一次函数复习题 课件

合集下载

数学八年级上《一次函数》复习课件

数学八年级上《一次函数》复习课件

函数平移
例1、将直线 y x 2 向下平移3个单 位后得到的直线是 。 直线平移:
y kx
向上平移b个单位 y kx b 向下平移b个单位 y kx b
配套练习
函数平移
2x 2x 4 1、直线 y 是由 y 3 3
向 平移 个单位得到的。
配套练习
1 2、将直线 y x 2 平移后经过点 2 (-4,-1)。
-1 O
1
2
3
4
5
6
7
8
9
10 11 12
t /分
5、10千米龙舟比赛中,红队由于某些原因,晚 出发了。出发时蓝队已经划出了 500米,如图所示, ɭ和m分别表示蓝队和红队的行驶路程y(千米)和 时间x(分)之间的关系。 是哪个队获胜了?
y(千米) 8 6 4 2 0 5 10 15 20 25 x(分)
平行于 y = k x ,可由它平移而得
当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小.
应 用
(1). 待定系数法; (2).实际问题的应用 (3). 解决方程,不等式,方程组的有关问题
二、范例。
例1 填空题: ②

y x4
, ④ y 4 x 3 。其中过原点的直
一 次 函 数 y=k x + b(k,b为常数,且k ≠0) k>0 y
k>0,b>0
k<0 y x
k<0,b>0
图 象
y o
y
o x
k>0,b<0
o
x
k<0,b<0
x
o
y o

一次函数复习课课件ppt

一次函数复习课课件ppt

谢谢!
x
当k<0时,图象过二、四象限;
y随x的增大而减少。
15
直线经过一、二、四象限,则
K
0, b
0.


此时,直线的图象只能是( )
D
2021/1/4
16
与y轴的交点为 (0 , b ) 与x轴的交点为 (- , 0 )
1.若一次函数的图象过点A(1,-1),则。 -2
2 .根据如图所示的条件,求直线的表达式。
建立数学模型
函数
应用 2021/1/4
一次函数 再认识
一元一次方程 一元一次不等式 一元一次方程组
图象 性质
8
八年级 数学 一次函数的概念:
第十一章 函数
一般地,形如(为常数,且k≠0) 的函数叫做一次函数.
当b =0 时 即为 , 所以正比例函数,是一次函数的特例.
2021/1/4
9
考点题型 1:一次函数的概念 (1)考纲要求:理解一次函数、正比例函数的意义 (2)考点:一次函数、正比例函数解析式的特征
2021/1/4
3
正方形的面积S 随边长 x 的变化
2
(x>0)
(1)解析法 (2)列表法 (3)围
第十一章 函数
求出下列函数中自变量的取值范围?
分式的分母不为0
被开方数(式)为非负数
与实际问题有关系的,应使实际问题有意义
(3) h 1 k k 1
29
2021/1/4
y
0
A
B
x 19
4.一次函数14与正比例函数2x的图象经过点(2,-1), (1)分别求出这两个函数的表达式; (2)求这两个函数的图象与x轴围成的三角形的面积。

2024年中考数学一轮复习考点精讲课件—一次函数的图象与性质

2024年中考数学一轮复习考点精讲课件—一次函数的图象与性质

的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.
4)一次函数与正比例函数有着共同的性质:
①当k>0时,y的值随x值的增大而增大;②当k<0时,y的值随x值的增大而减小.
考点二 一次函数的图象与性质
1. 正比例函数y= kx中,|k|越大,直线y= kx越靠近y轴;反之,|y|越小,直线y= kx越靠近x轴.
C.3
D.−3或3
∴9 = 2 ,∴ = ±3,又∵正比例函数 = 的图象经过第二、
∴ < 0,∴ = −3,故选:B.
【对点训练1】(2023·浙江杭州·统考一模)已知 − 与 − 1成正比例,且当 = −2时, = 3.若关
于的函数图象经过二、三、四象限,则m的取值范围为(
用待定系数法求一次函数表达式的一般步骤:
1)设出函数的一般形式y=kx(k≠0)或y=kx+b(k≠0);
2)根据已知条件(自变量与函数的对应值)代入表达式得到关于待定系数的方程或方程组;
3)解方程或方程组求出k,b的值;
4)将所求得的k,b的值代入到函数的一般形式中,从而得到一次函数解析式.
考点二 一次函数的图象与性质
两点即可,
图象确定
b
k
1)画一次函数的图象,只需过图象上两点作直线即可,一般取(0,b),(− ,0)两点;
2)画正比例函数的图象,只要取一个不同于原点的点即可.
考点二 一次函数的图象与性质
三、k,b的符号与直线y=kx+b(k≠0)的关系


