线段垂直平分线定理
线段垂直平分线定理及逆定理
N O B C
问题:如图 、 、 三个村庄合建一所学校 三个村庄合建一所学校, 问题 如图,A、B、C三个村庄合建一所学校 如图 要求校址P点距离三个村庄都相等 点距离三个村庄都相等.请你帮助 要求校址 点距离三个村庄都相等 请你帮助 确定校址. 确定校址
C P• A
•
•
•
B
点P为校址 为校址
1、 公路MN边要建一个家乐福超市,使它到 A、B两居民点的距离相等,如何确定家乐 福超市的位置?
C A
M P• P/ •
已知线段AB,有一 有一 已知线段 并且PA=PB. 点P,并且 并且 那么,点 是否一定 那么 点P是否一定 在AB的垂直平分 的垂直平分 线上? 线上 这样的点P 这样的点 /不存在
A
c
C N
B
逆定理
到一条线段两个端 点距离相等的点,在 点距离相等的点 在 这条线段的垂直平 分线上. 分线上
定理 线段垂直平分线上的点 线段垂直平分线上的点 和这条线段两个端点 两个端点的 和这条线段两个端点的 距离相等. 距离相等
定理 线段垂直平分线上的 线段垂直平分线上的点 和这条线段两个端点 两个端点的 和这条线段两个端点的 距离相等. 距离相等
线段垂直平分线的性质: 线段垂直平分线的性质
线段垂直平分线上的点到这条线段两端 点的距离相等
D
已知:AD平分∠BAC,EF垂直平分 AD,交BC延长线于点F,连结AF 求证:∠B=∠CAF.
B
A
E F D C
小结:这节课你有什么收获?与你的同学 这节课你有什么收获? 这节课你有什么收获
进行交流。 进行交流。
线段垂直平分线上的点和这条线段 两个端点的距离相等. 两个端点的距离相等 ☯和一条线段两个端点距离相等的点 和一条线段两个端点距离相等的点, 和一条线段两个端点距离相等的点 在这条线段的垂直平分线上. 在这条线段的垂直平分线上 线段的垂直平分线可以看作是和线 段两个端点距离相等的所有点的集合. 段两个端点距离相等的所有点的集合
垂直平分线和角平分线典型题
线段的垂直平分线与角平分线(1)知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:图1图2若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.经典例题:例1如图1,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A.6cm B.8cm C.10cm D.12cm针对性练习::1)如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,如果△EBC的周长是24cm,那么BC=2) 如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,如果BC=8cm,那么△EBC的周长是3)如图,AB=AC,AB的垂直平分线交AB于点D,交AC于点E,如果∠A=28度,那么∠EBC是例2. 已知:AB=AC,DB=DC,E是AD上一点,求证:BE=CE。
线段垂直平分线定理知识总结
线段垂直平分线定理知识总结一、线段垂直平分线的性质定理说明:1、这里的距离指的是点与点之间的距离,也就是两点之间线段的长度。
2、在使用该定理时必须保证两个前提条件:一是垂直于线段,二是平分这条线段。
例题、如图所示,在△ABC 中,已知AC=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,△BCE 的周长等于50,求BC 的长。
分析:题中给出了线段垂直平分线这个条件,所以可以考虑运用其性质定理,从而得出AE=BE ,把BE 与AE 进行等量代换,再根据△BCE 的周长及AC 的长,可求出BC 的长。
解:因为ED 是线段AB 的垂直平分线, 所以BE=AE 。
因为△BCE 的周长等于50, 即BE +EC +BC=50, 所以AE +EC +BC=50。
又因为AE +EC=AC=27, 所以BC=50-27=23。
二、线段垂直平分线定理的逆定理证明某一条直线是另一条线段的垂直平分线有两种方法:第一种:根据线段垂直平分线的定义,也就是经过线段的中点,并且垂直于这条EDCBA线段的直线,叫做这条线段的垂直平分线。
