色谱分析基础(中)
第十二章色谱分析基础
1. 气相色谱分离过程ቤተ መጻሕፍቲ ባይዱ
当试样由载气携带进入色谱
柱与固定相接触时,被固定相
溶解或吸附;
随着载气的不断通入,被溶
解或吸附的组分又从固定相中
挥发或脱附;
挥发或脱附下的组分随着载
气向前移动时又再次被固定相
溶解或吸附;
随着载气的流动,溶解、挥
发,或吸附、脱附的过程反复
地进行。
(2) 灵敏度高 可以检测出μ g.g-1(10-6)级甚至ng.g-1(10-9)级的物质量。
(3) 分析速度快 一般在几分钟或几十分钟内可以完成一个试样的分析。
(4) 应用范围广 气相色谱:沸点低于400℃的各种有机或无机试样的分析。 液相色谱:高沸点、热不稳定、生物试样的分离分析。
不足之处: 被分离组分的定性较为困难。
2020/1/31
5. 分配比与保留时间的关系
滞留因子(retardation
factor):
RS
uS u
us:组分在分离柱内的线速度;u:流动相在分离柱内的线
速度;滞留因子RS也可以用质量分数ω表示:
RS
ms ms mM
1 1 ms
1 1 k
mM
若组分和流动相通过长度为L的分离柱,需要的时间分
2020/1/31
二、色谱分离过程
色谱分离过程是在色谱柱内完成的。 填充柱色谱: 气固(液固)色谱和气液(液液)色谱,两者的 分离机理不同。 气固(液固)色谱的固定相: 多孔性的固体吸附剂颗粒。 固体吸附剂对试样中各组分的吸附能力的不同。 气液(液液)色谱的固定相: 由 担体和固定液所组成。 固定液对试样中各组分的溶解能力的不同。 气固色谱的分离机理: 吸附与脱附的不断重复过程; 气液色谱的分离机理: 气液(液液)两相间的反复多次分配过程。
色谱分析复习题及参考答案
色谱分析综合体一.选择题1.在色谱分析中,用于定量的参数是( B )A 保留时间B 调整保留值C 峰面积D 半峰宽2.塔板理论不能用于( D )A 塔板数计算B 塔板高度计算C 解释色谱流出曲线的形状D 解释色谱流出曲线的宽度与哪些因素有关3.在气-固色谱分析中,色谱柱内装入的固定相为( D )A 普通固体物质B 载体C 载体+固定液D固体吸附剂4.当载气线速越小,范式方程中,份子扩散项B越大,所以应选下列气体中哪一种作载气最有利?( D )A H2B He C Ar D N25.试指出下述说法中,哪一种是错误的? ( C )A 根据色谱峰的保留时间可以进行定性分析B 根据色谱峰的面积可以进行定量分析C 色谱图上峰的个数一定等于试样中的组分数D 色谱峰的区域宽度体现了组分在柱中的运动情况6.为测定某组分的保留指数,气相色谱法普通采取的基准物是:( C )A 苯B 正庚烷C 正构烷烃D 正丁烷和丁二烯7.试指出下列说法中,哪一个不正确?气相色谱法常用的载气是( C )A N2B H2C O2D He8.试指出下列说法中,哪一个是错误的? ( A )A 固定液是气相色谱法固定相B N2、H2等是气相色谱流动相C 气相色谱法主要用来分离沸点低,热稳定性好的物质D 气相色谱法是一个分离效能高,分析速度快的分析方法9. 在气-液色谱法中, 首先流出色谱柱的组分是 ( A )A 溶解能力小B 吸附能力小C 溶解能力大D 吸附能力大10.根据范第姆特议程式,指出下面哪种说法是正确的? ( A )A 最佳流速时,塔板高度最小B 最佳流速时,塔板高度最大C 最佳塔板高度时,流速最小D 最佳塔板高度时,流速最大二.填空题1.按流动相的物态可将色谱法分为 气相色谱法 和 液相色谱法 。
前者的流动相的 气体 ,后者的流动相为 液体 。
2.气相色谱法多用 高 沸点的 有机 化合物涂渍在惰性载体上作为固定相,普通只要在 450 ℃以下,有 1.5 至 10 Kp a 的蒸气压且 稳定 性好的 有机和 无机 化合物都可用气相色谱法进行分离。
色谱基础知识
色谱的优点
★ 分离效率高 ★ 分析速度快 ★ 应用范围广 ★ 样品用量少 ★ 灵敏度高 ★ 分离和测定同步完成 ★ 易于自动化,可在工业流程中使用
高分子多孔微球:新型的有机合成固定相(苯乙烯/二乙烯苯共聚)。 适用于水、气体及低级醇的分析。
②气液色谱:溶质在固定相和流动相中进行分配,通过分子间作用力
(色散力、静电力、诱导力、氢键)的差异实现分离。
固定相=载体+固定液
对载体的要求:√具有化学惰性
√具有热稳定性
√具有一定的机械强度 √具有适当的比表面
ECD1A, ECD1A, 前部信号(HP5-ECD\STD-50PPB.D)
归一化 325
相交的两点之间的距离,W=1.698644× W ECD1A,ECD1A,前部信号(HP5-ECD\STD-50PPB.D)
300
1/2
归一化
275
800 700
250
600
225
500
200
W1/2
h
