一次函数复习题 课件

合集下载

数学八年级上《一次函数》复习课件

数学八年级上《一次函数》复习课件

函数平移
例1、将直线 y x 2 向下平移3个单 位后得到的直线是 。 直线平移:
y kx
向上平移b个单位 y kx b 向下平移b个单位 y kx b
配套练习
函数平移
2x 2x 4 1、直线 y 是由 y 3 3
向 平移 个单位得到的。
配套练习
1 2、将直线 y x 2 平移后经过点 2 (-4,-1)。
-1 O
1
2
3
4
5
6
7
8
9
10 11 12
t /分
5、10千米龙舟比赛中,红队由于某些原因,晚 出发了。出发时蓝队已经划出了 500米,如图所示, ɭ和m分别表示蓝队和红队的行驶路程y(千米)和 时间x(分)之间的关系。 是哪个队获胜了?
y(千米) 8 6 4 2 0 5 10 15 20 25 x(分)
平行于 y = k x ,可由它平移而得
当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小.
应 用
(1). 待定系数法; (2).实际问题的应用 (3). 解决方程,不等式,方程组的有关问题
二、范例。
例1 填空题: ②

y x4
, ④ y 4 x 3 。其中过原点的直
一 次 函 数 y=k x + b(k,b为常数,且k ≠0) k>0 y
k>0,b>0
k<0 y x
k<0,b>0
图 象
y o
y
o x
k>0,b<0
o
x
k<0,b<0
x
o
y o

一次函数复习课课件ppt

一次函数复习课课件ppt

谢谢!
x
当k<0时,图象过二、四象限;
y随x的增大而减少。
15
直线经过一、二、四象限,则
K
0, b
0.


此时,直线的图象只能是( )
D
2021/1/4
16
与y轴的交点为 (0 , b ) 与x轴的交点为 (- , 0 )
1.若一次函数的图象过点A(1,-1),则。 -2
2 .根据如图所示的条件,求直线的表达式。
建立数学模型
函数
应用 2021/1/4
一次函数 再认识
一元一次方程 一元一次不等式 一元一次方程组
图象 性质
8
八年级 数学 一次函数的概念:
第十一章 函数
一般地,形如(为常数,且k≠0) 的函数叫做一次函数.
当b =0 时 即为 , 所以正比例函数,是一次函数的特例.
2021/1/4
9
考点题型 1:一次函数的概念 (1)考纲要求:理解一次函数、正比例函数的意义 (2)考点:一次函数、正比例函数解析式的特征
2021/1/4
3
正方形的面积S 随边长 x 的变化
2
(x>0)
(1)解析法 (2)列表法 (3)围
第十一章 函数
求出下列函数中自变量的取值范围?
分式的分母不为0
被开方数(式)为非负数
与实际问题有关系的,应使实际问题有意义
(3) h 1 k k 1
29
2021/1/4
y
0
A
B
x 19
4.一次函数14与正比例函数2x的图象经过点(2,-1), (1)分别求出这两个函数的表达式; (2)求这两个函数的图象与x轴围成的三角形的面积。

2024年中考数学一轮复习考点精讲课件—一次函数的图象与性质

2024年中考数学一轮复习考点精讲课件—一次函数的图象与性质

的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.
4)一次函数与正比例函数有着共同的性质:
①当k>0时,y的值随x值的增大而增大;②当k<0时,y的值随x值的增大而减小.
考点二 一次函数的图象与性质
1. 正比例函数y= kx中,|k|越大,直线y= kx越靠近y轴;反之,|y|越小,直线y= kx越靠近x轴.
C.3
D.−3或3
∴9 = 2 ,∴ = ±3,又∵正比例函数 = 的图象经过第二、
∴ < 0,∴ = −3,故选:B.
【对点训练1】(2023·浙江杭州·统考一模)已知 − 与 − 1成正比例,且当 = −2时, = 3.若关
于的函数图象经过二、三、四象限,则m的取值范围为(
用待定系数法求一次函数表达式的一般步骤:
1)设出函数的一般形式y=kx(k≠0)或y=kx+b(k≠0);
2)根据已知条件(自变量与函数的对应值)代入表达式得到关于待定系数的方程或方程组;
3)解方程或方程组求出k,b的值;
4)将所求得的k,b的值代入到函数的一般形式中,从而得到一次函数解析式.
考点二 一次函数的图象与性质
两点即可,
图象确定
b
k
1)画一次函数的图象,只需过图象上两点作直线即可,一般取(0,b),(− ,0)两点;
2)画正比例函数的图象,只要取一个不同于原点的点即可.
考点二 一次函数的图象与性质
三、k,b的符号与直线y=kx+b(k≠0)的关系


