第2章 核型与染色体显带

合集下载

遗传学-第2章_遗传的细胞学基础

遗传学-第2章_遗传的细胞学基础

内膜系统 细胞质
细胞壁成分 细胞增殖
真核生物的细胞由细胞膜、细胞质、细胞核三部分 组成 (一)细胞膜(质膜) 细胞膜是细胞外围的一层薄膜,主要由蛋白质和类 脂构成。 功能:能够有选择地通过某些物质。 在植物细胞的细胞膜外面,还有一层由纤维素和果 胶质组成的细胞壁(支持和保护作用)。
(二)细胞质(胞质) 细胞质是细胞膜内环绕着细胞核外围的原生质,呈胶体状 态。里面有许多蛋白质、脂肪等物质,细胞质中包含着各种 细胞器:线粒体、质体(植)、核糖体、内质网、高尔基体、 中心体(动)、溶酶体和液泡(植)。 其中,质体和液泡只有植物才具有,中心体只是动物细胞才具 有。 线粒体是动植物细胞中普遍存在的细胞器,是细胞内呼吸作用和 氧化作用的中心,是贮藏能量的场所。 质体包括叶绿体、有色体和白色体,其中最重要的是叶绿体, 是植物光合作用的场所。 核糖体是极其微小的细胞器,由RNA和蛋白质组成,是细胞中合 成蛋白质的主要场所。 内质网是运输蛋白质的合成原料和合成产物的通道。
线粒体
线粒体DNA
叶绿体
叶绿体DNA
电镜下内质网
电镜下粗面内质网
(三)细胞核(胞核)

除细菌和蓝藻(原核生物)之外,各种生物的 细胞内都有细胞核,细胞核由核膜、核液、核 仁和染色质(染色体)组成。

细胞核是遗传物质聚集的主要场所,对细胞发 育和性状遗传起着指导作用。
植物细胞和动物细胞的区别
上各个微小的区段。这些区段长度各不相同,各有不同的分子结
构,规定着不同性状的遗传。 提问:染色体、DNA、基因有何不同?
第三节 细胞分裂

细胞分裂是生物进行生长和繁殖的基础,亲代 的遗传物质就是通过细胞分裂向子代传递的。 19世纪末,Flemming W(1882)和Boveri T(1891)分别发现了有丝分裂和减数分裂,为遗 传的染色体学说提供了理论基础。

染色体G显带技术及其原理

染色体G显带技术及其原理

a
11
示中期染色体Ga显带结果
12
示中期染色a体R显带结果
13
示中期染色a 体C显带结果
14
示中期染色体N显带结果
a
15
实验原理(8)
G显带是最常用的,染色体经胰蛋白酶处 理后,使染色体的蛋白质变性,然后用一种 能结合DNA的化学染料吉姆萨染色,使染色 体呈深浅不同的带型,人类的24种染色体可 显示出各自特异的带纹。
a
DNA核苷酸的组成
9
实验原理(6)
非显带的标本上虽然可以根据染色体的 形态识别1,2,3,16,17和18号,有时还 可以识别Y染色体,但却不能有把握地鉴别其 他大多数染色体。自1970年Caspersson等首 次报道用喹吖因对人体染色体进行染色可在 各号染色体上显现出宽窄和位置不同带纹以 来,细胞遗传学工作者以不同的染色方法为 基础,提出了各种显带方法的名称。
染色体G显带技术 及其原理
a
1
染色体G显带核型图
a
2
实验原理 (1)
人们将用各种不同的方法,以及用不同 的染料处理染色体标本后,使每条染色体上 出现明暗相间,或深浅不同带纹的技术称为 显带技术(banding technique)。本世纪70 年代以来,显带技术得到了很大发展,且在 众多的显带技术中(Q带、G带、C带、R带、 T带),G带是目前被广泛应用的一种带型。 因为它主要是被Giemsa染料染色后而显带, 故称之为G显带技术,其所显示的带纹分布在 整个染色体上。
a
10
实验原理(7)
如用芥子喹吖因作为染料,染出的荧光带称为Q 带,其方法称为Q显带法;用Giemsa作为染料,染出的 带称为G带,其方法称为G显带法。同样用Giemsa或 其他荧光染料作为染料,但在其中加上不同的预处 理而获得的与Q带或G带着色强度正好相反的带称为 R带,其方法称为反式显带法(R显带法);将专一 的显示“结构性异染色质”的方法称为C显带法, 其带称为C带。其它一些显带技术还可以专门显示 染色体的端粒(T显带)和核仁组织区(N带)等。

细胞遗传学复习资料

细胞遗传学复习资料

细胞遗传学复习资料第二章染色体的形态结构Chromosome:A molecular of DNA, and associated protein bound together.Each chromosome contains:Centromere, Kinetochore, Telomere, Euchromatin and Heterochromatin.染色质(Chromatin):在尚未分裂的细胞核中,显微镜下可见的可被碱性染料染色较深的、纤细的网状物。