400 300
色谱的发展历程
1931年,Kuhn和Lederer重复了Tswett的实验,用氧化铝和碳 酸钙做固定相分离出了3中胡萝卜素(α、β、γ),此后用这种方法 分离了60多种这类色素。
1940年,Martin和Synge提出液液分配色谱法。 1941年, Martin和Synge提出用气体代替液体做流动相的可能。 此后的11年内,James和Martin发表了从理论到实践比较完整的气 液色谱方法,因而获得了1952年的诺贝尔化学奖。 1956年,Van Deemter提出速率理论。1965年Giddings对其进 行了总结和发展。 1957年,Golay开创了毛细管柱气相色谱法。
3--第二章色谱分析理论基础
当待分离组分随着载气进入色谱柱,组分就开始在两相间进行 分配,平衡后,再随着载气进入下一个塔板进行分配,平衡后 再进入下一个塔板。以此类推,从而不断达到分配平衡。
1.塔板理论基本假设
(1)在色谱柱中的每一小段长度H内,组分迅速达到分 配平衡,这一小段色谱柱称为理论塔板,其长度称为理论 塔板高度,简称板高,记为H; (2)载气不是连续通过色谱柱,而是脉冲式,每次进气 量为一个板体积; (3)试样开始时都加在0号塔板上,且试样沿柱纵向扩 散忽略不计; (4)分配系数在各塔板上是常数; (5)塔板与塔板之间不连续。
结论: 分配系数K是色谱分离中的一个重要参数。 两组分分配系数K相差越大,两峰分离的就越好。 不同物质的分配系数K相同时,组分不能分离。因此是色 谱分离依据。
3.分配比k
又叫容量比、容量因子。
在一定温度、压力下,在两相间达到分配平衡时,组分在 两相之间的质量比值,以k表示。
组分在固定相中的质量
k=
分子扩散大。
3.传质阻力项C
组分在气相和液相两相间进行反复分配时,遇到阻力。传质阻 力C包括气相传质阻力Cg和液相传质阻力CL 。液相传质阻力 大于气相传质阻力。
C =(Cg + CL)
气相传质过程是指试样组分从气相移动到固定相表面的过程。
这一过程中试样组分将在两相间进 行质量交换,即进行浓度分配。有 的分子还来不及进入两相界面,就 被气相带走;有的则在进入两相界 面后又来不及返回气相。这样,使 得试样在两相界面上不能瞬间达到 分配平衡,引起滞后现象,从而使 色谱峰变宽。
(3)对于某确定的色谱分配体系,组分的分离最终决定于 组分在每相中的相对量,而不是决定于组分在每相中的相对 浓度,因此分配比是衡量色谱柱对组分保留能力的重要参数。 k越大,组分保留时间越长,k=0,组分的保留时间为死时间。
色谱分析法理论基础
(1)用时间表示的保留值(二)_
调整保留时间 t ‘的R:保指留扣时除间了,死如时图间中 的A'B。
即:t'R = tR- tM
注意:当固定相一 定,在确定的实验条 件下,任何物质都有 一定的保留时间,它 是色谱分析法的基本 参数。
(2)用体积表示的保留值
保留体积VR:指从进样 到柱后出现待测组分浓 度极大值时所通过的载 气体积。
区域宽度(三)
(3)峰基宽度Wb:即通 过流出曲线的拐点所作的 切线在基线的截距,如图 I J所示。 Wb与σ的关系:
Wb =4σ
7.2.2 色谱法中的主要参数和关系式
分配系数Kp和容量因子K '
(1)分配系数Kp:定温定压下物质在固定相和流动相中的 浓度比。 KP=[A]s / [A]m (s-固定相; m-流动相)
• R= 0.59R'
7.2.5 分离效率的表示方法-分离度(四)
关于R、n有效、r2.1、H有效、L柱长间关系如下:
R= r 2.1 1
r 2.1
n有效 16
n有效=16R2
r
r 2.1 2.1
1
2
L=16R2
r 2.1 2 r 2.1 1
H有效
H有效=L / n有效
对于一定的色谱柱和一定的难分离物质对,在一定
❖扩散的严重与否,关键是取决于流动相的线速 度。
7.2.4 影响色谱柱效能的因素 ——速率理论(五)
C - 固定相传质阻力项 D - 流动相传质阻力项 (非平衡状态作用)
此两项对色谱峰的影响均与流速成正比。在流速很 高的情况下,由于没有足够的时间建立平衡,偏离更为 严重。
对于一定的色谱体系,速率方程中A、B、C、D其 值为一定。速率方程描述了流动相的平均线速度对柱 效能的影响。
第二章 色谱分析基础
三聚氰胺
原料乳中添加三聚氰胺的色谱图(浓度 原料乳中添加三聚氰胺的色谱图(浓度4.00 mg/kg) )
仪器分析 生物与化学工程学院
第一节 色谱分析法概述 根据色谱峰的个数, 1. 根据色谱峰的个数,可判断样品所含的最少组 份数. 份数. 根据色谱峰的保留值,可以进行定性分析. 2. 根据色谱峰的保留值,可以进行定性分析. 根据色谱峰的面积或峰高, 可以进行定量分析. 3. 根据色谱峰的面积或峰高 可以进行定量分析.