使用这种方法必须满足两个条件:一是垂直二是平分;第二种:可以证明有两个点都在线段的垂直平分线上,根据两点确定一条直线,就可以判断这两点所在的直线就是这条线段的垂直平分线。
例题1、如图所示,P 为线段AB 外的一点,并且PA=PB 。
求证:点P 在线段AB 的垂直平分线上。
分析:要想说明某一点在线段的垂直平分线上,可以根据线段的垂直平分线的定义来进行判断。
证明:过点P 作PC ⊥AB ,垂足为点C 。
因为PA=PB , 所以∠A=∠B 。
又因为PC ⊥AB , 所以∠PAB=∠PBA=90°. 在△PAC 和△PBC 中A B PAC PBC PC PC ∠=∠⎧⎪∠=∠⎨⎪=⎩所以△PAC ≌△PBC , 所以AC=BC 。
又因为PC ⊥AB ,所以PC 垂直平分线段AB ,所以点P 在线段AB 的垂直平分线上。
线段垂直平分线
l公路村庄村庄线段垂直平分线知识要点: 一、线段垂直平分线1定义 2画法3性质 线段垂直平分线可以看作是和线段两个端点距离相等的所有点的集合。
4证明说明性质定理实质上“三线合一”定理的逆定理。
利用这一定理, 可以直接让线段等, 是让两条线段相等的重要依据。
5表示性质定理:∵P 为线段AB 的垂直平分线上一点, ∴PA = PB 规侓; 中垂线 想等线 6例题例1、如右图,两个盛产水果的村庄A 、B 位于公路的同侧,交通条件极为方便,他们想因地地制宜,在公路旁建一个现代化的食品加工厂,使它到两个村庄的距离相等,请画出符合条件的食品加工厂的位置。
练习;有特大城市A 及两个小城市B 、C ,这三个城市共建一个污水处理厂,使得该厂到B 、C 两城市的距离相等,且使A 市到厂的管线最短,试确定污水处理厂的位置。
例。
(1)在△ABC 中,AB =AC ,AB 的垂直平分线交AB 于N ,交BC 的延长线于M ,∠A =40°,求∠NMB 的大小; (2)如果将(1)中的∠A 的度数改为70°,其余条件不变,再求∠NMB 的大小.(3)你发现了什么样的规律?试证明之;(4)将(1)中的∠A 改为钝角,对这个问题的规律性认识是否需要修改. 等腰三角形一腰上的垂直平分线与底边或底边的延长线相交,所成的锐角等于顶角的一半.练习;已知:如图,DE 是△ABC 的AB 边的垂直平分线,分别交AB 、BC 于D 、E ,AE 平分∠BAC ,若∠B=300,求∠C 的度数。
例1:如图1,在△ABC 中,已知AC=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,△BCE 的周长等于50,求BC 的长.BAED11AB CDE图变式1:如图1,在△ABC 中, AB 的垂直平分线交AB 于点D ,交AC 于点E ,若∠BEC=70°,则∠A=?变式2:如图3,在Rt △ABC中,AB 的垂直平分线交BC 边于点E 。
垂直平分线性质
A N
P
C
B
练习一:
1.如图,已知直线MN是线段AB的垂直平分线, 垂足为D,点P是MN上一点。 若AB=10 cm,则BD=__________cm; 若PA=10 cm,则PB=__________cm; 此时,PD=__________cm.
练习二:
2.如图,在△ABC中,已知AC=27,AB的垂直平 分线交AB于点D,交AC于点E,△BCE的周长 等于50,求BC的长. A
D E B C
变式1:如图1,在△ABC中, AB的垂直平 分线交AB于点D,交AC于点E,若 ∠BEC=70°,则∠A=?
A
D E
B
C
练习三:
3 : 如图,在△ABC中,AB=AC, BC=12, ∠BAC =120°,AB的垂直平分线交BC边 于点E, AC的垂直平分线交BC边于点N. (1) 求△AEN的周长. (2) 求∠EAN的度数. (3) 判断△AEN的形状
线段的垂直平分线:
定义:经过某一条线段的中点,并ห้องสมุดไป่ตู้垂 直于这条线段的直线叫做这条线 段的垂直平分线。(也称为中垂线) 特点:直线垂直且平分线段。
定理: 线段垂直平分线上的点到这条线段的 两个端点距离相等.