染色体(Chromosome): 细胞分裂时,由染色质卷缩(螺旋化)而形成的呈现为一定数目和形态的细胞结构,是遗传物质的最主要的载体。

研究染色体形态最适合的时期:•有丝分裂中期•减数分裂第一次分裂前期I的粗线期第一节有丝分裂中期染色体大小:不同物种间染色体的大小差异很大,长度的变幅为(0.20-50 μm),宽度的变幅为(0.20-2.00 μm)。

(显微镜的最小分辨率δ=0.61λ/ NA ,λ=0.55 μm NA=1.4,δ约为0.25 μm。

NA为物镜的数值孔径)同一物种不同染色体宽度大致相同,其染色体大小主要对长度而言。

小麦:染色体平均长度11.2 μm,总长235.4 μm。

在细胞周期中,染色体处于动态的收缩过程中。

绝对长度:实际测量值。

相对长度:特定染色体的长度在单倍染色体组总长度中所占的比例。

染色体大、数目少的物种是细胞遗传学研究的优良实验材料,如果蝇(2n=8)、玉米、蚕豆、洋葱、麦类。

着丝粒(Centromere):A specialized chromosome region to which spindle fibers attach during cell division.着丝粒是细胞分裂时,纺锤丝附着(attachment)的区域,又称为着丝点。

着丝粒不会被染料染色,所以在光学显微镜下表现为染色体上一缢缩部位(无色间隔点),所以又称为主缢痕(primary constriction)。

遗传学名词解释

遗传学名词解释

第二章遗传的细胞学基础(教材2章,5-8%)(一) 名词解释:1.同源染色体:指形态、结构和功能相似的一对染色体,它们一条来自父本,一条来自母本。

2.染色体核型:指某个物种或个体的分裂相细胞内所含有的染色体大小、形态和数目特征的排列类型。

3.染色体带型:是指经过酸碱盐酶等处理所获得的染色体臂、着丝粒区域等有特殊条纹特征类型的染色体核型。

4.联会:在减数分裂过程中,同源染色体建立联系的配对过程。

5.胚乳直感:在3n胚乳的性状上由于精核的影响而直接表现父本的某些性状,这种现象称为胚乳直感或花粉直感。

6.果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状,则称为果实直感。

7.染色质:是指染色体在细胞分裂的间期所表现的形态,呈纤细的丝状结构,含有许多基因的自主复制核酸分子。

8.染色体:染色体是指染色质丝通过多级螺旋化后卷缩而成的一定的在细胞分裂期的形态结构。

(染色体:指任何一种基因或遗传信息的特定线性序列的连锁结构。

)9.姐妹染色单体:是二价体中同一条染色体的两个染色单体,由一个着丝点连接在一起,它们是间期同一染色质复制所得。

10.非姐妹染色单体:是二价体的不同染色体之间的染色单体互称非姐妹染色单体,它们是间期各自复制所得。

第三章孟德尔遗传(教材4章,12-15%)(一) 名词解释:1.性状:生物体所表现的形态特征和生理特性。

2.单位性状与相对性状:把生物体所表现的性状总体区分为各个单位,这些分开来的性状称为单位性状。

相对性状指同一单位性状的相对差异。

3.等位基因(allele) 与复等位基因:位于同源染色体上,位点相同,控制着同一性状的成对基因叫等位基因。

4.复等位基因指一个群体中在同源染色体的相同位点上可能存在的三个或三个以上等位基因的总称。

5.完全显性(complete dominance)与不完全显性(imcomplete dominance):一对相对性状差别的两个纯合亲本杂交后,F1的表现和亲本之一完全一样,这样的显性表现,称作完全显性。

染色体核型分析报告

染色体核型分析报告

染色体核型分析报告:核型染色体分析报告染色体核型分析弱精染色体核型分析46 xn 染色体核型分析46 xy篇一:染色体核型分析细胞遗传学(染色体核型)分析克隆性染色体异常是诊断恶性血液病的重要依据。

许多特异性染色体畸变和特定的恶性血液病亚型相联系,因而成为恶性血液病诊断分型的重要指标;诊断时的染色体核型对恶性血液病具有独立的预后价值,对于治疗方案的选择具有指导意义;同时染色体畸变可作为监测白血病缓解、复发及突变的重要参考指标,也为分子学研究提供了重要线索。

比如t(9;22)异常的急性淋巴细胞白血病、复杂染色体异常的白血病预后很不好,应尽早进行异基因造血干细胞移植等。

WHO制定的恶性血液病分型系统中,将染色体核型作为最重要的分型及诊断指标,发现重现性异常的染色体可提前作出AML的诊断。

很多染色体异常导致特异性的白血病融合基因。

染色体分析除用于各类恶性血液病患者,如急、慢性白血病、MDS、MPNs、淋巴瘤、多发性骨髓瘤(MM)患者外,还可用于儿童遗传性疾病、先天性畸形的染色体检测,以及习惯性流产、不孕不育等疾病的诊断。

但是染色体分裂相的制备和分析具有一定的难度,需要时间长,因此导致临床染色体的诊断缺乏及时性,往往发报告时间需要一个月甚至更长的时间;染色体核型分析需要细胞分裂才能完成,因此需要细胞具有良好的分裂活性,部分患者的细胞不分裂就不能观察到可供分析的中期分裂相(正常染色体分裂相,核型排列后如图3和图4),在一定程度上影响了患者的确诊和治疗。