2 t 理论塔板数与色谱 R = 16 t R n = 5.54 Y1 参数之间的关系为: 参数之间的关系为: W 2
2 t′ t′ R n = 5.54 = 16 R Y1 W 2 2
2
有效理论塔板数: 有效理论塔板数:
有效理论塔板高度: 有效理论塔板高度:
仪器分析
生物与化学区域宽度
A. 标准偏差 σ) 标准偏差( B. 半峰宽 1/2) Y1/2 =2.354 σ 半峰宽(Y C. 峰底宽 (Wb) Wb=4 σ
仪器分析 生物与化学工程学院
第一节 色谱分析法概述 ),色谱流出曲线给出的信息 (二),色谱流出曲线给出的信息
仪器分析 生物与化学工程学院
第一节 色谱分析法概述 ),分配比 容量因子) 分配比( (三),分配比(容量因子) k
ms k= mm
组分在固定相中的质量 组分在流动相中的质量
K与k都是与组分及固定相的热力学性质有关的常数. 与 都是与组分及固定相的热力学性质有关的常数. 都是与组分及固定相的热力学性质有关的常数 K与k都是衡量色谱柱对组分保留能力的参数,数值越 与 都是衡量色谱柱对组分保留能力的参数 都是衡量色谱柱对组分保留能力的参数, 该组分的保留时间越长. 大,该组分的保留时间越长. k可直接从色谱图上获得. 可直接从色谱图上获得. 可直接从色谱图上获得
色谱分析
(f
i 1
n
100
A is
Ai )
hi mi % 100 h1 h 2 h n
h f is hi
(f
i 1
n
100
h is
hi )
特点及要求:
归一化法简便、准确; 进样量的准确性和操作条件的变动对测定结果影响不大;
④ △K小,柱效低,分离效果更差。
2014-7-10
1.5 色谱定性和定量方法
1.5.1定性分析:通过与标准化合物相比较,判断该物质是否
存在。
1. 组分保留时间或保留体积; 2. 色谱技术与其它技术连用:
高效液相色谱 -- 二极管阵列检测器
-- 红外光谱检测器 -- 质谱检测器
250 200 150
(5)选择性好 通过选择合适的分离模式和检测方法,可以只分离或检测 感兴趣的物质。 (6)多组分同时分析 在很短时间内(20min左右),可以实现几十种成分的同 时分离与定量。 (7)易于自动化 现在的色谱仪器已经可以实现从进样到数据处理的全自动 化操作。 (8)应用范围广 气相色谱主要用于沸点低于400℃的各种有机或无机试样的 分析。液相色谱主要用于高沸点、热不稳定、生物试样的分离 分析。
温控系统
结构流程
2014-7-10
2.2.1载气系统
(1)结构
包括气源、净化干燥管和载气 流速控制;
常用的载气有:氢气、氮气、氦气; 净化干燥管:去除载气中的水、有机物等杂质(依次通过 分子筛、活性炭等); 载气流速控制:压力表、流量计、针形稳压阀,控制载气 流速恒定。
2014-7-10
(2)载气种类和流速的选择
1.4 色谱分离有关术语
色谱分析ppt课件
➢ 利用组分在离子交换剂(固定相)上的亲和力大小不同而达到分 离的方法,称为离子交换色谱法。
➢ 利用大小不同的分子在多孔固定相中的选择渗透而达到分离的方 法,称为凝胶色谱法或尺寸排阻色谱法。
最近,又有一种新分离技术,利用不同组分与固定相(固定化分子) 的高专属性亲和力进行分离的技术称为亲和色谱法,常用于蛋白 质的分离。
色谱过程
吸附→解吸→再吸附→再解吸
两种组分的理化性质原本存在着微小 的差异,经过反复多次地吸附→解吸→再 吸附→再解吸的过程使微小差异累积起来, 结果使吸附能力弱的组分先流出色谱柱, 吸附能力强的组分后流出色谱柱,从而使 各个组分得到了分离。
检
测
1
2
3
器
色 谱 柱 ( 固 定 相 )
样品组分 1+2+3
