光的受激辐射放大

合集下载

激光镭射原理

激光镭射原理

激光镭射原理
激光镭射(Laser)是一种特殊的光源,具有高亮度、高单色性和高相干性等特点。

激光镭射的产生原理主要是通过受激辐射和光放大来实现的。

在激光镭射的产生过程中,需要一个激活介质来提供辐射能,使得原子或分子处于受激态,然后通过光放大的过程来放大光子,最终产生激光。

激光镭射的产生过程主要包括三个步骤,激活、放大和输出。

首先是激活过程,激活介质受到外部能量的激发,使得原子或分子处于受激态。

在受激态下,原子或分子的能级结构发生变化,能级间的电子跃迁将产生辐射。

接着是放大过程,通过光放大器将受激辐射放大,形成一束相干光。

最后是输出过程,将放大后的光输出为激光。

激光镭射的产生原理需要满足三个条件,首先是激活介质必须具有受激辐射的
能级结构,能够吸收外部能量并处于受激态;其次是需要一个外部能源来提供激活介质的激发能量,常见的外部能源包括光、电、化学和核能等;最后是需要一个光学共振腔来放大激活介质发出的光,形成激光输出。

激光镭射广泛应用于医疗、通信、制造等领域。

在医疗领域,激光镭射被用于
手术刀、激光治疗仪等医疗设备中,具有精准、无创伤的特点。

在通信领域,激光镭射被用于光纤通信、激光雷达等设备中,具有高速、大容量的传输优势。

在制造领域,激光镭射被用于激光切割、激光焊接等工艺中,具有高效、精密的加工特点。

总之,激光镭射的产生原理是通过受激辐射和光放大来实现的,需要满足一定
的条件才能产生激光。

激光镭射在医疗、通信、制造等领域有着广泛的应用前景,将会在未来发展中发挥越来越重要的作用。

光学复习填空和简答

光学复习填空和简答

简 答 题1.光的干涉分哪几类答:分波面干涉、分振幅干涉和分振动面干涉三种;2.你对“激光”的认识答:“激光”是光受激辐射放大的简称,英文名称为“laser ”;它通过辐射的受激发射而实现光放大;它的特点是单色性佳、亮度高、相干性强、方向性好等;3.你对“迈氏干涉仪”认识答:原理:分振幅干涉;构造:两块相互垂直的平面反射镜、分光板和补偿板、光源、透镜、接收器等; 主要公式:2λN h =∆;4.光的电磁理论的要点是什么答:光是某一波段的电磁波,其速度就是电磁波的传播速度;5.光的相干条件是什么答:频率相同 、振动方向相同、相位差恒定;6. “光程”答:折射率和几何路程的乘积;7. “干涉相长” “干涉相消”答:“干涉相长”:对应于相位差为 的偶数倍数的或者光程差等于半波长的偶数倍数的那些点,两波叠加后的强度为最大值;“干涉相消”:对应于相位差为 的奇数倍数的或者光程差等于半波长的奇数倍数的那些点,两波叠加后的强度为最小值;8.杨氏双缝干涉实验中亮、暗条纹的位置及间距如何确定 答:亮纹:dr j y λ0= ,2,1,0±±=j 暗纹:d r j y λ0)12(+= ,2,1,0±±=j 条纹间距:dr y λ0=∆ 9.影响干涉条纹可见度大小的主要因素是什么答: 影响干涉条纹可见度大小的主要因素是振幅比;10.计算干涉条纹可见度大小的常用公式有哪几个答:计算干涉条纹可见度大小的常用公式有:11.光源的非单色性对干涉条纹有什么影响答:会使干涉条纹的可见度下降;12.光源的线度对干涉条纹有什么影响答:会使总的干涉图样模糊不清,甚至会使干涉条纹的可见度降为零;13.在什么情况下哪种光有半波损失答:在光从折射率小的光疏介质向折射率大的光密介质表面入射时,反射过程中反射光有半波损失;14.何为“等倾干涉”何为“等厚干涉”答:凡入射角相同的就形成同一条纹,即同一干涉条纹上的各点都具有同一的倾角——等倾干涉条纹;对应于每一直线条纹的薄膜厚度是相等的——等厚干涉条纹;15.迈克耳逊干涉仪的基本原理和主要计算公式是什么答:迈克耳孙干涉仪的基本原理是分振幅干涉;计算公式:2λN h =∆或Nh ∆=2λ 16.法布里-珀罗干涉仪的基本原理是什么答:法布里-珀罗干涉仪的基本原理是分振幅多光束干涉;17.试比较法氏干涉仪与迈氏干涉仪的异同;答:⑴法氏干涉仪是振幅急剧递减的多光束干涉,而迈氏是等振幅的双光束干涉;⑵两者的透射光的光程差表达式完全相同,条纹间距、径向分布很相似; ⑶法氏干涉仪较迈氏的最大优点:ρ越大,干涉条纹越清晰和明锐;18.干涉现象有哪些重要应用答:检查光学元件的表面、镀膜光学元件、测量长度的微小改变等;19. “劈尖”结构和原理答:原理:等厚干涉装置:取两片洁净的显微镜载玻片叠放在一起,捏紧两片的一端,另一端夹入一薄片,就构成一个劈形的空气薄膜;条纹:平行于相交棱边的等距条纹;公式:正入射222202λλδj d n =+= 2,1,0±±=j 亮纹 2)12(2202λλδ+=+=j d n 2,1,0±±=j 暗纹应用:光学元件的镀膜,测量长度的微小改变,检查光学元件的表面;20. “牛顿环”结构和原理答:原理:等厚干涉;装置:在平板玻璃上放一个凸透镜,两者之间会形成一空气薄层; 条纹:以接触点为圆心的同心圆;公式:2222λλδj R r =+= 2,1,0±±=j 亮纹 2)12(22λλδ+=+=j R r 2,1,0±±=j 暗纹 应用;测量长度的微小改变,检查光学元件的表面;21.将杨氏双孔干涉装置分别作如下单项变化,屏幕上干涉条纹有何改变1 将双孔间距d变小;答:条纹间距变宽,零级位置不变,可见度因干涉孔径角φ变小而变大了;2 将屏幕远离双孔屏;答:条纹变宽,零级位置不变,光强变弱了;3 将钠光灯改变为氦氖激光;答:条纹变宽,零级位置不变,黄条纹变成红条纹;4 将单孔S沿轴向双孔屏靠近;答:条纹间距不变,光强变强,但可见度因干涉孔径角φ变大而变小;5 将整个装置浸入水中;答:条纹间距将为原有的3/4,可见度因波长变短而变小;6 将单孔S沿横向向上作小位移;答:整个干涉条纹区向下移,干涉条纹间距和可见度均不变;7 将双孔屏沿横向向上作小位移;答:整个干涉条纹区向上移,干涉条纹间距和可见度不变;8 将单孔变大;答:光强变大,可见度变小,零级位置不变,干涉条纹间距不变;9 将双孔中的一个孔的直径增大到原来的两倍;答:孔S2的面积是孔S1的4倍,表明S2在屏上形成振幅为4A的光波,S1则在屏上形成振幅A的光波.屏上同相位处最大光强:I大=4A + A2 = 25A2,是未加大S2时的25/4倍;屏上反相位处的最小光强:I小=4A - A2 = 9A2,也不是原有的零.可见度由原有的 1 下降为25 - 9/25 + 9= .22.海岸边陡峭壁上的雷达站能发现来自空中的敌机,而发现不了沿海面低空飞来的飞机,这是什么原因答:海岸边陡峭壁上的雷达和海面类似洛埃镜装置,沿海面低空飞行的飞机始终处在“洛埃镜”装置的暗点上,因而不能被雷达发现;23.照相机镜头表面为何呈现蓝紫色答:人眼对可见光中不同色的光反应的灵敏度各不一样,对绿光反应最灵敏.而照相底片没有这个性质,因此,拍照出来景物照片的颜色和人眼直接观察的有差别.为了减小这个差别,在照相机镜上镀上一层增透膜,以便使绿颜色的光能量更多地进入镜头,使照片更加接近实际景物的颜色.绿颜色的光增透,反射光中加强的光是它的互补色,因此看上去呈现蓝紫色; 24.玻璃窗也是空气中表面平行的介质,为什么我们看不到玻璃窗的干涉条纹答:白光波列长度仅有微米量级,照射厚度为几毫米的窗玻璃时,则因时间相干性太差 ,导致可见度为零,看不到干涉条纹;25.用细铁丝围成一圆框,在肥皂水中蘸一下,然后使圆框平面处于竖直位置,在室内从反射的方向观察皂膜.开始时看到一片均匀亮度,然后上部开始出现彩色横带,继而彩色横带逐渐向下延伸,遍布整个膜面,且上部下部彩色不同;然后看到彩带越来越宽,整个膜面呈现灰暗色,最后就破裂了,试解释之.