南昌大学概率论练习册答案

合集下载

概率论与数理统计练习册答案(1-4)全解

概率论与数理统计练习册答案(1-4)全解

概率论与数理统计练习册答案(1-4单元)第一单元 A 卷1解(1)有两种可能性30 30 10,50 10 10 P=2112525331035712024C CC CC ?==(2)用对立事件做 P=111532310314C C CC创-=2解: 由题意产品的合格率为96%合格产品中的一等品率为75%则出厂产品的一等品率P=96%*75%=72%所以在该厂产品中任取一件是一等品的概率为72%。

3解: 乙选手输掉一分有两种情况:第一种是乙第一次回球就失误,所以P1=0.3;第二种是乙第二次回球才失误,所以P2=0.7*0.6*0.5=0.21; 因此乙选手输掉一分的概率P=P1+P2=0.51。

4. 解: P(AUBUC)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC) =1/4+1/4+1/4-1/6-1/6=5/12则A 、B 、C 全不发生的概率为1-P(AUBUC)=1-5/12=7/12。

5解:令事件B 为被射中事件A 1表示甲射中乙没中 事件A 2表示乙射中甲没中 事件A 3表示俩人都中 则P (13()A A B+)=13()()()P A B P A B P B +=1133112233()()()()()()()()()()P B A P A P B A P A P B A P A P B A P A P B A P A ? ?? =0.60.60.50.40.50.60.5?? =0.757.解:设A i 为第一次抽到的新球个数。

B 为3只球为新球。

P (A 0)=0396315C C C ,P (A 1)=1296315C CCP (A 2)=2196315C C C ´,P (A 3)=3096315C C C ´P (0A B )=31539CC,P (1A B )=31538CCP (2A B )=31537CC,P (3A B )=31536CCP (B )=P (0A B )´P (A 0)+P (1A B )´P (A 1)+P (2AB )´P (A 2)+P (3AB )´P (A 3)=0.089四.1.证明重要公式:P(A-B)=P(A)P - (AB);(或P(AB)=P(A) -P(AB));2.设P(A)=0.7,P(A -B)=0.3,求P(AB ) 解:1.证明:因为A=A B ÈAB所以P (AB )= P (AB AB È)= P (AB )+P (AB )P - (AB ÇAB)又因为ABÇAB=Æ所以P (A )= P (AB )+P (AB )所以P (AB )= P (A )- P (AB )即P (A -B )=P (A )-P (AB ) 2.由1可得,P (AB )= P (A )-P (A -B )=0.4 所以P(AB )=1-P(AB)=0.6(画图可帮助解题)五.解:设事件A 为取到白球球分放在箱子中一共有四种情况:I. 一只箱子中没球,另一只箱子中4个球:P (A )=1/2*2/4=1/4 II. 一只箱子中1只白球,另一只箱子中其他三只球:P (A )=1/2+1/2*1/3=7/12III. 一只箱子中一只黑球,另一只箱子中其他三只球:P (A )=1/2*2/3=1/3IV.一只箱子中2只白球,另一只箱子中两只黑球:P (A )=1/2B 卷三、计算题1、① P=C 110C 4924/C 206=0.52 先从10双中取1双,再从剩下的9双中取4双,最后从4双中取每双中的一只② P=1-C 61026/C 620=0.653 考虑对立面,即没有两只能够配成对,先从10双中取6双,再从6双取每双的一只2解:由P(B|A )=)()(A P A B P =1.0)(A B P =0.4得()A B P =0.04,又由)(A B P =P(B)-P(AB)=0.75-P(AB)=0.04 故 P (AB )=0.713、解:记“甲获胜”为事件A,“乙获胜”为事件B 由题意得P(A)=23211151515()()()()...()()6666666n n -++++ P(B)= 223315151515()()()()()()...()()66666666n n++++两式相比得()5()6P A P B =故65(),()1111P A P B ==4解:若采用第一种 设A 为“不产出废品”P(A )=97%⨯96%⨯95%=0.88464若采用第二种 设B 为“不产出废品” P(B)=93%⨯93%=0.8649P(A)>P(B) 应采用第一种 5 P (A 0)=121211221122()()nnn n m n m nm n m n ?++++121212121112211221122()()()P m n nm m n n m A m n m nm n m nm n m n +=??++++++ 1212211221122()()()P m m m m A m n m nm n m n =?++++ )|(0A B P =0)|(1A B P =211)|(2=A B P P(B)=)(0A P )|(0A B P +)|()()|()(2211A A A A B P P B P P +=121221112222()()m m m n m n m n m n ++++6.解:设1A 表示取出的一只元件为正品,2A 表示取出的为次品。

概率论与数理统计练习册答案

概率论与数理统计练习册答案

概率论与数理统计练习册答案第一章概率论的基本概念一、选择题4. 答案:(C )注:C 成立的条件:A 与B 互不相容.5. 答案:(C )注:C 成立的条件:A 与B 互不相容,即AB φ=.6. 答案:(D )注:由C 得出A+B=Ω. 8. 答案:(D )注:选项B 由于11111()1()1()1()1(1())nn n n n i i i i i i i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C )注:古典概型中事件A 发生的概率为()()()N A P A N =Ω. 10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365r r r rC r P P A ?==,故365()1365rrP P A =-.12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明AB C ?,故()()P AB P C ≤;而()()()()1,P A B P A P B P AB ?=+-≤ 故()()1()()P A P B P AB P C +-≤≤.13.答案:(D )解:由(|)()1P A B P A B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()P AB P AB P AB P A B P B P B P B P B P AB P B P B P A P B P AB P B P B P AB P B P B P A P B P AB P B P B P AB P AB P B P B P A P B P B P B P AB P B -?+=+--+--+==-?-+--+=-?-+--+=2(())()()()P B P AB P A P B -?=故A 与B 独立. .16.答案:(B )解:所求的概率为()1()1()()()()()()()11111100444161638P ABC P A B C P A P B P C P AB P BC P AC P ABC =-??=---+++-=---+++-= 注:0()()0()0ABC AB P ABC P AB P ABC ??≤≤=?=. 17.答案:(A )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 箱”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++. 二、填空题2.;ABC ABC ABC ABC ABC 或AB BC AC3.0.3,0.5 解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3;若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.4.0.7 解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7.解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-= .6.0.6 解:由题设P (A )=0.7,P (AB )=0.3,利用公式AB AB A +=知()()()P AB P A P AB =-=0.7-0.3=0.4,故()1()10.40.6P AB P AB =-=-=. 7.7/12 解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+= . 10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114=,故所求的概率为417!1260=. 11.3/7 解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 12.6/11解:设A={甲射击},B={乙射击},C={目标被击中},则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5,故()()(|)0.50.66 (|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 四、 )(,21)|(,31)|(,41)(B A P B A P A B P A P ?===求。

概率论·课后答案(绝对详解)

概率论·课后答案(绝对详解)

i习题一3 设,,B A 为二事件,化简下列事件:B B B A B BA B A B A B A =⋃=⋃⋃=⋃⋃)()())()(1(B B A B B A A A B A B A =⋃⋃⋃=⋃⋃)())()(2(4 电话号码由5个数字组成,每个数字可能是从0到9这10个数字中的任一个,求电话号码由5个不同数字组成的概率。

3024.010302410427210678910445==⋅=⋅⋅⋅⋅=p5 n 张奖券中有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。

答案:.1k n k mn C C --6 从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”的概率是多少?解;将这五双靴子分别编号分组},,,,{};,,,,{5432154321b b b b b B a a a a a A ==,则C 表示:“至少有两只配成一双”;从5双不同的鞋子中任取4只,其可能选法有.45C不能配对只能是:一组中选i 只,另一组中选4-i 只,且编号不同,其可能选法为)0,1,2,3,4(;455=--i C C i i i41045341523251235451)(1)(C C C C C C C C C C P C P ++++-=-= 2113218177224161247720104060401011234789105453245224551=-=⋅⋅-=⋅++++-=⋅⋅⋅⋅⋅⋅⋅+⋅+⋅⋅+⋅⋅+-= 7在[—1,1]上任取一点,求该点到原点的距离不超过51的概率。

答案:518在长度为a 的线段内任取两点,将其分成三段,求它们可以构成三角形的概率。

,0,0a y a x <<<<且a y x <+<0,又41222,,=⎪⎪⎪⎩⎪⎪⎪⎨⎧<<>+⇒⎪⎩⎪⎨⎧--<---<--->+P ay a x a y x y x a x y y x a y x y x a y x 9在区间)1,0(内任取两个数,求这两个数的积小于41的概率。

概率论课后1-8章 习题解答

概率论课后1-8章 习题解答

第一章习 题1.写出下列试验下的样本空间:(1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1) “甲未中靶”: ;A(2) “甲中靶而乙未中靶”: ;B A(3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A(5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC(7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB(9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A3 .设,A B 是两随机事件,化简事件 (1)()()A B A B (2) ()()A B A B解:(1)()()A B A B AB AB B B == , (2) ()()A B A B ()AB AB B A A B B ==Ω= .4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率. 解:51050.302410P P ==. 5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。

(正)概率论与数理统计练习册及其答案介绍

(正)概率论与数理统计练习册及其答案介绍

5 A. 13
A.
19 B. 45
B.
7 15
C.
D.
19 30
). D.
ห้องสมุดไป่ตู้
19.接上题,若已知取到的是一只白球,则此球是来自第二类箱子的概率为(
1 2
1 3
5 7
1 7
答: 1.答案:(B) 2. 答案:(B) 解:AUB 表示 A 与 B 至少有一个发生, Ω -AB 表示 A 与 B 不能同
3
时发生,因此(AUB)( Ω -AB)表示 A 与 B 恰有一个发生. 3.答案:(C) 4. 答案:(C) 5. 答案:(C) 6. 答案:(D) 7. 答案:(C) 8. 答案:(D) 注:选项 B 由于
P (∑ Ai ) = 1 − P(∑ Ai ) = 1 − P(∏ Ai ) == 1 − ∏ P( Ai ) =1 −
i =1 i =1 i =1 i =1 n n n n n i =1
注:C 成立的条件:A 与 B 互不相容. 注:C 成立的条件:A 与 B 互不相容,即 AB = φ . 注:由 C 得出 A+B= Ω .
1 1 a b B. C. D. A. 2 a+b a+b a+b 10.设有 r 个人, r ≤ 365 ,并设每个人的生日在一年 365 天中的每一天的可能性为均等的, ). 则此 r 个人中至少有某两个人生日相同的概率为(
A. 1 −
r P365 365 r
B.
r C 365 ⋅ r! 365 r
1
8. Ai (i = 1, 2,
, n) 为一列随机事件,且 P( A1 A2
n n
An ) > 0 ,则下列叙述中错误的是(