定理:线段垂直平分线上的点到这条线 段两个端点距离相等. 书写格式: M ∵MN为线段AB的垂直平分线 ∴PA=PB
初二几何证明一(线段垂直平分线、角平分线和等腰三角形的性质)
线段垂直平分线、角平分线和等腰三角形的性质知识点梳理1、 线段垂直平分线性质定理及其逆定理:定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等. 逆定理:和一条线段两个端点距离相等的点,在这条线段的直平分线上.2、 角平分线的性质定理及其逆定理:定理:在角的平分线上的点到这个角两边的距离相等.逆定理:在一个角的内部(包括顶点)且到这个角两边距离相等的点,在这个角的平分线上.D21P CABEO1、 等腰三角形的性质等边对等角:等腰三角形的两个底角相等。
三线合一:等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合 证明以下推论:等腰三角形的两底角的平分线相等; 两条腰上的中线相等; 两条腰上的高相等。
等腰三角形的一腰上的高与底边的夹角等于顶角的一半4、 等腰三角形的判定:等角对等边:有两个角相等的三角形是等腰三角形 ◆ 命题、公理、定理命题:判断性的语句 陈述句,一般由题设和结论组成,写成“如果……,那么……”的形式 几个重要的公理(不需证明): (1) 两点之间线段最短;(2) 过直线外一点有且只有一条直线与已知直线平行 (3) 过一点有且只有一条直线与已知直线垂直;(4) 同位角相等,两直线平行; (5)两直线平行,同位角相等。
1、已知:如图,∠ABC ,∠ACB 的平分线交于F ,过F 作DE ∥BC ,交AB 于D ,交AC 于E 。
求证:BD +EC =DE 。
2、已知:如图所示△ABC ,∠ACB=90°,D 为BC 延长线上一点,E 是AB 上一点,EM 垂直平分BD ,M 为垂足,DE 交AC 于F ,求证:E 在AF 的垂直平分线上.3、如图,已知:CD 、CE 分别是AB 边上的高和中线,且ACE ECD DCB ∠=∠=∠。
求证:90o ACB ∠=CA4、如图,已知:在,90,30ooABC C A ∆∠=∠=中,DE 垂直平分AB ,FM 垂直平分AD ,GN 垂直平分BD 。
线段垂直平分线知识点+经典例题
第三讲 线段的垂直平分线【要点梳理】要点一、线段的垂直平分线1.定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的做法求作线段AB 的垂直平分线.作法:(1)分别以点A ,B 为圆心,以大于AB 的长为半径作弧,两弧相交于C ,D 两点;(2)作直线CD ,CD 即为所求直线.要点诠释:(1)作弧时的半径必须大于AB 的长,否则就不能得到两弧的交点了.(2)线段的垂直平分线的实质是一条直线.要点二、线段的垂直平分线定理线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等.要点诠释:线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两条线段相等的常用方法之一.同时也给出了引辅助线的方法,“线段垂直平分线,常向两端把线连”.就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.要点三、线段的垂直平分线逆定理线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合.要点四、三角形的外心三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.要点诠释:1.三角形三条边的垂直平分线必交于一点(三线共点),该点即为三角形外接圆的圆心.2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合.3.外心到三顶点的距离相等.要点五、尺规作图作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图”,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx 即为所求”.2121【典型例题】类型一、线段的垂直平分线定理例1、如图,△ABC中AC>BC,边AB的垂直平分线与AC交于点D,已知AC=5,BC=4,则△BCD的周长是()A.9 B.8 C.7 D.6【思路点拨】先根据线段垂直平分线的性质得到AD=BD,即AD+CD=BD+CD=AC,再根据△BCD的周长=BC+BD+CD即可进行解答.【答案】A;【解析】因为BD=AD,所以△BCD的周长=BD+CD+BC=AD+CD+BC=5+4=9.【总结升华】此题正是应用了线段垂直平分线的性质定理,也就是已知直线是线段垂直平分线,那么垂直平分线上的点到线段的两个端点距离相等,从而把三角形的边进行转移,进而求得三角形的周长.【变式1】如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点【答案】D;提示:根据等边对等角、三角形内角和定理及线段垂直平分线的性质定理即可推得选项A、B、C正确;所以选D,另外,注意排除法在解选择题中的应用.【变式2】如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.【答案】解:∵DE为AB的中垂线,∴AE=BE,∵FG是AC的中垂线,∴AG=GC,△AEG的周长等于AE+EG+GA,分别将AE和AG用BE和GC代替得:△AEG的周长等于BE+EG+GC=BC,所以△AEG的周长为BC的长度即7.类型二、线段的垂直平分线的逆定理例2、如图,已知AB=AC,∠ABD=∠ACD,求证:AD是线段BC的垂直平分线.A【答案与解析】证明:∵ AB=AC(已知)∴∠ABC=∠ACB (等边对等角)又∵∠ABD=∠ACD (已知)∴∠ABD-∠ABC =∠ACD-∠ACB (等式性质)即∠DBC=∠DCB∴DB=DC (等角对等边)∵AB=AC(已知)DB=DC (已证)∴点A 和点D 都在线段BC 的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AD 是线段BC 的垂直平分线。
角平分线和线段垂直平分线的性质