在直线y=kx+b(k≠0)中,令y=0,则x=− ,即直线y=kx+b与x轴交于(− ,0)
综上所述,0 > 1 > 2

一次函数复习课件ppt课件精选全文

一次函数复习课件ppt课件精选全文

若它的图象经过原点,则 m=
;
若点(0 ,3) 在它的图象上,则m=
;
6.下列哪个图像是一次函数y=-3x+5 和y=2x-4的大致图像B( )
(A)
(B)
(C)
(D)
小试牛刀
7、已知函数 y = kx的图象在二、四象限,
那么函数y = kx-k的图象可能是B(

y
y
0
x
(A ) y
0
x
y (B)
2.一次函数的图像; 3.一次函数的性质; 4. 一次函数的应用
(1)待定系数法;
(2)利用一次函数解决实际问题。 5. 一次函数的与方程、方程组及不 等式的关系


• 1.直线y=6x-12与x轴的交点坐标是__________,与y轴
的交点坐标是__________.
• 2.已知一次函数,过点(1,-3)且使随的增大而减小.则 一次函数是__________.
2.一次函数的图象
a. 正比例函数y=kx(k≠0)的图象是过点(0,__0___), (_1_,__k__)的_一__条__直__线__。 (__bk__,b0.一)的次_一函__条数__直y_=_线k_x_+_b。(k≠0)的图象是过点(0,b ___),
c.一次函数y=kx+b(k≠0)的图象与k,b符号的关 系:
2.一次函数的概念
一次函数的概念:如果函数y=k__x__+_b__(k、b为 常数,且k__≠__0__),那么y叫做x的一次函数。
特别地,当b___=__0时,函数y=__k_x_(k__≠__0)叫做正比
例函数。
★理解一次函数概念应注意下面两点: ⑴、解析式中自变量x的次数是_1__次,

一次函数复习PPT课件

一次函数复习PPT课件

基础知识 基础练习
提升、归纳
典例解析
课内练习
课堂小结
反思纠错
正比例函数
定义
函数y=kx(k≠0)叫做正比例函数
k>0
y
k<0
y
图像
o
x
o
x
图像是经过原点(0,0)的一条直线
性质
图像在一、三象限内,y随x的 增大而增大
图像在二、四象限内,y随x的 增大而减小
一次函数
定义
函数y=kx+b(k,b都是常数,且k≠0)叫做一次函数
(1)、函数y=kx+b的图像不通过第四象限,则( )
A.k>0 b>0 B.k>0 b<0
C.k>0 b=0 D.k>0 b≥0
y
解:函数y=kx+b的图像不通过第四象限,
即如图,所以k>0,b>0,
o
x
因此选A这样做对吗?为什么?
(2)已知函数y=kx+b的图像经过点(0,-4)且
与两坐标轴围成的三角形的面积为8,求它的解析式。
在第一轮复习中,我们会发现,有一些错误 是学生的共性。如何让他们在以后的第二轮复习 中不错或少错,是非常值得我们研究的问题,如 果一味把正确的解法抛给他们,尽管暂时学生会 理解它,但时间一长,往往会所剩无几。如果把 学生经常出现的错误适时展现出来,让他们自己 来纠错,这样印象会深刻得多,自然到达更有效 的教学。
教师讲完第二题,接着问学生:①当x取什么值时,y1>y2 ?②当 x____时,y1>0 ?
通过两条直线的位置关系,以及直线与x轴的位置关系来解决问① ②,较好地体现了函数、方程与不等式之间的关系,突出了新课程重 视基础,关注联系与综合的特点。
练一练
(1)一次函数y=3x-4的图像不经过的象限( )