概率论习题集答案

概率论习题集答案

概率论习题集答案概率论是数学的一个分支,它研究随机事件的规律性。

在概率论习题集中,我们通常会解决一些与随机变量、概率分布、期望值、方差等概念相关的问题。

以下是一些概率论习题的答案示例:1. 随机变量的期望值:如果X是一个离散随机变量,其概率质量函数为P(X=x_i)=p_i,那么X的期望值E(X)可以通过以下公式计算:\[ E(X) = \sum_{i} x_i p_i \]2. 二项分布的概率:设随机变量X服从参数为n和p的二项分布,即X~B(n, p),那么X等于k的概率可以通过以下公式计算:\[ P(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \]其中,\(\binom{n}{k}\) 是组合数,表示从n个不同元素中选取k 个元素的组合方式数。

3. 正态分布的性质:如果随机变量X服从标准正态分布,即X~N(0,1),那么X的取值在-1到1之间的概率可以通过标准正态分布表来查找。

4. 联合分布函数:如果有两个随机变量X和Y,它们的联合分布函数P(X≤x, Y≤y)可以通过它们的边缘分布和条件分布来计算。

5. 大数定律:根据大数定律,随着试验次数的增加,样本均值会趋近于总体均值。

6. 中心极限定理:中心极限定理指出,即使原始随机变量的分布不是正态分布,它们的和或平均值的分布随着样本量的增加会趋近于正态分布。

7. 协方差与相关系数:两个随机变量X和Y的协方差度量了它们之间线性关系的强度和方向,计算公式为:\[ \text{Cov}(X, Y) = E[(X - E(X))(Y - E(Y))] \] 相关系数是协方差的标准化形式,计算公式为:\[ \rho_{X, Y} = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X) \cdot \text{Var}(Y)}} \]8. 泊松分布的应用:泊松分布常用于描述在固定时间或空间内随机发生的事件数量,其概率质量函数为:\[ P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!} \] 其中,λ是单位时间或单位空间内事件发生的平均次数。

概率论与数理统计练习册—第一章答案

概率论与数理统计练习册—第一章答案

第一章 概率论的基本概念基础训练I一、选择题1. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为:( D )。

A )甲种产品滞销,乙种产品畅销;B )甲乙产品均畅销;C )甲种产品滞销;D )甲产品滞销或乙种产品畅销.2、设A ,B ,C 是三个事件,则C B A ⋃⋃表示( C )。

A ) A ,B ,C 都发生; B ) A ,B ,C 都不发生;C ) A ,B ,C 至少有一个发生;D ) A ,B ,C 不多于一个发生3、对于任意事件B A ,,有=-)(B A P ( C )。

A ))()(B P A P -; B ))()()(AB P B P A P +-;C ))()(AB P A P -;D ))()()(AB P B P A P -+。

4、已知5个人进行不放回抽签测试,袋中5道试题(3道易题,2道难题),问第3个人抽中易题的概率是( A ) 。

A ) 3/5;B )3/4;C )2/4;D )3/10.5、抛一枚硬币,反复掷4次,则恰有3次出现正面的概率是( D )。

A ) 1/16B ) 1/8C ) 1/10D ) 1/46、设()0.8P A =,()0.7P B =,(|)0.8P A B =,则下列结论正确的有( A )。

A )B A ,相互独立; B )B A ,互不相容;C )A B ⊃;D ))()()(B P A P B A P +=⋃。

二、填空题1.设C B A ,,是随机事件,则事件“A 、B 都不发生,C 发生”表示为C B A , “C B A ,,至少有两个发生”表示成BC AC AB ⋃⋃ 。

2.设A 、B 互不相容,4.0)(=A P ,7.0)(=⋃B A P ,则=)(B P 0.3 ;3. 某市有50%住户订日报,有65%住户订晚报,有85%的住户至少订这两种报纸中的一种,则同时订这两种的住户百分比是:30%;4.设4/1)()()(===C P B P A P ,0)()(==BC P AB P ,8/1)(=AC P ,则C B A 、、三件事至少有一个发生的概率为:5/8;5. 若A 、B 互不相容,且,0)(>A P 则=)/(A B P 0 ;若A 、B 相互独立,,且,0)(>A P 则=)/(A B P )(B P 。

概率论第四版课本习题答案

概率论第四版课本习题答案

概率论第四版课本习题答案概率论是数学的一个重要分支,广泛应用于统计学、物理学、工程学等多个领域。

第四版课本习题答案的提供,可以帮助学生更好地理解和掌握概率论的基本概念和方法。

以下是一些概率论习题的解答示例:1. 随机事件的概率如果事件A的概率是P(A)=0.3,事件B的概率是P(B)=0.5,且事件A和B是互斥的,求事件A和B同时不发生的概率。

解答:由于A和B是互斥事件,事件A和B同时不发生的概率等于1减去它们各自发生的概率之和,即P(A' ∩ B') = 1 - P(A) - P(B) = 1 - 0.3 - 0.5 = 0.2。

2. 条件概率如果P(A|B) = 0.7,P(B) = 0.4,求P(A ∩ B)。

解答:根据条件概率的定义,P(A ∩ B) = P(A|B) * P(B) = 0.7* 0.4 = 0.28。

3. 独立事件如果事件A和事件B是独立的,且P(A) = 0.6,P(B) = 0.5,求P(A ∩ B)。

解答:对于独立的事件,P(A ∩ B) = P(A) * P(B) = 0.6 * 0.5= 0.3。

4. 全概率公式设事件A1, A2, ..., An是样本空间的一个划分,且P(Ai) > 0,对于任意事件B,证明P(B) = Σ[P(Ai) * P(B|Ai)]。

解答:根据全概率公式的定义,P(B)是事件B发生的概率,可以分解为所有可能的Ai发生时B发生的概率之和。

即P(B) = Σ[P(Ai ∩ B)]。

由于Ai和B是独立的,P(Ai ∩ B) = P(Ai) * P(B|Ai),因此P(B) = Σ[P(Ai) * P(B|Ai)]。

5. 贝叶斯定理如果P(A|B) = 0.8,P(B) = 0.01,P(A'|B') = 0.6,P(B') =0.99,求P(B|A)。

解答:使用贝叶斯定理,P(B|A) = [P(A|B) * P(B)] / [P(A|B) * P(B) + P(A'|B') * P(B')] = (0.8 * 0.01) / [(0.8 * 0.01) + (0.6 * 0.99)] ≈ 0.008 / 0.6042 ≈ 0.0132。