此外染色体一般只能分析20-30个分裂相细胞,敏感性只有百分之一,当异常细胞比例较低时,也难以发现异常的染色体。

异常染色体核型的判断需要经验丰富的技术人员,尤其对一些复杂染色体异常,或异常较小的染色体,往往难以正确判断。

采用染色体全自动扫描暨自动核型分析系统可以加快染色体检测和发报告速度。

通过加用一些促细胞分裂的试剂可增加可供分析的核型。

图3 正常男性的染色体核型图4:正常女性核型 46,XX不同血液恶性肿瘤常见的染色体异常见表2,具体介绍如下。

人类染色体的识别与核型分析(精选)

人类染色体的识别与核型分析(精选)

人类染色体的识别与核型分析应用人类染色体分析,为诊断疾病、探讨病因和发病机制,针对具体情况采取必要的措施提供了科学的依据。

因此染色体的研究已成为临床医学中一个不可缺少的组成部分。

人类染色体分析与鉴定是否可靠,直接关系到遗传咨询和产前诊断的准确性。

因此如何准确识别染色体,鉴别正常与异常染色体是十分必要的。

(一)染色体的命名和常用命名符号人类细胞遗传学标准化国际命名体制(ISCN1985)包括了1960年、1963年、1968年、1971年、1978年、1981年、1985年7次人类细胞遗传学国际命名会议的结果。

主要决议的文本是人类细胞遗传学的国际法规,为了简便地记述人类染色体及染色体畸变,制定了统一的命名符号,详见表13-5。

表13-5染色体常用命名符号表示符号说明表示符号说明ace→bcen:::csctdelderdirdicdisdup无着丝粒片段从→到断裂着丝粒断裂断裂与重接染色体染色单体缺失衍生染色体正位双着丝粒体远侧端重复/+-?minmospph1przqrrcprearec将不同的细胞分开多余丢失不能确定微小点嵌合体染色体短臂费城染色体粉碎染色体长臂环形染色体相互易位重排重组染色体(续表)表示符号说明表示符号说明eendffrafemghiinvmalmar互换内复制断片脆性位点女性裂隙次缢痕等臂染色体插入倒位男性标记染色体robsscettantertrivar;罗伯逊易位随体姊妹染色单体互换易位串联易位染色体末端三射体三着丝粒体染色体可变区在涉及一个以上染色体重排中,用来分开各染色体1.非显带染色体的命名:一个典型的中期染色体由2条姊妹染色单体组成,2条姊妹染色单体借着丝粒(次缢痕)相连,着丝粒将染色体分为长臂和短臂,根据着丝粒在染色体上所处的位置不同分为中着丝粒、亚中着丝粒和近端着丝粒染色体。

人类的1号、9号、16号染色体长臂近着丝粒端有1个次缢痕。

在近端着丝粒染色体上,常借1个纤细的染色质丝连接上1粒状结构称随体。

人类染色体标本的制备及G显带核型分析ppt课件(完整版)

人类染色体标本的制备及G显带核型分析ppt课件(完整版)
事项。 3.制作人的G显带正常核型配对分析图。
感谢观看
人类体细胞的正常核型

大 A组
B组 C组 D组 E组 F组
小 G组
染色体号
1
3
2
4 ———— 5 6 ———— 12、X
13 ———— 15
17 16 18
19 ———— 20
21———— 22、Y
主要特征
中央着丝粒染色体 亚中着丝粒染色体
亚中着丝粒染色体、无随体
亚中着丝粒染色体
近端着丝粒染色体、有随体
六号是个小白脸 七上八下九苗条
十号长臂近带好 十一低来十二高
十三四十五
下、中、上
十六q2缢痕大
十七长臂带脚镣
十八人小肚皮大 十九一点腰
二十头重又脚轻 二十一象个葫芦瓢
二十二头带小黑帽 X一担挑,Y是黑脚
[注意事项]
1. 染色体标本制备中的关键因素包括秋水仙素的用量和 作用时间、低渗和固定的处理。其中低渗时间很重要, 处理时间过长则细胞膜过早破裂导致染色体丢失,处理 时间不足则致染色体分散不好,不利于计数分析。
2、作取用股均骨匀:充用分一。只手的拇指和食指按住小鼠 3.漂洗:迅速的用头0部.85,%另生一理只盐手水漂拉洗住,它以的终尾止巴胰,蛋用白酶
的作用。 力向后拉断其颈椎。处死后立即用剪 4.染色:用吉刀姆剪萨工开作后液腿染上色的1皮0毛~,15取m出in小。鼠的股 5.冲洗干燥:骨用,缓剔流除自上来面水的冲肌洗肉载,玻洗片净,。空气干燥或电
9. 弃上清,重复固定1次。 10.弃上清,根据沉淀量多少加入适量滴数新鲜固定
液,轻轻混匀,制成磨砂状悬液。 11.制片:取上述悬液1~2滴,滴至沾有冰水或干燥的
洁净载玻片上,吹散,过火,空气干燥。 12.37℃温箱放置3~4天或70℃烘烤2 h进行老化处