义务教育教科书八年级数学下册第十九章《一次函数复习》课件ppt

义务教育教科书八年级数学下册第十九章《一次函数复习》课件ppt

问题10:
已知x点A(-4,0),B(2,0),若点C在一次函数y 1 x 2 2
的图象上,且△ABC是直角三角形,则满足条件点C
有(
)
A.1个 B.2个 C.3个 D.4个
C
C
x
2C C
A
OB4
y
问题11: 如图,直线AB与y轴,x轴交点分别为A(0,2) B(4,0),以坐标轴上有一点C,使△ACB为等腰三角形
45x 30(6 x) 240
120x
1680
2300
解得xx3641
∵x是整数,∴x 取4,5 ∵k=120>O ∴y 随x的增大而增
∴当x=4时,Y的最小值=2160元
2.(9分)5月12日,我国四川省汶川县等地发生强烈地震,在抗
震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地
需要25台,乙地需要23台;A、B两省获知情况后慷慨相助,分
3.某蓄水池的横断面示意图如右图,分深 水区和浅水区,如果这个注满水的蓄水池 以固定的流量把水全部放出.下面的图象 能大致表示水的深度h和放水t时间之间的
关系的是( A )
h
h
h
h
h
O tO
tO t O
t
A
B
C
D
1.已知y+1与x-2成正比例,当x=3时,y=-3, (1)求y与x的函数关系式; (2)画出这个函数图象; (3)求图象与坐标轴围成的三角形面积; (4)当-1≤x≤4时,求y的取值范围;
v y
v
v
0
x
x O
A B
函数的定义要点:
0
x
C
0
x
D
(1)在一个变化过程中有两个变量x,y

北师大版数学八年级上册复习课件:第四章一次函数

北师大版数学八年级上册复习课件:第四章一次函数

o
x
y
k<0,b<0
o
x
练习:
如图,在同一坐标系中,关于x的一次函数 y = x+ b与 y = b x+1的图象只可能是( C )
(A)
y
(B)
y
ox
ox
y (C)
ox
(D)
y
ox
• 图象辨析
1.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则
在直角坐标系内它的大致图象是( A )
• 函数图像的移动规律: 若把一次函数解析式 写成y=k(x+0)+b,则用下面的口诀“左 右平移在括号,上下平移在末稍,左负右正须 牢记,上正下负错不了”。
1、求下列函数中自变量x的取值范围 (1)y= x(x+3); (2)y= 3
4x 8
(3)y= 2x 1 (4)y= x 1 1 x
7.某商场文具部的某种笔售价25元,练习本每本售价5元。该商 场为了促销制定了两种优惠方案供顾客选择。甲:买一支笔赠送 一本练习本。乙:按购买金额打九折付款。某校欲购这种笔10支, 练习本x(x ≥10)本,如何选择方案购买呢? 解:甲、乙两种方案的实际金额y元与练习本x本之间的关系式是:
y甲=(x-10)××5+25×10=5x+200 (x ≥10)
例:画出Y=3x+3的图象
解:列表得:
y
x 0 -1 y30
.3
描点,连线如图:
.o
x
-1
4.一次函数的性质
函数 解析式
自变 量的 取值 范围
正比 例 y=kx 全体
函数 (k≠0) 实数

中考复习课件一次函数复习课件

中考复习课件一次函数复习课件
总结词
考查基础概念
题目1
若函数$y = kx + b$经过点$(2, -1)$和$( - 3,4)$,求$k$和$b$ 的值。
题目2
已知一次函数$y = kx + b$的 图象经过第一、二、四象限, 求$k$的取值范围。
题目3
若一次函数$y = kx + b$的图 象经过点$(0,2)$,且与坐标轴 围成的三角形面积为4,求函数
中考复习课件一次函 数复习ppt课件
• 一次函数概述 • 一次函数的解析式 • 一次函数的图象与性质 • 一次函数的应用题 • 复习题与答案
目录
01
一次函数概述
定义与性质
总结词:基础概念
详细描述:一次函数是数学中基础且重要的函数类型,其解析式为 y=kx+b,其 中 k 和 b 是常数,k ≠ 0。它具有线性性质,即随着 x 的变化,y 会以固定的斜 率 k 变化。
一次函数图象
总结词:直观表达
详细描述:一次函数的图象是一条直线,其斜率为 k,y 轴上的截距为 b。根据 k 和 b 的不同取值,直线会有不同的位置和 倾斜角度。
一次函数的应用
总结词:实际运用
详细描述:一次函数在实际生活中有广泛的应用,如路程与速度、时间的关系,商品销售与价格的关 系等。掌握一次函数的性质和图象对解决实际问题具有重要意义。
截距式
总结词
截距式是一次函数的一种特殊表示形式,通过与坐标轴的交点来表示函数。
详细描述
截距式为x/a+y/b=1,其中a和b分别是函数与x轴和y轴的截距。通过截距式可 以确定一次函数与坐标轴的交点位置。
03
一次函数的图象与性质
一次函数的图象
一次函数图象是一条直线

一次函数的全章复习课件

一次函数的全章复习课件

例如,速度、加速度和时间的关系,重力 等。
一次函数在工程学中的应用
例如,机械运动、流体力学等。
一次函数在日常生活中的应用
例如,时间与速度的关系、距离与速度的 关系等。
一次函数在数学问题中的应用
一次函数在代数问题中的应用
例如,解一元一次方程、一元一次不等式等。
一次函数在几何问题中的应用
例如,求直线方程、求两点之间的距离等。
解得 k = 3, b = -2。所以解析式 为 y = 3x - 2。
THANKS
感谢观看