南昌大学概率论练习册答案

南昌大学概率论练习册答案

练习一一、1.BCD 2. ABC 3. CD 4. BD 5. D二.1. 88365365A 2. 41/90 3. 0.4 0.6 4. 25/42 三、已知:P (A )=0.45,P (B )=0.35,P (C )=0.3,P (AB )=0.1,P (AC )=0.08,P (BC )=0.05,P (ABC )=0.03(1)3.0)]()()([)()}({)()(=-+-=-=ABC P AC P AB P A P C B A P A P C B A P (2)07.0)()()(=-=ABC P AB P C AB P (3)3.0)(=C B A P23.0)]()()([)()}({)()(=-+-=-=ABC P BC P AB P B P C A B P B P C B A P 2.0)]()()([)()}({)()(=-+-=-=ABC P BC P AC P C P B A C P C P C B A P得73.0)()()(=++=C B A P C B A P C B A P P(4)14.0)()()()(=-+-+-==ABC BC P ABC AC P ABC AB P BC A C B A C AB P P (5)P (A ∪B ∪C )=0.73+0.14+0.03=0.9 (6)1.09.01)(=-=C B A P四、令x 、y 为所取两数,则Ω={(x ,y )|0<x <1, 0<y <1}; 令事件A :“两数之积不大于2/9,之和不大于1”,则A ={(x ,y )| xy ≤2/9, x +y ≤1, 0<x <1, 0<y <1}S Ω=S OAED =1×1=1; 2ln 9231)9211121231+=---⨯⨯==⎰dx x x S S A 阴得2ln 9231+==ΩS S P A练习二一、1.ABCD 2. ABC 3. ABC 4. C二、Ω:“全厂的产品”;A 、B 、C 分别为:“甲、乙、丙各车间的产品”,S :“次品”,则(1)由全概率公式,得 P (S )=P (A )P (S |A )+P (B )P (S |B )+P (C )P (S |C )=25%×5%+35%×4%+40%×2%=3.45%(2)由贝叶斯公式,得%23.366925345125%45.3%5%25)()|()()|(≈==⨯==S P A S P A P S A P三、Ω={(女,女,女),(女,女,男),(女,男,女),(男,女,女),(女,男,男),(男,女,男),(男,男,女)}有:P {至少有一男}=6/7或132333331C C C C P ++-= 四、101)(,157)(,154)(===AB P B P A P有:143157101)()()|(===B P AB P B A P 83154101)()()|(===A P AB P A B P 3019)()()()(=-+=AB P B P A P B A P五、bB A P b a B P B A P B P A P B P AB P B A P )()()()()()()()|( -+=-+==又P (A ∪B )≤1,则bb a B A P 1)|(-+≥练习三一、1.BD 2. ABCD 3. AD 4. B二、A 1、A 2、A 3分别“甲、乙、丙击中飞机”,则A 1、A 2、A 3相互独立 B i :“有i 个人击中飞机”(i =1,2,3),有:Ω== 31i i B ;B :“飞机被击落”由已知:P (A 1)=0.4,P (A 2)=0.5,P (A 3)=0.73213213211A A A A A A A A A B =36.0075.06.03.05.06.03.05.04.0 )()()()()()()()()()(3213213211=⨯⨯+⨯⨯+⨯⨯=++=A P A P A P A P A P A P A P A P A P B P41.0)(23213213212=⇒=B P A A A A A A A A A BB 3=A 1A 2A 3⇒P (B 3)=0.14又P (B |B 1)=0.2,P (B |B 2)=0.6,P (B |B 3)=1 由全概率公式,得:458.0114.06.041.02.036.0)|()()(31=⨯+⨯+⨯==∑=i i i B B P B P B P三、A i :“C 发生时第i 只开关闭合”,由已知有:P (A i )=0.96 (1)P (A 1∪A 2)=P (A 1)+P (A 2)-P (A 1A 2)=0.96+0.96-0.96×0.96=0.9984 (2)设需k 只开关满足所需可靠性,在情况C 发生时,k 只开关中至少有一只闭合的概率为:39999.004.01)96.01(1)()()(1)(1)(1)(min 21212121=⇒≥-=--=-=-=-=k A P A P A P A A A P A A A P A A A P kkk k k k四、(1)3087.0)3.01(3.0)2(32255=-=C P(2)A :“5个样品中至少有2个一级品”,有:47178.07.03.01)(1)()(15515525=-=-==∑∑∑=-==i i i i i i C i P i P A P练习四一、1. ABCD 2. D 3. A 4. AB 二、(1)任掷两骰子所得点数和i 有2→12共11种可能令ωi 表示和数为i 的样本点(i =2,3,…,12),则基本事件集Ω={ω2, ω3,…, ω12 }(2)由已知,得:∀ωi ∈Ω,有ξ(ωi )=2i (i =2,3,…,12),则ξ的可能值为2i (i =2,3,…,12) (3){ξ<4}=φ; {ξ≤5.5}={ξ=4}={ω2}; {6≤ξ≤9}={ξ=6}∪{ξ=8}={ω3}∪{ω4}; {ξ>20}={ξ=22}∪{ξ=24}={ω11}∪{ω12}(4)P {ξ<4}=0;P {ξ≤5.5}=P {ω2}=1/36;P {6≤ξ≤9}=P {ω3}+P {ω4}=2/36+3/36=5/36; P {ξ>20}= P {ω11}+P {ω12}=2/36+1/36=3/36=1/12 三、(1) ξ的所有可能值为0,1,2P {ξ=0}=3522315313=C C ; P {ξ=1}=3512321312=C C C ; P {ξ=2}=35131511322=C C C 故ξ的分布律为: (2)F (x )=P {ξ≤x }当x <0时,{ξ≤x }为不可能事件,得F (x )=P {ξ≤x }=0当0≤x <1时,{ξ≤x }={ξ=0},得F (x )=P {ξ≤x }=P {ξ=0}=22/35 当1≤x <2时,{ξ≤x }={ξ=0}∪{ξ=1},又{ξ=0}与{ξ=1}是两互斥事件,得F (x )=P {ξ≤x }=P {ξ=0}+P {ξ=1}=22/35+12/35=34/35当x ≥2时,{ξ≤x }为必然事件,得F (x )=P {ξ≤x }=1 综合即得 四、五、(1)ππ11111)(112=⇒=⇒=-⇒=⎰⎰-+∞∞-A A dx x A dx x f(2)3111)2121(21212=-=<<-⎰-dx x P πξ(3)dt t f x F x⎰∞-=)()( 当x <-1时,00)(==⎰∞-dt x F x当-1≤x ≤1时,x dt x dt x F xarcsin 121110)(121ππ+=-+=⎰⎰--∞- 当x >1时, 10110)(11121=+-+=⎰⎰⎰--∞-dt dt x dt x F xπ 综合即得六、(1)P {2<ξ≤5}=Φ(235-)-Φ(232-)=Φ(1)-Φ(-0.5)=Φ(1)-[1-Φ(0.5)]=0.5328P {-4<ξ<10}=Φ(2310-)-Φ(234--)=Φ(3.5) -Φ(-3.5)= 2Φ(3.5) -1=0.9996 P {|ξ|>2}=1-P {-2≤ξ≤2}=1-Φ(232-)+Φ(232--)=1-Φ(-0.5)+Φ(-2.5)=0.6977P {ξ>3}=1-P {ξ≤3}=1-Φ(233-)=1-Φ(0)=1-0.5=0.5(2) P {ξ>C}=1-P {ξ≤C}=P {ξ≤C}⇒P {ξ≤C}=0.5⇒Φ(23-C )=0.5⇒23-C =0.5⇒练习五一、1.AB 2. BC 3. AC 4. BD 5. B 二、⎩⎨⎧∉∈=)1,0( ,0)1,0( ,1)(x x x f X(1)y =e x 在(0,1)严格单调增且可导,则x =ln y 在(1,e )上有:(ln y )'=y1∴⎪⎩⎪⎨⎧<<=其它 ,01 |,1|)(ln )(e y y y f y f X Y ⇒⎪⎩⎪⎨⎧<<=其它 ,01 ,1)(e y y y f Y (2)y = -2ln x 在(0,1)严格单调减且可导,则2yex -=在(0,+∞)上有:2221)(yy e e---='∴⎪⎩⎪⎨⎧>-=--其它 ,00 |,21|)()(y e e f y f y y X Y ⇒⎪⎩⎪⎨⎧>=-其它 ,00,21)(y e y f y Y 三、⎩⎨⎧-∈=其它,0]2/ ,2/[ ,/1)(πππx x f Xy =cosx 在[-π/2,0]上严格单调增且可导,则x 1=h 1(y )= -arccosy 在[0,1]上有:x 1'=211y- y =cosx 在[0, π/2]上严格单调减且可导,则x 2=h 2(y )=arccosy 在[0,1]上有:x 2'=211y-- ∴⎪⎩⎪⎨⎧∈-='+'=其它 ,0]1,0[ ,12|)(|)]([|)(|)]([)(22211y y y h y h f y h y h f y f X X Y π四、五、(1)12112/1),(0403=⇒==⇒=⎰⎰⎰⎰+∞-+∞∞-+∞-+∞∞-k k dy e dx e k dxdy y x f y x(2)⎪⎩⎪⎨⎧>>--===--+-∞-∞-⎰⎰⎰⎰其它,00,0 ),1)(1(12),(),(4300)43(y x e e dxdy edxdy y x f y x F y x y xy x yx(3)P (0<X ≤1,0<Y ≤2)=F (1,2)-F (1,0)-F (0,2)+F (0,0)= (1-e -3)(1-e -8)六、(1)X 与Y 独立,则⎪⎩⎪⎨⎧>>⨯==+-其它,00,0 ,1021)()(),(26y x e y f x f y x f y x Y X(2)311021),()(02000206=⨯==>⎰⎰⎰⎰+-∞+>dy edx dxdy y x f Y X P x yx yx练习六1.(1)2211),(ππ=⇒==⎰⎰+∞∞-+∞∞-A A dxdy y x f (2) 161)1)(1(11010222=++=⎰⎰dxdy y x P π (3))1(1)1)(1(1)(2222x dy y x x f X +=++=⎰+∞∞-ππ,同理)1(1)(2y y f Y +=⇒π 有f (x ,y )=f X (x )f Y (y ),故X 与Y 独立2.X 与Y 独立,则P {X =x i ,Y =y j }=P {X =x i }P {Y =y j }有:3.(1)2,10)]3/()[2/(0),(0)2/)](2/([0),(1)2/)(2/(1),(2ππππππ===⇒⎪⎭⎪⎬⎫=+-⇒=-∞=-+⇒=-∞=++⇒=+∞+∞C B A y arctg C B A y F C x arctg B A x F C B A F (2))9)(4(6),(),())((1),(22222++=∂=⇒++=y x y x F y x f y arctg x arctg y x F ππππ (3)2121)22)(22(1),()(2x arctg x arctg x F x F X πππππ+=++=+∞=则有)4(2)(2+=x x f X π;同理得:3121)(yarctg y F Y π+=,)9(3)(2+=y y f Y π4.5.