在直线y=kx+b(k≠0)中,令y=0,则x=− ,即直线y=kx+b与x轴交于(− ,0)
综上所述,0 > 1 > 2

一次函数复习课件ppt课件精选全文

一次函数复习课件ppt课件精选全文

若它的图象经过原点,则 m=
;
若点(0 ,3) 在它的图象上,则m=
;
6.下列哪个图像是一次函数y=-3x+5 和y=2x-4的大致图像B( )
(A)
(B)
(C)
(D)
小试牛刀
7、已知函数 y = kx的图象在二、四象限,
那么函数y = kx-k的图象可能是B(

y
y
0
x
(A ) y
0
x
y (B)
2.一次函数的图像; 3.一次函数的性质; 4. 一次函数的应用
(1)待定系数法;
(2)利用一次函数解决实际问题。 5. 一次函数的与方程、方程组及不 等式的关系


• 1.直线y=6x-12与x轴的交点坐标是__________,与y轴
的交点坐标是__________.
• 2.已知一次函数,过点(1,-3)且使随的增大而减小.则 一次函数是__________.
2.一次函数的图象
a. 正比例函数y=kx(k≠0)的图象是过点(0,__0___), (_1_,__k__)的_一__条__直__线__。 (__bk__,b0.一)的次_一函__条数__直y_=_线k_x_+_b。(k≠0)的图象是过点(0,b ___),
c.一次函数y=kx+b(k≠0)的图象与k,b符号的关 系:
2.一次函数的概念
一次函数的概念:如果函数y=k__x__+_b__(k、b为 常数,且k__≠__0__),那么y叫做x的一次函数。
特别地,当b___=__0时,函数y=__k_x_(k__≠__0)叫做正比
例函数。
★理解一次函数概念应注意下面两点: ⑴、解析式中自变量x的次数是_1__次,

一次函数复习PPT课件

一次函数复习PPT课件

基础知识 基础练习
提升、归纳
典例解析
课内练习
课堂小结
反思纠错
正比例函数
定义
函数y=kx(k≠0)叫做正比例函数
k>0
y
k<0
y
图像
o
x
o
x
图像是经过原点(0,0)的一条直线
性质
图像在一、三象限内,y随x的 增大而增大
图像在二、四象限内,y随x的 增大而减小
一次函数
定义
函数y=kx+b(k,b都是常数,且k≠0)叫做一次函数
(1)、函数y=kx+b的图像不通过第四象限,则( )
A.k>0 b>0 B.k>0 b<0
C.k>0 b=0 D.k>0 b≥0
y
解:函数y=kx+b的图像不通过第四象限,
即如图,所以k>0,b>0,
o
x
因此选A这样做对吗?为什么?
(2)已知函数y=kx+b的图像经过点(0,-4)且
与两坐标轴围成的三角形的面积为8,求它的解析式。
在第一轮复习中,我们会发现,有一些错误 是学生的共性。如何让他们在以后的第二轮复习 中不错或少错,是非常值得我们研究的问题,如 果一味把正确的解法抛给他们,尽管暂时学生会 理解它,但时间一长,往往会所剩无几。如果把 学生经常出现的错误适时展现出来,让他们自己 来纠错,这样印象会深刻得多,自然到达更有效 的教学。
教师讲完第二题,接着问学生:①当x取什么值时,y1>y2 ?②当 x____时,y1>0 ?
通过两条直线的位置关系,以及直线与x轴的位置关系来解决问① ②,较好地体现了函数、方程与不等式之间的关系,突出了新课程重 视基础,关注联系与综合的特点。
练一练
(1)一次函数y=3x-4的图像不经过的象限( )

