长之比 的平方。
详细描述
根据相似三角形的性质,两个相似三角形的对应边长之比是 固定的,设为k。那么它们的面积之比就是k的平方,即k^2 。这意味着相似三角形的面积比等于边长比的平方。
相似三角形的周长比等于边长比
相似三角形模型(全)课件
目 录
• 相似三角形的基本概念 • 相似三角形的性质和定理 • 相似三角形的应用 • 相似三角形与全等三角形的关系 • 相似三角形的证明方法
01
相似三角形的基本概念
相似三角形的定义
相似三角形的定义
相似三角形的性质
如果两个三角形对应的角相等,则这 两个三角形相似。

最新相似三角形分类整理(超全)

最新相似三角形分类整理(超全)

第一节 第二节第十一节:相似形与相似三角形基本概念: 1.相似形:对应角相等,对应边成比例的两个多边形,我们称它们互为相似形。

2.相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形。

1.几个重要概念与性质(平行线分线段成比例定理)(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知a ∥b ∥c,A D aB E bC F c可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或 等. (2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.AD EB C由DE ∥BC 可得:AC AEAB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.(5)①平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。

②比例线段:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即b a =dc,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段。

2.比例的有关性质①比例的基本性质:如果dcb a =,那么ad=bc 。

如果ad=bc (a ,b ,c ,d 都不等于0),C那么dc b a =。

②合比性质:如果d c b a =,那么ddc b b a ±=±。

③等比性质:如果d c b a ==•••=n m (b+d+•••+n ≠0),那么ban d b m c a =+•••+++•••++④b 是线段a 、d 的比例中项,则b 2=ad.典例剖析例1:① 在比例尺是1:38000的南京交通游览图上,玄武湖隧道长约7cm ,则它的实际长度约为______Km.② 若b a =32 则b b a +=__________. ③ 若 b a b a -+22=59则a :b=__________.3.相似三角形的判定(1)如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。

相似三角形分类整理(超全)上课讲义

相似三角形分类整理(超全)上课讲义

相似三角形分类整理(超全)第一节:相似形与相似三角形基本概念: 1.相似形:对应角相等,对应边成比例的两个多边形,我们称它们互为相似形。

2.相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形。

1.几个重要概念与性质(平行线分线段成比例定理)(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知a∥b∥c,A D aB E bC F cAB DE AB DE BC EF BC EF AB BC或或或或可得BC EFEF AC DF AB DF AC DF DE等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.AD EB CAD AE BD EC AD AE或或由DE∥BC 可得:ACDB EC AD EA AB.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.(5)①平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。

②比例线段:四条线段a,b,c,d 中,如果 a 与 b 的比等于 c 与 d 的比,即ab=cd,那么这四条线段a,b,c,d 叫做成比例线段,简称比例线段。

2.比例的有关性质①比例的基本性质:如果abcd,那么ad=bc。

如果ad=bc(a,b,c,d 都不等于0),那么abcd。

收集于网络,如有侵权请联系管理员删除②合比性质:如果abcd,那么a b cdbd。

③等比性质:如果abcd= ???=mn(b+d+ ???+n≠0),那么abcd??????mnab2=ad.④b 是线段a、d 的比例中项,则 b典例剖析例1:①在比例尺是1:38000 的南京交通游览图上,玄武湖隧道长约7cm,则它的实际长度约为______Km.②若ab =23则a bb=__________.③若a2a 2bb=95则a:b=__________.3.相似三角形的判定(1)如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形分类整理(超全)第一节:相似形与相似三角形基本概念: 1.相似形:对应角相等,对应边成比例的两个多边形,我们称它们互为相似形。

相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形。

1.几个重要概念与性质(平行线分线段成比例定理)(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知a ∥b ∥c,A D aB E bC F c可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或 等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.AD EB C由DE ∥BC 可得:AC AEAB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.(5)①平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。

②比例线段:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即b a =dc,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段。

2.比例的有关性质①比例的基本性质:如果dcb a =,那么ad=bc 。

如果ad=bc (a ,b ,c ,d 都不等于0),那么dc b a =。

②合比性质:如果d c b a =,那么dd c b b a ±=±。

③等比性质:如果d c b a ==•••=n m (b+d+•••+n ≠0),那么ban d b m c a =+•••+++•••++④b 是线段a 、d 的比例中项,则b 2=ad.典例剖析例1:① 在比例尺是1:38000的南京交通游览图上,玄武湖隧道长约7cm ,则它的实际长度约为______Km.② 若b a =32 则b b a +=__________. ③ 若 b a b a -+22=59则a :b=__________.3.相似三角形的判定(1)如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。