答:我们看到的是肥皂液膜对白光的反射相干光.开始时液膜很厚,对白光中很多波长都有反射干涉加强现象,故皂液膜呈现不带色彩的一片白光亮度.然后膜上部最先变薄,上部呈现色彩横带.皂液下流,薄的部位由上向下延伸,色彩区变宽,遍及全膜.上下彩色不同说明膜厚不等,上薄下厚.彩带变宽说明楔形皂膜上部楔角越来越小.呈现一片灰暗色的原因是整个液膜厚度已接近于零,暗光强来于半波突变、k=的原因,这也正是破裂前的现象;26.什么是光的衍射答:光绕过障碍物偏离直线传播而进入几何阴影,并在屏幕上出现光强分布不均匀的现象;27.明显产生衍射现象的条件是什么答:障碍物的线度和光的波长可以比拟;28.惠更斯-菲涅耳原理是怎样表述答:波面 S 上每个面积微元dS都可以看成新的波源,它们均发出次波;波面前方空间某一点 P 的振动可以由 S 面上所有面积元所发出的次波在该点叠加后的合振幅来表示;29.衍射分哪几类答:衍射分菲涅耳衍射和夫琅禾费衍射两大类;30.什么叫半波带答:由任何相邻两带的对应部分所发出的次波到达P点时的光程差都为半个波长即相位相反而分成的环形带;31.为什么圆屏几何影子的中心永远有光答:由于圆屏衍射;32.夫琅禾费单缝衍射有哪些明显特征答:中央有一条特别明亮的亮条纹,两侧排列着一些强度较小的亮条纹,相邻的亮条纹之间有一条暗条纹;两侧的亮条纹是等宽的,而中央亮条纹的宽度为其他亮条纹的两倍;33.什么是爱里斑答:在夫琅禾费圆孔衍射图样的中央,光强占总光强的84%的亮斑;34.爱里斑的半角宽度为多少答:艾里斑的半角宽度为:35.爱里斑的线半径怎样计算答:艾里斑的线半径为:36.干涉和衍射有什么关系答:干涉和衍射本质都是波的相干叠加的结果,只是参与相干叠加的对象有所区别;干涉是有限几束光的叠加,而衍射是无穷多次波的叠加;前者是粗略的,后者是精确的;其次,出现的干涉和衍射的图样都是明暗相间的条纹,但在光强分布上有间距均匀和相对集中的不同;最后,在处理问题的方法上;从物理角度看,考虑叠加是的中心问题都是相位差;从数学角度来看,相干叠加的矢量图有干涉的折线过渡到衍射的连续弧线,由有限的求和过渡到积分运算;总之,干涉和衍射是本质的统一,但在形成条件,分布规律的数学处理方法上略有不同而已;37.光栅的光谱线在什么情况下缺级在什么情况下重叠答:当 d 是 b 的倍数时,光栅的光谱线发生缺级;光栅的光谱线发生重叠的条件是:2211λλj j = ;38.“物像之间的等光程性”是哪个原理的推论答:“物像之间的等光程性”是“费马原理”的推论;39.最简单的理想光学系统是什么光学元件答:最简单的理想光学系统是一个平面反射镜;40.什么是全反射答:对光线只有反射而无折射的现象称为全反射;41.光学纤维的工作原理是什么其数值孔径通常怎样表示答:光学纤维的工作原理是全反射,其数值孔径通常用A N .表示,计算公式为:42.棱镜主要有哪些应用答: 棱镜主要用于制作折射计及利用全反射棱镜变更方向等;43.几何光学的符号法则是如何规定的答:几何光学的符号法则的规定是:线段:光线和主轴交点的位置都从顶点算起,凡在顶点右方者,其间距离的数值为正,凡在顶点左方者,其间距离的数值为负.物点或像点至主抽的距离,在主轴上方为正,在下方为负.角度:光线方向的倾斜角度部从主轴或球面法线算起,并取小于π/2的角度.由主轴或球面法线转向有关光线时,若沿顺时针方向转,则该角度的数值为正;若沿逆时针方向转动时,则该角度的数值为负在考虑角度的符号时,不必考虑组成该角度两边的线段的符号.标定:在图中出现的长度和角度几何量只用正值.例如s表示的某线段值是负的,则应用-s来表示该线值的几何长度.44.近轴光线条件下球面反射、折射的物像公式答:近轴光线条件下球面反射、折射的物像公式分别为:45.共轴光具组答:多个球面的曲率中心都在同一直线上的系统称为共轴光具组;46.近轴条件下薄透镜的成像公式及横向放大率如何表示答:近轴条件下薄透镜的成像公式及横向放大率分别为:47.薄透镜的会聚和发散性质主要与什么因素有关答:薄透镜的会聚和发散性质主要与透镜的形状及两侧的折射率n有关; 48.近轴物点近轴光线成像的条件是什么答:近轴物点近轴光线成像的条件是物像的等光程性;49.什么叫单心光束理想成像的条件是什么答:凡具有单个顶点的光束都叫单心光束;理想成像的条件:光束的单心性经过光学系统后没有改变或者说是在近轴光线,近轴物点等条件;50.在理想光具组里主要研究哪些基点和基面答:在理想光具组里主要研究的基点和基面是:焦点和焦平面、主点和主平面、节点和节平面;51.光学仪器的本领主要有哪几个答:光学仪器的本领主要有放大本领、聚光本领和分辨本领;52.近视眼、老花眼需要配什么样的透镜加以校正答:近视眼需要配凹透镜、老花眼需要配凸透镜加以校正;53.人眼的明视距离为多少答:人眼的明视距离为25cm ;54.助视仪器放大本领的一般表达式是什么答:助视仪器放大本领的一般表达式是:55.常用的目镜有哪两种答:常用的目镜有惠更斯目镜和冉斯登目镜;56.显微镜的放大本领等于哪两个物理量的乘积答:显微镜的放大本领等于物镜的横向放大率和目镜放大本领的乘积; 57.开普勒望远镜与伽利略望远镜有哪些异同答:开普勒望远镜与伽利略望远镜的共同点是:它们的物镜和目镜所组成的复合光具组的光学间隔都等于零;物镜的横向放大率β都小于1 ;二者的不同点是:①开氏的视场较大,而伽氏的视场较小;②开氏的目镜物方焦平面上可放叉丝或刻度尺,伽氏则不能;③开氏的镜筒较长,而伽氏的镜筒较短;58.实现激光扩束的方法通常有哪些答:实现激光扩束的方法通常是将望远镜倒过来使用;也可用显微镜的物镜;甚至有时可用短焦距的凸面或凹面反射镜;有时也可用毛玻璃等; 59.什么是有效光阑如何寻找答:在所有各光阑中,限制入射光束最起作用的光阑称为有效光阑孔径光阑;寻找有效光阑的方法是:先求出每一个给定光阑或透镜边缘由其前面向着物空间方向那一部分光具组所成的像,找出所有这些像和第一个透镜边缘对指定的物点所张的角,在这些张角中找出最小的那一个,和这最小的张角所对应的光阑就是对于该物点的有效光阑;60.若光具组仅是一个单独的薄透镜,则有效光阑、入射光瞳和出射光瞳的位置如何确定它们是否与物点的位置有关答:若光具组仅是一个单独的薄透镜,则有效光阑、入射光瞳和出射光瞳都与透镜的边缘重合,而与物点的位置无关;它们是否与物点的位置有关61.什么是发光强度它的单位及代号是什么答:发光强度是表征光源在一定方向范围内发出的光通量的空间分布的物理量,在数值上等于点光源在单位立体角中发出的光通量;在国际单位制中,发光强度的单位是坎德拉candela, 代号是坎cd; 62.显微镜的聚光本领通常用什么描述n sin描述;答:显微镜的聚光本领通常用数值孔径u63.望远镜的聚光本领通常用什么来衡量答:望远镜的聚光本领通常用相对孔径的倒数——焦比来衡量;64.照相机的聚光本领通常用什么来衡量答:照相机的聚光本领通常用相对孔径的倒数——光圈数来衡量;65.像差分为哪几类它们又分别分哪几种答:像差分单色像差和色差两大类;单色像差又分球面像差、彗形像差、像散、像面弯曲和畸变五种;色差又分纵向色差位置色差和横向色差放大率色差两种;66.两个像点刚好能分辨开的瑞利判据是如何表述的答:瑞利判据是:当一个中央亮斑的最大值恰好和另一个中央亮斑的最小值位置相重合时,两个像点刚好能分辨开;67.望远镜物镜的分辨极限通常以什么表示答:望远镜物镜的分辨极限通常以物镜焦平面上刚刚能够分辨出的两个像点之间的直线距离来表示;68.显微镜物镜的分辨极限通常以什么表示答:显微镜物镜的分辨极限通常以被观察的物面上刚好能够分辨出的两物点之间的直线距离来表示;69.