角平分线和线段垂直平分线的性质1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cmm图1DABCA .2个B .3个C .4个D .1个4.如图4,AD ∥BC ,∠D=90,AP 平分∠DAB ,PB平分∠ABC ,点P 恰好在CD 上,则PD 与PC 的大小关系是( )A .PD>PCB .PD<PC C .PD=PCD .无法判断 。
5、在三角形内部,有一点P 到三角形三个顶点的距离相等,则点P 一定是( )A 、三角形三条角平分线的交点;B 、三角形三条垂直平分线的交点;C 、三角形三条中线的交点;D 、三角形三条高的交点。
6、已知△ABC 的三边的垂直平分线交点在△ABC 的边上,则△ABC 的形状为( )PDCBA EDCB A DCB AE D CB A图图图图A 、锐角三角形;B 、直角三角形;C 、钝角三角形;D 、不能确定7、如图所示,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,BE 平分∠ABC 交AD 于E ,F 在BC 上,并且BF =AB ,则下列四个结论:①EF ∥AC ,②∠EFB =∠BAD ,③AE =EF ,④△ABE ≌△FBE ,其中正确的结论有( ) A 、①②③④ B 、①③ C 、②④ D 、②③④7题图8题图 9题图 8、如图所示,在ABC 中,∠C =90°, AC =4㎝,AB =7㎝,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于E ,则EB 的长是( )A 、3㎝B 、4㎝C 、5㎝DECBADECBAcb aD、不能确定9、随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有()处。
垂直平分线的性质定理和判定定理(含答案)
几何专题1:线段垂直平分线的性质定理和判定定理一、知识点(抄一遍):1.线段垂直平分线的定义:垂直并且平分一条线段的直线.2.线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.3.线段垂直平分线的判定定理:到线段两端距离相等的点在线段的垂直平分线上.二、专题检测题1.证明线段垂直平分线的性质定理.(注意:证明文字性命题的三个步骤:①根据题意,画出图形;②写出已知和求证;③写出证明过程.)2.证明线段垂直平分线的判定定理.3.定理的几何语言表示(1)线段垂直平分线的性质定理:∵,∴ .(2)线段垂直平分线的判定定理:∵,∴ .4.如图所示,CD垂直平分线段AB,AB平分∠CAD. 求证:AD∥BC.5.如图,在△ABC中,AD是BC边上的高.AC的垂直平分线交DC于点E,且BD=DE.求证:AB+BD=DC.6.如图,已知在△ABC中,边AB,BC的垂直平分线相交于点P.求证:点P在AC的垂直平分线上.7.如图,在△ABC中,点D为BC上一点,连接AD,点E在线段AD上,并且∠1=∠2,∠3=∠4. 求证:AD垂直平分BC.8.如图所示,在△ABC中,AB=AC,D是AB上的一点,DE⊥BC,交BC于点E,交CA的延长线于点F.求证:点A在DF的垂直平分线上.几何专题1:线段的垂直平分线答案1. 证明线段垂直平分线的性质定理.已知:如图,直线l 是线段AB 的垂直平分线,垂足为M ,P 为直线l 上的任意一点,连接PA ,PB.求证:PA=PB.证明:①当P 点不与M 点重合时,∵直线l 垂直平分AB ,∴∠PMA=∠PMB=90°,AM=MB.在△APM 和△BPM 中,AM=BM∠PMA=∠PMBPM=PM∴ △APM ≌△BPM (SAS ).∴ PA=PB. ②当P 点与M 点重合时, ∵AM=MB , ∴PA=PB. 由①②可知,该命题成立.2. 证明线段垂直平分线的判定定理.已知:如图,线段AB ,P 为平面内一点,且PA=PB.求证:点P 在线段AB 的垂直平分线上.证明: ①当P 点不在线段AB 所在的直线上时, 过点P 作PC ⊥AB ,垂足为C.∵PA=PB,∴△PAB 是等腰三角形.∵PC ⊥AB,∴AC=BC.∴点P 在线段AB 的垂直平分线上. ②当P 点在线段AB 所在的直线上时, ∵PA=PB, ∴点P 是线段AB 的中点. ∴点P 在线段AB 的垂直平分线上. 由①②可知,该命题成立. 3. 定理的几何语言表示(1)线段垂直平分线的性质定理:∵直线l 垂直平分AB ,∴AP=BP.(2)线段垂直平分线的判定定理:∵PA=PB,∴点P在线段AB的垂直平分线上.4.如图所示,CD垂直平分线段AB,AB平分∠CAD. 求证:AD∥BC.证明:∵CD垂直平分线段AB,∴AC=BC,∴∠CAB=∠B.∵AB平分∠CAD,∴∠CAB=∠DAB,∴∠B=∠DAB,∴AD∥BC.5.如图,在△ABC中,AD是BC边上的高.AC的垂直平分线交DC于点E,且BD=DE.求证:AB+BD=DC.证明:连接AE.∵AD是BC边上的高,BD=DE∴AD垂直平分BE,∴AB=AE.∵点E在AC的垂直平分线上,∴AE=CE,∴AB=CE,∴AB+BD=CE+DE,即AB+BD=DC.6.如图,已知在△ABC中,边AB,BC的垂直平分线相交于点P.求证:点P在AC的垂直平分线上.证明:连接AP,BP,CP.∵点P在AB的垂直平分线上,∴AP=BP同理可证:BP=CP∴AP=CP∴点P在AC的垂直平分线上.7.如图,在△ABC中,点D为BC上一点,连接AD,点E在线段AD上,并且∠1=∠2,∠3=∠4. 求证:AD垂直平分BC.证明:∵∠1=∠2,∴BE=CE.∴点E在线段BC的垂直平分线上.同理可证:点A在线段BC的垂直平分线上∴AE垂直平分BC.即AD垂直平分BC.8.如图所示,在△ABC中,AB=AC,D是AB上的一点,DE⊥BC,交BC于点E,交CA的延长线于点F.求证:点A在DF的垂直平分线上.证明:∵AB=AC,∴∠B=∠C.∵DE⊥BC,∴∠FEC=∠FEB=90°,∴∠B+∠BDE=90°,∠C+∠F=90°.∴∠BDE=∠F.∵∠BDE=∠FDA,∴∠F=∠FDA.∴AF=AD,∴点A在DF的垂直平分线上.。
13.5.2线段垂直平分线的性质和判定
A N
C
B
试一试:
如图,用一根木棒和一根弹性均衡的橡皮筋,做一个简易 的“弓”,“箭”通过木棒中央的孔射出去,怎样才能保 持射出箭的方向与木棒垂直呢?为什么?