➢ 液体为流动相的色谱称液相色谱(LC) 同理液相色谱亦可分为液固色谱(LSC)和液液色谱(LLC)。 ➢ 超临界流体为流动相的色谱为超临界流体色谱(SFC)。
随着色谱工作的发展,通过化学反应将固定液键合到载体表面,这 种化学键合固定相的色谱又称化学键合相色谱(CBPC)。
2.按分离机理分类
➢ 利用组分在吸附剂(固定相)上的吸附能力强弱不同而得以分离 的方法,称为吸附色谱法。
在色谱法中,将填入玻璃管或不锈钢管内静止不动的一相(固体或 液体)称为固定相 ; 自上而下运动的一相(一般是气体或液体)称为流动相 ; 装有固定相的管子(玻璃管或不锈钢管)称为色谱柱 。
• 色谱分离中的两相是指系统具有一个有大比表面积 的固定相(stationary phase)(可以是固体或以某种 方式固定了的液体)和一个能携带待分离混合物流 过固定相的所谓流动相(mobile phase)(可以是气 体或液体)。
第七章 色谱分析基础
3.分配比k
分配比又称容量因子、容量比,它是指在一 定温度和压力下,组分在两相间分配达平衡时, 分配在固定相和流动相中的质量比。即 :
组分在固定相中的质量 ms k 组分在流动相中的质量 mM
k值越大,说明组分在固定相中的量越多,相当于 柱的容量大,因此又称分配容量或容量因子。它是衡量 色谱柱对被分离组分保留能力的重要参数。
三、 速率理论—影响柱效的因素
1. 速率方程(也称范.弟姆特方程式)
H = A + B/u + C· u
H:理论塔板高度,
u:载气的线速度(cm/s) 减小A、B、C三项可提高柱效; 存在着最佳流速; A、B、C三项各与哪些因素有关?
t R ( B) k ( B) K ( B) t R ( A) k ( A) K ( A)
上式表明:通过选择因子α把实验测量值k与热力学性质的分 配系数K直接联系起来,α对固定相的选择具有实际意义。 如果两组分的K或k值相等,则α=1,两个组分的色谱峰必将重 合,说明分不开。两组分的K或k值相差越大,则分离得越好。因 此两组分具有不同的分配系数是色谱分离的先决条件。
7.2 色谱流出曲线及有关术语
一、流出曲线和色谱峰
二、基线
柱中仅有流动相通过时,检测器响应讯号的记录值,即 图18-3中O—t线.稳定的基线应该是一条水平直线。
三、峰高
色谱峰顶点与基线之间的垂直距离,以h表示,如图B′A
四、保留值
1.死时间tM 不被固定相吸附或溶解的物质进入色谱 柱时,从进样到出现峰极大值所需的时间 称为死时间,如图O′A′。
体),称为流动相。
二、色谱法分类
1.按两相状态分类
(1)气相色谱:流动相为气体(称为载气)。
色谱分析理论基础
d
2 p
Dg
容量因子
液相传质阻力项CL u
试样组分从固定相表面移动到固定相内部的过程中, 由于质量交换过程需要一定时间(即传质阻力)而使分 子有滞留倾向。在此过程中,部分组分分子先离开固定 相表面,发生分子超前,引起色谱峰扩展。
C L
2 3
k (1 k)2
d
2 f
DL
液膜厚度
液相扩 散系数
气相色谱中的速率方程
1 2
(Y1
Y2
)
R1/ 2
tR(2) tR(1)
1 2
(Y1/ 2(1)
Y1/ 2(2) )
R越大,说明两组分分离得越好。 由于该定义综合了色谱动力学和热力学因素,可作为色 谱柱的总分离效能指标。
(2) 色谱分离基本方程(Purnell方程)
公式推导
tR
L uS
,tM
L u
tM tR
• 分离度R与理论塔板数N的平方根成正比关系, 增加塔板数,有利于提高分离度。
• 增加柱长可增加N,改善分离,但分析时间将 大大延长,峰产生扩展。
• 减小塔板高度H:
– 根据速率方程的启示制备一根性能优良的色谱柱是 十分重要的。
– 根据速率方程选择合适的色谱条件同样有效。
K的影响,如何改变k?