棱镜光谱仪的角色散率、线色散率和色分辨本领的数学表达式为何答:棱镜光谱仪的角色散率、线色散率和色分辨本领的数学表达式分别为:λd dn A n A D ⋅-=2sin 12sin 222;λδd dn f b L '=;λδλλd dn p =∆= 70.光栅光谱仪的角色散率、线色散率和色分辨本领的数学表达式为何答:光栅光谱仪的角色散率、线色散率和色分辨本领的数学表达式分别为:71.区别横波与纵波的最明显标志是什么答:区别横波与纵波的最明显标志是偏振;72.什么是偏振答:偏振是振动方向对于传播方向的不对称性;73.光有几种可能的偏振态答:光有五种可能的偏振态:自然光、线偏振光、部分偏振光、椭圆偏振光和圆偏振光;74.你能说出几种获得线偏振光的方法答:获得线偏振光的方法有:偏振片、反射起偏、透射起偏、尼科耳棱镜、傅科棱镜、沃拉斯顿棱镜以及波片等;75.偏振度的数学表达式为何答:偏振度的数学表达式为:76.马吕斯定律和布儒斯特定律的数学表达式为何答:马吕斯定律和布儒斯特定律的数学表达式分别为:77.线偏振光的数学表达式为何答:线偏振光的数学表达式为:78.椭圆偏振光的数学表达式为何答:椭圆偏振光的数学表达式为:79.圆偏振光的数学表达式为何答:圆偏振光的数学表达式为:80.什么是双折射答:同一束入射光折射后分成两束的现象称为双折射;81.如何计算空气中 o光和e光的相对光强答:空气中 o光和e光的相对光强的数学表达式为:82.常用的波片有哪几种各有哪些主要应用答:常用的波片及主要应用有:/4片:能把圆偏振光→线偏振光;也能使线偏振光→椭圆、圆、线偏振光; /2片:能把左旋圆偏振光→右旋圆偏振光;线偏光⊥入射→线偏振光,但θ→2θ.片:入射线偏振光→线偏振光;83.怎样检验线偏振光答:在其光路上插入一个偏振片,绕其传播方向旋转,发现有两次消光和两次光强最强;84.如何区分圆偏振光和自然光答:在光路上先加一块/4波片,有两次消光和两次光强最大的是圆偏振光,否则为自然光;85.如何区分椭圆偏振光和部分偏振光答:在光路上先加一块/4波片,有两次消光和两次光强最大的是椭圆偏振光,否则为部分偏振光;86.如何区分圆偏振光和自然答:提示:把一个 /4片和一个偏振片前后放置在光路中,迎着光的传播方向旋转偏振片,在旋转一周的过程中,若光强无变化则是自然光;若光强有变化且出现两次消光,则该束光便是圆偏振光;87.实现偏振光的干涉至少需要哪几个元件它们分别起什么作用答:至少需要两个偏振片和一个波片;第一个偏振片:把自然光转变为线偏振光;波片:分解光束和相位延迟作用,将入射的线偏振光分解成振动方向垂直的两束线偏振光;第二个偏振片:把两束光的振动引导到同方向上,使产生干涉;88.线偏振光干涉强度分布的数学表达式为何答:线偏振光干涉强度分布的数学表达式为:89.尼科耳棱镜能够从自然光中获得线偏振光;其主要光学原理是什么答: 双折射,全反射;90.光通过物质时,它的传播情况会发生哪些变化这些变化会表现出哪些现象答:1光通过物质时,它的传播情况会发生两种变化:一是,光束愈深入物质,强度将愈减弱;二是,光在物质中传播的速度将小于真空中的速度,且随频率而变化;2这些变化会表现出光的吸收、散射和色散三种现象;91.光的吸收、散射和色散三种现象都是由什么引起的实质上是由什么引起的答:1光的吸收、散射和色散三种现象都是由光和物质的相互作用引起的;2实质上是由光和原子中的电子相互作用引起的;92.光的吸收有哪两种答:光的吸收有一般吸收和选择吸收两种;93.朗伯定律和比尔定律的数学表达式为何答:朗伯定律和比尔定律的数学表达式分别为:94.什么是瑞利散射瑞利定律如何表述答:1线度小于光的波长的微粒对入射光的散射现象通常称为瑞利散射;2瑞利定律表述为:散射光强度与波长的四次方成反比,即:I = f - 495.通过在照相机镜头前加偏光镜,可以使得所拍摄的蓝天中的白云显得更加鲜明和富有层次,试分析如何调整偏光镜的方位答:晴朗天空的背景光应为瑞利散射光,是平面偏振光,且偏振方向相对于相机物镜光轴的竖直方向;白云应为米氏散射光,是自然光;因此,偏光镜透振方向应调整至水平方位,即可以部分减弱天空背景光影响;96.试分析白云和蓝天的光学现象;答:白云是小液珠或小冰晶组成,他们的颗粒大于可见光波长,因此发生廷德尔散射;颜色为白色;大气的微粒小于可见光波长,因此,大气发生的散射为瑞利散射;瑞利散射的散射光强度与波长的四次方成反比,因此,蓝光散射较重,大气成蓝色;97.黑体的斯忒藩—玻尔兹曼公式、维恩位移公式为何答:黑体的斯忒藩—玻尔兹曼公式、维恩位移公式分别为:98. 1900年,普朗克在对黑体辐射的研究中做了哪些假设答:普朗克假设:①器壁振子的能量不能连续变化,而只能够处于某些特殊状态,这些状态的能量分立值为0,E0 ,2 E,3 E,……,n E其中n是整数;这个允许变化的最小能量单位 E称为能量子,或简称量子;②能量子的能量必须与频率成正比,即 E= h ,h 是一个与频率无关、也与辐射性质无关的普适常量 ,叫做普朗克常量;年,爱因斯坦在对光电效应的研究中做了什么假设答:爱因斯坦作了光子假设,即:光在传播过程中具有波动的特性,而在光和物质相互作用的过程中,光能量是集中在一些叫光量子光子的粒子上;产生光电效应的光是光子流,单个光子的能量与频率成正比,即E=h100.什么是康普顿效应答:波长改变的散射称为康普顿效应;101.什么是激光答:激光是光受激辐射放大的简称,它是由激光器产生的,波长在1mm以下的相干电磁辐射,它由物质的粒子受激发射放大产生,具有良好的单色性、相干性和方向性;102.激光的工作原理是什么它主要有哪些特点答:激光的工作原理是通过辐射的受激发射而实现光放大;它的主要特点有:单色性佳、亮度高、相干性强、方向性好等;103.什么是全息照相它的基本原理是什么答:既能记录光波振幅的信息,又能记录光波相位信息的摄影称为全息照相;它的基本原理是双光束干涉;104.全息照相主要有哪些特点答:全息照相主要特点有:①它是一个十分逼真的立体像;它和观察到的实物完全一样,具有相同的视觉效应;②可以把全息照片分成若干小块,每一块都可以完整地再现原来的物像孙悟空似的分身术;②同一张底片上,经过多次曝光后,可以重叠许多像,而且每一个像又能不受其他像的干扰而单独地显示出来,即一张底板能同时记录许多景物;④全息照片易于复制等;填 空 题1.光的相干条件为频率相同、振动方向相同、相位差恒定;2.衍射可分为菲涅耳衍射、夫琅禾费衍射两大类;3.望远镜放大本领的数学表达式为21f f M ''-= 4.清晨日出时看到太阳呈红色,这是由于光的散射的缘故;5.表示一切物质都具有波粒二象性的数学表达式为λυhP h E ==,;6.通常把既能记录光波振幅的信息,又能记录光波相位信息的摄影称为全息照相;7.可见光在电磁波谱中只占很小的一部分,其波长范围约是 390~760nm;8.显微镜放大本领的数学表达式为2125f f l M '⋅'-≈; 9.偏振光可以具有不同的偏振态,这些偏振状态包括自然光、平面偏振光、部分偏振光、圆偏振光、椭圆偏振光;10.费马原理是指光在两定点之间传播时其光程为极值,即沿光程极大,极小或恒定值传播;11.光的衍射条件是障碍物的限度和波长可比拟;12.迈克尔逊干涉仪的反射镜M 2移动0.25mm 时,看到条纹移动的数目为1000个,若光为垂直入射,则所用的光源的波长为500nm;13.n 2=1的空气对于n 1=的玻璃而言,其临界角c i =或者是32arcsin ; 14.一束左旋圆偏振光垂直入射到半波片上,则透射光束为右旋圆偏振光;15.单色平面波照射到一小圆孔上,将其波面分成波带;若极点到观察点的距离。