设第i 周需要量为X i (i =1,2,3)⎩⎨⎧≤>=⇒-0 ,00,)(i i x i i X x x e x x f i i (i =1,2,3)(1)令X =X 1+X 2,则⎩⎨⎧>>=+-其它 ,00,0 ,),(21)(212121x x e x x x x f x x⎪⎩⎪⎨⎧≤>+++-===--+-≤+⎰⎰⎰⎰0 ,00,)12161(1),()(2320)(2101212112121x x e x x x dx e x x dx dx dx x x f x F x x x x x x x x x X ⎪⎩⎪⎨⎧≤>=⇒-0,00 ,61)(3x x e x x f x X(2)令Y =X 1+X 2+X 3=X +X 3,则⎪⎩⎪⎨⎧>>=--其它,00,0 ,61),(33333x x e x e x x x f x x⎪⎩⎪⎨⎧≤>+++++-===----≤+⎰⎰⎰⎰0,00,)12624120(161),()(2345303303333y y e y y y y y dx e x e x dx dxdx x x f y F y x y x x y y x x Y ⎪⎩⎪⎨⎧≤>=⇒-0,00 ,1201)(5y y e y y f y Y6.dxdy y x f dxdy y x f z Z P z F zy x z yx Z ⎰⎰⎰⎰≤+≤+==≤=22),(),()()((1)z ≤0⇒F Z (z )=0; (2)z z xz y x zZ ze e dy e dx z F z 2220)(2021)(0---+---==⇒>⎰⎰故⎩⎨⎧≤>=⇒⎩⎨⎧≤>--=---0,00 ,4)(0 ,00 ,21)(222z z ze z f z z ze e z F zZ z z Z 练习七一、1. D 2. B 3. AD 4. D 5. BC 二、令Z 表示整数,则P {Z =i }=1/10=0.1 (i =1,2, (10)除的尽1的整数有且只有整数1这一个;除的尽2,3,5,7的有二个;除的尽4,9的有三个;除的尽6,8,10的有四个,则 P {X =1}=P {Z =1}=0.1; P {X =2}=P {Z =2}+P {Z =3}+P {Z =5}+P {Z =7}=0.4 P {X =3}=P {Z =4}+P {Z=8}+P {Z =10}=0.3 得X 的分布律为:E (X )=1×0.1+2×0.4+3×0.2+4×0.3=2.7三、E (X )=p q pq q p q p q p kqp kpqk k k kk k k k 1)1()1()()(2111111=-='-='='==∑∑∑∑∞=∞=∞=-∞=- E (X 2)=)()()(1111112112'='='==∑∑∑∑∑∞=-∞=∞=∞=-∞=-k k k kk kk k k k kq q p kq p kq p qk p pqk222])1([ppq q p -='-= D (X )=E (X 2)-E 2(X )=221p qp p =- 四、E (X )=0)(2||==⎰⎰∞+∞--∞+∞-dx xe dx x xf xD (X )=322)()]([02||22===-⎰⎰⎰∞+-∞+∞--∞+∞-dx e x dx ex dx x f X E x x x五、令搜索时间为T ,则T 的分布函数为⎩⎨⎧≤>-=-0,00,1)( t t e t F t λ,得:⎩⎨⎧≤>=-0,00,)( t t e t f t λλ,则有E (T )=λλλ1)(0 ==⎰⎰+∞-+∞∞-dt e t dt t tf t六、b X E a b dx x bf dx x xf X E dx x af a ba b a b a ≤≤⇒=≤=≤=⎰⎰⎰)()()()()(E [(X -x )2]=E (X 2)-2xE (X )+x 2=E (X 2)+[x -E (X )]2-E 2(X )=[x -E (X )]2+D (X )可见,当x =E (X )时,E [(X -x )2]取最小值D (X )则当2b a x +=时,有:D (X )=E {[X -E (X )]2}2222)2(])2[(])2[(])2[(a b a b E b a b E b a X E -=-=+-≤+-≤练习八一、1. AD 2. AD 3. B 4. D 5. ABD 二、(1)2/112)sin(1),(0=⇒==+⇒=⎰⎰⎰⎰∞+∞-∞+∞-A A dxdy y x A dxdy y x f ππ(2)4)sin(21)(0πππ=+=⎰⎰dxdy y x x X E228)sin(21)(22222-+=+=⎰⎰ππππdxdy y x x X E2216)()()(222-+=-=ππX E X E X D同理可得:2216)( ,4)(2-+==πππY D Y E(3)12)sin(21)(22-=+=⎰⎰πππdxdy y x xy XY E 1612)()()(),(2ππ--=-=Y E X E XY E Y X Cov 328168)()(),(22-+-+-==ππππρY D X D Y X Cov XY 三、(1)设X i 为第i 个加数取整后的误差,则X i ~U[-0.5,0.5] (i =1, (1500)总误差∑==15001i i X X ,且125211500)()(,0)()(1500115001=⨯====∑∑==i i i i X D X D X E X E由独立同分布的中心极限定理:P {|X |>15}=1-P {|X |≤15}1802.0)34.1(22)553(22)125015()125015(1=Φ-=Φ-=--Φ+-Φ-≈(2)在(1)的假设下,设∑==ni i X X 1,有E (X )=0,12)(n X D =则求最小自然数n ,使P {|X |≤10}≥0.90,即65.112/1095.0)12/10(9.01)12/10(2)12/010()12/010(≥⇒≥Φ⇒≥-Φ=--Φ--Φn n n n n ⇒n ≤440.77⇒n =440为所求四、E (X )=E (Y )=μ, D (X )=D (Y )=σ2E (Z 1)=αE (X )+βE (Y )=μ(α+β), E (Z 2)=αE (X )-βE (Y )=μ(α-β)E (Z 1Z 2)=E (α2X 2-β2Y 2)=α2E (X 2)-β2E (Y 2)=α2[D (X )+E 2(X )]-β2[D (Y )+E 2(Y )]=α2(σ2+μ2)-β2(σ2+μ2) =(σ2+μ2)(α2-β2)D (Z 1)=α2D (X )+β2D (Y )=σ2(α2+β2), D (Z 2)=α2D (X )+β2D (Y )=σ2(α2+β2)22222222222121212121)()()()()()()()()(),(21βαβαβασβασρ+-=+-=-==Z D Z D Z E Z E Z Z E Z D Z D Z Z Cov Z Z 阶段自测一一、1. D 2. A 3. B 4. A 5. B二、1. 0 3/4 5/8 1/8 2. 1/2 1/[π(1+x 2)] 3. 20 16 4. 41 41 5. 1 三、X 的可能值为:2,3,4,5P {X =2}=101125=C =0.1 P {X =3}=104251212=C C =0.4 P {X =4}=103)1(2512=+C C =0.3 P {X =5}=1022512=C =0.2 得X 的分布律:E (X )=2×0.1+3×0.4+4×0.3+5×0.2=3.6E (X 2)=22×0.1+32×0.4+42×0.3+52×0.2=13.8 D (X )=E (X 2)-E 2(X )=0.84 四、令A i :第i 台车床加工的零件;B :废品,则A 1与A 2不相容 由已知:P (B |A 1)=0.03, P (B |A 2)=0.02, P (A 1)=2/3, P (A 2)=1/3由贝叶斯公式:25.0413/203.03/102.03/102.0)()|()()|()|(21222==⨯+⨯⨯==∑=i ii A P A B P A P A B P B A P 五、(1)1)(2)arcsin (lim )(lim ==+=+=--→→a F B A a x B A x F a x a x π0)(2)(lim )(=-=-=+-→a F B A x F a x π,则得:A =1/2, B =1/π(2)31)21arcsin 121()21arcsin 121()2()2(}22{=--+=--=<<-ππa F a F a X a P(3)⎪⎩⎪⎨⎧<-='=其它 ,0|| ,1)()(22a x x a x F x f π六、⎪⎩⎪⎨⎧≤-=⎪⎩⎪⎨⎧≤==⎰⎰---∞+∞-其它其它 ,01|| ,12,01|| ,1),()(21122x x x dy dy y x f x f x x X ππ同理:⎪⎩⎪⎨⎧≤-=其它,01|| ,12)(2y y y f Y πf (x ,y )≠f X (x )f Y (y ),则X 和Y 不独立012)()(112=-==⎰⎰-+∞∞-dx x x dx x xf X E Xπ,同理:E (Y )=001),()0)(0(),(122==--=⎰⎰⎰⎰≤++∞∞-+∞∞-dxdy xy dxdy y x f y x Y X Cov y x , 则X 和Y 不相关七、设A i :第i 次误差的绝对值不超过30米 , ξ~N (20,402)所求为:3321321)](1[1)()()(1)(i A P A P A P A P A A A P --=-=8698.0)]402030()402030(1[1}]30|{|1[133=--Φ+-Φ--=≤--=ξP八、⎰⎰⎰⎰⎰⎰+∞∞-∞-≤≤===≤dy dx x f y f dxdy y f x f dxdy y x f Y X P yyx Y X yx ])()([)()(),(}{21)]()([21)(21)()()()(222=-∞-+∞====+∞∞-+∞∞-+∞∞-⎰⎰F F y F y dF y F dy y F y f练习九一、1. C 2. A 3. C 4. C 5. A 二、(1)∵)1,0(~/N nX σμ- ∴}05.02)(05.0{}/21.0/2||{}1.0|{|n X n n P nn X P X P ≤-≤-=≤-=≤-μμμ153764.153695.01)05.0(2)05.0()05.0(≥⇒≥⇒≥-Φ=-Φ-Φ=n n n n n(2)n p p p np n X n D X D p np n X n E X E ni i n i i )1()1(1)1()( ,1)1()(211-=-=====∑∑==p (1-p )在p =1/2处取得最大值1/4,nX D X E X E p X E 41)(|)(|||22≤=-=-要使01.0||2≤-p X E ,只需1/4n ≤0.01,即n ≥25三、X 1,X 2,X 3,X 4~N (μ,σ2),且相互独立⇒X 1-X 2~N (0,2σ2), X 3-X 4~N (0,2σ2),且X 1-X 2与X 3-X 4相互独立则)1(~)2();1(~)2()1,0(~2);1,0(~2224322214321χσχσσσX X X X N X X N X X --⇒--)1,1(~)()()1,1(~)2()2(243221243221F X X X X F X X X X --⇒--⇒σσ 05.095.01)()(1)()(243221243221=-=⎭⎬⎫⎩⎨⎧≤---=⎭⎬⎫⎩⎨⎧>--a X X X X P a X X X X P ⇒a =F 0.05(1,1)=161.4四、由题意知:)1,0(~)(212N X X C i i +- (i =1,2,3)22222122112)()]([σσσσ=⇒==+=+⇒-C C C X X C D i i又σ2212i i X X +- (i =1,2,3)是相互独立的,得Y ~χ2(3),即自由度为3五、X 1,X 2,...,X 16相互独立,且)16(~)()1,0(~21612χσμσμ∑=-⇒-i i i X N X}32)({}8)({}32)(8{161216121612>--≥-=≤-≤=∑∑∑===i i i i i i X P X P X P P σμσμσμ=0.95-0.01=0.94六、X 1,X 2,...,X n 相互独立,且E (X i )=D (X