A
O
P
B
基础闯关
1、如图,已知AB是线段CD的垂直平分线,E是AB上 的一点,如果EC=7cm,那么ED= 7 cm;如果 0. ∠ECD=600,那么∠EDC= 60
线段垂直平分线上的点与这条线段两个端点的距离相等。
二、线段垂直平分线的判定性质:
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
三、关系:互逆
点P在线段 AB的垂直 平分线上
线段垂直平分线上的点与这 条线段两个端点的距离相等
PA=PB
与一条线段两个端点距离相等的 点,在这条线段的垂直平分线上
C
二、线段垂直平分线的判定:
如图,用一根木棒和一根弹性均衡的橡皮筋,做一个简易的“弓”, “箭”通过木棒中央的孔射出去,怎样才能保持射出箭的方向与木 棒垂直呢?为什么?
A
答:当PA=PB时,射出的箭 的方向与木棒垂直
O
P
与一条线段两个端点距离相等的点, 在这条线段的垂直平分线上。
B
二、线段垂直平分线的判定:
线段垂直平分线的性质和判定
垂直平分线:
经过线段中点并且垂直于这条线段的直线,叫做这条线段 的垂直平分线。
图形轴对称的性质:
如果两个图形关于某条直线对称,那么对称轴是任何一对 对应点所连线段的垂直平分线。 类似地,轴对称图形的对称轴,是任何一对对应点所连线 段的垂直平分线。
线段垂直平分线的性质:
线段垂直平分线上的点与这条线段两个端点的距离相等。
线段的垂直平分线
线段的垂直平分线(一)知识要点1.定义:垂直平分一条线段的直线叫做这条线段的垂直平分线。
2.定理(性质):线段垂直平分线上的点和线段两个端点的距离相等。
3.逆定理(判定):和一条线段两个端点距离相等的点在这条线段的垂直平分线上。
4.用集合定义:线段的垂直平分线可以看作是和线段的两个端点距离相等的所有点的集合。
5.结论(1):三角形三边中垂线的交点到三个顶点的距离相等,这个交点叫三角形的外心。
结论(2):三角形三个内角角平分线的交点到三边距离相等,这个交点叫三角形的内心。
6.轴对称(位置与形状)和轴对称图形。
(见书P22-P28)(二)练习1.如图,△ABC中,∠ABC=45°,AD平分∠BAC,EF垂直平分AD,交BC的延长线于F,则∠CAF=____度。
2.如图,△ABC的两边AB、AC的垂直平分线分别交BC于D、E,∠BAC+∠DAE=150°,则∠BAC=___度。
3.在△ABC中,∠BAC=144°,EF、MN分别是AB、AC中垂线,则∠EAM=___度。
4.如图,已知O是△ABC的边AB、AC中垂线交点,M是∠ABC、∠ACB的平分线的交点,且∠M+∠BOC=180°,则∠BAC=____度。
(练习册P1712)5.在等腰△ABC中,过腰AB的中点D作它的垂线(点A、C在垂线的异侧),交另一腰AC于点E,连结BE,AD+AC=24,BD+BC=20,则△EBC周长为____。
6.M是△ABC三边垂直平分线的交点,则∠BAC+∠MBC=_____度。
7.在Rt△ABC中,∠C=90°,AB的垂直平分线交BC于D,∠CAD:∠DAB=1:2,则∠B=_______度。
8.已知△ABC的周长为36cm,AB=AC,AD⊥BC于D,△ABD的周为30cm,则AD=___。
9.一个三角形两边垂直平分线的交点在第三边上,则这个三角形是_________。
线段的垂直平分线角平分线
线段的垂直平分线与角平分线【知识框架】1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,∵ CD ⊥AB ,且AD =BD∴ AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线的判定定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 定理的数学表示:如图2,∵ AC =BC∴ 点C 在线段AB 的垂直平分线m 上.定理的作用:证明一个点在某线段的垂直平分线上. 3、关于线段垂直平分线性质定理的推论(1)关于三角形三边垂直平分线的性质:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点.....的距离相等.性质的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部; 若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部. 反之,也成立。
4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.定理的数学表示:如图4,∵ OE 是∠AOB 的平分线,F 是OE 上一点,且CF ⊥OA 于点C ,DF ⊥OB于点D , ∴ CF =DF.定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线. 5、角平分线性质定理的逆定理:角平分线的判定定理:在角的内部到角的两边距离相等的点在这个角的角平分线上. 定理的数学表示:如图5,图1图2图4∵点P在∠AOB的内部,且PC⊥OA于C,PD⊥OB于D,且PC=PD,∴点P在∠AOB的平分线上.定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线注意角平分线的性质定理与判定定理的区别和联系.(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的数学表示:如图6,如果AP、BQ、CR分别是△ABC的内角∠BAC、∠ABC、∠ACB的平分线,那么:① AP、BQ、CR相交于一点I;②若ID、IE、IF分别垂直于BC、CA、AB于点D、E、F,则DI=EI=FI.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.