1.3光的受激辐射

合集下载

1.3光的受激辐射

1.3光的受激辐射

偏振、初相等状态是无规的, 独立的,粒子体系为非
相干光源。(普通光源)
(b) 自发发射系数A21 : 设E2上粒子数(密度)为n2 , 时间dt内、单 位体积内经自发发射从E2跃迁到E1的粒子数为 - dn2 则因dn2∝n2 且dn2 ∝dt ∴
dn2 A21 n2 dt

1 dn2 A21 n2 dt
1 Anm
m
(1-28)
(2).受激辐射:——原处于高能级E2的粒子, 受到能量恰为
hv=E2-E1的光子的激励, 发射出与入射 光子相同的一个光子而跃迁到低能级E1 。
E2
E1
(a)特点:

N2
h N1

①受激发射只能在频率满足hv=E2-E1的光子的激励下发生; ②不同粒子发射的光子与入射光子的频率、位相、偏振等 状态相同; 这样,光场中相同光子数目增加,光强增大,即 入射光被放大 ——光放大过程
(h)例: 荧光实验
光源S 发的光经过会聚透镜 L 会聚到红宝石晶体上,红宝 石中处于基态E1能级的铬离子吸收入射光中的黄光和绿光,被 激发到E3能级,通过无辐射跃迁到达E2能级,然后通过自发辐 射跃迁到E1能级,同时发射频率满足 v E2 E1 的红色荧光,在侧 h 面的的光电管将显示荧光讯号。 停止外部光源照射后, 从示波器上可观察到 ①荧光强度曲线遵从指数律 即: 证实了自发发射光功率按指数律衰减
得到一个公式:
8v 3 n (v, T ) kT 3 c
(, T )
C :为光速
k=1.38065810-23J/K 波尔兹曼常数 此公式在短波区域明 显与实验不符,而理论上 却找不出错误——“紫外 线灾难” ,像乌云遮住了 物理学睛 朗的天空。

天津大学2020硕士研究生初试考试自命题科目大纲807工程光学与光电子学基础

天津大学2020硕士研究生初试考试自命题科目大纲807工程光学与光电子学基础

一、考试模块划分方式:考试内容分为A、B 两个模块,考生可任选其中一个模块。

A 模块为工程光学,B 模块为光电子学基础。

二、各模块初试大纲:A模块:工程光学(一)考试的总体要求本门课程的考试旨在考核学生有关应用光学和物理光学方面的基本概念、基本理论和实际解决光学问题的能力。

考生应独立完成考试内容,在回答试卷问题时,要求概念准确,逻辑清楚,必要的解题步骤不能省略,光路图应清晰正确。

(二)考试的内容及比例考试内容包括应用光学和物理光学两部分。

“应用光学”应掌握的重点知识包括:几何光学的基本理论和成像概念、理想光学系统理论、光学系统中的光束限制、平面和平面系统对成像的影响、像差的基本概念和典型光学系统的性质、成像关系及光束限制等。

具体知识点如下:1、掌握几何光学基本定律与成像基本概念,包括:四大基本定律及全反射的内容与现象解释;完善成像条件的概念和相关表述;几何光学符号规则以及单个折射球面、反射球面的成像公式、放大率公式等。

2、掌握理想光学系统的基本理论和典型应用,包括:基点、基面的主要类型及其特点;图解法求像的方法;解析法求像方法(牛顿公式、高斯公式);理想光学系统三个放大率的定义、计算公式及物理意义;理想光学系统两焦距之间的关系;正切计算法以及几种典型组合光组的结构特点、成像关系等。

3、掌握平面系统的主要种类及应用,包括:平面镜的成像特点及光学杠杆原理和应用;反射棱镜的种类、基本用途及成像方向判别;光楔的偏向角公式及其应用等。

4、掌握典型光学系统的光束限制分析,包括:孔径光阑、入瞳、出瞳、孔径角的定义及它们的关系;视场光阑、入窗、出窗、视场角的定义及它们的关系;渐晕、渐晕光阑、渐晕系数的定义;物方远心光路的工作原理;光瞳衔接原则及其作用;场镜的定义、作用和成像关系等。

5、了解像差基本概念,包括:像差的定义、种类和消像差的基本原则;7 种几何像差的定义、影响因素、性质和消像差方法等。

6、掌握几种典型光学系统的基本原理和特点,包括:正常眼、近视眼和远视眼的定义和特征,校正非正常眼的方法;视觉放大率的概念、表达式及其意义;显微镜系统的结构特点、成像特点、光束限制特点及主要参数的计算公式;临界照明和坷拉照明系统的组成、优缺点;望远系统的结构特点、成像特点、光束限制特点及主要参数的计算公式;摄影系统的结构特点、成像特点、光束限制特点及主要参数的计算公式;投影系统的概念、计算公式以及其照明系统的衔接条件等。

受激辐射 受激吸收与自发辐射

受激辐射 受激吸收与自发辐射
(自发辐射)
h E1 E2
§1.2.1 受激辐射、受激吸收与自发辐射
爱因斯坦发现,若只有自发辐射和吸收跃迁,黑体和辐射场之 间不可能达到热平衡,要达到热平衡,还必须存在受激辐射。
1. 自发辐射
h E2 E1
E2Leabharlann hE1发光前
发光后
单位时间从上能级跃迁到 下能级的原子数目为:
dn21 dt sp
或不能发生,则受激辐射也可以或不能发生。
受激辐射的相干性 自发辐射:相互独立、互不相关。 不相干
受激辐射:受激辐射产生的光子与引起受激辐射的 外来光子具有相同的特征(频率、相 位、振动方向及传播方向均相同)。
受激辐射光子与入射光子属同一光子态。 相干光
总结
掌握:
自发辐射、受激吸收、受激辐射 含义、特点、相互区别、相互关系 爱因斯坦三系数的相互关系及所得结论 受激辐射的相干性
热平衡状态:
辐射率 吸收率 (辐射场总光子数保持不变)
n2 A21 n2B21 n1B12
n1、n2、n3 ——各能级上的原子数密度(集居数密度)
玻尔兹曼统计分布:
n f e 2
2
( E2 E1 ) KT
n1 f1
f1、f2 ——能级 E1 和 E2的简并度,
或称统计权重