对于一次函数,解析式可以用来 表示 $k$ 和 $b$ 的值,进而确
定函数的图像和性质。
通过解析式可以计算出任意自变 量 $x$ 对应的函数值 $y$。
解析式与函数图像的关系
解析式是绘制函数图像的基础。 通过解析式可以确定函数的开口方向、顶点坐标和对称轴等特性。
解析式与函数图像的对应关系是一一对应的,即一个解析式对应一个确定的图像。
y = 3x - 2
答案
解答题
题目
已知一次函数 y = kx + b,当 x = 1 时,y = -2;当 x = -1 时,y = 4。 求 k 和 b 的值。
答案
k = -3, b = 1
选择题解析
01
02
03
04
对于选项A,y = 2x,是一次 函数也是正比例函数,不符合
题意。
对于选项B,y = 3 - 5x,是 一次函数但不是正比例函数,
虽然一次函数在微积分中不是主要研 究对象,但其在导数和积分中的应用 仍不可忽视。
一次函数与三角函数
三角函数可以看作是周期性的一次函 数,两者在图像和性质上有许多相似 之处。

一次函数专题复习ppt课件

一次函数专题复习ppt课件
y=0时
y=kx+b
方程kx+b=0直线 与的y 1k1
x
b1
y k b 交点 x
2
2
2
y=kx+b
y>0时
y<0时
方程 组
y k b 1
x
1
1 的解
y 2
k
2
x
b2
kx+b>0
kx+b<0
已知y=(m-2)x-(m-4)是y关于x的一次函数。 (1)求m的取值范围
(2) 若2<m<4,函数图像经过哪几个象限?
本节课你学会了哪些方法? 学会了哪些知识?
1、(2015•陕西)设正比例函数y=mx的图像经过点A(m, 4),且y随x的增大而减小,则m=() A、2 B、-2 C、4 D、-4 2、(2016•陕西)已知一次函数y=kx+5和y= x+7,假设k>0,
<0,则这两个一次函数图像交点在() A、第一象限 B、第二象限 C、第三象限 D、第四象限
(6) 若此函数图像经过点(2,5),请画出此一次
函数图像,根据图像回答下列问题:
y
① 求出一次函数与两坐标轴的交点;
② 不解方程求出(m-2)x-(m-4)=0时方
程的解;
③ 求不等式(m-2)x-(m-4)>-1的解;
O
x
④ 求出图像与两坐标轴围成的面积。
(7)一次函数y=kx+b与(6)中一次函数交点坐标为(1, y),与y轴交点坐标为(0,4)
5、(2016•陕西)昨天早晨7点,小明乘车从家出发,去西安参加中学生科 技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中, 他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象. 根据下面图象,回答下列问题: (1)求线段AB所表示的函数关系式; (2)已知昨天下午3点时,小明距西安112千米,求他何时到家?

一次函数图象专题复习课件

一次函数图象专题复习课件
函数。
增减性是函数的重要特性,它描 述了函数值随自变量变化的趋势

在实际应用中,了解函数的增减 性有助于我们预测未来的趋势和
结果。
一次函数的截距
一次函数的截距是其与y 轴的交点。对于函数 y=kx+b,其截距为b。
截距是函数的一个重要参 数,它决定了函数与y轴 的交点位置。
通过调整截距,可以改变 函数与y轴的交点,从而 影响整个函数的形态。
பைடு நூலகம் 一次函数的交点
一次函数与其他直线或曲线的交点是 解方程的结果。
寻找一次函数的交点是解决实际问题 的重要步骤,例如在路程、速度和时 间问题中经常需要求解两个一次函数 的交点。
当两个一次函数有交点时,它们的y值 相等,对应的x值即为交点的横坐标。
Part
05
解题技巧与思路分析
一次函数图象的绘制技巧
下移
若函数表达式变为$y = kx + b m$,其中$m > 0$,则图像向下 平移$m$个单位。
左移
若函数表达式变为$y = k(x - n) + b$,其中$n > 0$,则图像向 左平移$n$个单位。
Part
03
一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济活动中的关系,例如成本、收益和利 润之间的关系。
确定函数表达式
首先需要确定一次函数的 1
表达式,包括系数和常数 项。
连线
4
使用平滑的曲线将这些关 键点连接起来,形成一次 函数的图像。
选择坐标系
2
选择适当的坐标系,如直
角坐标系或极坐标系,以
便更好地绘制函数图像。