简述激光的发光原理

简述激光的发光原理

简述激光的发光原理
激光(Laser)是一种特殊的光,具有高度的单色性、相干性和方向性。

激光的发光原理基于受激辐射的过程。

激光的发光过程主要包括三个步骤:激发、受激辐射和光放大。

1. 激发:通过外部能量输入(例如电能、光能或化学能),将激光介质(例如气体、固体或液体)的原子或分子的电子从基态激发到激发态。

这个过程通常需要在一个能量高于基态能级的激发源的作用下进行。

2. 受激辐射:当激发态的电子回到基态时,它们会通过受激辐射的过程释放出能量。

在激光介质中,一个已经处于激发态的电子受到一个已经处于激发态的电子的辐射能量的刺激,从而促使它也向基态跃迁并释放出辐射能量。

这个过程是在一个相干光场的作用下进行的,因此释放的光具有相同的频率、相位和方向。

3. 光放大:在激光介质中,受激辐射引起的光通过激光谐振腔的反射和放大,从而形成一个光放大器。

光在谐振腔中多次来回传播,经过光放大器中的激光介质,不断被受激辐射放大,最终形成一束强度非常高、相干性非常好的激光束。

总结起来,激光的发光原理是通过激发激光介质中的电子到激发态,然后通过受激辐射的过程释放出相干光,再经过光放大器放大,最终形成一束高度相干、高
度方向性的激光束。

简述光放大器的原理

简述光放大器的原理

简述光放大器的原理光放大器是一种利用光泵浦作用使光信号得以放大的装置。

它广泛应用于光通信、光谱分析、激光器和光纤传送等领域。

光放大器的原理基于光的受激辐射效应,即在一定条件下,入射光激发光介质中的原子或分子跃迁到一个能级,使原子或分子在相同能级上达到较高的能量状态,该状态即激发态。

在激发态上,原子或分子可以吸收入射光的能量,并在短时间内再次跃迁到低能量能级,从而辐射出与入射光相同频率的辐射光子,这个过程称为受激辐射。

光放大器通过激发光介质中的原子或分子,利用受激辐射效应来放大入射光信号。

光放大器主要分为固体光放大器、液体光放大器和气体光放大器。

固体光放大器是最常见的光放大器之一,它主要由激光晶体、激光二极管光泵浦装置以及光学系统等组成。

当激光二极管通过外加电流激发时,产生的激光通过光学系统聚焦到激光晶体上,激光晶体被激发形成激发态。

入射光信号通过光学系统聚焦到激光晶体上,与激发态的原子或分子发生受激辐射作用,从而放大入射光信号。

液体光放大器通过在容器中溶解具有放大特性的物质,利用物质吸收和辐射光的特性来实现信号放大。

液体光放大器通常由光泵浦源、光纤耦合系统和光放大器介质等组成。

光泵浦源产生光,光纤耦合系统将光导入光放大器介质中。

光放大器介质中的放大物质吸收入射光的能量,在短时间内辐射出与入射光相同频率的辐射光子,从而实现入射光信号的放大。

气体光放大器是利用气体中的原子或分子进行信号放大的装置。

气体光放大器通常由氙灯、酒精浸泡的光纤、双曲杆和气体室等组成。

氙灯产生的光经过光纤耦合到气体室中,经过双曲杆的反射,使光在气体中来回传播。

光在气体中的传播过程中,气体中的原子或分子通过受激辐射效应,从而使入射光信号得以放大。

光放大器的性能参数主要包括增益、带宽和噪声系数等。

增益是指信号在光放大器中的输出功率与输入功率之比,用来衡量信号放大的程度。

带宽是指光放大器对信号频率的响应范围,表示光放大器可以对不同频率的信号进行放大。

光学放大法的原理

光学放大法的原理

光学放大法的原理光学放大法(Optical Amplification)是一种利用光的相干性和受激辐射的原理来放大光信号的技术。

它在光通信、光纤传感、激光科学等领域起到了重要的作用。

本文将详细介绍光学放大法的原理及其在光通信中的应用。

光学放大法的原理主要基于两个关键概念:受激辐射和光的相干性。

受激辐射是指当一个原子或分子处于激发态时,如果有一个入射光子与其相互作用,它就能通过发射一个新的光子回到基态。

这个过程中,发射的光子具有和入射光子相同的频率、相位和传播方向。

这种现象是由爱因斯坦提出的受激辐射理论来解释的。

光学放大法利用受激辐射的原理来实现光信号的放大。

在光学放大器中,激发器提供了能量,使得工作物质中的原子或分子处于激发态。

当入射光信号通过工作物质时,与其相互作用的原子或分子会发生受激辐射,并产生放大的信号。

这个放大过程是基于反转粒子数(反转度)的,反转度是指处于激发态的原子或分子的数量超过了处于基态的数量。

当反转度达到一定阈值时,就能够实现放大,产生高强度的输出信号。

光学放大法还依赖于光的相干性。

相干性是指两个或多个光波之间存在确定的相位关系,即它们的波峰和波谷的位置随时间的变化而保持一致。

在光学放大器中,入射光信号的相干性决定了放大过程中的相位关系。

如果入射光信号的相干性很好,光学放大器就能够将其放大而不引入相位噪声。

相反,如果入射光信号的相干性较差,放大过程就会引入相位噪声,从而影响信号的质量。

光学放大法的应用主要集中在光通信领域。

在光纤通信中,光信号在传输过程中会衰减,因为光在光纤中的传播会受到损耗的影响。

为了增大光信号的传输距离和提高接收端的灵敏度,需要对光信号进行放大。

光学放大器成为了一种重要的增益器件,能够将衰减的光信号放大,使其恢复到适合传输和接收的水平。

光学放大器通常使用掺铒光纤(Er-doped fiber)或半导体材料作为工作物质。

在掺铒光纤中,铒离子的能级结构提供了受激辐射的机制。

光纤放大器的原理与工作方式

光纤放大器的原理与工作方式

光纤放大器的原理与工作方式光纤放大器(Optical Fiber Amplifier,简称OFA)是一种能够放大光信号的设备,广泛应用于光通信和光传感等领域。

它以光纤作为增益介质,通过激光激发得到的光子与光纤中的掺杂物相互作用,实现对信号的放大。

本文将详细介绍光纤放大器的工作原理与工作方式。

光纤放大器的工作原理主要基于光的受激辐射放大(Stimulated Emission Amplification)效应。

核心原理是掺杂物与光子相互作用,将外界输入的信号光能量传递给掺杂物中的电子,使电子激发跃迁并发射与信号光同相位的光子,达到对信号光的放大。

光纤放大器通常采用掺镱、掺铒等掺杂物,其中掺镱光纤放大器(Ytterbium-Doped Fiber Amplifier,简称YDFA)和掺铒光纤放大器(Erbium-Doped Fiber Amplifier,简称EDFA)是应用最为广泛的两种类型。