A21

8 h
c3
3
B21
结果讨论
1. 其他条件相同时,受激辐射和受激吸收具有相同几率。
2. 热平衡状态下,高能级上原子数少于低能级上原子数,故 正常情况下,吸收比发射更频繁,其差额由自发辐射补偿。
3. 自发辐射的出现随 3而增大,故波长越短,
自发辐射几率越大。 4. 自发辐射和受激辐射具有相同的选择定则,自发辐射可以

光的受激辐射-资料

光的受激辐射-资料

此公式在短波区域明显与实验不符,而理论上却找不出错 误——“紫外灾难” ,像乌云遮住了物理学睛朗的天空。
(v,T)1 ( 0 9W/2(H m )z) 普朗克公式——普朗克注意到
在过去的理论中,把黑体中的
瑞利 - 金斯公式
原子和分子都看成可以吸收 或
6
5
实验曲线
辐射电磁波的谐振子,且电磁 波与谐振子交换能量时可以以
(a)特点:各粒子自发、独立地发射的光子。各光子的方向、
偏振、初相等状态是无规的, 独立的,粒子体系为非相干
光20源20/。4/12(普通光源)
(b) 自发发射系数A21 : 设E2上粒子数(密度)为n2 , 时间dt内、单 位体积内经自发发射从E2跃迁到E1的粒子数为 - dn2
则因dn2∝n2 且dn2 ∝dt
*(因为不同粒子发射的光子与入射光子的频率、位相、 偏振等状态相同, 而且使相干光子数目不断增加, 所以受激 发射使激光具备了高亮度、方向性、单色性、相干性的特 点)
2020/4/12
E2

N2
h
E1

N1
(b)受激辐射系数B21: 设外来光场单色能量密度ρv (入射光 子满足hv =E2 - E1),处于能级E2上的原子数密度为n2,在从t 到t + dt 的时间间隔内,有- d n2 个原子由于受辐射作用, 而由E2跃迁到E1,则有
跃迁到高能级E2
E2 h ●
N2
E1

N1
(a)受激吸收系数B12: 设E1的粒子数(密度)为n1,单色辐射能量密 度ρv的光入射(入射光子满足hv=E2-E1)时,在单位体积、时间 间隔dt内吸收光子而由E1跃迁到E2的粒子数为
dn2=B12ρvn1dt (1-32) 其中B12称为受激吸收系数

光的受激辐射 激光原理及应用 [电子教案]电子

光的受激辐射  激光原理及应用 [电子教案]电子

光的受激辐射激光原理及应用第一章:激光概述1.1 激光的定义激光的中文全称:Light Amplification Stimulated Emission of Radiation 激光的特点:相干性好、平行度好、亮度高、单色性好1.2 激光的产生原理受激辐射:外来的光子与一个束缚电子发生能量交换,使电子从较低能级跃迁到较高能级,成为激发态电子。