这个交点叫做三角形的内心(即内切圆的圆心).7、关于线段的垂直平分线和角平分线的作图:(1)会作已知线段的垂直平分线;(2)会作已知角的角平分线;(3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形.【典型例题】例1、如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm【跟踪练习】(1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E , 如果△EBC 的周长是24cm ,那么BC=_________;(2)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E , 如果BC=8cm ,那么△EBC 的周长是______;(3)如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E , 如果∠A=28度,那么∠EBC=___.例2、已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE.【跟踪练习】已知:在△ABC 中,ON 是AB 的垂直平分线,OA=OC.求证:点O 在BC 的垂直平分线.例3、在△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°,△ABC 的底角C∠B的大小为_______________。
线段的垂直平分线与角平分线
线段的垂直平分线与角平分线【知识框架】1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1.∵ CD ⊥AB.且AD =BD∴ AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线的判定定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 定理的数学表示:如图2.∵ AC =BC∴ 点C 在线段AB 的垂直平分线m 上.定理的作用:证明一个点在某线段的垂直平分线上. 3、关于线段垂直平分线性质定理的推论(1)关于三角形三边垂直平分线的性质:三角形三边的垂直平分线相交于一点.并且这一点到三个顶点.....的距离相等.性质的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形.则它三边垂直平分线的交点在三角形内部; 若三角形是直角三角形.则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形.则它三边垂直平分线的交点在三角形外部. 反之.也成立。
4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.定理的数学表示:如图4.∵ OE 是∠AOB 的平分线.F 是OE 上一点.且CF ⊥OA 于点C.DF ⊥OB 于点D. ∴ CF =DF.定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形.它的对称轴是角平分线所在的直线. 5、角平分线性质定理的逆定理:角平分线的判定定理:在角的内部到角的两边距离相等的点在这个角的角平分线上. 定理的数学表示:如图5.∵点P 在∠AOB 的内部.且PC ⊥OA 于C.PD ⊥OB 于D.且PC =PD.图1图2图4∴点P在∠AOB的平分线上.定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线注意角平分线的性质定理与判定定理的区别和联系.(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点.并且这一点到三边的距离相等.定理的数学表示:如图6.如果AP、BQ、CR分别是△ABC的内角∠BAC、∠ABC、∠ACB的平分线.那么:① AP、BQ、CR相交于一点I;②若ID、IE、IF分别垂直于BC、CA、AB于点D、E、F.则DI=EI=FI.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.这个交点叫做三角形的内心(即内切圆的圆心).7、关于线段的垂直平分线和角平分线的作图:(1)会作已知线段的垂直平分线;(2)会作已知角的角平分线;(3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形.【典型例题】例1、如图1.在△ABC 中.BC =8cm.AB 的垂直平分线交AB 于点D.交边AC 于点E.△BCE 的周长等于18cm.则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm【跟踪练习】(1)如图.AB=AC=14cm,AB 的垂直平分线交AB 于点D.交AC 于点E. 如果△EBC 的周长是24cm.那么BC=_________;(2)如图.AB=AC=14cm,AB 的垂直平分线交AB 于点D.交AC 于点E. 如果BC=8cm.那么△EBC 的周长是______;(3)如图.AB=AC,AB 的垂直平分线交AB 于点D.交AC 于点E. 如果∠A=28度.那么∠EBC=___.例2、已知: AB=AC.DB=DC.E 是AD 上一点.求证:BE=CE.【跟踪练习】已知:在△ABC 中.ON 是AB 的垂直平分线,OA=OC.求证:点O 在BC 的垂直平分线.例3、在△ABC 中.AB=AC.AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°.△ABC 的底角∠B的大小为_______________。
1.3.1_线段垂直平分线
∴PA=PB(全等三角形的对应边相等)
M P
当点P与点C重合时,上述证 明有什么缺陷? PCA与PCB将不存在. PA与PB还相等吗? B
A
C N
相等!