对于YDFA,其工作原理是通过电光调制激光器发出的激光通过耦合光栅器件耦合入掺镱光纤中,而掺镱离子在光纤中吸收激光的能量,使得其能级上的电子被激发,通过受激辐射的过程发射出同相位、同频率的光子。

这些发射的光子与通过掺镱光纤传输的信号光相互作用,使信号光得到放大。

而掺镱离子的浓度以及掺镱光纤中的光的波长都会影响光纤放大器的性能。

而EDFA是一种掺杂了铒离子的光纤放大器,工作在通信波长范围内。

EDFA 的工作原理是通过激光器产生铒离子的激发能级,然后电光调制器将输入的信号光和激光进行耦合,使得信号光能量被传输到掺铒光纤中。

当信号光与激光在掺铒光纤中相互作用时,铒离子的激发能级的电子会发生受激辐射,产生同相位的发射光子,从而实现对信号光的放大。

光纤放大器的工作方式通常分为均匀增益放大和分布式反馈放大两种方式。

在均匀增益放大方式中,掺镱离子或铒离子的浓度会随光纤纵向长度的变化而变化。

激光和信号光共同通过光纤,放大器中的光功率增益在整个光纤中是均匀的。

光放大器工作原理

光放大器工作原理

光放大器工作原理
光放大器是一种用于放大光信号的设备,其工作原理基于光的受激辐射效应。

光放大器通常由具有谐振腔的光介质和激发源组成。

当外界光信号通过激发源注入到光介质中时,光介质中的原子或分子会吸收光能并处于激发态。

接下来,在光介质中近邻的原子或分子也会因为受到激发态的原子或分子的辐射而被受激辐射,使得它们跃迁到较低的激发态。

在辐射过程中,这些受激辐射产生的光子与外界光信号具有相同的频率和相位。

一些跃迁到较低激发态的原子或分子会经历非辐射跃迁过程,回到基态并释放出多余的能量。

这些能量释放出的光子形成背景信号,但并不具有与外界光信号的相位和频率相一致的特性。

在谐振腔的作用下,激发态的原子或分子会来回穿梭,使得它们与外界光信号相互作用,并释放出与外界光信号相位一致、频率相同的光子。

通过在谐振腔中引入一些可调节的光学增益介质,可以进一步增强光信号的强度。

通过不断地进行受激辐射和非辐射跃迁,将光信号放大到较大的幅度。

最后,放大后的光信号可以通过输出端口传输到后续的光学器件或接收器进行进一步的处理或接收。

总而言之,光放大器工作原理利用受激辐射效应和谐振腔的作用,通过放大外界光信号并保持其相位和频率不变,实现对光
信号的放大。

这种原理在光通信、光传感和激光器等领域有着广泛的应用。

第7讲 光的受激辐射放大

第7讲 光的受激辐射放大

方法1: 方法2:
I (z dz) S I (z) S dI S


dN
st

dN
ab


h
S
I (z)
I (z dz)
z z dz
dN ,dN
st
ab
分别为体积 V
内受激辐射增加的光子数和
受激吸收减少的光子数。
7.1 实现受激辐射放大的条件
I

I e0LGdz 0
L Gdz
0
10 0
A cos2
kz dz

A 2
10
1 2k
sin 20k
这里k的单位为cm-1.
定义:
nul

nu

gu gl
nl
称为反转粒子数密度
则:
dI Idz

nul Bul
h
c
实现受激辐射光放大的条件
dI 0 dz
nul 0
7.2 增益介质内光强的变化规律
增益系数G
定义为:介质内单位长度光强增加的百分比。用公式表
示为:
G dI Idz
G>0的介质,称为增益介质。
7.2 增益介质内光强的变化规律
dN st


dnu dt
st
V

Bul nu
S
dz
dN ab


dnl dt
ab
V

Blu nl
S
dz
因此,根据方法2最终得到:
=(nu Bul nl Blu ) h S dz

脉冲激光放大器原理

脉冲激光放大器原理

脉冲激光放大器原理
脉冲激光放大器是一种能够将低能量激光脉冲放大为高能量激
光脉冲的装置,其原理基于激光在介质中的受激辐射放大过程。

当外界激发源向被激材料中注入能量时,被激材料中的原子会从基态跃迁到激发态。

当这些激发态原子又受到外界激光的刺激时,它们会发生激光辐射并向周围辐射出相同频率、相同方向和相同极化方向的光子,这一过程被称为受激辐射。

在脉冲激光放大器中,原始激光脉冲首先被输入到一个被激材料中,经过受激辐射过程后,输出的光子与原始脉冲具有相同的频率、相同的相位和相同的极化方向。

这些输出光子随后被输入到一个放大器中进行放大,这样就能够将原始激光脉冲的能量大大提高。

为了确保脉冲激光放大器能够正常工作,需要对其进行精细的调节和控制,包括控制输入激光脉冲的强度、频率和相位,以及调整放大器的各种参数。

这些调节和控制过程需要使用先进的光学设备和控制技术,以确保脉冲激光放大器能够稳定、可靠地工作。

- 1 -。

光放大器原理

光放大器原理

光放大器原理光放大器是一种能够放大光信号的器件,它在光通信系统中起着至关重要的作用。

光放大器的原理是基于受激辐射的过程,通过输入光信号激发介质中的原子或分子,使其发生受激辐射而放大光信号。

光放大器主要包括半导体光放大器、光纤放大器和固体激光放大器等类型,它们在光通信、激光雷达、光纤传感等领域有着广泛的应用。

光放大器的工作原理是基于受激辐射的过程。

当光子通过介质时,会与介质中的原子或分子发生相互作用,激发原子或分子的电子跃迁至高能级。

在受激辐射的作用下,这些原子或分子会向外辐射出与入射光子完全一致的光子,从而放大光信号。

这一过程中,输入光信号激发了介质中的原子或分子,使其放大了光信号,实现了光信号的放大。

半导体光放大器是一种利用半导体材料的光放大器。

它的工作原理是基于电子与空穴的复合辐射,通过外加电压改变半导体材料的载流子浓度,从而控制光放大器的放大倍数。

半导体光放大器具有体积小、功耗低、响应速度快等优点,广泛应用于光通信系统中。

光纤放大器是一种利用光纤材料的光放大器。

它的工作原理是基于光纤材料中的掺杂物受激辐射放大效应,通过输入光信号激发掺杂物,实现光信号的放大。

光纤放大器具有传输损耗小、带宽宽、抗干扰能力强等优点,被广泛应用于光通信系统中。

固体激光放大器是一种利用固体激光介质的光放大器。

它的工作原理是基于固体激光介质中的激光放大效应,通过输入光信号激发固体激光介质,实现光信号的放大。

固体激光放大器具有功率大、波长多样化、光束质量好等优点,被广泛应用于激光雷达、激光加工等领域。

总的来说,光放大器是一种能够放大光信号的器件,它的工作原理是基于受激辐射的过程。

不同类型的光放大器在原理和应用上有所不同,但都在光通信、激光雷达、光纤传感等领域发挥着重要作用。

随着光通信技术的不断发展,光放大器也将不断得到改进和应用,为光通信系统的性能提升和应用拓展提供更多可能性。

光的受激辐射

光的受激辐射

E2 and E1 表示两个激发态
一个光子的能量 hn E2 E1
辐射频率n E2 E1
h
• 自发辐射 (Spontaneous Emission)。
主要特征:无需外来光,随机发光,发出的光子不相关,
即相位、偏振态、传输方向是随机的;发出的光子能量分
布在许许多多个模式上。
E2 hn E1 E1 E2
Dn(z)
I0
0
z
g z Dnz
g z B21hnDnz
g z dI z 1 dz I z
g z z
Dn z 0 Dn z 0 Dn z 0
g z 0 g z 0 g z 0
g z z
结论: 黑体辐射在红外和可见光波段为非相干的
模密度 nn
8n 2 hn n c3 hn KT e 1
n hn n B21n W21 n 2 3 A21 A21 8n 8hn
c3 c3
物理意义?
W21 总光子数 (1) n A21 模式数
(1)自激荡概念
Active medium
amplifier
8n 2 n c3
hn hn KT e 1
E
hn e
hn kT
1
l= 60m
E 1 n hn kT hn e 1
n =103 n= 1; coherent
Example: T=300K l= 30cm
l= 0.6m n=10-35 incoherent
n 1 w21 n
(2) 避免产生许多模式,特定模式的n增加,使相干的 STE光子集中在一个或少数几个模内。