八年级数学《一次函数-复习课》课件

八年级数学《一次函数-复习课》课件

这小堂 课结
归纳小结 反馈升华
正比例函数与一次函数有何 异同? 一次函数与方程(组)、不 等式之间的关系
一次函数的图象和性质及应用
学习了哪些数学思想方法?
分层作业 自我评价
A组为必做题, B组为选作题.
A组:1.弹簧的长度y(cm)与所挂物体的质量x(kg)关系如右图所示,
则弹簧不挂重物时的长度是
解:∵ y=2x-1;
∴k=2>0; ∴y随x的增大而增大.
∵-1 < 2 ; ∴ y1 < y2 .
一题多解 合作探究
例3.已知,点(-1,y1),(2,y2)在
< 一次函数y=2x-1的图象上,则y1
y2.
解法三 图象法:
y
4
画出函数y=2x-1的图象:
3
x… 0 1… y … -1 1 …
2
问题4:该函数有哪些性质?
B
A
一次函数与正比例函数的图象与性质
一次
函数
y=kx+b
(k≠0,
b≠0)
图象
k,b的 符号 经过象
限 增减性
y
y
y
y
(0,b) ox
ox (0,b)
(0,b) ox
(o 0,bx)
k >0 k >0 k< 0 k< 0 b >0 b< 0 b >0 b< 0
一、 二 、三一、三、四 .一、二、四 二、三、四
问题1:分别求出y1,y2关于x的函数关系式;
解决问题 巩固知识
活动一:自主复习,板书展演 问题1:分别求出y1,y2关于x的函数关系式;
甲公司:y1=30x(x≥0) 乙公司:y2=15x+80(x≥0)

10、一次函数PPT课件

10、一次函数PPT课件
第一部分 教材同步复习
10、一次函数
第一部分 教材同步复习
1
10、一次函数
知识要点 ·归纳
►知识点一 一次函数的图象与性质
1.一次函数及正比例函数的概念 一般地,如果y=kx+b(k,b是①___常__数__,k≠0),那么,y叫做x的一次函数,特 别地,当②____b_=__0_时,一次函数y=kx+b就变为y=kx(k为常数,k≠0),这时,y叫 做x的正比例函数.
202X权威 · 预测
第一部分 教材同步复习
15
【解答】 (1)∵点 A(2,0),AB= 13,∴BO= AB2-AO2= 9=3,∴点 B 的 坐标为(0,3);
(2)∵△ABC 的面积为 4,∴12×BC×AO=4,∴12×BC×2=4,即 BC=4.∵BO =3,∴CO=4-3=1,∴C(0,-1).
第一部分 教材同步复习
13
1.(202X玉林)关于直线l:y=kx+k(k≠0),下列说法不正确的是
( D) A.点(0,k)在l上
B.l经过定点(-1,0)
C.当k>0时,y随x的增大而增大
D.l经过第一、二、三象限
【考查内容】一次函数的性质.
【解析】A.当x=0时,y=k,即点(0,k)在l上,此选项正确;B.当x=-1
(3)一次函数图象y=kx+b与x轴的交点是⑥__(_-_bk_,__0_)__ ,与y轴的交点是⑦ _(0_,__b_)___.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
3
3.一次函数的性质 一次函数
k、b 符号 b>0
k>0 b<0
中考新突破 · 数学(江西)

一次函数中考总复习原创课件

一次函数中考总复习原创课件

【考点3】求直线与坐标轴的交点,分类思想
【例3】过点A(2,0)的两条直线l1,l2分别交y轴于 点B,C,其中点B在原点上方,已知AB= (1)求点B的坐标; (2)若△ABC的面积为4,求直线l2的解析式.
解:(1)(3,0) (2)
【变式3】直线 与x轴、y轴分别交于A,B两点,C是OB的中点,D是直线AB上一动点,若BD=BC,求△OAD的面积.
2.直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是( ) A.x=2 B.x=0 C.x=-1 D. x=-3
4.如图,一次函数y=-x-2与y=2x+m的图象 相交于点P(n,-4),则关于x的不等 式2x+m>-x-2的解集为______________.
解:(1)(4,3) (2) 28
第三章 函数第11课 一次函数
1.一次函数y=kx+b(k≠0)的图象是经过(0,______)和(______,0)的一条直线,特别地,当b=0时,一次函数y=kx也叫正比例函数,它的图象是经过______的一条直线.