人类染色体与染色体病

人类染色体与染色体病

当前18页,共65页,星期日。
当前19页,共65页,星期日。
当前20页,共65页,星期日。
(2) 三体型(2 n + 1)
例:47, XX(XY),+21( 21三体) 47, XXX
❖非整倍体产生的机理
① 减数分裂染色体不分离
② 减数分裂染色体丢失
当前21页,共65页,星期日。
精(卵)原细胞
3 . 倒位 ( inv):
某一染色体中间片段发生两个 断裂,断片倒转180°后重接。
p 21
q 31
()
2号
46, XY, inv ( 2 ) ( p 21q 31 )
4.易位 (t): 一条染色体的断片接到另一条
⑴ 单方易位(转位)
染色体上
当前31页,共65页,星期日。
⑵ 相互易位(平衡易位):
(6)T带 加热后吉姆萨染色 可使染色体末端端粒特异 性深染。用以分析染色体末端有无异常。
(7)高分辨G带 应用细胞增殖同步化技术和秋水仙碱 短时间处理以及改进的显带技术。 鉴别更微小的染色 体结构畸变、更准确的进行基因定位以及肿瘤染色体研 究。
当前9页,共65页,星期日。
(二)染色体显带核型的命名
❖ 临床表现:主要有性发育不全或两性畸形 ❖ 种类:
(一) 性染色体数目畸变引起的疾病:临床案例有 先天性睾丸发育不全综合征 、 先天性卵巢发育不全综合 征 、 X三体型综合征等
(二) 性染色体结构畸变引起的疾病: 临床案例有脆 性X染色体综合征等
(三) 两性畸形 :分真两性畸形和假两性畸形
当前52页,共65页,星期日。
Ø两条染色体断裂后相互交换无着丝粒
断片后重接
q 21
q 31

染色体的形态和结构

染色体的形态和结构

第二章染色体的形态和结构第一节原核细胞和真核细胞一.原核生物和真核生物的概念真核生物的遗传物质集中在有核膜包围的细胞核中,并与特定的蛋白质相结合,经过一定的等级结构形成染色体。

原核生物的遗传物质只以裸露的核酸分子方式存在,虽与少量的蛋白质结合,但是没有真核生物染色体那样的等级结构。

习惯上,原核生物的核酸分子也称为染色体。

二、原核细胞与真核细胞的区别在生物界中,从细胞结构来看,可分为两大类:1.为真核体。

真核体包括:高等动植物、原生动物、真菌,以及一些藻类。

2.为原核体。

原核体包括:细菌、病毒以及蓝藻等。

两细胞系的区别如下:①一个典型的真核细胞体积(10um)比一个原核细胞体积(1-10um)大约十几倍甚至上万倍,因此在化学组分的总量上不同,真核细胞总量远远高于原核细胞总量。

②在真核细胞中,有一个由核膜所包围的细胞核。

在核中含有由DNA、蛋白质、RNA组成的多条染色体③原核体的染色体具有单个的DNA或RNA分子并在不同的有机体中表现不同。

④原核体细胞DNA的总量比真核体细胞的DNA总量少得多。

但是就单个DNA分子长度与该细胞大小相比却长得多。

⑤在遗传物质的交换与重组方面,真核生物通过雌雄配子融合形成合子并通过细胞分裂来完成遗传物质的交换与重组,而原核生物只是通过质粒介导来实现单向的遗传物质的交换。

⑥原核细胞mRNA的合成在许多重要方面不同于真核细胞。

⑦原核细胞mRNA常常在它的翻译刚开始之后,就开始从5’---端开始降解,即使它的合成还没有完成。

⑧细胞分裂方式不同,在原核细胞周期中,DNA复制后,紧接着便是细胞分裂,而真核细胞的细胞周期可分为几个不同的时期。

⑨由于原核细胞无溶菌体,因此不能通过吞噬和胞饮作用来进行异物的消化作用,原核细胞的电子传递部位在细胞膜,而真核细胞的电子传递部位在线粒体膜。

上述差异只是原核细胞与真核细胞在细胞水平上的差异,在分子上水平,原核细胞与真核细胞还具有明显的不同,如基因的序列组织、遗传物质的复制以及基因结构、表达方式、产物修饰、调控等方面均各有特点。