光的自发辐射 受激辐射、光放大

光的自发辐射   受激辐射、光放大

非相干光。
二、受激辐射和受激吸收
1)受激吸收 (共振吸收, 光的吸收)
处在低能级E1的原子受到
E2 能量等于h=E2-E1的光子
h
的照射时,吸收这一光子
E1 跃迁到高能级E2的过程。
n1 —— t时刻处于能级E1上的原子密度为
dn12 dt
——单位时间内由于吸收光子从低能级E1 吸 跃迁到高能级E2的原子数密度
大功率激光器 I 109 1017Wcm2sr 1
可使一切金属熔化
可使一切非金属化为一缕青烟
二、激光的应用
粒子数反转分布
激光是受激幅射的光,但还存在自发幅射和吸收, 要使受激辐射超过吸收和自发辐射才能实现光放大
根据玻尔兹曼 能量分布律
N e 2
( E2 E1 ) kT
N1
热动平衡下, N2N1,即处于高能级的原子数
大大少于低能级的原子数——粒子数的正常分布
受激辐射占支配地位粒子数反转
高能级上的粒 子数超过低能 级上的粒子数
激光
14-5 光的自发辐射 受激辐射、光放大
光与原子体系相互作用,同时存在吸收、自发辐射 和受激辐射三种过程。
一、原子的自发辐射
在没有任何外界作用下,激发态原子自发地从
高能级E2向低能级E1跃迁,同时辐射出一光子。
满足条件:h=E2-E1
E2

E2
h
E1
E1 •
随机过程,用概率描述。
n2—— t时刻处于能级E2上的原子数密度
我国第一台红宝石激光发射器
激光发射器---氦氖红光
氩离子激光器
14-7 激光的特性与应用
一、激光的特性
一)高度单色性
激光所包含的波长或频率范围极小

光的受激辐射放大专题学习课件

光的受激辐射放大专题学习课件

(2):腔内物质原子数按能级分布应服从热平衡下的玻耳兹曼
分布.
n2 f2
n1 f1
e
E
2 E1 kT
hv
e kT
(3.15)
式中: f1 --- 能级E1的统计权重 f2 --- 能级E2的统计权重
(3) 在热平衡状态下
单位时间内粒子体系从辐射场吸收的光子数目 = 单位时间内粒子体系向辐射场发射的光子数目
1900年德国物理学家普朗克导出了一个公式:“普朗克公式”
ρv
8π h c3
3
v
1
hv
ekBT 1
(3.3)
(T)
C为光速 h=6.6310-34j·s 称为普朗克恒量
k=1.38065810-23J/K 称为波尔兹曼常数
事实上正是这一理论 导致了量子力学的诞生, 普朗克也成为了量子力学 的开山鼻祖,1918年因此
也称为自发跃迁爱因斯坦系数 可见: 高能级E2上粒子数随时间t按指数律衰减。
(2).受激吸收:——原处于低能级E1的粒子,受到能量恰为 hv=E2-E1的光子照射而吸收该光子的能量,
跃迁到高能级E2
E2 h ●
N2
E1

N1
(a)受激吸收系数B12: 设E1的粒子数(密度)为n1,单色辐射能量密 度ρv的光入射(入射光子满足hv=E2-E1)时,在单位体积、时间 间隔dt内吸收光子而由E1跃迁到E2的粒子数为
2)黑体是理想化的模型,实际中的物体的吸收率总是 小于1。 3)一个开有小孔的内表面粗糙的空腔可近似看成理想 的黑体。
3.黑体辐射: 由黑体发射的电磁辐射, 又称热平衡辐射(因这时 黑体与辐射场达到了热平衡, 即它从辐射场吸收的 辐 射能量等于它发射的电磁辐射的能量)

光的受激辐射放大与形成激光的条件

光的受激辐射放大与形成激光的条件

光的受激辐射放大与形成激光的条件下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!光的受激辐射放大与形成激光的条件1. 引言光的受激辐射放大是指通过受激辐射过程使光子数目增加,并最终形成激光的过程。

14激光产生的必要条件

14激光产生的必要条件

辐射出的光子能量满足 波尔条件: h E2 E1
其频率为 E2 E1 h

2) 自发辐射跃迁几率
从E2自发跃迁到下能级 E1的原子数 dn21 sp 应正比于 n2和dt, t时刻处于上能级 E2的原子数为 n2,则在 t ~ t dt时刻
dn21 sp A21n2dt
三、A21、B12、B21的关系
物质原子是一个二能级 系统,达到 温度为 T的热平衡时,有
( 1)腔内黑体辐射场单色 能量密度为 8h 3 1 h 3 c e KT 1
(2)各能级上原子数服从 玻耳兹曼分布 n2 g 2 e n1 g1
E 2 E1 KT
(3)在热平衡状态下, n1和n2应保持不变 dn21 dn21 dn12 dt sp dt st dt st
当物质处于热平衡时, 各能级上的原子数服从 玻耳兹曼分布 dn12 E2 E1 B n n g dt st 12 1 1 2 e KT 1 B21 n2 n2 g1 dn21 dt st
在热平衡状态下,物质以吸收光子为主,光通过物质被衰减
1)定义
处于能级E2的原子在频率为的辐射场作用下,向 E1能级跃迁并发射与外来光子能量相同的光子的过程 称为受激辐射跃迁。
2) 受激辐射跃迁几率
在的作用下,从 E2受激辐射跃迁到能级 E1的原子数 dn21 st 应正比于 、n2和dt, t时刻处于能级 E2的原子数为 n2,则在 t ~ t dt时间内
dn21 st B21 n2dt
其中,B21——受激辐射跃迁爱因斯坦系数
受激辐射跃迁几率
dn21 1 W21 B21 dt st n2

激光原理(第1章)

激光原理(第1章)

tc = Dt = 1/Dv
上式说明,光源单色性越好,则相干时间越长。
物理光学中曾经证明:在图1.1.4中,由线度为Dx的光源A照明的
S1和S2两点的光波场具有明显空间相干性的条件为 DxLx/R ≤ (1.1.18) (1.1.19) (1.1.20)
式中 为光源波长。距离光源R处的相干面积 Ac 可表示为
上 述 基 本 关 系 式 (1.1.1) 和 (1.1.3) 后 来 为 康 普 顿 (Arthur Compton)散射实验所证实(1923年),并在现代量子电动力学中 得到理论解释。量子电动力学从理论上把光的电磁(波动)理论 和光子(微粒)理论在电磁场的量子化描述的基础上统一起来, 从而在理论上阐明了光的波粒二象性。在这种描述中,任意电 磁场可看作是一系列单色平面电磁波(它们以波矢k为标志)的线 性叠加,或一系列电磁波的本征模式(或本征状态)的叠加。但 每个本征模式所具有的能量是量子化的,即可表为基元能量hv 的整数倍。本征模式的动量也可表为基元动量 hkl 的整数倍。 这种具有基元能量hvl和基元动量hkl的物质单元就称为属于第 l 个本征模式(或状态)的光子。具有相同能量和动量的光子彼此 间不可区分,因而处于同一模式(或状态)。每个模式内的光子 数目是没有限制的。
空间称为相空间,相空间内的一点表示质点的一个运动状态。
当宏观质点沿某一方向(例如:x轴)运动时,它的状态变化对应 于二维相空间(x, Px)的一条连续曲线,如图1.1.2 所示。但是,
光子的运动状态和经典宏观质点有着本质的区别,它受量子力
学测不准关系的制约。
测不准关系表明:微观粒子的坐标和动量不能同时准确测定,
hv
式中 h=6.626×10-34Js,称为普朗克常数。