• 分离度与容量因子有关,容量因子越大,分离越好。
• 优点:应用简便,不需要其他仪器。 • 缺点:定性结果的可信度不高。
➢ 提高可信度的方法:双柱、双体系定性
文献值对照定性分析 (GC)
• 实现方法
➢ 测定相对保留值ri,s ➢ 测定保留指数I
• 优点:无需纯物质;保留指数具有较好的重现 性和精密度;只与固定相和柱温有关。
仪器分析习题1---4
仪器分析习题(一)(色谱分析基础)1、基线:是柱中仅有流动相通过时,检测器响应讯号的记录值。
稳定的基线应该是一条水平直线。
2、色谱峰高:色谱峰顶点与基线之间的垂直距离,以h表示。
3、标准偏差:即0.607倍峰高处色谱峰宽的一半。
4、半峰宽W1/2:即峰高一半处对应的峰宽,它与标准偏差σ的关系是:W1/2 =2.354σ。
5、峰底宽度W :即色谱峰两侧拐点上的切线在基线上的截距。
它与标准偏差。
的关系是:W = 4σ6、死时间t0:不被固定相吸附或溶解的物质进入色谱柱时,从进样到出现峰极大值所需的时间称为死时间。
因为这种物质不被固定相吸附或溶解,故其流动速度将与流动相的流动速度相近。
测定流动相平均线速ū时,可用柱长L 与t0的比值计算。
7、保留时间tr :试样从进样开始到柱后出现峰极大点时所经历的时间,称为保留时间。
它相应于样品到达柱末端的检测器所需的时间。
8、调整保留时间tr′:某组分的保留时间扣除死时间后的时间称为该组分的调整保留时间,即:tr′= tr- t09、死体积 V0:指色谱柱在填充后,柱管内固定相颗粒间所剩留的空间、色谱仪中管路和连接头间的空间以及检测器的空间的总和。
当后两项很小而可忽略不计时,死体积可由死时间与流动相体积流速F0(mL/min)计算:V0= t0·F010、保留体积 Vr:指从进样开始到被测组份在柱后出现浓度极大点时所通过的流动相体积。
保留体积与保留时间tr的关系:Vr = tr·F011、调整保留体积Vr′:某组份的保留体积扣除死体积后,称该组份的调整保留体积,即 Vr′ = Vr- V0。
12、相对保留值:某组份2的调整保留值与组份1的调整保留值之比,称为相对保留值。
1)相对保留值反映不同溶质与固定相作用力的差异,即两组分或组分间的保留差异,亦称为选择性因子。
2)相对保留值只与柱温及固定相的性质有关,而与柱径、柱长、填充情况及流动相流速无关。
《色谱分析基础 》课件
分离效果相对较差,灵敏度较低。
04 色谱分析实验技术
实验设计
实验目的
明确实验的目标和意义,确保实验具有 实际应用价值。
实验步骤
详细列出实验操作步骤,包括样品处 理、色谱柱选择、进样、洗脱等,确
保实验过程规范、准确。
实验原理
阐述色谱分析的基本原理和实验操作 流程,确保实验的合理性和科学性。
实验安全
数据处理与分析
数据采集
记录实验过程中的各项数据,包 括色谱图、峰高、峰面积等,确 保数据的完整性和准确性。
数据处理
采用适当的数学方法对原始数据 进行处理,如平滑、基线校正、 归一化等,以提高数据的可靠性 和可比性。
结果分析
根据处理后的数据,进行结果分 析和解释,得出实验结论,为实 际应用提供科学依据。
优点
分离效果好、分析速度快、灵 敏度高。
缺点
对于高分子量和热稳定性差的 化合物不太适用。
液相色谱法
原理
利用液体作为流动相,将样品中的各 组分在固定相和流动相之间进行分离 ,再通过检测器进行检测。
应用范围
主要用于分析高分子量、热稳定性差 、不易挥发的有机化合物,如蛋白质 、核酸等生物大分子。
优点
分离效果好、分析速度快、灵敏度高 ,适用于复杂样品的分析。
色谱分析具有高效、高分辨率和高灵敏度等特点,广泛应用于化学、生物、医学 和环境等领域。
色谱分析的原理
分离原理
色谱分析基于不同组分在两相之间的吸附或溶解性能差异进行分离。在流动相 的带动下,各组分在固定相和流动相之间反复分配,最终达到分离。
检测原理
通过检测器对分离后的组分进行检测,将组分的浓度或质量转化为电信号,以 便进行定量和定性分析。常见的检测器有紫外-可见吸收光谱、荧光光谱、质谱 等。
《分析化学》课件——10 色谱分析法
“相似相溶”原则选择适当固定液。
常用固定液
相对极性:
麦氏常数: 5个值代表 各种作用力。
固定液 名称
1、 角鲨烷 (异三十烷)
2、阿皮松 L
商品牌号 SQ
使用温度 (最高)
℃
150
溶剂 乙醚
APL
300
苯
3、硅油
OV-101 350
丙酮
4、 苯基 10%
OV-3
350
甲基聚硅氧烷
5、 苯基(20%)
载气流速的选择
作图求最佳流速。 实际流速稍大于最佳流速,缩短时间。
三、气相色谱检测器