第十章-2 细胞核与染色体

第十章-2 细胞核与染色体

论文作业
查找端粒与端粒酶相关知识和研究
进展,并发表自己的看法。 查找人类基因组计划相关进展,并 发表自己的看法。 查找“基因身份证”相关进展,并 发表自己的看法。
测试(五)
1与核蛋白入核转运无关的是( )。 A NPC; B 输入蛋白; C Ran; D Rab 2 帮助组蛋白和DNA形成正常核小体的分子伴侣是( ) A Hsp60; B Hsp70; C Ran; D核质蛋白 3 组成型异染色质分布与染色体的着丝粒、端粒和次缢 痕处,呈现( )带染色。 A G ;B C; C N;D T 4硝酸银染色主要是染( )的酸性蛋白质。 A NOR; B 着丝粒; C 端粒; D 随体 5 ( )带法是对染色体末端区的特殊染色法。 A G; B C ; C N ; D T
致密纤维组分(dense fibrillar component, DFC)
颗粒区(granular component, GC)
二、核仁的功能
核糖体的发生:
前体rRNA合成
FC. DFC
加工
DFC.GC
组装
细胞质
(一)rRNA前体的转录 1、真核生物核糖体含有4种rRNA,即5.8SrRNA 、 18SrRNA、28S rRNA 、5SrRNA,其中前三种的 基因组成一个转录单位,重复串联分布在NORs。
人类的核型分析与核型模式图
(二)染色体显带技术
用特殊染色方法使染色体产生明显带型,形 成不同的染色体个性,以此作为鉴别单个染 色体和染色体组的一种手段。
能够明确鉴别一个核型中的任何一条染色体, 乃至一个易位片段。
常用的有Q带、G带、C带、N带、R带、T 带。
四、巨大染色体
(一)多线染色体 (polytene chromosome) 存在于双翅目昆虫的 幼虫组织细胞、某些植 物细胞。 来源:核内有丝分裂 “管家”基因(housekeeping gene) 位于间带, “奢侈”基因(luxury gene) 位于带上。

染色体

染色体

第二章遗传的染色体基础遗传物质脱氧核糖核酸(DNA)是以与蛋白质相结合成染色质的形式存在于间期细胞核中,它具有贮存遗传信息、准确地自我复制、转录和调控各种复杂的生命活动等功能。

通过精卵生殖细胞的形成和受精,遗传物质又以染色体的形式由亲代传给子代。

因此,生殖细胞是联系亲代与子代的桥梁,染色体是遗传物质的载体,是复杂的遗传与变异现象的细胞基础。

第一节染色质和染色体1882年Flemming将细胞核内易被碱性染料着色的物质称为染色质(chromatin)。

电镜下,间期核内的染色质呈细微纤丝状,当细胞进入分裂时期,细微纤丝状的染色质经过盘绕折叠成高度凝集的染色体(chromosome)。

因此,染色质和染色体是同一物质在细胞周期的不同时期不同形态结构表现。

一、染色质与染色体的化学组成和结构单位(一)染色质的化学组成通过对多种细胞的染色质进行分析,证明染色质的主要组成成分是DNA、组蛋白、非组蛋白和少量的RNA。

DNA和组蛋白的含量比较稳定,非组蛋白和RNA的含量常随细胞生理状态的不同而改变。

1.DNA 生物体的遗传信息就蕴含于DNA分子的核苷酸序列之中。

因此,DNA就是遗传信息的载体。

DNA的结构性质稳定,不会因细胞的分化而丢失,在同种生物的各类细胞中其含量恒定,生殖细胞中DNA的含量是体细胞的一半。

人类一个体细胞内的DNA重约7.0×10-8g,总长度约2m。

一个基因组的DNA分子大约3×109个碱基对。

真核细胞的DNA总是和大量的蛋白质结合在一起以染色质或染色体的形式存在,每条染色单体只含一个DNA分子。

这类DNA分子中含有单一序列(unique sequence)和重复序列(repetitive sequence),重复序列又按其重复程度分为中等重复序列和高度重复序列。

2.组蛋白(histone)组蛋白是染色质中富含精氨酸和赖氨酸等碱性氨基酸的蛋白质,带正电荷。

根据其所含精氨酸和赖氨酸的比例不同而分为5种类型:即H1、H2A、H2B、H3、H4。

遗传学——精选推荐

遗传学——精选推荐

遗传学遗传与进化第⼀章:遗传的细胞基础第⼆章:孟德尔遗传及扩充第三章:基因的连锁与互换规律第四章:细菌与噬菌体的遗传第五章:遗传的分⼦基础第六章:变异第七章:遗传重组第⼋章:细胞质遗传第九章:进化遗传(heredity)是指⽣物繁殖过程中,亲代与⼦代在各⽅⾯的相似现象;⽽变异(variation)⼀般指亲代与⼦代之间,以及⼦代个体之间的性状差异。