2.一次函数y=kx+b(k≠0)的图象、性质如下表:
b
原点
经典例题
【例1】已知一次函数的图象经过(0,6),(-1,4)两点.(1)求一次函数的解析式;(2)当-2<x<1时,求y的取值范围;(3)当-3≤x≤2时,求 y的最大值与最小值.
【考点1】待定系数法,一次函数的性质
解:(1)y=2x+6 (2)2<y<8 (3)最大值为10,最小值为0.
【变式1】已知一次函数的图象与正比例函数y=3x 的图象平行且经过点(1,-3). (1)求一次函数的解析式; (2)若这个一次函数的图象与两坐标轴分别交于A,B 两点,求线段AB的长度.

一次函数复习 课件(共30张PPT)

一次函数复习 课件(共30张PPT)

当k<0时,图象过二、四象限;y随x的增大而减少。
y=kx
5、有下列函数:①y=2x+1, ②y=-3x+4,③y=0.5x,④y=x-6; 其中过原点的直线是___③_____; 函数y随x的增大而增大的是___①___④____; 函数y随x的增大而减小的是____②_______; 图象在第一、二、三象限的是___①_____ 。
x 50 y 250
60 70 80 … 200 150 100 …
《一次函数》复习
三、正比例函数
1、形如 y=kx (k是常数,k≠0)的函数,叫做正比例函数, 其中k叫比例函数。 2、(1)正比例函数y=kx( k是常数,k≠0)的图象是一条经 过 原点的直线,也称它为 直线y=kx ;
(2)画y=kx的图象时,一般选 原 点和_(__1_,__k)
往往需要复杂的计算才能得出。
《一次函数》复习 巩固练习
1、甲车速度为20米/秒,乙车速度为25米/ 秒.现甲车在乙车前面500米,设x秒后两车之间的 距离为y米.求y随x(0≤x≤100)变化的函数解析 式,并画出函数图象.
解:由题意可知: y=500-5x 0≤x≤100 用描点法画图:
x … 10 20 30 40 y … 450 400 350 300
9、若函数y=(2m+6)x2+(1-m)x是正比例函数,则其解
析式是 y=4x ,该图象经过第一、三象限,y随x
的增大而 增大 ,当x1<x2时,则y1与y2的关
是 y1<y2

解:∵函数y=(2m+6)x2+(1-m)x是正比例函数
∴2m+6=0,1-m≠0 ∴m=-3
y

一次函数总复习整理ppt课件

一次函数总复习整理ppt课件
技能要求:能从函数图象中读取信息,完成问题。
图象信息(形)
图象上点的坐标特点(数)
对应关系和变化规律
.
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
函数的图象
对于一个函数,若把自变量与函数的每对对应值分别作 为点的横、纵坐标,那么坐标平面内由这些点组成的图 形,就是这个函数的图象。从这个图象中可以方便地看 出当自变量增大时,函数值怎样变化.即函数的增减性。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
变量与函数
在事物运动变化过程中,变化的量叫变量。不变的量叫 常量。变量一般表示为字母,但字母不一定是变量。
数值不断 变化的量
变量
数值固定 不变的量
常量
习题:一个大小不断变化的圆的半径为r,它的面积 S=πr2,其中变量有______,常量有_____.
直线y=kx+b1可以看作y=kx+b2向上(b1>b2)或向下 (b1<b2)平移|b1-b2|个单位长度得到的.
习题:直线y=-2x向上平移3个单位长度可以得到直线 ________;向下平移2个单位长度可得直线________。
直线y=-2x-3向上平移3个单位长度可得到直线________; 向下平移4个单位长度可得直线________。
y =k1 x +b1
y
6
4
y =k2 x +b2
-5
2
O -2
.
5
x
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去

中考数学专题《一次函数》复习课件(共20张PPT)

中考数学专题《一次函数》复习课件(共20张PPT)