浓度型检测器:热导池检测器
电子俘获检测器
测量的是载气中通过检测器组分浓度瞬间 变化,检测信号值与组分的浓度成正比。
质量型检测器:氢火焰离子化检测器
火焰光度检测器
测量的是载气中某组分进入检测器的速度 变化,即检测信号值与单位时间内进入检 测器组分的质量成正比。
检测器性能评价指标
在一定范围内,信号E与进入检测器的 物质质量m成正比:
保留时间 tR(retention time)
时间 死时间 t0 (dead time)
tR'= tR - t0
调整保留时间 tR'(adjusted retention time)
保留体积VR(retention volume) 体积 死体积 V0 (dead volume) VR'= VR - V0
Sample
D A
C
B
Sample
HEWLETT PACKARD
5890
Gas Chromatograph (GC)
B A CD
第4章 色谱分析基础
较小。分析工作中通常倾向于使用较低的配比。
关于固定液
固定液的性质对分离是起决定作用的。在这里讨论一下 固定液的用量问题。一般来说,担体的表面积越大,固定液 用量可以越高,允许的进样量也就越多。但从下式可见,
为了改善液相传质,应使液膜薄一些。目前填充色谱柱 中盛行低固定液含量的色谱柱。固定液液膜薄,柱效能提高 ,并可缩短分析时间;但固定液用量太低,液膜超薄,允许 的进样量也就越少。因此固定液的用量要根据具体情况决定 。 固定液的配比一般用5:100到25:10O,也有低于5:100的 。不同的担体为要达到较高的柱效能,其固定液的配比往往 是不同的。一般来说,担体的表面积越大,固定液的含量可 以越高。
k为容量因子; Dg 、DL为扩散系数。
减小担体粒度,选择小分子量的气体作载气,可降低传质 阻力。
将常数项的关系式代入简化式得:
(1)范弟姆特方程式对于分离条件的选择具有指导意义。它 可以说明 ,填充均匀程度、担体粒度、载气种类、载气流速 、柱温、固定相液膜厚度等对柱效、峰扩张的影响。 (2)各种因素相互制约,如:Dg(M载气 、柱温)。
k值增大,有利于分离,但k > 10时,对R的 增加不明显,也会显著增加分析时间 k的最佳范围:1 ~ 10
(3)与柱选择性的关系 r2,1越大,柱选择性越好,分离效果越好。如果两 个相邻峰的选择因子足够大,则即使色谱柱的理 论塔板数较小,也可以实现分离。 柱长的选择
n有效
r21 2 16 R ( ) r21 1
2 2
r21 2 L 16 R ( ) H 有效 r21 1
L2 R2 2 L1 R1
2
例题1:
在一定条件下,两个组分的调整保留时间分别为85秒和 100秒,要达到完全分离,即R=1.5 。计算需要多少块有效 塔板。若填充柱的塔板高度为0.1 cm,柱长是多少? 解: r21= 100 / 85 = 1.18 n有效 = 16R2 [r21 / (r21 —1) ]2 = 16×1.52 ×(1.18 / 0.18 ) 2 = 1547(块) L有效 = n有效· 有效 = 1547×0.1 = 155 cm H 即柱长为1.55米时,两组分可以得到完全分离。
色谱分析法基础讲课文档
第5页,共34页。
• 1951年, Martin 和James采用气体作为流动相,以自动滴定仪作为 检测器分析脂肪酸 ——气相色谱法。建立形成色谱学理论中有着重 要地位的塔板理论和Van Deemter方程,以及保留时间、保留指数、峰 宽等概念。
混合组份最终形成各个单组份的“带(band)”或“区(zone)”,
对依次流出的各个单组份物质可分别进行定性、定量分析。
第15页,共34页。
2、色谱流出曲线
由检测器输出的信号强度对时间作图,所得曲线即色谱流出曲线, 也称色谱图 。
第16页,共34页。
二、色谱相关术语
1、色谱峰(peak):当某组分从色谱柱中流出时,检测器对该组分
明无法实现分离。两组分的K或k值相差越大,则分离得越好。因 此两组分具有不同的分配系数是色谱分离的先决条件。
第28页,共34页。
塔板理论(Plate theory)
1. 塔板理论的假设 2. 理论塔板高度和理论塔板数 3. 有效塔板高度和有效塔板数 4. 塔板理论的不足
第29页,共34页。
1952年,Martin 和Synge提出。
分配色谱法 partition chromatography
不同组份在固定相上的溶解能力不同
离子交换色谱法 ion exchange chromatography
不同组份在固定相(离子交换剂)上的亲和力不同
空间排阻色谱法 steric exclusion chromatography