i )=λn n nX n D X D n n X n E X E ni i n i i λλλλ======∑∑==2111)1()( ;1)1()()(112122X n X n S ni i --=∑=E (X i 2)=D (X i )+E 2(X i )=λ+λ2, 222)()()(λλ+=+=nX E X D X Eλλλλλ=--+-=)(11)(222n n n n S E练习十一、1. A 2. D 3. A 4. B 5. B 二、矩估计量:⎪⎪⎩⎪⎪⎨⎧++===+===⎰⎰∞+--∞+--22222122)()(θμθμθμθμθμμθμμμdx e x X E dx e x X E x x ⎪⎪⎩⎪⎪⎨⎧===∑∑==ni i ni i X n A X X n A 1221111 令⎩⎨⎧==2211A A μμ⇒⎪⎩⎪⎨⎧=++=+∑=n i i X n X1222122θμθμθμ⇒⎪⎪⎩⎪⎪⎨⎧-=--=∑∑==2122121ˆ1ˆX X n X X n X ni in i i θμ极大似然估计量:设x 1, x 2,..., x n 是相应于样本X 1, X 2,..., X n 的一个样本值 似然函数L (x 1, x 2,..., x n , μ, θ )=∑==--=--∏ni i i x n ni x ee1)(1111μθθμθθ(x i ≥μ, i =1,2,..., n )⇒ln L = -n ln θ -∑=-n i i x 1)(1μθ,令⎪⎪⎩⎪⎪⎨⎧=-+-=∂∂==∂∂∑=0)(1ln 0ln 12ni ixn L n L μθθθ⇒μ和θ无解∵x i ≥μ,取k nk x ≤≤=1min ˆμ,有 L =∑=--ni i x n e 1)(11μθθ≤∑=≤≤--ni k nk i x x n e 11)min (11θθ=∑=--ni i x n e 1)ˆ(11μθθ令g (θ )=∑=≤≤--ni k n k i x x n e 11)min (11θθ令0)(=∂∂θθg ⇒0)min (1112=-+-∑=≤≤ni k n k i x x n θ,得⎪⎩⎪⎨⎧-==≤≤=≤≤∑)min (1ˆmin ˆ111k nk n i i k nk x x n x θμ 三、似然函数L (x 1, x 2,..., x n , σ )=∑==-=-∏ni ii x nni x ee1||1||)2(121σσσ⇒ln L = -n ln(2σ) -∑=ni i x 1||σ= -n ln(2σ) -∑=ni ix1||1σ令0ln =∂∂L ⇒0||112=+-∑=n i i x n σσ⇒∑==n i i X n1||1ˆσ由大数定律,有: ∑∑==−→−ni iPn i i X E n X n 11||1||1 E |X i |=E |X |=dx e x dx e x dx e x xxx ⎰⎰⎰∞+-∞-∞+∞--⋅+⋅-=⋅00||2121)(21||σσσ=22σσ+=σ⇒σn n X E n ni i 1||11=∑==σ, 即σ−→−∑=P ni i X n 1||1⇒σˆ为σ的一致估计量 四、E (X )=2β, D (X )=122β⇒βˆ21)(ˆ=X E,2ˆ121)(ˆβ=X D 似然函数L (x 1, x 2,..., x n , β )=n ni ββ111=∏= (0≤x 1,..., x n ≤β)⇒ln L = -n ln β令0ln =∂∂βL ⇒0=-βn ⇒β无解∵L =n β1≤nn x )(1* (x n *=max(x 1,..., x n ))∴取*ˆn x =β时,有L (x 1, x 2,..., x n , β )≤L (x 1, x 2,..., x n ,βˆ) ∴21)(ˆ=X Emax(x 1,..., x n ), 121)(ˆ=X D [max(x 1,..., x n )]2 X 的观察值为1.3, 0.6, 1.7, 2.2, 0.3, 1.1时,最大值为2.2∴2.221)(ˆ⨯=X E=1.1, 22.2121)(ˆ⨯=X D =0.403 五、(1)证明连续型的情形: 设f (x )为X 的概率密度,则 P {|X -μ|≥ε}=dx x f y x ⎰≥-ε||)(≤dx x f x y x )()(||22⎰≥--εεμ≤dx x f x ⎰∞+∞--)()(22εμ=21εE (X -μ)2(2)∀ε >0, P {|t n -θ |<ε}=1-P {|t n -θ |≥ε}≥1-22)(1θε-n t E22)(1θε-n t E =)]()([122θθε-+-n n t E t D =}])([)({122θε-+n n t E t D=])([122n n K t D +ε=0)(1222−−→−+∞→n n n K σε∴1}|{|lim =<-∞→εθn n t P , 即t n 是θ的一致估计量 练习十一一、n =16, 1-α =0.95⇒α =0.05, σ2未知)1(-n t α=t 0.025(15)=2.131516029.01315.2705.2)1(2⨯-=--n t n s x α=2.6916029.01315.2705.2)1(⨯+=-+n t n s x α=2.72∴μ的置信度为0.95的置信区间为(2.69, 2.72) 二、n =9, 1-α =0.95⇒α =0.05)8()1(2025.022χχα=-n =17.535, )8()1(2975.0221χχα=--n =2.180 535.171218)1()1(222⨯=--n s n αχ=55.20, 180.21218)1()1(2212⨯=---n s n αχ=444.04 ∴σ2的置信度为0.95的置信区间为(55.20, 444.04) 三、μ1, μ2分别为一号方案和二号方案的平均产量n 1= n 2=8, α =0.05, x =81.63, 21s =145.70, y =75.88, 22s =101.98)2(212-+n n t α=t 0.025(14)=2.14, 2)1()1(21222211-+-+-=n n s n s n s ω=11.13212111)2(n n s n n t y x +-+--ωα= -6.162121211)2(n n s n n t y x +-++-ωα=17.66 ∴μ1-μ2的置信度为0.95的置信区间为(-6.16, 17.66)四、n 1= n 2=10, α =0.05, )1,1()1,1(122212--=--n n F n n F αα=F 0.05(9, 9)=4.0303.416065.05419.0)1,1(121222⋅=--n n F S S BA α=0.222 )1,1()1,1(11)1,1(112221222212122--=--=---n n F S S n n F S S n n F S S B ABA B A ααα 03.46065.05419.0⋅==3.601 ∴22BAσσ的置信度为0.95的置信区间为(0.222, 3.601) 五、∵212111)()(n n S Y X +---ωμμ~t (n 1+n 2-2)∴P {212111)()(n n S Y X +---ωμμ< t α(n 1+n 2-2)}=1-α∴P {2111n n S Y X +--ωt α(n 1+n 2-2)<μ1-μ2}=1-α∴μ1-μ2的置信度为1-α的置信下限为2111n n S Y X +--ωt α(n 1+n 2-2)x=0.14125, s 12=0.0000083, y =0.1392, s 22=0.0000052,7432221s s s +=ω=0.0025495 2111n n s y x +--ωt α(n 1+n 2-2)=0.14125-0.1392-0.00254955141+t 0.05(7)= -0.0011901≈ -0.0012 ∴μ1-μ2的置信度为0.95的置信下限为-0.0012六、∵S nX )(μ-~t (n -1), 且P {)1(|)(|2-<-n t S n X αμ}=1-α ∴P {nS n t X nS n t X )1()1(22-+<<--ααμ}=1-α∴μ的置信度为1-α的置信区间为(n S n t X )1(2--α,n S n t X )1(2-+α)此时n S n t L )1(2-=α⇒22222)]1([4)()]1([4)(-=-=n t n S E n t n L E αασ 阶段自测二一、1. 1 2. 21σnn - 11--n 3. F (1, n -1) 4. 11-n 5.二、1. AD 2. AC 3. CD 4. 三、(1)∵22)1(σnS n -~χ 2(n -1)∴P {22σn S ≤1.5}=P {22)1(σnS n -≤1.5(n -1)}≥0.95 ⇒P {22)1(σnS n ->1.5(n -1)}≤0.05⇒1.5(n -1)≥)1(205.0-n χ查χ 2分布表得满足上式的最小的n 为27 (2)∵n X σμ-~N (0,1), n n X E X E σσμμ⋅-=-||||, 令Y =nX σμ- ∴E |Y |=ππ22||2122=⎰∞+∞--dy ey y ∴nn X E ππμ24222||=⋅=-≤0.1⇒n ≥255 四、(1)矩估计量: μ1=E (X )=dx xe x ⎰+∞--θθ)(=1+θ, A 1=X令μ1=A 1⇒θ+1=X ⇒1ˆ-=X θ⇒∑∑==-=-=ni i ni i X n X n 111)1(111ˆθ 极大似然估计量: L (x 1,..., x n ,θ )=∑=--ni i x e1)(θ (x i ≥θ )⇒ln L = -∑=-n i i x 1)(θ, 令0ln =∂∂L ⇒θ无解∵x i ≥θ时L 非零 ∴当θ =i ni x ≤≤1min 时, L 有最大值⇒i n i X ≤≤=12min ˆθ (2))()1()ˆ(1X E X E E =-=θ-1=E (X )-1=θ+1-1=θ⇒1ˆθ是θ的无偏估计量 2ˆθ的分布函数G (y )=P {i ni x ≤≤1min ≤y }=1-P {ini x ≤≤1min >y } =1-P {X 1>y , X 2>y ,..., X n >y }=1-[1-F (y )]nX 的分布函数F (x )=⎩⎨⎧<≥---θθθx x e x,0 ,1)(⇒G (y )=⎩⎨⎧<≥---θθθy y e y n ,0 ,1)(⇒g (y )=G ' (y )=⎩⎨⎧<≥--θθθy y ne y n ,0 ,)(⇒ndy yne E y n 1)ˆ()(2+==⎰+∞--θθθθ⇒2ˆθ不是θ的无偏估计量 五、n 1=5, n 2=7, α=0.01103262842)1()1(22212221⨯+⨯=-+-+-=n n S n S n S B A ω=30.46 )2(212-+n n t α=t 0.05(10)=3.1693212111)2(n n s n n t x x B A +-+--ωα=63.47,212111)2(n n s n n t x x B A +-++-ωα=176.52 ∴所求置信区间为(63.47, 176.52) 六、七、E (T )=)()(21X bE X aE +=a μ+b μ=(a +b )μ=μ⇒T 是μ的无偏估计 T =21)1(X a X a -+ ∵1X 与2X 相互独立∴D (T )=222122221222212])1([)1()()1()(σσσn a n a n a n a X D a X D a -+=-+=-+则问题归结为求2212)1(n a n a -+的最小值, 令f (a )=2212)1(n a n a -+令0)(=da a df ⇒0)1(2221=--n a n a ⇒a =211n n n + )()(2)(2112121n n n a n n n n a f +-+='⇒a >211n n n +时, f '(a )>0; a <211n n n+时, f '(a )<0 ⇒f (a )在点211n n n +处取得最小值 ∴使D (T )达到最小值的a =211n n n +, b =212n n n+。