(2)两边对应成比例并且它们的夹角也相等的两个三角形相似。

(3)三边对应成比例的两个三角形相似。

补充:相似三角形的识别方法(1)定义法:三角对应相等,三边对应成比例的两个三角形相似。

(2)平行线法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

注意:适用此方法的基本图形,(简记为A 型,X 型) (3)三边对应成比例的两个三角形相似。

(4)两边对应成比例并且它们的夹角也相等的两个三角形相似。

(5)两角对应相等的两个三角形相似。

(6)一条直角边和斜边长对应成比例的两个直角三角形相似。

(7)被斜边上的高分成的两个直角三角形与原直角三角形相似。

【基础练习】(1)如图1,当 时,△ABC ∽ △ADE (2)如图2,当 时, △ABC ∽ △AED 。

A BCDEABCDECCC(3)如图3,当时, △ABC ∽ △ACD 。

小结:以上三类归为基本图形:母子型或A 型(3)如图4,如图1,当AB ∥ED 时,则△ ∽△ 。

(4)如图5,当 时,则△ ∽△ 。

小结:此类图开为基本图开:兄弟型或X 型典例剖析例1:判断①所有的等腰三角形都相似. ( ) ②所有的直角三角形都相似. ( ) ③所有的等边三角形都相似. ( ) ④所有的等腰直角三角形都相似. ( )DE'例2:如图,△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线交AD 于E,交BC 的延长线于F求证: △ABF ∽ △CAF.例3:如图:在Rt △ ABC 中, ∠ABC=90°,BD ⊥AC 于D ,若 AB=6 ;AD=2; 则AC= ;BD= ;BC= ;例3:如图:在Rt △ ABC 中, ∠ABC=90°,BD ⊥AC 于D ,若E 是BC中点,ED 的延长线交BA 的延长线于F ,求证:AB : AC=DF : BF第二节:相似三角形的判定(一)相似三角形:定义1、对应角相等,对应边成比例的两个三角形,叫做相似三角形. 温馨提示:①当且仅当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③对应中线之比、对应高之比、对应角平线之比等于相似比。

DCBCBAEC④两个钝角三角形是否相似,首先要满足两个钝角相等的条件。

2、相似三角形对应边的比叫做相似比.温馨提示:①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当且仅当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:如果一条直线平行于三角形的一条边,且这条直线与原三角形的两条边(或其延长线)分别相交,那么所构成的三角形与原三角形相似.温馨提示:①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明下节相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到上一节“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理(1):两角对应相等,两三角形相似.判定定理(2):两边对应成比例且夹角相等,两三角形相似.判定定理(3):三边对应成比例,两三角形相似.温馨提示:①有平行线时,用上节学习的预备定理;②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.例1.如图三角形ABC中,点E为BC的中点,过点E作一条直线交AB于D 点,与AC的延长线将于F点,且FD=3ED,求证:AF=3CF2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似.温馨提示:①由于直角三角形有一个角为直角,因此,在判定两个直角三角形相似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2,一般不用判定定理3判定两个直角三角形相似;②如图是一个十分重要的相似三角形的基本图形,图中的三角形,可称为“母子相似三角形”,其应用较为广泛.③如图,可简单记为:在Rt△ABC中,CD⊥AB,则△ABC∽△CBD∽△ACD.直角三角形的身射影定理:AC2=AD*AB CD2=AD*BD BC2=BD*AB总结:寻找相似三角形对应元素的方法与技巧正确寻找相似三角形的对应元素是分析与解决相似三角形问题的一项基本功.通常有以下几种方法:(1)相似三角形有公共角或对顶角时,公共角或对顶角是最明显的对应角;相似三角形中最大的角(或最小的角)一定是对应角;相似三角形中,一对相等的角是对应角,对应角所对的边是对应边,对应角的夹边是对应边;(2)相似三角形中,一对最长的边(或最短的边)一定是对应边;对应边所对的角是对应角;对应边所夹的角是对应角.2、常见的相似三角形的基本图形:学习三角形相似的判定,要与三角形全等的判定相比较,把证明三角形全等的思想方法迁移到相似三角形中来;对一些出现频率较高的图形,要善于归纳和记忆;对相似三角形的判定思路要善于总结,形成一整套完整的判定方法.如:(1)“平行线型”相似三角形,基本图形见上节图.“见平行,想相似”是解这类题的基本思路;(2)“相交线型”相似三角形,如上图.其中各图中都有一个公共角或对顶角.“见一对等角,找另一对等角或夹等角的两边成比例”是解这类题的基本思路;(3)“旋转型”相似三角形,如图.若图中∠1=∠2,∠B=∠D(或∠C=∠E),则△ADE∽△ABC,该图可看成把第一个图中的△ADE绕点A旋转某一角度而形成的..第三节相似三角形中的辅助线一、作平行线例1. 如图,∆A B C 的AB 边和AC 边上各取一点D 和E ,且使AD =AE ,DE 延长线与BC 延长线相交于F ,求证:BF CF BDCE =BDA CF E例2. 如图,△ABC 中,AB<AC ,在AB 、AC 上分别截取BD=CE ,DE ,BC 的延长线相交于点F ,证明:AB ·DF=AC ·EF 。

二、作垂线例3. 如图从 ABCD 顶点C 向AB 和AD 的延长线引垂线CE 和CF ,垂足分别为E 、F ,求证:2AC AF AD AE AB =⋅+⋅。

ABCFDE例5. 如图,Rt∆ABC中,CD为斜边AB上的高,E为CD的中点,AE的延长线交BC于F,FG⊥AB于G,求证:FG2=CF•BF四、作中线例6 如图,ABC∆中,AB⊥AC,AE⊥BC于E,D在AC边上,若BD=DC=EC=1,求AC。

五、过渡法(或叫代换法)有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明.1、等量过渡法(等线段代换法)遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,不能组成三角形,或四条线段虽然组成两个三角形,但这两个三角形并不相似,那就需要根据已知条件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。

然后再应用三点定形法确定相似三角形。

只要代换得当,问题往往可以得到解决。

当然,还要注意最后将代换的线段再代换回来。

例1:如图3,△ABC中,AD平分∠BAC, AD的垂直平分线FE交BC的延长线于E.求证:DE2=BE·CE.2、等比过渡法(等比代换法)当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代换,然后再用三点定形法来确定三角形。

相关文档
最新文档