义务教育教科书八年级数学下册第十九章《一次函数复习》课件ppt

义务教育教科书八年级数学下册第十九章《一次函数复习》课件ppt

问题10:
已知x点A(-4,0),B(2,0),若点C在一次函数y 1 x 2 2
的图象上,且△ABC是直角三角形,则满足条件点C
有(
)
A.1个 B.2个 C.3个 D.4个
C
C
x
2C C
A
OB4
y
问题11: 如图,直线AB与y轴,x轴交点分别为A(0,2) B(4,0),以坐标轴上有一点C,使△ACB为等腰三角形
45x 30(6 x) 240
120x
1680
2300
解得xx3641
∵x是整数,∴x 取4,5 ∵k=120>O ∴y 随x的增大而增
∴当x=4时,Y的最小值=2160元
2.(9分)5月12日,我国四川省汶川县等地发生强烈地震,在抗
震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地
需要25台,乙地需要23台;A、B两省获知情况后慷慨相助,分
3.某蓄水池的横断面示意图如右图,分深 水区和浅水区,如果这个注满水的蓄水池 以固定的流量把水全部放出.下面的图象 能大致表示水的深度h和放水t时间之间的
关系的是( A )
h
h
h
h
h
O tO
tO t O
t
A
B
C
D
1.已知y+1与x-2成正比例,当x=3时,y=-3, (1)求y与x的函数关系式; (2)画出这个函数图象; (3)求图象与坐标轴围成的三角形面积; (4)当-1≤x≤4时,求y的取值范围;
v y
v
v
0
x
x O
A B
函数的定义要点:
0
x
C
0
x
D
(1)在一个变化过程中有两个变量x,y

北师大版数学八年级上册复习课件:第四章一次函数

北师大版数学八年级上册复习课件:第四章一次函数

o
x
y
k<0,b<0
o
x
练习:
如图,在同一坐标系中,关于x的一次函数 y = x+ b与 y = b x+1的图象只可能是( C )
(A)
y
(B)
y
ox
ox
y (C)
ox
(D)
y
ox
• 图象辨析
1.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则
在直角坐标系内它的大致图象是( A )
• 函数图像的移动规律: 若把一次函数解析式 写成y=k(x+0)+b,则用下面的口诀“左 右平移在括号,上下平移在末稍,左负右正须 牢记,上正下负错不了”。
1、求下列函数中自变量x的取值范围 (1)y= x(x+3); (2)y= 3
4x 8
(3)y= 2x 1 (4)y= x 1 1 x
7.某商场文具部的某种笔售价25元,练习本每本售价5元。该商 场为了促销制定了两种优惠方案供顾客选择。甲:买一支笔赠送 一本练习本。乙:按购买金额打九折付款。某校欲购这种笔10支, 练习本x(x ≥10)本,如何选择方案购买呢? 解:甲、乙两种方案的实际金额y元与练习本x本之间的关系式是:
y甲=(x-10)××5+25×10=5x+200 (x ≥10)
例:画出Y=3x+3的图象
解:列表得:
y
x 0 -1 y30
.3
描点,连线如图:
.o
x
-1
4.一次函数的性质
函数 解析式
自变 量的 取值 范围
正比 例 y=kx 全体
函数 (k≠0) 实数

中考复习课件一次函数复习课件

中考复习课件一次函数复习课件
总结词
考查基础概念
题目1
若函数$y = kx + b$经过点$(2, -1)$和$( - 3,4)$,求$k$和$b$ 的值。
题目2
已知一次函数$y = kx + b$的 图象经过第一、二、四象限, 求$k$的取值范围。
题目3
若一次函数$y = kx + b$的图 象经过点$(0,2)$,且与坐标轴 围成的三角形面积为4,求函数
中考复习课件一次函 数复习ppt课件
• 一次函数概述 • 一次函数的解析式 • 一次函数的图象与性质 • 一次函数的应用题 • 复习题与答案
目录
01
一次函数概述
定义与性质
总结词:基础概念
详细描述:一次函数是数学中基础且重要的函数类型,其解析式为 y=kx+b,其 中 k 和 b 是常数,k ≠ 0。它具有线性性质,即随着 x 的变化,y 会以固定的斜 率 k 变化。
一次函数图象
总结词:直观表达
详细描述:一次函数的图象是一条直线,其斜率为 k,y 轴上的截距为 b。根据 k 和 b 的不同取值,直线会有不同的位置和 倾斜角度。
一次函数的应用
总结词:实际运用
详细描述:一次函数在实际生活中有广泛的应用,如路程与速度、时间的关系,商品销售与价格的关 系等。掌握一次函数的性质和图象对解决实际问题具有重要意义。
截距式
总结词
截距式是一次函数的一种特殊表示形式,通过与坐标轴的交点来表示函数。
详细描述
截距式为x/a+y/b=1,其中a和b分别是函数与x轴和y轴的截距。通过截距式可 以确定一次函数与坐标轴的交点位置。
03
一次函数的图象与性质
一次函数的图象
一次函数图象是一条直线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数。
思考
y=k xn +b为一次函数的条件是什么?
n 1 k 0
练习
1.下列函数中,哪些是一次函数?
(1) y 2x
(2) y
1 (3) y x 1(4) y x
x2
答:(1)是 (2)不是 (3)是 (4)不是0
2.函数y=(m +2)x+( m2 -4)为正比例
O1
x
3.一次函数与二元一次方程组:zx``x```k
解方程组
a1