南昌大学大二公共课专业概率论与数理统计试卷及答案 (2)

南昌大学大二公共课专业概率论与数理统计试卷及答案 (2)

南昌大学2021 学年概率论与数理统计第一学期期末试卷一、单项选择题〔每题3分,总分值24分〕1、设随机变量X 的概率密度为1||,22()40,x x f x ⎧-<<⎪=⎨⎪⎩其它 ,则 =≤<-}11{X P ( )。

(A) 0.75 , (B) 0.5 , (C) 0.25 , (D) 0 。

2、随机变量X 的分布函数为x b a x F arctan )(+=,+∞<<∞-x , 假设实数c 满足1{}6P X c >=,则c =〔 〕。

〔A3; 〔B〔C 〕1; 〔D 〕3π。

3、设随机变量),(~2σμN X ,则4(||)E X μ-=〔 〕。

(A) 43σ; (B) 44σ; (C) 45σ; (D) 46σ。

4、设B A ,为任意两事件,则以下关系成立的是( ).(A) A B B A =+-)(; (B) ()A B A B A +-= ;(C) A B B A =-+)(; (D) ()()A B A B B A A B -++-=+ 。

5、一盒内装有5个红球和15个白球,从中不放回取10次,每次取一个球, 则第5次取球时得到的是红球的概率是〔 〕。

〔A 〕15; 〔B 〕14; 〔C 〕13;〔D 〕12。

6、设每次试验成功的概率为p )10(<<p ,则在5次重复试验中至少失败 一次的概率为〔 〕。

(A) 51p -, (B) 4(1)p p -, (C) 5(1)p -, (D) 145(1)C p p -。

7、设二维随机变量221(,)~(1,2;2,3;)2X Y N -,则=+-)12(Y X D ( )。

(A) 13, (B) 14 , (C) 19 , (D) 37 .8、甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6和0.5,现目标被命中,则它是甲射中的概率为〔 〕。

(A)0.6, (B)116, (C)0.75 , (D)115 。

南昌大学07、08年概率论期末考试试题及答案

南昌大学07、08年概率论期末考试试题及答案

南昌大学2007~2008年概率统计期末试题一、填空题(每空3分,共15分)1.如果每次试验成功的概率均为p(0<p<1),并且已知在三次独立重复试验中至少成功一次的概率为19/27,则p=__________2.设两个相互独立的随机变量X和Y的方差分别为4和2,则随机变量3X+2Y的方差为______3.同时抛掷3枚均匀的硬币,则恰好有两枚正面向上的概率为_________4.设随机变量X~B(10, 0.4),则X2的数学期望为_________5.设随机变量X的概率密度为f(x)=,则2X的概率密度为_________二、求下列概率(20分)1.箱中有m件正品,n件次品,现把产品随机地一件件取出来,求第2次取出的一件产品是正品的概率.(10分)2.在区间(0, 1)中随机地取两个数,试求取得的两数之积小于1/4的概率.(10分)三、计算题(25分)1.已知随机变量X的概率密度为f(x)=,且.(1)求a,b;(2)计算.(15分)2.设二维随机变量(X,Y)的概率密度为 (x,y)=.求随机变量Z=X+2Y 的分布函数.(10分)四、解答题(30分)1.设随机变量(X,Y)的联合密度函数为f(x,y)=,求(1)系数A;(2)X的数学期望.(15分)2.设随机变量X与Y相互独立同分布,X的概率密度为f(x)=,求.(15分)五、应用题(10分)一学生金工实习时,用同一台机器连续独立地制造2个同样的零件,第i个零件时合格品的概率p i = (i=1,2),以X表示2个零件中合格品数,求X得数学期望.南昌大学2007~2008年概率统计期末试题答案一、1. 1/3 2. 44 3. 3/8 4. 18.4 5.二、1. =2. Ω={(x,y): 0<x<1, 0<y<1}, A={(x,y): xy<1/4}∩Ωp===三、1.===1===解得a=1, b=1/2==2.当z≤0时, F Z(z)=0当z>0时, F Z(z)=P{Z≤z}=P{X+2Y≤z}===1-e-z-ze-z 四、1.=1⇒=1⇒A=12E(X)===1/32.(X,Y)的联合密度函数为f(x,y)====五、令X i=,则X1~B(1, 1/2), X2~B(1, 2/3)X=X1+X2E(X1)=1/2 E(X2)=2/3 E(X)=E(X1)+E(X2)=1/2+2/3=7/6 或X=0,1,2 P(X=0)=(1-p1)(1-p2)=1/6 P(X=1)=p1(1-p2)+(1-p1)p2=1/2P(X=2)=p1p2=1/3 E(X)=0⨯1/6+1⨯1/2+2⨯1/3=7/6南昌大学2008~2009年概率统计期末试题一填空题1. 设A,B相互独立,且,则__________.2、设、是随机事件,,,则3. 已知,且,则__________.4.3个人独立破译一份密码,他们能单独译出的概率分别为,则此密码被破译出的概率是.5.设随机变量的分布函数为:,则.二选择题1. 一盒产品中有只正品,只次品,有放回地任取两次,第二次取到正品的概率为【A】(A) ;(B) ;(C) ;(D) .2.设、为两个互不相容的随机事件,且,则下列选项必然正确的是【 B 】;;;.3.检查产品时,从一批产品中任取3件样品进行检查,则可能的结果是:未发现次品,发现一件次品,发现两件次品,发现3件次品。

南昌大学概率论09-10第一学期(36学时)期末考试试卷

南昌大学概率论09-10第一学期(36学时)期末考试试卷

概率论09-10第一学期(36课时)一、填空题(每题4分, 共20分)1.设事件A , B 是互不相容的, P (A )=0.5, P (B )=0.3,则)(B A P =_____2.已知P (A )=P (B )=P (C )=2/5, P (AB )=0, P (AC )=P (BC )=1/6,则事件A , B , C 至少有一个发生的概率为_____3.已知随机变量X 的分布函数为F (x )=π121+arctan x ,则P {0≤X ≤3}=_____ 4.设随机变量ξ服从(-1/2, 1/2)上的均匀分布,则η=tan2ξ的数学期望为_____5.设随机变量X 服从参数为λ的泊松分布,且E [(X -1)(X -2)]=1, 则D (X )=_____二、选择题(每题3分, 共15分)1.设A , B , C 为三事件,则A , B , C 恰有一个发生的是_____(A)A ∪B ∪C (B)ABC (C)C B A C B A C B A (D) C B A C B A C B A2.P {X =k }=kc )32( (k =1,2,3,⋅⋅⋅)是某随机变量的分布律,则C =_____(A)2 (B)1/2 (C)1 (D)3/23.设随机变量X 服从正态分布N (μ, σ2),则随着σ 的增大,概率P {|X -μ|<σ}_____(A)单调增大 (B)单调减少 (C)保持不变 (D)增减不定 2.设随机变量ξ1,ξ2,...,ξ 10独立,且E (ξi )=a ,D (ξi )=b ,i =1,2,...,10,记η=∑=101101i i ξ,则_____ (A) E (η)=a , D (η)=b (B) E (η)=a , D (η)=0.1b (C) E (η)=0.1a , D (η)=b (D) E (η)=0.1a , D (η)=0.1b5.设随机变量X 1,X 2独立同分布,均服从正态分布X ~N (1,2),下列随机变量中方差最小的是_____ (A))(2121X X + (B)214341X X + (C) X 2 (D) 213132X X + 三、求下列概率密度1.设连续型随机变量X 的概率密度为f (x )=⎩⎨⎧>-其他,00 ,x e x ,试求Y =X 2的概率密度. (12分) 2. 设随机变量X ,Y 独立同分布,且X 的概率密度为f (x )=⎩⎨⎧≤>-0,00 ,x x e x ,试求Z =2Y X +的概率密度. (11分)四、计算题1.设随机变量X 的概率密度为f (x )=⎩⎨⎧<<+其他 ,020 ,1x kx ,求(1)k 值; (2)P {1<X <2}. (10分) 2.设随机变量X 和Y 相互独立同分布, X 的概率密度为f (x )=⎩⎨⎧≤≤其他 ,010 ,32x x ,求P {X +Y ≤1}. (10分)五、解答题及应用题1.设X 的概率密度为f (x ,θ)=⎩⎨⎧<≥--θθθx x e x ,0 ,)(,求X 的数学期望. (11分)2.随机地向半圆0≤y ≤24x -内掷一点,点落在半圆内任何区域的概率与该区域的面积成正比,求该点和原点的连线与y 轴的夹角小于π/3的概率. (11分)一、1.0.3 2.13/15 3.1/3 4.0 5.1 二、1.D 2.B 3.C 4.B 5.A 三、1.当y ≤0时, F Y (y )=0当y >0时, F Y (y )=P {Y ≤y }=P {X 2≤y }=P {0<X ≤y }=dx e yx ⎰-0 ⇒f Y (y )=⎪⎩⎪⎨⎧≤>-0,00 ,2y y y e y2.F Z (z )=2(Y X P +≤z )=P {X +Y ≤2z }=dxdy y x f z y x ⎰⎰≤+2),(当z <0⇒F Z (z )=0当z ≥0⇒F Z (z )=dy e dx e dxdy e e x z y z x D y x ⎰⎰⎰⎰-----=⋅2020=dx e e zx x z ⎰-+--202)1( =1-e -2z -2ze -2z则 f Z (z )=⎩⎨⎧<≥-0,00 ,42z z ze z 四、1.(1)dx kx ⎰+20)1( =2k +2=1⇒k =21- (2)P {1<X <2}=dx x ⎰+-21)121( =41 2.P {X +Y ≤1}=dxdy y x f y x ⎰⎰≤+1),(=dy y x dx x ⎰⎰-1022109=1/20五、1. E (X )=dx xe x ⎰+∞--θθ)( =1+θ2.令Ω={(x ,y ): 0≤y ≤24x -}A ={点和原点的连线与y 轴的夹角小于π/3}∩ΩP (A )=ΩS S A =ππ234=32。