光放大器的工作原理

光放大器的工作原理

光放大器的工作原理
光放大器是一种可以放大光信号的设备,主要用于放大光纤通信系统中的信号。

它的工作原理基于光放大效应,即在特定的材料中,当光信号经过该材料时,会引起光子的受激辐射,从而导致光信号的增强。

具体来说,光放大器一般采用掺杂有放大介质的光纤或半导体材料。

这些放大介质通常是掺杂了稀土离子(如铒、钕)的光纤或半导体晶体。

当光信号经过这些放大介质时,放大介质中的稀土离子吸收光子,并处于激发态。

激发态的稀土离子具有较长的寿命,当它们再次回到基态时,会通过受激辐射的过程释放出与吸收的光子相同的光子。

这些受激辐射发出的光子与原来的光信号相位相同、频率相同,从而与原来的光信号进行相干叠加,使光信号得到增强。

为了保持充足的能量供应,光放大器通常与光源相连,光源提供连续的光信号,作为输入信号。

通过反射镜或耦合器,输入光信号被导入到放大介质中进行放大。

在放大过程中,还需要一个反射镜或耦合器来提取放大后的光信号,作为输出信号。

总之,光放大器的工作原理基于光放大效应,通过控制放大介质中的稀土离子的激发态和基态之间的跃迁过程,实现对光信号的放大。

光放大器在光纤通信系统中起到了至关重要的作用,可以增加光信号的传输距离和增加信号的强度。

光放大器原理和类型

光放大器原理和类型

光放大器原理和类型光放大器是光通信系统中的重要组成部分,用于放大光信号,以增加光信号传输的距离和强度。

它利用光-物质相互作用的原理,将输入的弱光信号转换为强光信号进行传输。

光放大器主要有掺铒光纤放大器(EDFA)、掺镱光纤放大器(YDFA)、掺铽光纤放大器(TDFA)等不同类型,下面将详细介绍光放大器的原理和各种类型。

光放大器的基本原理是利用激光器将光泵浦入掺杂了能级较低的材料中,通过受激辐射的过程,使其释放出能级较高的光子,从而实现光信号的放大。

具体来说,光放大器通过掺杂适量的稀土离子(如铒、镱、铽等)到光纤或半导体材料中,在其中生成能级分布,然后利用受激辐射的作用,将注入的光子能级向较高能级转移,产生更多的光子,从而达到放大光信号的目的。

根据放大介质的不同,光放大器主要分为掺铒光纤放大器(EDFA)、掺镱光纤放大器(YDFA)、掺铽光纤放大器(TDFA)等不同类型。

1. 掺铒光纤放大器(EDFA):EDFA是最常用的光放大器之一、它将掺铒光纤作为放大介质,其中掺杂的铒离子能够在1060nm波长范围内发生受激辐射,从而实现光信号的放大。

EDFA具有宽带、高增益、低噪声等优点,适用于光通信系统中的长距离传输。

2. 掺镱光纤放大器(YDFA):YDFA利用掺镱光纤作为放大介质,其中掺杂的镱离子能够在1550nm波长范围内发生受激辐射。

YDFA具有较高的增益和较高的饱和功率,适用于光纤通信系统中的长距离传输和高速率传输。

3.掺铽光纤放大器(TDFA):TDFA利用掺铽光纤作为放大介质,其中掺杂的铽离子能够在中红外波段范围内发生受激辐射。

TDFA具有广泛的放大带宽和较高的增益,适用于光纤传感器、光谱分析等领域。

以上是三种常用的光放大器类型,它们在不同的波长范围和应用领域上有各自的特点和优势。

此外,还有其他类型的光放大器,如电子束激励放大器(EBFA)、半导体光放大器(SOA)等。

电子束激励放大器(EBFA)利用电子束注入到放大介质中激发放大介质中的光,实现光信号的放大。

为何激光能够产生如此强烈的光束

为何激光能够产生如此强烈的光束

为何激光能够产生如此强烈的光束激光技术是一种可以产生非常强烈光束的技术,具有广泛的应用领域,如通信、医学、工业加工等。

那么为何激光能够产生如此强烈的光束呢?本文将从激光的概念、原理、特点以及产生强光束的原因进行论述。

激光(Laser)是“Light Amplification by Stimulated Emission of Radiation”的缩写,即光的受激辐射放大。

激光是一种具有单色性、相干性和饱和性的光束。

在激光器中,通过激发介质(如固体、气体或半导体)中的原子、分子或离子,可以使它们从低能级跃迁到高能级,这个过程是通过受激辐射实现的。

当受激辐射的光子与已存在的光子之间相互作用时,会出现光子的放大与聚集,最终形成强烈的激光光束。

那么为什么激光能够产生如此强烈的光束呢?这是因为激光具有以下几个特点。

首先,激光具有极高的单色性。

单色性是指激光的光波长非常纯净,只包含了极为狭窄的频率范围内的光线。

相比之下,普通的光源产生的光线是由多种不同波长的光混合而成的。

而激光器中的光只有一种波长,并且波长非常接近于频率或波长选择要求。

这种高度单色性使得激光具有强大的穿透力和聚焦能力。

其次,激光具有极高的相干性。

相干性是指光波的波动状态在时间和空间上具有高度一致性。

普通光源由于光的传播过程中发生了散射、干涉和反射等现象,会使得光波的相位和振幅难以保持一致,从而降低了光的强度。

而激光光束中的光波相位和振幅保持高度一致,能够有效地聚焦于一个小区域,形成高能量密度的光斑。

再次,激光具有极高的饱和性。

饱和性是指当激光系统中的光子数达到一定的阈值时,系统无法再吸收更多的光子。

这种饱和性使得激光光束能够产生高能量的光脉冲,具有强大的破坏力和照射能力。

在工业加工和科学研究中,激光的饱和性可以实现对材料的高精度切割、打孔和焊接等操作。

最后,激光能够产生如此强烈的光束还与激光器内的光放大机制有关。

激光器中的光放大是通过光子间受激辐射的过程实现的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黑体与辐射场达到了热平衡, 即它从辐射场吸收的
辐 射能量等于它发射的电磁辐射的能量)
v
dw ρv
8π h c3
v3
1
hv
e kBT 1
dvdV
5.普朗克公式(Planck’s formula)
人们用经典物理学理论解释实验测得的黑体辐射单色能量 密度分布规律,都归于失败。朗克注意到在过去的理论中, 把黑体中的原子和分子都看成可以吸收或辐射电磁波的谐振 子,且电磁波与谐振子交换能量时可以以任一大小的分额进 行,(从0到大)。普朗克当时大胆地放弃了这一概念,提 出了一个革命性的假设,即能量的吸收与辐射只能按不连续的 一份一份能量进行。
四十年后,受激辐射概念在激光技术中得到了 应用。
1. 黑体辐射的普朗克公式
1.热辐射 实验证明不同温度下物体能发出 不同的电磁波,这种能量按频率的分布随温度而不同 的电磁辐射叫做热辐射.
1000度 600度 400度 火

因辐射与温度有关,故称热辐
2.黑体 能完全吸收照射到它上面的各种频率的电磁 辐射的物体称为黑体 .(黑体是理想模型)
E2
外来光子
E1
受激幅射光子
③受激发射的粒子系统是相干光源(相同→相干):
受激发射是产生激光的最重要机理
受激辐射是在外界辐射场的控制下的发光过程,因而各原 子的受激发射的相位不再是无规则分布的,而应有和外界辐 射场相同的相位。量子电动力学可证明:受激辐射光子与入 射光子属于同一光子态。
W21
B21v
∵ E2上粒子数减少的唯一去向是E1 (粒子只有两个能级)
∴ dn2(t) = -dn2=-A21n2(t)dt
n2(t)
n e A21 t 20
n e (1 /s2 ) 20