a2
x x

b1 y b2 y
c1 c2从“数”的角度看
自变量(x)为何值 时两个函数的值相 等.并求出这个函数值
解方程组 a1 x b1 y c1 从“形”的角度看 a2 x b2 y c2
(2)X取一个确定的值,y有唯一确定的值和它对应
二、函数的三种表示方式与特点
正方形的面积S 与边长 x的函数关系为: S=x2 (x>0)
(1)解析式法 (2)列表法 (3)图象法
练习
1、一辆客车从杭州出发开往上海,设客车出 发t小时后与上海的距离为s千米,下列图象
能大致反映s与t之间的函数关系的是( A)
则b=____-_2_____。
3、根据如图所示的条件,求直线的表达式。
y=2x
y 2x2 3
九、一次函数的应用
1.已知y-1与x成正比例,且x=2时, y=5.
(1)、写出y与x之间的函数关系式; (2)、当x=-1时,求y的值; (3)、当y=0时,求x的值。
九、一次函数的应用
2. 某农户种植一种经济作物,总用水量y(米3) 与种植时间x(天)之间的函数关系式如图. (1)第20天的总用水量为多少米? (2)求y与x之间的函数关系式. (3)种植时间为多少天时,总用水量达到7000
解:(1)440
(2)由图可知货车的速度为80÷2=40(千米/小时),
货车到达A地一共需要2+360÷40=11(小时),
设y2=kx+b,把(2,0),(11,360)代入得 解得 k 40
2k b 0 11k b 360
b 80
所以y2=40x-80
(3)设y1=mx+n,把(6,0),(0,360)代入得 解得 m 60
(1)m n 1 x 1
(2) y 3 x2
(3)h
1 k k 1
k 1且k 1(4)y
3 x5
x 2
x5
被开方数(式)为非负数
分式的分母不为0
与实际问题有关系的,应使实际问题有 意义
四、画函数的图象
1、列表:
s = x2 (x>0)
x 0 0.5 1 1.5 2 2.5 3
S = (n-2)·1800
1800与2是常量; S与n是变量.
一、函数的概念:
在一个变化过程中,如果有两个变量
x与y,并且对于x的每一个确定的值,y都
有唯 一确定的值与其对应,那么我们就说x
是自变量 ,y是x的函数。
思考:下面2个图形中,哪个图象是
y关于x的函数.
图1
图2
函数的定义要点:
(1)在一个变化过程中有两个变量x,y
(2014·新疆)如图1所示,在A,B两地之间有汽车站C站, 客车由A地驶往C站,货车由B地驶往A地.两车同时出发, 匀速行驶.图2是客车、货车离C站的路程y1 , y2(千米)与 行驶时间x(小时)之间的函数关系图象.
(1)填空:A,B两地相距_____千米; (2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式; (3)客、货两车何时相遇?
A
B
C
D
2.小明骑自行车上学,开始以正常速度匀速 行驶,但行至中途自行车出了故障,只好停下 来修车。车修好后,因怕耽误上课,他比修车 前加快了骑车速度匀速行驶。下面是行驶路程 s(米)关于时间t(分)的函数图像,那么符合这个
同学行驶情况的图像大致是 ( C )
A
B
C
D
三、自变量的取值范围
求出下使 SPAB 3 ?
若存在,请求出P点坐标,若不存在,请说明理由.
y A 2
P O1
P(1,0)或(7,0)
B
P
4
7x
十、一次函数与方程(组)、不等式的关系
1.一次函数与一元一次方程:
求ax+b=0(a,b是
x为何值时函
常数,a≠0)的 从“数”的角度看 数y= ax+b的
a≠0) .
于0.
解不等式ax+b > 0(a,b是常数, a≠0) .
求直线y= ax+b在 x 从“形”的角度看 轴上方的部(射
线)所对应的的横 坐标的取值范围.
2.如图,已知函数y=x+b和y=ax+3 的图象交于P点, 则x+b>ax+3不等式 的解集为 X>1 .
y y=ax+3