不同尺寸分子在固定相上的渗透作用
色谱基础知识
第2页,共73页。
色谱基础知识
茨维特实验:
1903年,茨维特做了一个植物色素分离实验:在一玻璃管 中放入碳酸钙,将含有植物色素(植物叶的提取液)的石 油醚倒入管中。 此时,玻璃管的上端立即出现几种颜色的 混合谱带。然后用纯石油醚冲洗,随着石油醚的加入,谱 带不断地向下移动,并逐渐分开成几个不同颜色的谱带, 继续冲洗就可分别接得各种颜色的色素,并可分别进行鉴 定。色谱法也由此而得名。
注射器进样
色谱基础知识
第19页,共73页。
阀进样
采样状态
放空 样品气 载气
定量管
进样状态
放空 样品气 载气
定量管
第20页,共73页。
色谱基础知识
色谱柱
色谱柱
色谱基础知识
气相色谱仪的构成:
3)分离系统
分离系统的功能是把需要分析的组分从背景组分 中分离出来。
分离功能主要依赖于色谱柱来实现,但在某些特定 的应用中还需要一些必要的流路系统(如中心切割或反吹 等)。
典型应用:测量某些不需要单独分析的组分,如CH4、 及NMHC(非甲烷总烃)的分析。
第35页,共73页。
分离系统:中心切割
样品气放空 样品气
定量管
色谱柱1
载气1 载气2
样品气放空 样品气
定量管
放空
色谱柱1
载气1 载气2
放空
第36页,共73页。
色谱柱2
检测器
色谱柱2
检测器
分离系统:反吹
正向
放空 样品气 载气
在分离过程中,待分离物质中的不同组分在流动相和固定相之 间的分配会不同,这使其随流动相运动速度各不相同,随着流动相 的运动,混合物中的不同组分在固定相上相互分离。
分析化学—色谱分析法第三节色谱理论基础
为最佳流速。
5. 速率理论的要点
(1)组分分子在柱内运行的多路径与涡流扩散、浓度梯度所 造成的分子扩散及传质阻力使气液两相间的分配平衡不能瞬 间达到等因素是造成色谱峰扩展柱效下降的主要原因。
(2)通过选择适当的固定相粒度、载气种类、液膜厚度及载 气流速可提高柱效。
Y1/ 2
Wb
n有效
5.54(
t
' R
)2
Y1/ 2
16( tR' Wb
)2
H 有效
L n有效
塔板理论的特点和不足:
(1)当色谱柱长度一定时,塔板数 n 越大(塔板高度 H 越小),被测组分在柱内被分配的次数越多,柱效能则越高 ,所得色谱峰越窄。
(2)不同物质在同一色谱柱上的分配系数不同,用有效 塔板数和有效塔板高度作为衡量柱效能的指标时,应指明 测定物质。
n=L/H 理论塔板数与色谱参数之间的关系为:
n 5.54( tR )2 16( tR )2
Y1/ 2
Wb
有效塔板数和有效塔板高度
• 单位柱长的塔板数越多,表明柱效越高。 • 用不同物质计算可得到不同的理论塔板数。
• 组分在tM时间内不参与柱内分配。需引入有效塔
板数和有效塔板高度:
n 5.54( tR )2 16( tR )2
塔板理论和速率理论都难以描述难分离物质对的实际分 离程度。即柱效为多大时,相邻两组份能够被完全分离。
难分离物质对的分离度大小受色谱过程中两种因素的综 合影响:保留值之差──色谱过程的热力学因素;
区域宽度──色谱过程的动力学因素。 色谱分离中的四种情况如图所示:
① 柱效较高,△K (分配系数)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H 有效
23:51:44
L n有效
3.塔板理论的特点和不足
(1)当色谱柱长度一定时,塔板数 n 越大(塔板高度 H 越 小),被测组分在柱内被分配的次数越多,柱效能则越高,所 得色谱峰越窄。 (2)不同物质在同一色谱柱上的分配系数不同,用有效塔 板数和有效塔板高度作为衡量柱效能的指标时,应指明测定 物质。 (3) 柱效不能表示被分离组分的实际分离效果,当两组 分的分配系数K相同时,无论该色谱柱的塔板数多大,都无法 分离。 (4) 塔板理论无法解释同一色谱柱在不同的载气流速下 柱效不同的实验结果,也无法指出影响柱效的因素及提高柱 效的途径。
23:44
B· u —传质阻力项
C =(Cg + CL)
(动画)
传质阻力包括气相传质阻力Cg和液相传质阻力CL即:
0.01k Cg 2 (1 k ) Dg
2 k CL 2 3 (1 k ) DL
k为容量因子; Dg 、DL为扩散系数。 减小担体粒度,选择小分子量的气体作载气,可降低传质 阻力。
色谱理论
色谱理论需要解决的问题:色谱分离过程的热力学和动 力学问题。影响分离及柱效的因素与提高柱效的途径,柱效 与分离度的评价指标及其关系。 组分保留时间为何不同?色谱峰为何变宽? 组分保留时间:色谱过程的热力学因素控制; (组分和固定液的结构和性质) 色谱峰变宽:色谱过程的动力学因素控制; (两相中的运动阻力,扩散) 两种色谱理论:塔板理论和速率理论;