遗传与变异是⽣物界的共同特征,它们之间是辩证统⼀的。

⽣物如果没有遗传,就是产⽣了变异也不能传递下去,变异不能积累,那么变异就失去了意义;没有变异,⽣物界就失去进化的素材,遗传只能简单地重复。

所以说,遗传与变异是⽣物进化的内因,但遗传是相对的、保守的,⽽变异则是绝对的、发展的。

遗传学(Genetics)就是研究⽣物的遗传与变异的科学。

第⼀章遗传的细胞基础孟德尔定律是经典遗传学的开端。

在1990年被重新发现后,Sutton和Boveri 就注意到杂交试验中基因的⾏为跟配⼦形成和受精过程中染⾊体的⾏为完全平⾏,因⽽提出遗传因⼦在染⾊体上的假设。

⼀、真核细胞的染⾊体1、单倍体与⼆倍体每种⽣物的染⾊体数是恒定的。

多数⾼等动植物是⼆倍体,也就是说,每⼀个体细胞中有两组同样的染⾊体(有与性别直接相关的染⾊体,称为性染⾊体,可以不成对)。

亲本的每⼀个配⼦携带有⼀组染⾊体,叫做单倍体,⽤N来表⽰,这⼀组⾮同源染⾊体称为染⾊体组。

两个配⼦结合后,具有两组染⾊体,就是⼆倍体,⽤2N表⽰。

多数微⽣物的营养体是单倍体,如链孢霉的单倍体染⾊体数是7。

2、染⾊体的化学组成染⾊体主要由DNA和蛋⽩质这两类化学物质组成。

每个染⾊单体的⾻架是⼀个连续的DNA⼤分⼦。

许多蛋⽩质结合在这个DNA⾻架上,成为DNA-蛋⽩质纤丝。

⼀般认为细胞分裂中期时看到的染⾊单体就是由⼀条DNA-蛋⽩质纤丝重复折叠⽽成。

(1)染⾊体蛋⽩质染⾊体上的蛋⽩质可分为两类:⼀类成为碱性蛋⽩质即组蛋⽩。

组蛋⽩的种类和含量很恒定,在DNA-蛋⽩质纤丝的形成上其重要作⽤,即组成核⼩体结构(染⾊质的⼀级结构)。

实验二人类染色体核型分析ppt课件

实验二人类染色体核型分析ppt课件

十号染色体
十号长臂三条带
亚中着丝粒染色体
长臂上有三条深染带,近侧的 第一条深带最深
Company Logo
采 用 PP管 及 配 件: 根据给 水设计 图配置 好PP管 及配件 ,用管 件在管 材垂直 角切断 管材, 边剪边 旋转, 以保证 切口面 的圆度 ,保持 熔接部 位干净 无污物
十一号染色体
采 用 PP管 及 配 件: 根据给 水设计 图配置 好PP管 及配件 ,用管 件在管 材垂直 角切断 管材, 边剪边 旋转, 以保证 切口面 的圆度 ,保持 熔接部 位干净 无污物
实验目的
❖熟悉人类染色体G显带的带型特征 ❖初步掌握G显带核型分析的基本方法
Company Logo
采 用 PP管 及 配 件: 根据给 水设计 图配置 好PP管 及配件 ,用管 件在管 材垂直 角切断 管材, 边剪边 旋转, 以保证 切口面 的圆度 ,保持 熔接部 位干净 无污物
Company Logo
采 用 PP管 及 配 件: 根据给 水设计 图配置 好PP管 及配件 ,用管 件在管 材垂直 角切断 管材, 边剪边 旋转, 以保证 切口面 的圆度 ,保持 熔接部 位干净 无污物
五黑腰
五号染色体
亚中着丝粒染色体 长臂上有四条深染带,其中 间三条深带常集中在一起
Company Logo
染色体观察及核型分析
Company Logo
采 用 PP管 及 配 件: 根据给 水设计 图配置 好PP管 及配件 ,用管 件在管 材垂直 角切断 管材, 边剪边 旋转, 以保证 切口面 的圆度 ,保持 熔接部 位干净炮五黑腰。 六号短臂小白脸,七上八下九苗条。 十号长臂三条带,十一低来十二高。 十三十四十五号,三个一样一二一。 十六长臂近点深,十七远端带脚镣。 十八人小肚皮大,十九中间一点腰。 二十头重脚底轻,二十一象葫芦瓢。 二十二一点Y黑腰,X pq 一肩挑。