激发态电子回到较低能级时,会释放出一个与外来光子频率、相位、偏振方向相同的光子,这就是受激辐射。

激光的放大过程:受激辐射产生的光子与入射光子具有相同的频率和相位,导致更多的束缚电子发生受激辐射,从而实现光的放大。

1.3 激光的应用领域科研领域:光谱分析、激光干涉、激光雷达等。

工业领域:激光切割、激光焊接、激光打标等。

医疗领域:激光手术、激光治疗、激光美容等。

生活领域:激光打印、激光投影、激光视盘等。

第二章:激光器的基本原理2.1 激光器的组成激光介质:产生激光的物质,如半导体、气体、固体等。

泵浦源:提供能量,使激光介质中的电子发生跃迁。

光学谐振腔:限制激光的传播方向,增强激光的放大效果。

输出耦合器:将激光输出到外部。

2.2 激光的产生过程泵浦源激发激光介质,使电子从基态跃迁到激发态。

激发态电子回到基态时,发生受激辐射,产生激光。

激光在光学谐振腔内多次反射,实现光的放大。

输出耦合器将激光输出到外部。

2.3 激光器的类型及特点气体激光器:采用气体作为激光介质,如二氧化碳激光器、氦氖激光器等。

固体激光器:采用固体材料作为激光介质,如钕激光器、钇铝石榴石激光器等。

半导体激光器:采用半导体材料作为激光介质,如激光二极管等。

光纤激光器:采用光纤作为激光介质,具有高亮度、低阈值等优点。

第三章:激光的性质与应用3.1 激光的相干性3.2 激光的平行度3.3 激光的亮度亮度高的特点:可用于激光投影、激光显示等。

3.4 激光的单色性3.5 激光的应用实例激光切割:用于金属和非金属材料的切割加工。

第21讲 光的吸收、受激辐射与自发辐射

第21讲 光的吸收、受激辐射与自发辐射

(0.1
~
1nm)内,| k
r|
1,可将k
r略去。所以
E Hˆ
E0ecrosEt,它D对 电 E0子co的s作t,用D量
为 er
电偶极矩
5返
二、将电H) 子 跃Dv迁 Er的0 c微os扰t 论 W描ˆ c述os(1)t,W)
vr D E0
看作对原子系统的微扰,它将导致电子发生能级
跃迁。此时系统的哈密顿为
1、半经典理论
E2
如果对光的吸收、受激辐射 和自发辐射的理论处理采用这样 E1
电磁波
的办法:将光波看作电磁波(而
不是看作光子群), 用电动力学(而不是量子力 学)来描述,对原子系统采用量子力学来描述,
这样的理论习惯上被称为半经典理论。
半经典 光波用电动力学来描述; 半量子 原子用量子力学来描述。
d cos2
1
2
d
s in
cos2 d
1
4
4 0 0
3
wk k
62
| Dkk
|2
E02 (kk
)
(6)
14
三、吸收的跃迁速率(6) t 时,跃迁速率为
Ek
E E0 cost
wk k
62
| Dkk
|2
Ek
E02 (kk )
(6)
此式就是当入射光为平面单色光,即
E E0 cost时,原子吸收光波能量从低能级
Ek
h
Ek 光的自发辐射
24
六、自发辐射系数(2)
nk nk , 或nk nk
吸收和受激辐射的跃迁速率为
wkk Bkk (kk )和wkk Bkk (kk )

《光的受激辐射》课件

《光的受激辐射》课件

PART 02
光的受激辐射原理
光的粒子性
光的粒子性描述
光的粒子性与能量
光是由粒子组成的,这些粒子被称为 光子。
每个光子携带一定的能量,与其波长 成反比。
光的粒子性实验证明
通过光电效应实验,爱因斯坦解释了 光的粒子性,并因此获得了诺贝尔物 理学奖。
原子能级结构
原子能级的概念
原子中的电子在不同的能级上运动,这些能级由 不同的能量值表示。
原子能级的稳定性
在不受外界影响的情况下,原子能级是稳定的。
能级的跃迁
当原子受到外界能量的影响时,电子可以从一个 能级跃迁到另一个能级。
受激辐射的过程
受激辐射的描述
当高能级上的原子受到某种外界光子的影响时,它会释放出一个 与外界光子完全相同的光子。
受激辐射的实验证明
通过实验,人们观察到了受激辐射现象,并进一步发展出了激光技 术。
03
响。
受激辐射的重要性
激光技术应用
受激辐射产生的相干光为激光提 供了源源不断的能量,广泛应用 于工业、医疗、通信等领域。
通信技术革新
光纤通信利用激光的单色性好、 方向性强等特点,实现了高速、 大容量的信息传输。
医学领域突破
激光在医学领域的应用如激光治 疗、激光手术等,为疾病的诊断 和治疗提供了新的手段。
受激辐射的特点
释放的光子与原光子频率相同,方向 相同,相位相同,传播方向相反。
ห้องสมุดไป่ตู้
受激辐射的发现
01
1917年,爱因斯坦提出受激辐射理论,解释了为什么某些物质 在特定条件下能够自发地产生光。
02
1960年,梅曼发明了第一台红宝石激光器,实现了受激辐射产
生的光放大,标志着激光技术的诞生。

激光原理第2章

激光原理第2章

初态: 初态:激发态原子
终态: 终态:基态原子
E2
外来光子 hν = E2 – E1
发射光子 hν = E2 – E1
E1 特点: 才能引起受激辐射; 特点:只有外来光子能量为 hv =E2-E1才能引起受激辐射; 受激辐射的光子与外来光子的特性完全相同, 受激辐射的光子与外来光子的特性完全相同,即具有相同的 频率、偏振方向、传播方向以及相同的位相;是相干光。 频率、偏振方向、传播方向以及相同的位相;是相干光。 受激辐射是激光器的物理基础
爱因斯坦A 5、 爱因斯坦A、B系数关系
在光和原子相互作用达到动平衡的条件下, (1) 在光和原子相互作用达到动平衡的条件下,
自发辐射、 自发辐射、受激辐射和受激吸收间关系
A21n2dt + B21ρ ν n2dt = B12 ρ ν n1dt
自发辐射光子数 受激辐射光子数 受激吸收光子数
n2 B12 ρ v = n1 A21 + B21ρ v
的光波, 的连续功率, 2、某激光器,输出波长500nm的光波,输出 某激光器,输出波长 的光波 输出1W的连续功率, 的连续功率 问每秒从激光上能级向下能级跃迁的粒子数是多少? 问每秒从激光上能级向下能级跃迁的粒子数是多少?
2.3
光的受激辐射
1900年 1900年,普朗克利用辐射量子化假 设成功解释黑体辐射分布规律 1913年 1913年,波尔提出原子中电子运动状 态量子化假设
(2)自发辐射跃迁几率 设t 时刻 ,体系处于E2 的总粒子数密度为 n2(t),从t ~t + dt 体系处于 正比于n : 时间间隔内自发辐射粒子数密度 dn21 正比于 2(t):
− dn2 = A21n2 (t )dt

激光原理_第1章_激光的基本理论

激光原理_第1章_激光的基本理论
2.简并度f——同一能级所对应的不同电子运动状态 的数目(单个状态内的平均光子数)。
3.简并态—— 同一能级的各状态称简并态 例:计算1s和2p态的简并度
原子状态 n l
ml ms 简并度
1s
1
00
f1=2
1
2p
21
0
f2=6
-1
18
第一章 激光的基本原理
二、玻耳兹曼分布及粒子数反转
1. 玻耳兹曼分布(热平衡分布)
(19.77eV) 10-6 S
23
四、黑体辐射及其公式 1、描述黑体辐射的典型物理量
①单色能量密度 ,T:单位体积内,频率处于 附近
单位频率间隔内的电磁辐射能量,它是频率和温度的函 数。
注:寻求 的,T 函数形式进而确定单色辐出度的形式是当
时黑体辐射研究者们的一大目标!
②单光位波频模率密间度隔内n的:光腔波内模单式位数体。积中频率处于 附 近
n f e 2
2 (E2 E1 ) / kbT
讨论(设f i= f j) :
n1 f1
(1)如果E2 - E1很小,且满足 △E = E2 - E1<<kbT,则
n2 e (E2 E1 ) / kbT 1
n1
19
第一章 激光的基本原理
n f e 2
2 ( E2 E1 ) / kbT
第一章 激光的基本原理
前言
光具有波粒二象性,在描述光的性质是,可 以从其粒子性和光的波动性两个方面来描述光的 性质,进而引入了光波模式和光子模式来描述;
在激光产生的过程中,受激辐射和自发辐射 是其产生的基本原理,同时分析要实现光的受激 辐射放大需要满足集居数反转(粒子数反转)。
1
第一章 激光的基本原理