此时,PA=CA,PB=CB 已知AC=CB ∴PA=PB
开启
智慧
几何的三种语言
定理 线段垂直平分线上的点到这条线段两个端点 距离相等. M
A
C
B
N
Q
M P
.
C
A
N
B
.Q
定理(线段垂直平分线的性质定理) 线段垂直平分线上的点 到这条线段两个端点的 距离相等.
定理 线段垂直平分线上的点 到这条线段两个端点的 距离相等.
定理 线段垂直平分线上的点 到这条线段两个端点的 距离相等.
定理 线段垂直平分线上的点 到这条线段两个端点的 距离相等.
∴PC是线段AB的垂直平分线.
逆定理
到一条线段两个端 点距离相等的点,在 这条线段的垂直平 分线上.
我能行
1
逆定理
逆定理 到一条线段两个端点距离相等的点,在 这条线段的垂直平分线上. 如图, ∵PA=PB(已知), ∴点P在AB的垂直平分线上(到 一条线段两个端点距离相等的点, 在 A 这条线段的垂直平分线上).
思 考 分 析
P
′
B
逆命题 到一条线段两个端点距离相等的点,在这条 线段的垂直平分线上.
已知:如图,PA=PB. 求证:点P在AB的垂直平分线上.
′
P
分析:要证明点P在线段AB的垂 直平分线上,可以先作出过点P A 的AB的垂线(或AB的中点,),然 后证明另一个结论正确.
想一想:若作出∠P的角平分线,结
证明线段垂直平分线的判定定理
证明线段垂直平分线的判定定理证明线段垂直平分线的判定定理首先,我们需要知道平面几何中线段垂直平分线的定义。
线段垂直平分线指的是一个线段,它与另一个线段垂直相交且将之平分成两个长度相等的线段。
那么,如果我们已知一条线段的中点,如何证明它同时又是该线段的垂直平分线呢?设两个点 A(x1, y1)、B(x2, y2),则线段 AB 的中点M 为:M = ((x1+x2)/2, (y1+y2)/2)设点 P(x, y) 是线段 AB 的垂足,则 AP、BP 两线段的斜率分别为:kAP = (y-y1)/(x-x1) kBP = (y-y2)/(x-x2)由于垂直平分线 AP 和 BP 互相垂直,它们的斜率之积为 -1,即:kAP × kBP = -1将上面两个式子分别代入kAP × kBP = -1 中,得到:(y-y1)/(x-x1) × (y-y2)/(x-x2) = -1将等式化简,得到:y^2 - (y1+y2)y + y1y2 + x^2 - (x1+x2)x + x1x2 = 0注意到此为一个关于 y 的二次方程,根据求根公式解出 y,得到两个解:y = [(y1+y2)/2 ± (y1-y2)/2√(1+(x1-x2)^2/(y1-y2)^2)]由于平分线 M 是线段 AB 的垂直平分线,因此 PM = BM,即:PM^2 = BM^2将 PM、BM 的坐标代入上述条件中,得到:[(x-x1)^2 + (y-y1)^2] = [(x-x2)^2 + (y-y2)^2]将 y 用上一个式子代入此式,可得:(x - (x1+x2)/2)^2 + (y1-y2)^2/4 = (x -(x1+x2)/2)^2 + (y2-y1)^2/4即:(y2-y1)^2/4 = (y1-y2)^2/4 + (x1-x2)^2/4整理后得到:(x1-x2)^2 + (y1-y2)^2 = 0可以发现,上面的条件只有在 x1 = x2 且 y1 = y2 的情况下成立,也就是线段 AB 只有一个点的情况下是垂直平分线。
线段的垂直平分线(一)
老师提示:这个结论是经常用来证明点在直
线上(或直线经过某一点)的根据之一.
想一想,做一做
已知:如图 1-18,在 △ABC 中,AB = AC, O 是△ABC 内一点,且 OB = OC. 求证:直线 AO 垂直平分线段BC.