医学遗传学 第二章 遗传的细胞学基础 知识点

医学遗传学 第二章 遗传的细胞学基础 知识点

第二章遗传的细胞学基础染色质(chromatin):间期细胞核内能被碱性染料染色的物质。

由DNA,组蛋白,非组蛋白及少量rna组成,是间期细胞遗传物质存在的形式。

染色质有利于遗传信息的复制和表达。

染色体(chromosome):在有丝分裂或减数分裂过程中,由染色质聚缩而成的棒状结构,是DNA螺旋化的的最高形式。

染色体有利于遗传物质的平均分配。

染色质的类型:常染色质:细胞间期核内纤维折叠盘曲程度小,分散度大,染色较浅且具有转录活性。

异染色质:细胞间期核内纤维折叠盘曲程度紧密,分散度小,呈凝集状态,染色较深且不具有转录活性。

异染色质包括:结构异染色质:指各类细胞的全部发育过程中都处于凝缩状态。

大多数位于着丝粒区、端粒区、次缢痕及y染色体长臂远端三分之二区段,一般不具有转录活性。

兼性异染色质:只在某些特定细胞类型或一定发育阶段,细胞原来的常染色质凝缩并丧失基因转录活性变为异染色质。

性染色质:是x/y染色体某一区段的DNA形成的特殊染色结构。

一定是异染色质。

x染色质:也叫x小体或Barr小体。

Lyon假说:实质:失活的x染色体。

特点:随机,永久,完全失活。

x染色质的数目等于x染色体的数目-1。

x染色体失活的意义--剂量补偿作用。

女性x连锁基因杂合子表达异常。

女性嵌合体。

后世补充:失活的X染色体并非整条,结构异常的X染色体优先失活。

y染色质:由y染色体长臂远端三分之二区段在男性间期细胞核中所形成的异染色质。

y染色体的数目等于y染色质的数目。

人类染色体的形态结构:着丝粒(主缢痕),长臂q,短臂p,端粒,副缢痕,随体。

人类染色体的类型:中央着丝粒,亚中央着丝粒,近端着丝粒。

核型:一个体细胞中的全部染色体按其大小,形态特征顺序排列所构成的图像。

核型分析:将待测细胞的核型进行染色体数目,形态特征的分析。

确定其是否与正常核型完全一致。

核型的记录格式(非显带):染色体总数+(,)+性染色体构成。

例如46,xx。

丹佛体制分组:A-G(形态依次减小)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

& 芥子喹吖因,碱性染料,是被第一个用于染色体显带的物质 & T.Caspersson 和同事发展起来的技术 & 芥子喹吖因染色后,在荧光下观察会看到明暗条带 & 明带主要是富含AT的区域,暗带是富含GC的区域 & 芥子喹吖因在DNA上的结合主要是通过插入或者结合 在G的烷基上 & Q带的产生主要是因为结合在不同区域的芥子喹吖因 的荧光激发效率不同 & 结合在AT富含区域的芥子喹吖 富含区域的芥子喹吖因会更比结合在 富含区域的芥子喹吖 GC富含区域的更亮