激光的工作原理及应用

激光的工作原理及应用

激光的工作原理及应用1. 激光的工作原理激光(laser)是一种特殊的光源,具有高亮度、自聚焦、单色性和相干性等特点,广泛应用于科学研究、医学、通信、制造业等领域。

激光的产生基于激发粒子之间的能级跃迁,通过受激辐射放大产生高度单色和相干的光束。

以下是激光的工作原理的详细说明:1.1 光激发:激光的产生需要一个能给光子提供能量的光激发源,包括电子束激发、光束激发和化学激发等。

其中,电子束激发是目前应用最广泛的激发方式。

1.2 能级跃迁:光激发后,光子与外层电子发生碰撞,使电子跃迁到能级较高的状态。

此时,只有两个能级之间的跃迁才能产生激光。

1.3 受激辐射:当一个已激发的电子回到较低的能级时,会释放出一个与入射光子相同频率和相位的光子,这就是受激辐射。

受激辐射产生的光子与入射光子具有相同频率、相同方向和相干性。

同时,较低能级的粒子会受到激发自发辐射的影响,维持产生的光子数目。

1.4 驻波放大:光子经过反射镜的反射,形成来回传播的光束,与受激辐射的光子相叠加后得到放大。

这种来回传播且同时放大的光束就是激光。

2. 激光的应用激光由于其高度单色性、高亮度和自聚焦等特点,在许多领域有着广泛的应用。

以下是激光的主要应用领域:2.1 科学研究•光谱学研究:激光可用于分析物质的成分,用于化学、物理、生物学等领域的研究。

•材料科学:激光可以用于材料加工、表面改性和光学薄膜制备等方面的研究。

•原子与分子物理:激光可用于原子和分子的精细操控和精确测量。

2.2 医学应用•激光手术:激光刀可以实现非接触性的手术操作,减少创伤和出血。

•激光治疗:激光可以用于皮肤治疗、眼部治疗和牙科治疗等。

•医学影像:激光可以用于医学成像,如激光超声成像和激光扫描成像等。

2.3 通信与信息技术•光纤通信:激光作为光源广泛应用于光纤通信中,实现高速和远距离的信息传输。

•激光打印:激光技术广泛应用于打印行业,提供高分辨率和高速度的打印效果。

•光盘存储:激光可以读取和写入光盘上的信息,广泛应用于光盘存储技术。

(激光原理与应用)1.3光的受激辐射

(激光原理与应用)1.3光的受激辐射

上式可改写为:
A21
dn2 n2dt
A21的物理意义为:单位时间内,发生自发辐射的粒子数密
度占处于E2能级总粒子数密度的百分比。即每一个处于E2
能级的粒子在单位时间内发生的自发跃迁几率。
上方程的解为: n2(t)n20eA2t1 , 式中n20为t=0时处
于能级E2的原子数密度
自发辐射的平均寿命:原子数密度由 起始值降至它的1/e的时间
式中k为波尔兹曼常数。➢总辐射能量密度 : 0 νdν
光与物质的相互作用有三种不同的基本 过程:自发辐射、受激辐射、受激跃迁
1. 自发辐射
➢自发辐射: 高能级的原子自发地从高能级E2向
低能级E1跃迁,同时放出能量为 hE2E1
的光子。
➢自发辐射的特点:各个原子所发的光向空间各个方向 传播,是非相干光。
对于大量原子统计平均来说,从E2经自发辐射跃迁到E1具 有一定的跃迁速率
d2nA2n 12dt
式中“-”表示E2能级的粒子数密度减少;n2 为某时刻高能级E2上的原子数密度(即单位体 积中的原子数); dn2表示在dt时间间隔内由E2自发跃迁到E1的原 子数。 A21称为爱因斯坦自发辐射系数,简称自发辐射 系数。
在此假设外来光的光场单色能量密度为 ,且低能级E1
的粒子数密度为n1,则有:
d2nB12n1dt
式中B12称为爱因斯坦受激吸收系数
(3)令 W12B12,
则有: W12B12nd1dn2t
则W12(即受激吸收几率)的物理意义为:单位时间内,在 外来单色能量密度 的光照下,由E1能级跃迁到E2能级 的粒子数密度占E1能级上总粒子数密度的百分比。
1.3 光的受激辐射
辐射能量密度公式
➢单色辐射能量密度 ν :辐射场中单位体积内,频率在 ν