南昌大学概率论期末-2012第一学期36学时及答案

南昌大学概率论期末-2012第一学期36学时及答案

一、填空题(每题4分, 共20分)1.设P (A )=0.5,P (B )=0.6,)|(A B P =0.8, 则A , B 至少发生一个的概率为__2.设X 服从泊松分布,若EX 2=6,则P (X =1)=_____3.已知随机变量X 的分布函数为F (x )=π121+arctan x ,则(1)P {-1≤X ≤1}=_____ (2)X 的概率密度函数f (x )=______4.设X 服从二项分布,其分布律为P (X =k )=k k k C -100100)8.0()2.0( (k =0,1,2,⋅⋅⋅,100),则E (X )=_____,D (X )=______5.设随机变量X 的概率密度为ψ(x )=)1(12x +π,则2X 的概率密度为____ 二、计算题(每题10分, 共30分)1.设A 与B 独立,且P (A )=p ,P (B )=q ,求下列事件的概率:P (A ∪B ),P (A B ),P (B A )2.设某工厂有A , B , C 三个车间,生产同一螺钉,各个车间的产量分别占总产量的25%, 35%, 40%,各个车间成品中次品的百分比分别为5%, 4%, 2%,如从该厂产品中抽取一件,得到的是次品,求它是车间A 生产的概率3.设某药品的有效期X 以天计,其概率密度为f (x )=⎪⎩⎪⎨⎧>+其他 ,00 ,)100(200003x x ,求:(1) X 的分布函数;(2)至少有200天有效期的概率四、计算题(每题10分,共20分)1.某商店经销商品的利润率X 的密度函数为f (x )=⎩⎨⎧<<-其他 ,010 ),1(2x x ,求EX ,DX2.设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,根据切比雪夫不等式估计P (|X +Y |≥6)的值一、1. 0.9 2. 2e -2 3.21 )1(12x +π 4. 20 16 5. )4(22x +π 二、1. P (A ∪B )=P (A )+P (B )-P (A )P (B )=p +q -pqP (A B )=P (A )+P (B )-P (A )P (B )=p +1-q -p (1-q )=1-q +pqP (B A )=P (AB )=1-P (A )P (B )=1-pq2.令事件A , B , C 为A , B , C 车间生产的产品,事件D ={次品}P (D )=P (A )P (D |A )+P (B )P (D |B )+P (C )P (D |C )=0.25⨯0.05+0.35⨯0.04+0.4⨯0.02=0.0345P (A |D )=)()|()(D P A D P A P =0345.005.025.0⨯=0.362 3.(1) F (x )=⎰∞-x dt t f )(=⎪⎩⎪⎨⎧≥+<⎰0 ,)100(200000 ,003x dt t x x =⎪⎩⎪⎨⎧≥+-<0 ,)100(1000010 ,02x x x (2)P (X >200)=1-P {X ≤200}=1-F (200)=1-⎪⎪⎭⎫ ⎝⎛+-2)100200(100001=91 三、1. X 可能的取值为1, 2, 3,Y 可能的取值为1, 2, 3,相应的,其概率为:P (X =1,Y =1)=0,P (X =1,Y =2)=3421⨯⨯=61,P (X =1,Y =3)=3411⨯⨯=121,P (X =2,Y =1)=3412⨯⨯=61,P (X =2,Y =2)=3412⨯⨯=61,P (X =2,Y =3)=3412⨯⨯=61,P (X =3,Y =1)=121,P (X =3,Y =2)=3421⨯⨯=61,P (X =3,Y =3)=0 P (X =Y )=P (X =1,Y =1)+P (X =2,Y =2)+P (X =3,Y =3)=61 2. f X (x )=⎩⎨⎧>-其他,00 ,x e xy =e x 的反函数h (y )=ln y ,h '(y )=y1,故所求的Y 的密度函数为:f Y (y )=f X (h (y ))⋅|h '(y )|=⎪⎩⎪⎨⎧>⋅-其他 ,00ln ,1ln y y e y =⎪⎩⎪⎨⎧>其他 ,01 ,12y y四、1.(1) E (X )=⎰-⋅10)1(2dx x x =31(2) E (X 2)=⎰-⋅102)1(2dx x x =61⇒D (X )=E (X 2)-[E (X )]2=23161⎪⎭⎫ ⎝⎛-=181 2. E (X +Y )=E (X )+E (Y )= -2+2=0D (X +Y )=D (X )+D (Y )+2ρXY )()(Y D X D =1+4+2⨯(-0.5)41⋅=3故P (|X +Y |≥6)=P (|X +Y -0|≥6)=P (|X +Y -E (X +Y )|≥6)≤26)(Y X D +=121。

概率论课后习题答案1~7章

概率论课后习题答案1~7章

习题一1. 略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件: (1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3. 略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB). 【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0, P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)=14+14+13-112=347. 从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】p=5332131313131352C C C C/C8. 对一个五人学习小组考虑生日问题:(1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率;(3)求五个人的生日不都在星期日的概率.【解】(1)设A1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故P(A1)=517=(17)5 (亦可用独立性求解,下同)(2)设A2={五个人生日都不在星期日},有利事件数为65,故P(A2)=5567=(67)5(3) 设A3={五个人的生日不都在星期日}P(A3)=1-P(A1)=1-(17)59. 略.见教材习题参考答案.10.一批产品共N件,其中M件正品.从中随机地取出n件(n<N).试求其中恰有m件(m≤M)正品(记为A)的概率.如果:(1)n件是同时取出的;(2)n件是无放回逐件取出的;(3)n件是有放回逐件取出的.【解】(1)P(A)=C C/Cm n m nM N M N--(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P n N种,n次抽取中有m次为正品的组合数为C m n种.对于固定的一种正品与次品的抽取次序,从M件正品中取m件的排列数有P m M种,从N-M件次品中取n-m件的排列数为P n mN M--种,故P(A)=C P PPm m n mn M N MnN--由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P(A)=C CCm n mM N MnN--可以看出,用第二种方法简便得多.(3)由于是有放回的抽取,每次都有N种取法,故所有可能的取法总数为N n种,n次抽取中有m次为正品的组合数为C m n种,对于固定的一种正、次品的抽取次序,m次取得正品,都有M种取法,共有M m种取法,n-m次取得次品,每次都有N-M种取法,共有(N-M)n-m种取法,故()C ()/m m n mnnP A M N M N-=-此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M N,则取得m 件正品的概率为()C 1mn mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11. 略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13. 一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故232322()()()35P A A P A P A =+=14. 有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1)1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3)2112()0.80.30.20.70.38P A A A A =⨯+⨯=15. 掷一枚均匀硬币直到出现3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率. 【解】(1)223151115()()22232p C ==(2)1342111C ()()22245/325p ==16. 甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则3331212333()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617. 从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率. 【解】4111152222410C C C C C 131C 21p =-=18. 某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1)()0.1()0.2()0.5P AB p B A P A ===(2)()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19. 已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20. 已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半). 【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.50.05200.50.050.50.002521⨯==⨯+⨯21. 两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P ==22. 从(0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率.【解】 设两数为x ,y ,则0<x ,y <1. (1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+ ⎪⎝⎭⎰⎰23. 设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+-0.70.510.70.60.54-==+-24. 在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球} 由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P (A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知 (1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.80.140.30770.80.10.20.913⨯===⨯+⨯ 即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27. 在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种)【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知111120()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28. 某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率. 【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯29. 某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故}则由贝叶斯公式得()()(|)(|)()()(|)()(|)()P AD P A P D A P A D P D P A P D A P B P D B P C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30. 加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31. 设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9? 【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为(0.8)0.1n ≤故 n ≥11 至少必须进行11次独立射击.32. 证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】(|)(|)P A B P A B =即()()()()P AB P AB P B P B = 亦即()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B =故A 与B 相互独立.33. 三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯=34. 甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835. 已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率.【解】(1)3101100C (0.35)(0.65)0.5138kk k k p -===∑(2)10102104C (0.25)(0.75)0.2241k k k k p -===∑36. 一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1)2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率.【解】 (1)111p n =-(2)23!(3)!,3(1)!n p n n -=>-(3)12(1)!13!(2)!;,3!!n n p p n n n n --''===≥38. 将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率 【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】11P 1,1,2,,P k n k n p k n n--===40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3).【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====,24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )-P (BC )≤P (A ).【证】 ()[()]()P A P A B C P AB AC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+-42. 将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此213319()1()()181616P A P A P A =--=--=或12143323C C C 9()416P A ==43. 将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率. 【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C =故 2211()[1C ]22nn n P A =-44. 掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45. 设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246. 证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得 ()(),()()P AC P BC P C P C ≥即有()()P AC P BC ≥同理由(|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故()()()()()()P A P AC P AC P BC P BC P B =+≥+=47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率. 【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki kki j ki i i n P A n nP A A nn P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j n n kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k k n n k n n nn n n n--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+ 111(1)C (1)n n k nn n+---- 48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少?【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品}由题知(),()m nP B P B m n m n==++1(|),(|)12r P A B P A B == 则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+121212rrr m m m n m n m n m n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少? 【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。

概率论习题册答案

概率论习题册答案

概率论习题册答案概率论习题册答案概率论是一门研究随机事件发生规律的数学学科,它在现代科学和工程领域中具有广泛的应用。

在学习概率论的过程中,做习题是非常重要的一部分,通过解答习题可以巩固对概率论知识的理解和应用能力。

本文将为大家提供一些常见概率论习题的答案,希望能够帮助大家更好地掌握概率论知识。

1. 设A、B为两个事件,且P(A)=0.4,P(B)=0.6,求P(A并B)和P(A或B)。

解答:根据概率的定义,P(A并B)表示事件A和事件B同时发生的概率,P(A或B)表示事件A或事件B至少发生一个的概率。

由于事件A和事件B是两个独立事件,所以P(A并B)=P(A)×P(B)=0.4×0.6=0.24。

而P(A或B)=P(A)+P(B)-P(A并B)=0.4+0.6-0.24=0.76。

所以,P(A并B)=0.24,P(A或B)=0.76。

2. 有一批产品,其中10%的产品存在质量问题。

从中随机抽取5个产品,求其中至少有一个存在质量问题的概率。

解答:设事件A表示抽取的5个产品中至少有一个存在质量问题。

根据概率的定义,P(A)=1-P(没有一个存在质量问题)。

那么,P(没有一个存在质量问题)=P(第1个产品不存在质量问题)×P(第2个产品不存在质量问题)×P(第3个产品不存在质量问题)×P(第4个产品不存在质量问题)×P(第5个产品不存在质量问题)。

由于每个产品存在质量问题的概率为0.1,所以P(没有一个存在质量问题)=(1-0.1)×(1-0.1)×(1-0.1)×(1-0.1)×(1-0.1)=0.9×0.9×0.9×0.9×0.9=0.59049。