2D
S△COD=
1 2
OC
OD
C
x
O1
122 2 23 3
考点二:确定一次函数解析式及其相关问题
例2:已知:一次函数图象经过A(1,5), B(-2,-4)两点, 图象与x轴交于点C,与 y轴交于点D.
(5)若直线l:y= x-4与此一次函数图象相交 于点P,试求点P的坐标
【解析】:(5)由题意可得:
例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为常数:
(2)当m为何值时,y随x的增大而减小?
【解析】:
∵y随x的增大而减小
2
∴3m-2<0
∴m<
本题考查一次函数的性质,即:在y3=kx+b(k≠0)中,
当k>0时,y随x的增大而增大;
当k<0时,y随x的增大而减小;
考点一:一次函数定义、图象、性质的相关知识
例1:已知直线解析式为y=(3m-2)x+(1-2m) , 其中m为常数:
(3)当m为何值时,图象经过第二、三、四象 限?
【解析】:∵图象经过第二、、四象限∴ 3m 2 0 1 2m 0
∴ 1m 2
2
3
本题考查一次函数的图象及其性质
例题分析
考点一:一次函数定义、图象、性质的相关知识 例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为
④直线AB上有一点C,
y
且点C的横坐标为1, 求点C的坐标及S△BOC的面积
B
C
解:在y=-2x+4中,
当x=1时,y=2
∴C:(1,2)
S△BOC= 1 OB×|1|=2
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数。
思考
y=k xn +b为一次函数的条件是什么?
n 1 k 0
练习
1.下列函数中,哪些是一次函数?
(1) y 2x
(2) y
1 (3) y x 1(4) y x
x2
答:(1)是 (2)不是 (3)是 (4)不是0
2.函数y=(m +2)x+( m2 -4)为正比例
O1
x
3.一次函数与二元一次方程组:zx``x```k
解方程组
a1