yz第一章_激光的基本原理

yz第一章_激光的基本原理

二.光波模式和光子状态(相格)
光波模式:在一个有边界条件限制的空间V内,存在的 一系列具有特定波矢 k 的平面驻波。
1.1
19
相 干 性 的 光 子 描 述
1.从波动性描述光波模式 求体积为V的空腔内模式数目。 设空腔为V=Δ xΔ yΔ z的立方体,则沿三个坐标轴方 向传播的波分别应满足的驻波条件为:
4
1917年以后近四十年内: 量子理论的发展; 粒子数反转的有效实现;电 子学与微波技术的发展
1954:美国汤斯(C.H.Townes)
前苏联巴索夫(N.G.Basov) 与
普洛霍洛夫 (A.M.Prokhorov)
第一次实现氨分子微波量子振荡器(MASER)
由于在量子电子学方面的卓越成就和激光器发展上的 突出贡献,普罗霍罗夫,巴索夫和美国物理学家汤斯一
单位体积内处于两能级的原子数分别用n2和n1表示,如 P10图 (1.2.2)所示。
1.自发辐射
处于高能级E2的一个原子自发地向E1跃迁,并发射 一个能量为 hv 的光子。这种过程称为自发跃迁。由原 子自发跃迁发出的光波称为自发辐射。
光 的 受 激 辐 射 基 本 概 念
1.2
33
自发跃迁过程用自发跃迁几率A21描述。A21定义为: 单位时间内n2个高能态原子中发生自发跃迁的原子数与 n2的比值:
zhangyuscaueducn电子科学与技术教研室光电子学是汇集光子学电子学光子技术与电子技术的一门学科电子学研究电子作为信息和能量载体的科学光子学研究光子作为信息和能量载体的科学光子技术相干光的产生激光原理激光原理48学时相干光的控制调制偏转光频率波长变换相干光的检测及应用光电子技术电子技术光与电是兄弟光是波长更短的电磁波lightamplificationstimulatedemission科学技术发展规律基础理论研究新技术产品开发产业激光是一批科学家集体智慧的发明激光受激辐射光放大改变世界的光二十世纪对世界文明最有影响的发明之一1917

光的受激辐射

光的受激辐射

E2 and E1 表示两个激发态
一个光子的能量 hn E2 E1
辐射频率n E2 E1
h
• 自发辐射 (Spontaneous Emission)。
主要特征:无需外来光,随机发光,发出的光子不相关,
即相位、偏振态、传输方向是随机的;发出的光子能量分
布在许许多多个模式上。
E2 hn E1 E1 E2
Dn(z)
I0
0
z
g z Dnz
g z B21hnDnz
g z dI z 1 dz I z
g z z
Dn z 0 Dn z 0 Dn z 0
g z 0 g z 0 g z 0
g z z
结论: 黑体辐射在红外和可见光波段为非相干的
模密度 nn
8n 2 hn n c3 hn KT e 1
n hn n B21n W21 n 2 3 A21 A21 8n 8hn
c3 c3
物理意义?
W21 总光子数 (1) n A21 模式数
(1)自激荡概念
Active medium
amplifier
8n 2 n c3
hn hn KT e 1
E
hn e
hn kT
1
l= 60m
E 1 n hn kT hn e 1
n =103 n= 1; coherent
Example: T=300K l= 30cm
l= 0.6m n=10-35 incoherent
n 1 w21 n
(2) 避免产生许多模式,特定模式的n增加,使相干的 STE光子集中在一个或少数几个模内。

周炳坤激光原理与技术课件第一章 激光的基本原理

周炳坤激光原理与技术课件第一章 激光的基本原理

1 Lc = cΔt = cτ c = c Δν
τ c 即相干时间。对波列进行
频谱分析的频带宽度:
I (ν0 )
I (ν )
1 Δν = Δt
I (ν 0 ) 2
Δν
Δν 是光源单色性的量度: 1 Lc = cΔt = c Δν
相干时间与频带宽度的关系为:
ν0
ν
(1.1.16)
τ c = Δt =
1 2
cπ ⎛ m 2 n2 q 2 ⎞ ωmnq = ⎜ 2 + 2 + 2 ⎟ η ⎝ 4a 4b l ⎠ 结论:不考虑偏振态的情况下,一组(m、n、q)值 对应一个模,求出(m、n、q)值的数目就可以得到 空腔中的模数
1 2
(二)、波矢空间和模密度 1、波矢空间 ——用 k x 、 y 、 z 作为坐标建立的空间称为波矢空间 k k
2
ν
k=

λ
=
2πνη c
2πη dk = dν c
模密度 nν ——单位体积内在频率ν 处单位频率间隔内的模式数:
Nν 8πν 2η 3 = nν = Vdν c3
(*)
(三)、光子状态相格
光子的运动状态,受量子力学测不准关系制约——微观粒子 的坐标和动量不能同时准确测定,遵循测不准关系:
一维: 三维:
Δk z =
π
l
⎛ 2π ⎞ 且有: k = k + k + k = ⎜ ⎟ ⎝ λ ⎠ 2 ⎛ 2 ⎞ m2 n2 q2 = + 2 + 2 ⎜ 2 ⎜ λ mnq ⎟ ⎟ 4a 4b l ⎝ ⎠
2 2 2 x 2 y 2 z
ν mnq
c ⎛ m2 n2 q 2 ⎞ = ⎜ 2+ 2+ 2 ⎟ l ⎠ 2η ⎝ 4a 4b

光的吸收与受激辐射2

光的吸收与受激辐射2
w k 'k 4π 2 e 2 2 = rk ′k ρ(ωk ′k ). 2 3h
下面研究自发辐射理论
11.5.2 自发辐射的Einstein理论
前面提过,在非相对论量子力学理论框架内是无法解 释原子的自发辐射现象的。 因为按量子力学一般原理,如无外界作用,原子的 Hamilton 量是守恒量。 如初始时原子处于某一定态,则原子将保持在该定态, 不会跃迁到较低能级去。 Eintein曾提出一个很巧妙的半唯象理论来说明原子 的自发辐射现象。 他借助于物体与辐射场达到平衡时的热力学关系, 指出自发辐射现象必然存在,并建立起自发辐射与 吸收和受激辐射之间的关系。
4.微扰 微扰Hamilton量: 微扰 量
r r r r H ′ = −eφ = −e(− E ⋅ r ) = −e(− E0 ⋅ r cos ωt ) r r = − D ⋅ E0 cos ω t = W cos ωt r r r r W = − D ⋅ E0 , D = −er (电偶极矩) . 其中
吸收粒子数
nk Bk ′k ρ(ωk ′k ) ≠ nk ′ Bkk ′ρ(ωk ′k ),
辐射粒子数
因此,如只有受激辐射,就无法与吸收过程 达到平衡。 出自平衡的要求,必须引进自发辐射。由于 nk ′ < nk,必须在上式右边再加上一项,使体 系能达到平衡
nk Bk ′k ρ(ωk ′k ) = nk ′ [Bkk ′ρ(ωk ′k ) + Akk ′ ],
hνk'k
hνk'k Ek
无光照下,原子也可以自发 的从高能级跃迁到低能级, 并放出光子。
hνk'k Ek
4. 谱线频率(或波数) 谱线频率(或波数) 按照频率条件,与初末 态能量差△E相对应的 频率v= △E//h 5. 谱线相对强度 是一个与跃迁速率成比例的量,实际上与参 与跃迁的粒子数成正比。