(动画)
固定相颗粒越小 dp↓ ,填充的越均匀, A↓,H↓ ,柱效 n ↑ 。表现在涡流扩散所引起的色谱峰变宽现象减轻,色谱 峰较窄。
23:51:44
B/u —分子扩散项
B = 2 νDg ν :弯曲因子,填充柱色谱,ν <1。
(动画)
Dg:试样组分分子在气相中的扩散系数(cm2· s-1) (1) 存在着浓度差,产生纵向扩散; (2) 扩散导致色谱峰变宽,H↑(n↓),分离变差; (3) 分子扩散项与流速有关,流速↓,滞留时间↑,扩散↑; (4) 扩散系数:Dg ∝(M载气)-1/2 ; M载气↑,B值↓。
23:51:44
一、塔板理论-柱分离效能指标
1.塔板理论(plate theory)
半经验理论; 将色谱分离过程比拟作蒸馏过程,将连续 的色谱分离过程分割成多次的平衡过程的重复 (类似于蒸馏塔塔板上的平衡过程); 塔板理论的假设: (1) 在每一个平衡过程间隔内,平衡可以迅 速达到; (2) 将载气看作成脉动(间歇)过程; (3) 试样沿色谱柱方向的扩散可忽略; (4) 每次分配的分配系数相同。 (动画)
23:51:44
3. 速率理论的要点
(1)组分分子在柱内运行的多路径与涡流扩散、浓度梯度所 造成的分子扩散及传质阻力使气液两相间的分配平衡不能瞬 间达到等因素是造成色谱峰扩展柱效下降的主要原因。 (2)通过选择适当的固定相粒度、载气种类、液膜厚度及载 气流速可提高柱效。
(3)速率理论为色谱分离和操作条件选择提供了理论指导。 阐明了流速和柱温对柱效及分离的影响。
23:51:44
二、 速率理论-影响柱效的因素
1. 速率方程(也称范.弟姆特方程式)
H = A + B/u + C· u
H:理论塔板高度, u:载气的线速度(cm/s) 减小A、B、C三项可提高柱效;
存在着最佳流速;
A、B、C三项各与哪些因素有关?
23:51:44
A─涡流扩散项
A = 2λdp
dp:固定相的平均颗粒直径 λ:固定相的填充不均匀因子
难分离物质对的分离度大小受色谱过程中两种因素的综
合影响:保留值之差──色谱过程的热力学因素; 区域宽度──色谱过程的动力学因素。 色谱分离中的四种情况如图所示:
23:51:44
讨论:
色谱分离中的四种情况的讨论: ① 柱效较高,△K(分配系数)较大,完全分离; ② △K不是很大,柱效较高,峰较窄,基本上完全分离; ③柱效较低,,△K较大,但分离的不好;
(4) 各种因素相互制约,如载气流速增大,分子扩散项的影 响减小,使柱效提高,但同时传质阻力项的影响增大,又使 柱效下降;柱温升高,有利于传质,但又加剧了分子扩散的 影响,选择最佳条件,才能使柱效达到最高。
23:51:44
三、 分离度
塔板理论和速率理论都难以描述难分离物质对的实际分 离程度。即柱效为多大时,相邻两组份能够被完全分离。
④ △K小,柱效低,分离效果更差。
23:51:44
分离度的表达式:
R 2(t R ( 2 ) t R (1) ) Wb( 2 ) Wb(1) 2(t R ( 2 ) t R (1) ) 1.699(Y1/ 2( 2 ) Y1/ 2(1) )
R=0.8:两峰的分离程度可达89%; R=1:分离程度98%; R=1.5:达99.7%(相邻两峰完全分离的标准)。
23:51:44
d2 f
2 df
2.载气流速与柱效——最佳流速
载气流速高时: 传质阻力项是影响柱效的 主要因素,流速,柱效。 载气流速低时: 分子扩散项成为影响柱效 的主要因素,流速,柱效 。 H - u曲线与最佳流速: 由于流速对这两项完全相反的作用,流速对柱效的总影 响使得存在着一个最佳流速值,即速率方程式中塔板高度对 流速的一阶导数有一极小值。 以塔板高度H对应载气流速u作图,曲线最低点的流速即 为最佳流速。
• 单位柱长的塔板数越多,表明柱效越高。 • 用不同物质计算可得到不同的理论塔板数。 • 组分在tM时间内不参与柱内分配。需引入有效 塔板数和有效塔板高度:
tR 2 tR 2 n理 5.54( ) 16( ) Y1 / 2 Wb
' ' tR t n有效 5.54( ) 2 16( R ) 2 Y1 / 2 Wb
23:51:44
色谱柱长:L, 虚拟的塔板间距离:H,
色谱柱的理论塔板数:n,
则三者的关系为: n=L/H
理论塔板数与色谱参数之间的关系为:
tR 2 tR 2 n 5.54( ) 16( ) Y1/ 2 Wb
保留时间包含死时间,在死时间内不参与分配!
23:51:44
2.有效塔板数和有效塔板高度