a2
x x

b1 y b2 y
c1 c2从“数”的角度看
自变量(x)为何值 时两个函数的值相 等.并求出这个函数值
解方程组 a1 x b1 y c1 从“形”的角度看 a2 x b2 y c2
(2)X取一个确定的值,y有唯一确定的值和它对应
二、函数的三种表示方式与特点
正方形的面积S 与边长 x的函数关系为: S=x2 (x>0)
(1)解析式法 (2)列表法 (3)图象法
练习
1、一辆客车从杭州出发开往上海,设客车出 发t小时后与上海的距离为s千米,下列图象
能大致反映s与t之间的函数关系的是( A)
则b=____-_2_____。
3、根据如图所示的条件,求直线的表达式。
y=2x
y 2x2 3
九、一次函数的应用
1.已知y-1与x成正比例,且x=2时, y=5.
(1)、写出y与x之间的函数关系式; (2)、当x=-1时,求y的值; (3)、当y=0时,求x的值。
九、一次函数的应用
2. 某农户种植一种经济作物,总用水量y(米3) 与种植时间x(天)之间的函数关系式如图. (1)第20天的总用水量为多少米? (2)求y与x之间的函数关系式. (3)种植时间为多少天时,总用水量达到7000
解:(1)440
(2)由图可知货车的速度为80÷2=40(千米/小时),
货车到达A地一共需要2+360÷40=11(小时),
设y2=kx+b,把(2,0),(11,360)代入得 解得 k 40
2k b 0 11k b 360
b 80
所以y2=40x-80
(3)设y1=mx+n,把(6,0),(0,360)代入得 解得 m 60
(1)m n 1 x 1
(2) y 3 x2
(3)h
1 k k 1
k 1且k 1(4)y
3 x5
x 2
x5
被开方数(式)为非负数
分式的分母不为0
与实际问题有关系的,应使实际问题有 意义
四、画函数的图象
1、列表:
s = x2 (x>0)
x 0 0.5 1 1.5 2 2.5 3
S = (n-2)·1800
1800与2是常量; S与n是变量.
一、函数的概念:
在一个变化过程中,如果有两个变量
x与y,并且对于x的每一个确定的值,y都
有唯 一确定的值与其对应,那么我们就说x
是自变量 ,y是x的函数。
思考:下面2个图形中,哪个图象是
y关于x的函数.
图1
图2
函数的定义要点:
(1)在一个变化过程中有两个变量x,y
(2014·新疆)如图1所示,在A,B两地之间有汽车站C站, 客车由A地驶往C站,货车由B地驶往A地.两车同时出发, 匀速行驶.图2是客车、货车离C站的路程y1 , y2(千米)与 行驶时间x(小时)之间的函数关系图象.
(1)填空:A,B两地相距_____千米; (2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式; (3)客、货两车何时相遇?
A
B
C
D
2.小明骑自行车上学,开始以正常速度匀速 行驶,但行至中途自行车出了故障,只好停下 来修车。车修好后,因怕耽误上课,他比修车 前加快了骑车速度匀速行驶。下面是行驶路程 s(米)关于时间t(分)的函数图像,那么符合这个
同学行驶情况的图像大致是 ( C )
A
B
C
D
三、自变量的取值范围
求出下使 SPAB 3 ?
若存在,请求出P点坐标,若不存在,请说明理由.
y A 2
P O1
P(1,0)或(7,0)
B
P
4
7x
十、一次函数与方程(组)、不等式的关系
1.一次函数与一元一次方程:
求ax+b=0(a,b是
x为何值时函
常数,a≠0)的 从“数”的角度看 数y= ax+b的
a≠0) .
于0.
解不等式ax+b > 0(a,b是常数, a≠0) .
求直线y= ax+b在 x 从“形”的角度看 轴上方的部(射
线)所对应的的横 坐标的取值范围.
2.如图,已知函数y=x+b和y=ax+3 的图象交于P点, 则x+b>ax+3不等式 的解集为 X>1 .
y y=ax+3
P
y=x+b
确定两直线交点的 坐标.
3.直线l1: y1 k1 x b 与直线l2: y2 k2 x 在同 一平面直角坐标系中,图象如图所示,则关于x
的不等式 k2 x k1x b 的解集为 x<-2 ,
方程组
kk12
x
b
y2
y1,
的解
x2
为 y3
.
十、中考链接
一次函数复习课
写出下列各问题中的关系式,并指出其中的常量与变量
(1)圆的周长C 与半径 r 的关系式;
C = 2πr 2π是常量; C 与 r是变量
(2)火车以60千米/时的速度行驶,它 驶过的路程
s (千米) 和所用时间 t (时)的关系式;
S = 60t 60是常量; S与t是变量.
(3) n 边形的内角和S 与边数 n 的关系式.
函数,则m为何值 m =2
六、一次函数与正比例函数的图象与性质
一次函数y=kx+b的图象是一条直线.
y
(0,b)
( b ,0)O
x
k
当b=0时,正比例函数y=kx的 图象是过原点的一条直线.
如何求直线 y=kx+b与坐标轴的交点坐标?
与y轴的交点为 (0 , b ) 与x轴的交点为 (-b/k , 0 )
米3?
注意点:
y(米3)
(1)从函数图象中获取信息 4000
(2)根据信息求函数解析式 1000
O
20 30 x (天)
九、一次函数的应用
3.如图,直线AB与y轴,x轴交点分别为 A(0,2) ,B(4,0)
问题1:求直线AB的解析式
y A
及△AOB的面积.
2
1
y x2
O
2
B
4
x
SAOB 4
b>0 图象过一、二、三象限 k>0 b=0 图象过一、三象限和原点
b<0 图象过一、三、四象限
b>0 图象过一、二 、四象限 k<0 b=0 图象过二、四象限和原点
b<0 图象过二、三 、四象限
. b
. b . .b b . b . b
一次函数的增减性
y
y
o
x
o
x
对于一次函数y=k x + b (k ≠ 0),有: ⑴ 当k>0时,y随x的增大而___增__大____。 ⑵ 当k<0时,y随x的增大而___减__小____。
七、正比例函数与一次函数图象之间的关系
一次函数y=kx+b的图象是一条直 线,它可以看作是由直线y=kx平移|b| 个单位长度而得到.
当b>0时,向上平移; 当b<0时,向下平移.
y
O
x
怎样画一次函数y=kx+b的图象?
1、两点法
2、平移法
y=x+1
八、用待定系数法求函数解析式
先设出函数解析式,再根据 条件确定解析式中未知的系数,
最大利润为5750元.
知识结构图:
变化的 建立数学模型 函数
世界
一次函数
再认识
应用
一元一次方程
一元一次不等式 一元一次方程组
图象 性质
s
0 0.25 1 2.25 4
6.25 9
2、描点: 3、连线:
s
=
2 x
(x>0)
五、正比例函数与一次函数的概念:
一次函数的概念:一般地,形如
y=_k__x_+__b__(k、b为常数,k__≠_0___)的函
数,叫做一次函数。
当b_=__0__时,y=__k_x_(k≠__0__)叫做正比例
解.
值为0.
求ax+b=0(a, b是
求直线y= ax+b
常数,a≠0)的 从“形”的角度看 与 x 轴交点的横
解.
坐标.
1.已知mx+n=0的解是x=-2,则直线 y=mx+n与x轴的交点坐标是_(__-_2_,0_)__
2.一次函数与一元一次不等式:
解不等式ax+b>
x为何值时函数
0(a,b是常数, 从“数”的角度看 y= ax+b的值大
品牌
A B
进价/(元/件) 售价/(元/件)
50
80
40
65
(1)求W关于x的函数关系式; (2)如果购进两种T恤的总费用不超过9500元, 那么超市如何进货才能获得最大利润?并求出最 大利润.(提示:利润=售价-进价)
解:(1)设购进A种T恤x件,则购进B种T恤(200-x)件, 由题意得: w=(80-50)x+(65-40)(200-x) w=5x+5000
相关文档
最新文档