激光原理(第1章)

激光原理(第1章)

tc = Dt = 1/Dv
上式说明,光源单色性越好,则相干时间越长。
物理光学中曾经证明:在图1.1.4中,由线度为Dx的光源A照明的
S1和S2两点的光波场具有明显空间相干性的条件为 DxLx/R ≤ (1.1.18) (1.1.19) (1.1.20)
式中 为光源波长。距离光源R处的相干面积 Ac 可表示为
上 述 基 本 关 系 式 (1.1.1) 和 (1.1.3) 后 来 为 康 普 顿 (Arthur Compton)散射实验所证实(1923年),并在现代量子电动力学中 得到理论解释。量子电动力学从理论上把光的电磁(波动)理论 和光子(微粒)理论在电磁场的量子化描述的基础上统一起来, 从而在理论上阐明了光的波粒二象性。在这种描述中,任意电 磁场可看作是一系列单色平面电磁波(它们以波矢k为标志)的线 性叠加,或一系列电磁波的本征模式(或本征状态)的叠加。但 每个本征模式所具有的能量是量子化的,即可表为基元能量hv 的整数倍。本征模式的动量也可表为基元动量 hkl 的整数倍。 这种具有基元能量hvl和基元动量hkl的物质单元就称为属于第 l 个本征模式(或状态)的光子。具有相同能量和动量的光子彼此 间不可区分,因而处于同一模式(或状态)。每个模式内的光子 数目是没有限制的。
空间称为相空间,相空间内的一点表示质点的一个运动状态。
当宏观质点沿某一方向(例如:x轴)运动时,它的状态变化对应 于二维相空间(x, Px)的一条连续曲线,如图1.1.2 所示。但是,
光子的运动状态和经典宏观质点有着本质的区别,它受量子力
学测不准关系的制约。
测不准关系表明:微观粒子的坐标和动量不能同时准确测定,
hv
式中 h=6.626×10-34Js,称为普朗克常数。

第二节 受激辐射

第二节 受激辐射

第二节受激辐射、受激吸收与自发辐射黑体辐射场,可以理解为组成黑体的原子和光场(或电磁波)相互作用的结果。

光波的产生和传播过程都不可避免涉及光和原子之间的相互作用。

在电磁场理论中,证明了电磁辐射来源于具有加速度的带电物体。

这个结论我们可以从很多方面得到验证。

医院的X光机利用高能电子快速减速辐射X射线;高能电子加速器所产生的电磁辐射就来源于具有加速度的电子;电真空微波器件输出的微波也来源于具有加速度的电子辐射。

光在物质中传播时,原子中的正电荷和负电荷受光场中电场作用,向相反方向运动,形成电偶极子,电偶极子向空间辐射光,和入射光场叠加在一起,形成物质中的总光波。

电磁场理论这些结论在用于宏观物质时,没有出现问题。

但用于解释原子发光过程时,却出项了难以调和的矛盾。

二十世纪初,通过实验已经知道电子是物质的基本组成部分,电子带负电,但物质都是电中性的,所以物质中一定还有带正电的部分。

通过测量电子的荷质比(),知道电子质量比原子质量小得多。

很重的带正电的部份称为原子核。

在这个基础上,物理学家开始猜想原子模型。

最早的原子模型是汤姆孙(J.J.Thomson)提出的,他设想原子就是带正电荷的那一部分均匀分布为一个胶状的球体,带负电的电子镶嵌在这个胶体上,原子就像一个面上有芝麻的面包。