MetaphaseMetaphase- FISH
1 3
2 4
5
6
8 7 8
• 荧光原位杂交 (Fluorescence in situ hybridization FISH)在原有的 放射性原位杂交技术的基础上发展起来的一种非放射性 原位杂交技术。 • 应用:动植物基因组结构研究、染色体精细结构变异分 析、病毒感染分析、人类产前诊断、肿瘤遗传学和基因 组进化研究待许多领域。 • 原理:用已知的标记的单链核酸为探针,按照碱基互补 的原则,与待检材料中未知的单链核酸进行特异性结合, 形成可被检测的杂交双链核酸。 • 优点:快速、检测信号强、杂交特异性高和可以多重染 色。
第二章 核型与染色体显带 Karyotype and bands
Hale Waihona Puke 一、核型与染色体显带对人类到底有多少条染色体这样的问题一直争论到1956年才 年才 对人类到底有多少条染色体这样的问题一直争论到 得以确认,主要归功于50年代以后逐步发展起来的低渗处理 年代以后逐步发展起来的低渗处理, 得以确认,主要归功于 年代以后逐步发展起来的低渗处理, 压片技术以及秋水仙处理和细胞培养技术 以及秋水仙处理 技术。 压片技术以及秋水仙处理和细胞培养技术。 二十世纪60年代末至70年代发展起来的各种染色体分带技 二十世纪60年代末至70年代发展起来的各种染色体分带技 60年代末至70年代发展起来的各种 使染色体的研究进入了一个黄金时代。为人类遗传病的鉴 术,使染色体的研究进入了一个黄金时代。为人类遗传病的鉴 物种的亲缘关系与进化研究、遗传育种等方面提供了重要 亲缘关系与进化研究 定,物种的亲缘关系与进化研究、遗传育种等方面提供了重要 的依据。 的依据。
– 可观察到基因组的全部染色体 – 适合于当怀疑有染色体异常,可作为一般的染 色体异常的检测工具。
• 缺点
– 只能检测较大的结构异常
• ( one band = 6mb of DNA ~ 150 genes ).
– 需要大量的劳动并高度依赖操作者的经验和技术
二、荧光原位杂交
Fluorescence in situ hybridization (FISH)
Genomic Comparative Hybridization(CGH)
Fluorescent molecular tech. that identifies DNA gains,losses,and amplifications (mapping to)metaphase chromosomes. Based on quantitative two-color FISH (FITC for tumor DNA and TRITC for the normal DNA).
(臂的末端、着丝粒 和某些带)界标之间 为区
• 区 region(区内有
连续排列的带,作为界 标的带命名为远端区的 第1带)
• 带 band(带的命名
由连续的符号命名)
1p35:1号染色体,
短臂,第三区,第5带
染色体显带技术的应用
1,染色体变异 2,基因定位
传统核型分析技术的优势和缺点
• 优势
可以提高染色体分析的敏感性,特 异性和精度 Increased the sensitivity , specificity ,and resolution of chromosome analysis. • 荧光标记的DNA探针约40kb,用 于检测基因和染色体的异常其精度 是常规遗传学无法比的。 Fluorescently labeled DNA probe ~40 kb.to detect or confirm gene or chromosome abnormalities that are beyond the resolution of routine cytogenetics. • Metaphase FISH • Interphase FISH
Spectral Karyotyping (SKY) and Multiple Fluorescence In Situ Hybridization(M-FISH)
多色FISH
Multiple Fluorescence In Situ Hybridization(M-FISH) • FISH一个最大的特点是可利用不同颜色的 FISH一个最大的特点是可利用不同颜色的 一个最大的特点是可利用不同颜色 荧光素标记不同的探针 不同的探针, 荧光素标记不同的探针,同时对一张制片 进行杂交,从而对不同的靶DNA 进行杂交,从而对不同的靶DNA 同时进行 定位分析。但是, 定位分析。但是,由于不同荧光素之间的 光谱重叠,一般只限于同时用三种 三种不同颜 光谱重叠,一般只限于同时用三种不同颜 色进行标记。 色进行标记。
• 染色体(不同颜色的探针)
FISH的优点
• • • • • 精度更好(L ~ 2mb). 可应用于分裂和不分裂期的细胞 技术简单 多探针杂交,可检测易位 可以鉴定一系列突变
FISH的缺点
• • • • 不能检测小的突变 不能检测单亲二倍体 不能检测倒位 整个染色体区域的探针还不能商业化
光谱核型分析和多色FISH
SKY-cont.
Advantages:
• Mapping of chromosomal breakpoints. • Detection of subtle translocations. • Identification of marker chromosomes,homogeneously staining regions,and double minute chromosomes. • Characterization of complex rearrangements.
解决的办法
• 组合标记技术:一个探针同时利用一种或 组合标记技术: 几种不同颜色的荧光素标记, 几种不同颜色的荧光素标记,原则上可标 记的探针数2n -1。 记的探针数2 • 比例标记FISH:用不同比例的各种荧光素 比例标记FISH: FISH 对每个探针进行标记,组合标记FISH的容 对每个探针进行标记,组合标记FISH的容 FISH 量将进一步增加,并能进行定量分析。 量将进一步增加,并能进行定量分析。
SKY是 M-FISH一种 SKY采用干涉成像技术。 是 一种, 采用干涉成像技术。 一种 采用干涉成像技术 公司在Thomas Ried的合作下成功进 是1995年ASI公司在 年 公司在 的合作下成功进 行的实验。 行的实验。 SKY是一种光谱影像分析方法,它运用了光 是一种光谱影像分析方法,它运用了光 是一种光谱影像分析方法 谱干涉仪及傅立叶变换, 谱干涉仪及傅立叶变换,将图像中每一像素做光 谱分析后,在做重新显示, 谱分析后,在做重新显示,增强了对多种荧光分 子的辨别。其结果分显色图像和分色图象两部分, 子的辨别。其结果分显色图像和分色图象两部分, 前者可用于图象获取后即可评估所有探针的杂交 质量;后者用特定的SKY软件,参照每一条染色 软件, 质量;后者用特定的 软件 体特有的光谱信息特征进行分析。 体特有的光谱信息特征进行分析。
细胞核能被染料染成深色--染色质 染色体的行为与孟德尔的规律表现一致--遗传物质 遗传物质包括核酸和蛋白:噬菌体侵染实验,肺炎双球菌的转化 实验 一个物种到底有多少条染色体????
Karyotype preparation
Q带:喹丫因染色后,紫外照射下的明暗带(富含AT的明带, 富含GC的暗带); G带:Giemsa染料染色后所呈现的染色体区带;(AT区是深 色) R带:是中期染色体经碱性磷酸盐处理,丫啶橙或Giemsa染 色后所呈现的带型,一般与G带正好相反; C C带:显示着丝粒结构异染色质及其它染色体区段的异染色质。 T带:是染色体端粒部位经丫啶橙染色后呈现的区带; N带:Ag-As染色,主要染核仁组织者区域的酸性蛋白。 1975年建立了染色体高分辨显带技术。 染色体微切割和分子克隆技术。
• BSG(氢氧化钡/盐/Giemsa)方法被认为 是标准的C显带方法 • C显带的机制可能再蛋白而不是DNA C DNA • 在C带上的蛋白可能对Giemsa有更强的亲 和性
^ ^ ^ ^
更常用于鉴定昆虫和植物的染色体 鉴定减数分裂染色体 终变期时用两个着丝粒的位置鉴定二价体 用于亲子鉴定和基因图谱
Disadvantages:
• Very expensive equipments. • The technique is labor intensive. • Dose not detect structural rearrangements within a single chromosome. • Low resolution (up to 15 mb ). • Specific, not a screening method.
NonNon-Banded Karyotype
Normal Karyotype
Ideograms
^ 只要是能证明结构异染色质(constitutive heterochromatin) 只要是能证明结构异染色质( 结构异染色质 ) 的方法都称为C带方法 的方法都称为 带方法 ^ 用于鉴定着丝粒 异染色质 用于鉴定着丝粒 着丝粒/异染色质 只要是能证明C带 ^ 异染色质区 * 包含重复序列 * 高度凝集的染色质纤维 ^ 通常会用酸、碱和高温处理 通常会用酸、 ^ 细胞DNA在这些处理下会变性 细胞 在这些处理下会变性 ^ 高度重复的 高度重复的DNA,例如结构异染色质 ,例如结构异染色质DNA会在相应的条件下 会在相应的条件下 复性,但单拷贝的DNA不会复性,这样会创造不同的染色条件。 不会复性, 复性,但单拷贝的 不会复性 这样会创造不同的染色条件。
相关文档
最新文档