课堂小结, 畅谈收获:
一、线段垂直平分线的性质定理. 二、线段垂直平分线的判定定理.
A
B
D
老师提示:
因为直线CD与线段AB的交点就是AB的中 点,所以我们也用这种方法作线段的中点.
3.如图,求作一点P,使PA=PB,PC=PD
C
A
B D
一、填空题 1. 如左图,已知直线 MN 是线段 AB 的垂直平分线,垂 足为D,点P是MN上一点,若AB=10cm,则BD=______cm; 若PA=10cm,则PB=______cm;此时,PD=______cm. 2. 如右图,在△ ABC 中, AC 的垂直平分线交 AC 于 E , 交 BC 于 D ,△ ABD 的周长是 12cm , AC=5cm ,则△ ABC 的 周长是__________cm. AB+BD+AD=AB+BD+DC=__________cm;
2.已知直线L和L上一点P,利用尺规作的 直线L的垂线,使它经过点P.
P
●
l
用尺规作线段的垂直平分线.
已知:线段AB,如图.
求作:线段AB的垂直平分线. 作法:
1.分别以点A和B为圆心,以大于
尺规作图
C
AB/2长为半径作弧,两弧交于点C和 D. 2. 作直线CD. 则直线CD就是线段AB的垂直平分线. 请你说明CD为什么是AB的垂直平分线, 并与同伴进行交流.
A
线段垂直平分线的性质及判定定理
整理课件
驶向胜利 的彼岸
12
M P
A
B
N
∵ PA=PB(已知)
∴点P在线段AB的垂直平分线上 (和一条线段两个端点 距离相等的点,在这条线段 的垂直平分线上)
整理课件
13
1、如图PA=PB,则直线MN 是线段AB的垂直平分线。
M
P
A
B
N
整理课件
14
2、如图,AB=AC,MB=MC,直线AM是
线段BC的垂直平分线吗?2 Nhomakorabea动起来!
已知直线l垂直平分线段AB,垂足为C;在l上 任取一点P,连结PA、PB;
l
量一量:PA、PB的长,你能发现什么?
PA=PB
P1A=P1B
……
P
由此你能得到什么规律?
命题:线段垂直平分线
上的点与这条线段两个端点 A
的距离相等。
●P1
B
C
整理课件
3
猜测(命题)1:线段垂直平分线上的点与 这条线段两个端点的距离相等。
17
角的平分线
A
D
C
P
线段的垂直平分线
M P
O
E
B
定理1 在角的平分线上的点到这个 角的两边的距离相等。
A
B
N
定 理 线段垂直平分线上的点和这 条线段两个端点的距离相等。
定理2 到一个角的两边的距离相等 逆定理 和一条线段两个端点距离相
的点,在这个角的平分线上。
等的点,在这条线段的垂直平分线上。
角的平分线是到角的两边距离 线段的垂直平分线可以看作是和线段
解:∵ DE是AB边的中垂线 (已知),
∴AE=BE(线段垂直平分线上的点 D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.AD平分∠BAC,EF垂直平分AD 交BC的延长线于F,
求证:DF2=FC·FB A
E
B DC
F
7、已知:线段a
a
求作:一个等腰三角形, 使它的底边及底边上 的高都为a
D E
A
D C
B
CB
4已知:如图AB=AC,BD=CD,
P是AD上一点,
求证PB=PC
A
P
B
C
D
8在△ABC中,D为BC 的点,DE⊥BC
交∠BAC的平分线AE于点,EF⊥AB
于F点,EG⊥AC于G点
A
求证:BF=CG
F
D
C
B
G
E
试试看,相信你一定行。
证明三角形的三边垂直
平分线交于一点,
这一点就是
N
A
B
练习1:
在△ABC中,∠ACB=90°, AB=8cm,BC的垂直平分线 DE交AB于D点,则CD=_4__c_m
Cபைடு நூலகம்
E
A
D
B
2、在△ABC,PM,QN分别垂直平 分AB,AC,则
若BC=10cm则△APQ的周长=1_0c_m_
若∠BAC=100°则∠PAQ=__2_0_0 ___
3、在△ABC中,AB=AC, AB的中垂线与AC所在 的直线相交所得的锐角 为5A0°,E 则∠B=_772_00_000或200
线段的垂直平分线
求定证理::线线段段垂垂直直平平分分线线 M
上上的的点点到到这这条条线线段段
P
的的两两端端点点的的距距离离相相等等
A
B
N
定反求理之证到:到到一一条一线条条段线线的段两段的端的点两的 两距 端端离点相点的等距的的离点距是相离否等相一的定等点在的在 M 点平这 这上在分条条线这线线段段条上的的垂线直垂段平直的分平线垂分上直线呢? P