原子发光的频率(光谱)就是这样一个球体的振动频率。

这个模型被后来的电子散射和粒子的散射实验证明是不对的。

卢瑟福(E.Rutherford)1909年粒子散射实验说明,原子大部分是空的,不是一个实心球。

所谓α粒子,就是由两粒带正电荷的质子和两粒中性的中子组成,相当于一个氦原子核。

在自然界内大部分的重元素(例如铀和镭,原子序数为82或以上)在衰变时辐射α粒子。

卢瑟福用α粒子去轰击铂薄片,按照汤姆孙模型,带正电的α粒子受到带正电的铂原子核的散射,α粒子应该偏离入射方向。

但实验发现,只有少量的α粒子发生大角度的偏转,大量原子直接穿过铂薄片,说明大量α粒子没有受到铂原子的作用,原子中的绝大部分空间空无一物。

1.4光的受激吸收以及爱因斯坦三系数关系3受激吸收受激吸收

1.4光的受激吸收以及爱因斯坦三系数关系3受激吸收受激吸收
在折射率为的介质中自发辐射系数与受激辐射系数之间关系为2121四自发辐射光功率与受激辐射光功率对于发光介质中某一单位体积自发辐射的光功率体密度可表示为21212121四自发辐射光功率与受激辐射光功率1普通光源自发辐射光功率与受激辐射光功率之比温度t3000k的热辐射光源发射的波长为500nm时受激辐射光功率体密度与自发辐射光功率体密度之比为普通光源主要是自发辐射四自发辐射光功率与受激辐射光功率2激光光源自发辐射光功率与受激辐射光功率之比激光光源打破了热平衡且单色能量密度比普通光源大1010倍对于上例受激辐射光功率体密度与自发辐射光功率体密度之比为10101020000在各种光源中是否存在受激吸收
A21、B21、B12三个系数的关系
绝对黑体空腔内的原子系统中,单色辐射能量密度同时 满足普朗克公式
8h 3 1 A21 1 h h 3 kT c B B g 21 e 1 12 1 e kT 1 B21 g 2
欲使式中两个等号同时满足必须保证分式前的系数和指数 前的系数都相等,因而得到三个爱因斯坦系数的内在联系:
(1)普通光源自发辐射光功率与受激辐射 光功率之比 温度T=3000K的热辐射光源,发射的波长为 500nm时受激辐射光功率体密度与自发辐射光 功率体密度之比为 讨 论
q激 (t ) q自 (t )

1 eh
kT
1 1 20000
普通光源主要是自发辐射
四、自发辐射光功率与受激辐射光功率
(2)激光光源自发辐射光功率与受激辐射 光功率之比 激光光源打破了热平衡且单色能量密度比普通光 源大1010倍,对于上例,受激辐射光功率体密度与自 发辐射光功率体密度之比为
3. 受激吸收
(1)受激吸收跃迁速率与受激吸收系数
从E1经受激吸收跃迁到E2具有一定的跃迁速率则有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

停止外部光源照射后, 从示波器上可观察到: ① 荧光强度曲线遵从指数律,即证实了自发发射光功率按指数 律衰减 A21 t
q (t ) q 0 e
② 测出荧光寿命, 则可(按 =1/A21)求出。
(i) Anm——从En 跃迁到Em的自发辐射几率
E3 E2 E1
E 2 E1 h
E2 E1

N2 h N1

(b) 受激辐射系数B21: 设外来光场单色能量密度ρv (入射光子满 足hv =E2 - E1),处于能级E2上的原子数密度为n2,在从t 到t+dt的 时间间隔内,有 -dn2个原子由于受辐射作用,而由E2跃迁到E1, 则有 -dn2=B21ρv n2dt (1-30)
E2 E1
受激发射是产生激光的最重要机理
外来光子
受激辐射光子
③受激发射的粒子系统是相干光源(相同→相干):
受激辐射是在外界辐射场的控制下的发光过程,因而各原 子的受激发射的相位不再是无规则分布的,而应有和外界辐射 场相同的相位。量子电动力学可证明:受激辐射光子与入射光 子属于同一光子态。
受激辐射与自发辐射的重要区别——相干性
6、瑞利-金斯公式——1900年瑞利--金斯利用经典电动力学和统 计力学(将固体当作谐振子且能量按自由度均分原则及电磁辐射 理论)得到一个公式,此公式在短波区域明显与实验不符,而理 论上却找不出错误——“紫外灾难” ,像乌云遮住了物理学睛朗的 天空。
( v , T )( 10
6 5 4 3 2 1 0 1 2 3
,即
t = 0 时 n2 = n20
t= t 时刻, E2上粒子数为n2(t)即 t = t 时 n2=n2(t) ∵ E2上粒子数减少的唯一去向是E1 ∴ dn2(t) = -dn2= -A21n2(t)dt (粒子只有两个能级)
dn2(t) = -dn2=-A21n2(t)dt