P
y=x+b
确定两直线交点的 坐标.
3.直线l1: y1 k1 x b 与直线l2: y2 k2 x 在同 一平面直角坐标系中,图象如图所示,则关于x
的不等式 k2 x k1x b 的解集为 x<-2 ,
方程组
kk12
x
b
y2
y1,
的解
x2
为 y3
.
十、中考链接
一次函数复习课
写出下列各问题中的关系式,并指出其中的常量与变量
(1)圆的周长C 与半径 r 的关系式;
C = 2πr 2π是常量; C 与 r是变量
(2)火车以60千米/时的速度行驶,它 驶过的路程
s (千米) 和所用时间 t (时)的关系式;
S = 60t 60是常量; S与t是变量.
(3) n 边形的内角和S 与边数 n 的关系式.
函数,则m为何值 m =2
六、一次函数与正比例函数的图象与性质
一次函数y=kx+b的图象是一条直线.
y
(0,b)
( b ,0)O
x
k
当b=0时,正比例函数y=kx的 图象是过原点的一条直线.
如何求直线 y=kx+b与坐标轴的交点坐标?
与y轴的交点为 (0 , b ) 与x轴的交点为 (-b/k , 0 )
米3?
注意点:
y(米3)
(1)从函数图象中获取信息 4000
(2)根据信息求函数解析式 1000
O
20 30 x (天)
九、一次函数的应用
3.如图,直线AB与y轴,x轴交点分别为 A(0,2) ,B(4,0)
问题1:求直线AB的解析式
y A
及△AOB的面积.
2
1
y x2
O
2
B
4
x
SAOB 4
b>0 图象过一、二、三象限 k>0 b=0 图象过一、三象限和原点
b<0 图象过一、三、四象限
b>0 图象过一、二 、四象限 k<0 b=0 图象过二、四象限和原点
b<0 图象过二、三 、四象限
. b
. b . .b b . b . b
一次函数的增减性
y
y
o
x
o
x
对于一次函数y=k x + b (k ≠ 0),有: ⑴ 当k>0时,y随x的增大而___增__大____。 ⑵ 当k<0时,y随x的增大而___减__小____。
七、正比例函数与一次函数图象之间的关系
一次函数y=kx+b的图象是一条直 线,它可以看作是由直线y=kx平移|b| 个单位长度而得到.
当b>0时,向上平移; 当b<0时,向下平移.
y
O
x
怎样画一次函数y=kx+b的图象?
1、两点法
2、平移法
y=x+1
八、用待定系数法求函数解析式
先设出函数解析式,再根据 条件确定解析式中未知的系数,
最大利润为5750元.
知识结构图:
变化的 建立数学模型 函数
世界
一次函数
再认识
应用
一元一次方程
一元一次不等式 一元一次方程组
图象 性质
s
0 0.25 1 2.25 4
6.25 9
2、描点: 3、连线:
s
=
2 x
(x>0)
五、正比例函数与一次函数的概念:
一次函数的概念:一般地,形如
y=_k__x_+__b__(k、b为常数,k__≠_0___)的函
数,叫做一次函数。
当b_=__0__时,y=__k_x_(k≠__0__)叫做正比例
解.
值为0.
求ax+b=0(a, b是
求直线y= ax+b
常数,a≠0)的 从“形”的角度看 与 x 轴交点的横
解.
坐标.
1.已知mx+n=0的解是x=-2,则直线 y=mx+n与x轴的交点坐标是_(__-_2_,0_)__
2.一次函数与一元一次不等式:
解不等式ax+b>
x为何值时函数
0(a,b是常数, 从“数”的角度看 y= ax+b的值大
品牌
A B
进价/(元/件) 售价/(元/件)
50
80
40
65
(1)求W关于x的函数关系式; (2)如果购进两种T恤的总费用不超过9500元, 那么超市如何进货才能获得最大利润?并求出最 大利润.(提示:利润=售价-进价)
解:(1)设购进A种T恤x件,则购进B种T恤(200-x)件, 由题意得: w=(80-50)x+(65-40)(200-x) w=5x+5000
相关文档
最新文档