(3.9)
也称为自发跃迁爱因斯坦系数 可见: 高能级E2上粒子数随时间t按指数律衰减。
(2).受激吸收:——原处于低能级E1的粒子,受到能量恰为 hv=E2-E1的光子照射而吸收该光子的能量,
(3).受激辐射:——原处于高能级E2的粒子, 受到能量恰为 hv=E2-E1的光子的激励, 发射出与入射 光子相同的一个光子而跃迁到低能级E1 。
W21
B21v
1 n2
dn2 dt
E2 E1

N2
h

N1
(a)特点:
①受激发射只能在频率满足hv=E2-E1的光子的激励下发生;
②不同粒子发射的光子与入射光子的频率、位相、偏振等 状态相同; 这样,光场中相同光子数目增加,光强增大,即入 射光被放大 ——光放大过程
注意:1)黑体是对入射的辐射能全部吸收(不管什么波长) 的物体,也不反射。因此当其自身的热辐射很弱 时,看上去是黑洞洞的。
2)黑体是理想化的模型,实际中的物体的吸收率总是 小于1。 3)一个开有小孔的内表面粗糙的空腔可近似看成理想 的黑体。
3.黑体辐射: 由黑体发射的电磁辐射, 又称热平衡辐射(因这时
W21 A21
c3
c3
E
h e h kT 1
(3.22)
Example: T=300K = 30cm n =103 coherent = 60m n= 1; = 0.6m n=10-35 incoherent
结论: 黑体辐射在红外和可见光波段为非相干的
模密度 n
n 1 w 21 (3.3)
1 n2
dn2 dt
E2

N2
h
E1

N1
(b)受激辐射系数B21: 设外来光场单色能量密度ρv (入射光 子满足hv =E2 - E1),处于能级E2上的原子数密度为n2,在从t 到t + dt 的时间间隔内,有- d n2 个原子由于受辐射作用, 而由E2跃迁到E1,则有
-dn2=B21ρvn2dt 其中B21称为受激辐射系数
自发发射几率
A21是单位时间、单位体积内在E2上所有n2个粒子中会发生 自发发射的粒子所占的比例, 所以A21是自发发射的几率。
n2
n20
dn2(t) n2(t)
t 0
A21d
t
ln
n2 n20
A21t
(3.6)
(d)高能级上粒子数随时间的变化规律:
设 t =0 时刻 ,E2上粒子数为n20 , 即 t = 0 时 n2 = n20 t= t 时刻, E2上粒子数为n2(t)即 t = t 时 n2=n2(t)
*(因为不同粒子发射的光子与入射光子的频率、位相、 偏振等状态相同, 而且使相干光子数目不断增加, 所以受激 发射使激光具备了高亮度、方向性、单色性、相干性的特 点)
3.1.2 受激辐射放大的过程
1. 光放大概念的产生
在激光出现之前,科学技术的发展对强相干光源提出 了迫切的要求,例如,光全息技术和相干光学计量技术要求 在尽可能大的相干体积或长度内有尽量强的相干光。但是普 通光源的自发辐射光实质上是一种光频“噪声”,所以在激 光出现之前,无线电技术很难向光频波段发展。
hv
(e kT
1)
B B f e 21 ( A B f 21
12 1 21 2
hv
e kT
1)
(3.16)
自发辐射 光子数
受激辐射 光子数
受激吸收 光子数
联立以上三式,可得
A21 B 21
8h 3
c3
nv hv
(3.18)
(1)式当T ∞时也应成立,所以有
n
E h
1 e h kT 1
将上式代入(1)式可得:
(2):腔内物质原子数按能级分布应服从热平衡下的玻耳兹曼
分布.
v
8hv3
c3
1
hv
e kt 1
(3.15)
式中: f1 --- 能级E1的统计权重 f2 --- 能级E2的统计权重
(3) 在热平衡状态下
单位时间内粒子体系从辐射场吸收的光子数目
= 单位时间内粒子体系向辐射场发射的光子数目

c3 8hv 3
(a)特点:各粒子自发、独立地发射的光子。各光子的方向、 偏振、初相等状态是无规的, 独立的,粒子体系为非 相干光源。(普通光源)
A21
1
n2
dn21 dt
(b) 自发发射系数A21 : 设E2上粒子数(密度)为n2 , 时间dt内、单 位体积内经自发发射从E2跃迁到E1的粒子数为 dn21
(c) A21的物理意义:
磁场ρv有关。
3. 爱因斯坦三系数的相互关系:
推导条件:
根据上述相互作用物理模型分析空腔黑体的热
平衡过程,空腔黑体内辐射场ρv 与物质原子相
互作用的结果应该维持黑体处于温度为T 的热
平衡腔状态.
热平衡状态标志是:
(1):腔内存在由下式表示的热平衡黑体辐射.
A21n2dt B21n2vn2dt B12vn1dt (3.3)
跃迁到高能级E2
W12
B12 v
1 n1
dn2 dt
E2 h ●
N2
E1

N1
(a)受激吸收系数B12: 设E1的粒子数(密度)为n1,单色辐射能量密 度ρv的光入射(入射光子满足hv=E2-E1)时,在单位体积、时间 间隔dt内吸收光子而由E1跃迁到E2的粒子数为
dn2=B12ρvn1dt 其中B12称为受激吸收系数
1900年德国物理学家普朗克导出了一个公式:“普朗克公式” (3.3)
0 νdν
C为光速 h=6.6310-34j·s 称为普朗克恒量
k=1.38065810-23J/K 称为波尔兹曼常数
事实上正是这一理论 导致了量子力学的诞生, 普朗克也成为了量子力学 的开山鼻祖,1918年因此
而获得诺贝尔奖。
原子发光的经典电子论可以帮助我们得到一个定性的 粗略理解。按经典电子论模型,原子的自发跃迁是原子中电 子的自发阻尼振荡,没有任何外加光电场来同步各个原子的 自发阻尼振荡,因而电子振荡发出的自发辐射是相位无关的。 而受激辐射对应于电子在外加光电场作用下作强迫振荡时的 辐射,电子强迫振荡的频率、相位、振动方向显然应与外加 光电场一致。因而强迫振动电子发出的受激辐射应与辐射场 具有相同的频率、相位、传播方向和偏振状态。
(1)模型:(参予与光相互作用的)粒子只有间距为hv=E2-E1(E2>E1) 的二个能级,且它们符合辐射跃迁选择定则。
(2).在这种模型中的辐射跃迁:
粒子从低能级向高能级跃迁,须吸收光子; hv=E2-E1 从高能级向低能级跃迁, 会发射光子。 hv=E2-E1
2. 光频电磁场与物质的三种相互作用过程
(3.19)
f1B12 f2B21
(3.20)
如果E2和E1均非简并即 f1= f2=1, 或21
(3.21)
B12=B21说明了原子的吸收谱与发射谱相同
若对应于同一个辐射场ρv有:W 12=B12 ρv=B21 ρv= W21 (3.21)
4. 受激辐射与自发辐射的重要区别——相干性
B21是粒子能级结构的特征量, 它的数值由不同原子的 不同跃迁而定,和外电磁场ρv无关 。

-dn2=B21ρvn2dt 可定义:
(c)受激发射跃迁几率W21:
n2 f2 n1 f1
e
E
2 E1 kT
hv
e kT
(3.13、3.14)
W21的物理意义:——单位时间内,在外来单色能量密度为 ρv的光照射下,由于E2和E1间发生受激跃迁, E2能级上减少 的粒子数密度占E2能级总粒子数n2 的百分比;也即E2 能级上每 一个粒子单位时间内发生受激辐射的几率。
可见: W21是单位时间内粒子因受激发射由E2跃迁到E1 的几率;且与外电磁场ρv有关。
注意: 当B21 一定时,外来光的单色能量密度ρv愈大,受 激辐射几率W21 就愈大。
相关文档
最新文档