n2
n 20
dn 2 A21 t A21 t q ( t ) h h A n ( t ) h A n e q e ∴ 21 2 21 20 0 dt
其中 q0= h v A21n20 是 t =0 时的自发辐射光功率 可见: 自发辐射光功率随时间 t 也按指数律衰减 按经典模型,原子的自发跃迁是原子中电子的自发阻尼振荡
可见: ①自发辐射系数A21等于激发态平均寿命τ的倒数; ②τ可视为粒子系统自发辐射发光的持续时间
t >τ的光功率 [q(t)<q0/e] 已可忽略不计。
(g) A21是粒子能级结构的特征量(对一种粒子的每两个能级来 说是常量), 和外电磁场ρ(v,t)(入射光场)无关。
(h) 荧光实验
光源S 发的光经过会聚透镜 L 会聚到红宝石晶体上,红宝石 中处于基态E1能级的铬离子吸收入射光中的黄光和绿光,被激发 到E3能级,通过无辐射跃迁到达E2能级,然后通过自发辐射跃迁 E 2 E1 v 到 E1能级,同时发射频率满足 的红色荧光,在侧面的光 h 电管将显示荧光讯号。
偶极子受迫振动时释放能量 —— 受激辐射现象 偶极子受迫振动时吸收能量 —— 受激吸收现象 偶极子阻尼振动时释放能量 —— 自发辐射现象
二、黑体热辐射
1.热辐射 实验证明:不同温度下物体能发出不同的电磁波,这种能量按频 率的分布随温度而不同的电磁辐射叫做热辐射。 2.黑体 能完全吸收照射到它上面的各种频率的电磁辐 射的物体称为黑体(黑体是理想模型)。
(a) 特点:各粒子自发、独立地辐射光子。各光子的方向、偏 振、初相等状态是无规的, 独立的,粒子体系为非相干光源 。(普通光源)
(b) 自发辐射系数A21: 设E2上原子数密度(单位体积中的原子数 )为n2 , 时间dt内、单位体积内经自发辐射从E2跃迁到E1的粒子 数为 - dn2 则因dn2∝n2 且dn2 ∝dt ∴
原子发光的经典电子论可以帮助我们得到一个定性的粗略 理解。按经典电子论模型,原子的自发跃迁是原子中电子的自 发阻尼振荡,没有任何外加光电场来同步各个原子的自发阻尼 振荡,因而电子振荡发出的自发辐射是相位无关的。而受激辐 射对应于电子在外加光电场作用下作受迫振荡时的辐射,电子 受迫振荡的频率、相位、振动方向显然应与外加光电场一致。 因而受迫振动电子发出的受激辐射应与辐射场具有相同的频率 、相位、传播方向和偏振状态。 *(因为不同粒子发射的光子与入射光子的频率、位相、偏 振等状态相同, 而且使相干光子数目不断增加, 所以受激发射 使激光具备了高亮度、方向性、单色性、相干性的特点)
dn 2 h A21 n 2 (t ) h A21 n 20 e A21 t q 0 e A21 t q (t ) h dt
(f ) A21和激发态平均寿命的关系: 设: t = τ 时 q(τ) = q0 /e 则 : A21=1/ 或 τ=1/A21 (1-27)
设高能级 En 跃迁到 Em 的跃迁几率为 Anm ,则激发态 En 的自发辐 射平均寿命为: 1 (1-28) An m
m
(2) 受激辐射 原处于高能级 E2的粒子,受到能量恰为hv=E2-E1的光子的激 励,发射出与入射光子相同的一个光子而跃迁到低能级E1 。 E2 E1 (a)特点: ①受激发射只能在频率满足hv=E2-E1的光子的激励下发生; ②不同粒子发射的光子与入射光子的频率、位相、偏振等状态 相同; 这样,光场中相同光子数目增加,光强增大,即入射光被 放大 ——光放大过程。 ● ● h N2 N1
(3) 受激吸收 原处于低能级E1的粒子,受到能量恰为hv=E2-E1的光子照射 而吸收该光子的能量, 跃迁到高能级E2。 E2 N2 ● h E1 N1 ● (a) 受激吸收系数B12: 设E1的粒子数(密度)为n1,单色辐射能量密 度 ρv 的光入射 ( 入射光子满足 hv=E2-E1) 时,在单位体积、时间 间隔dt内吸收光子而由E1跃迁到E2的粒子数为
3、黑体辐射理论 描述物体处于热平衡状态时吸收和辐射能量 的宏观特征及其规律。 4、单色辐射能量密度 黑体辐射能量密度 —— 辐射场中单位体积内,频率在v附 近的单位频率间隔中的辐射能量。
dw (v, T ) d vd V
小孔
T
ቤተ መጻሕፍቲ ባይዱ空腔
s
L1
平行光管
L 2 会聚透镜
c
棱镜 热电偶
( , T )
三、光和物质的相互作用
1、爱因斯坦粒子模型
爱因斯坦在光量子论的基础上, 把光频电磁场与物质的相互 作用划分为三种过程----自发辐射,受激吸收和受激辐射,并把它 们用三个爱因斯坦系数加以定量描述。 (1)模型: (参与光相互作用的)粒子只有间距为hv=E2-E1 (E2>E1)的 二个能级,且它们符合辐射跃迁选择定则。 (2) 在这种模型中的辐射跃迁: 粒子从低能级向高能级跃迁,须吸收光子; hv = E2-E1 从高能级向低能级跃迁, 会发射光子。hv = E2-E1
9
W/(m
2
Hz ))
瑞利 - 金斯公式 实验曲线
T 2000 k
/ 10 14 Hz
普朗克公式 ——普朗克注意到在 过去的理论中,把黑体中的原子 和分子都看成可以吸收或辐射电 磁波的谐振子,且电磁波与谐振 子交换能量时可以以任一大小的 分额进行(从0到 大),普朗克当 时大胆地放弃了这一概念,提出 了一个革命性的假设,即能量的 吸收与辐射只能按不连续的一份 一份能量进行。
8 h v v c3
3
1 e
hv kT
6 5
瑞利 - 金斯公式
* * * * * 0 1 2 3 * 实验曲线 * * *
1
4 3 2 1
T 2000 k
* * 普朗克公式 * * *
事实上正是这一理论导致了量子 力学的诞生,普朗克1918年因此 而获得诺贝尔奖。
/ 10 14 Hz
E 2 E1 h
2、光频电磁场与物质的三种相互作用过程
(1)自发辐射 在无外电磁场作用时,粒子自发地从E2跃迁到E1,发射光子hv。
E2 E1
h
n2 n1
自发辐射是原子在不受外界辐射场控制的情况下的自发过程, 因此,大量原子自发辐射场的相位是无规则分布的,是不相干的。 此外,自发辐射场的传播方向和偏振方向也是无规则分布的。
1 dn 2 n 2 dt
dn 2 A21 n 2 d t

A21
(1-25)
关于数字下标的说明(下同): ①单下标----能级的量 [如n2为E2上粒子数(密度)] ②双下标----过程的量, 先初态后末态(如A21表示从E2跃迁到 E1的自发辐射系数)
A21
1 dn 2 n 2 dt
7、普朗克量子假设
辐射黑体是由带电谐振子组成,这些谐振子辐射电磁波并和周围 电磁场交换能量,但这些谐振子只能处于某些特殊的状态。它们的能 量只能是某些能量子的整数倍。
E n n n 1 .2 .3
“普朗克公式”
量子数
h
9
( v , T )( 10
* *
W/(m
2
Hz ))
(1-25)
(c) A21的物理意义: 自发辐射几率 A21 是单位时间、单位体积内在 E2 上所有 n2 个粒子中会发 生自发辐射的粒子所占的比例, 所以A21是每个在能级E2的粒 子在单位时间发生自发辐射的几率。 (d) 高能级上粒子数随时间的变化规律: 设 t =0 时刻 ,E2上粒子数为n20
Nanjing University of Information Science & Technology
应用物理学专业方向选修课
激光原理与技术
Laser Principle & Technology
1.3 光的受激辐射
物理与光电工程学院 陈云云
相关文档
最新文档