因此,P(A)=1-0.59049=0.40951。

所以,抽取的5个产品中至少有一个存在质量问题的概率为0.40951。

概率论与数理统计练习册参考答案

概率论与数理统计练习册参考答案

概率论与数理统计练习册 参考答案第1章 概率论的基本概念 基础练习 1.11、C2、C3、D4、A B C ++5、13{|02}42x x x ≤<≤<或,{}12/1|<<x x ,Ω6、{3},{1,2,4,5,6,7,8,9,10},{1,2,6,7,8,9,10},{1,2,3,6,7,8,9,10}7、(1) Ω={正,正,正,正,正,次},A ={次,正}(2)Ω={正正,正反,反正,反反},A ={正正,反反},B={正正,正反}(3) 22{(,)|1}x y x y Ω=+≤,22{(,)|10}A x y x y x =+<<且 (4)Ω={白,白,黑,黑,黑,红,红,红,红},A={白},B={黑} 8、(1)123A A A (2) 123123123A A A A A A A A A ++ (3)123A A A ++ (4) 123123123123A A A A A A A A A A A A +++ (5) 123123A A A A A A +9、(1)不正确 (2)不正确 (3)不正确 (4)正确 (5) 正确 (6)正确(7)正确 (8)正确10、(1)原式=()()()A B AB A B AB A B A B B -==+= (2)原式=()()A A B B A B A AB BA BB A +++=+++= (3)原式=()AB AB =∅11、证明:左边=()AAB B A A B B AB B A B +=++=+=+=右边 1.21、C2、B3、B4、0.85、0.256、0.37、2226C C 8、0.081 9、2628C C10、3()()()()()()()()4P A B C P A P B P C P AB P BC P AC P ABC ++=++---+=11、解:设,,A B C 分别表示“100人中数学,物理,化学不及格的人数” 则{10},{9},{8}A B C ===,{5},{4},{4},{2}AB AC BC ABC ====100()84ABC A B C =-++=12、解:设A 表示“抽取3个球中至少有2个白球”21343437()C C C P A C +=13、解:(1)设A 表示“10件全是合格品”,则109510100()C P A C = (2) 设B 表示“10件中恰有2件次品”,则8295510100()C C P B C = 14、解:(1)设A 表示“五人生日都在星期日”,51()7P A =(2)设B 表示“五人生日都不在星期日”, 556()7P B = (3)设C 表示“五人生日不都在星期日”,55516()177P C =-- 15、解:{(,)|01,01}x y x y Ω=≤≤≤≤设A 表示“两人能会到面”,则1{(,)|}3A x y x y =-≤, 所以5()9P A =1.31、0.8,0.252、0.63、0.074、23 5、0.56、注:加入条件()0.4P B =解:()()0.1P AB P A ==,()()0.4P A B P B +==()()0.9P A B P AB +==,()(|)0.25()P AB P A B P B ==7、解:设A 表示"13张牌中有5张黑桃,3张红心,3张方块,2张梅花”则5332131313131352()C C C C P A C =,8、解:设123,,A A A 分别表示“零件由甲,乙,丙厂生产”,B 表示“零件时次品” 则112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++0.20.050.40.040.40.030.036=⋅+⋅+⋅=9、解:设123,,A A A 分别表示“甲,乙,丙炮射中敌机”, 123,,B B B 分别表示“飞机中一门,二门,三门炮”,C 表示“飞机坠毁”。

概率论第二版习题答案

概率论第二版习题答案

概率论第二版习题答案概率论是一门研究随机现象的数学分支,它在统计学、金融学、工程学等多个领域都有广泛的应用。

第二版的概率论教材通常会在第一版的基础上进行修订和补充,以反映最新的研究成果和教学方法。

以下是一些概率论习题的答案示例,这些答案仅供参考,具体习题的答案可能会根据教材的不同而有所变化。

第一章:概率空间1. 习题1:描述一个概率空间的基本元素。

- 答案:一个概率空间由三个基本元素组成:样本空间(Ω),事件集合(F),以及概率测度(P)。

样本空间包含了所有可能的结果,事件集合是样本空间的子集,概率测度为每个事件分配一个介于0和1之间的实数,表示事件发生的可能性。

2. 习题2:证明如果事件A和事件B互斥,那么P(A∪B) = P(A) +P(B)。

- 答案:由于A和B互斥,即A∩B = ∅,根据概率测度的性质,P(A∪B) = P(A) + P(B) - P(A∩B)。

由于A和B互斥,P(A∩B) = 0,因此P(A∪B) = P(A) + P(B)。

第二章:随机变量及其分布1. 习题1:定义离散型随机变量和连续型随机变量。

- 答案:离散型随机变量是其取值可以列举的随机变量,其概率分布可以用概率质量函数来描述。

连续型随机变量是其取值无法一一列举的随机变量,其概率分布可以用概率密度函数来描述。

2. 习题2:如果X是一个随机变量,求E(X)和Var(X)。

- 答案:期望E(X)是随机变量X的平均值,定义为E(X) = ∑x *P(X = x)(对于离散型随机变量)或E(X) = ∫x * f(x) d x(对于连续型随机变量)。

方差Var(X)是随机变量X的离散程度的度量,定义为Var(X) = E[(X - E(X))^2]。

第三章:多维随机变量及其分布1. 习题1:描述联合分布函数和边缘分布函数的关系。

- 答案:联合分布函数给出了两个或多个随机变量同时取特定值的概率,而边缘分布函数是通过对联合分布函数进行积分或求和得到的,它给出了单个随机变量的分布。

概率论课后习题第6章答案

概率论课后习题第6章答案

第六章 数理统计的基本概念1.设样本均值为X ,则由题意,有6,4.1(~2n N X ,或)1,0(~/64.1N nX −,于是由1)3(2/64.34.5/64.3/64.34.1}4.54.1{95.0−Φ=⎭⎬⎫⎩⎨⎧−<−<−=<<≤nn n X nP X P⇒ 975.03(≥Φn ⇒ 96.13≥n⇒5744.34≥n 故样本容量至少应取35. 2.由题意可知)1,0(~/2.0N na X n −,又122/2.01.0/2.0}1.0|{|95.0−⎟⎟⎠⎞⎜⎜⎝⎛Φ=⎭⎫⎩⎨⎧<−=<−≤n n n a X P a X P n n 故有 975.0)2(≥Φn ⇒ 96.12≥n⇒ 3664.15≥n 因此至少应等于16.n 3. 由正态分布的性质及样本的独立性知,212X X −和4343X X −均服从正态分布,由于,0)2(21=−X X E 20)(4)()2(2121=+=−X D X D X X D以及,0)43(43=−X X E 100)(16)(9)43(4343=+=−X D X D X X D所以,有)20,0(~221N X X −⇒)1,0(~20221N X X −)100,0(~4343N X X − ⇒)1,0(~104343N X X −于是由分布的定义知,当2χ,201=a 1001=b 时,有 ()())2(~10432024322243221243221χ⎟⎠⎞⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−=−+−=X X X X X X b X X a X 4. 由正态分布的性质及样本的独立性知, ⇒ )9,0(~2921N X X X +++")1,0(~)(91921N X X X +++" 又)1,0(~3N Y i, 9,,2,1"=i 所以 )9(~)(913332292221292221χY Y Y Y Y Y +++=⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛""由于两个总体是X 和Y 相互独立的,所以其相应的样本也是相互独立的,故)9(9121X X X +++"与)(21Y 912922Y Y +++"也相互独立,于是由t 分布的定义知,)9(~9/)(91)(91292191292191t Y Y X X YY X X U +++=++++=""""5.由题意知,)1,0(~2N X i,,故有 15,,2,1"=i )10(~22)(4122102121021χ⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛=+=X X X X U "" )5(~22)(412215211215211χ⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛=+=X X X X V ""利用样本的独立性以及F 分布的定义,有)5,10(~5/10/)(221521121021F V U X X X X Y =++++="" 6.解法1 考虑n n n n X X X X X X 22211,,,+++++",将其视为取自正态总体的简单随机样本,则其样本均值为 )2,2(2σμN X X n X X n ni i n i i n i 21)(1211==+∑∑==+样本方差为 Y n 11−由于2211σ=⎟⎠⎞⎜⎝⎛−Y n E ,所以 22)1(2)2)(1()(σσ−=−=n n Y E 解法2 记,11∑==′n i i X n X ,11∑=+=′ni i n X n X 显然有X X X ′′+′=2,因此[]⎭⎬⎫⎩⎨⎧′′−+′−=⎥⎦⎤⎢⎣⎡−+=∑∑=+=+n i i n i n i i n i X X X X E X X X E Y E 1212)()()2()( []⎭⎬⎫⎩⎨⎧′′−+′′−′−+′−=∑=++n i i n i n i i X X X X X X X X E 122)())((2)(222)1(2)1(0)1(σσσ−=−++−=n n n 7.记(未知),易见2)(σ=X D )()(21Y E Y E =, ,6/)(21σ=Y D 3/)(22σ=Y D 由于相互独立,故有21,Y Y ,0)(21=−Y Y E 236)(22221σσσ=+=−Y Y D从而 )1,0(~2/21N Y Y U σ−=,又 )2(~22222χσχS =由于与相互独立,与独立,由定理 6.3.2,与独立,所以1Y 2Y 1Y 2S 2Y 2S 21Y Y −与独立,于是由t 分布的定义,知 2S )2(~2/)(2221t USY Y Z χ=−=8.由)1(~)1(222−−n S n χσ,其中由题意知,25=n , ,于是1002=σ}12)125({)1(50)1(}50{22222>−=⎭⎬⎫⎩⎨⎧−>−=>χσσP n S n P S P975.0}12)24({2≥>=χP 上式中的不等式是查表得到的,所以所求的概率至少为0.9759. 本题要用到这样一个结论,即Γ分布),(βαΓ关于第一个参数具有可加性,即若),(~1βαΓU ,),(~2βαΓV ,且U 与V 相互独立,则),(~21βαα+Γ+V U ,其中),(βαΓ的概率密度为: ⎪⎩⎪⎨⎧=)(x f αβ>其它0,x βΓ−)(1/1e x α−0x α可利用卷积公式证明.回到本题,当λβα11=,=,分布就是参数为Γλ的指数分布,所以样本的独立性及Γ分布的可加性,有 )1,(~21λn X +X X n Γ++"即的概率密度为 ∑=ni i X 1⎪⎩⎪⎨⎧>−=−−其它00,)!1()(1x e x n x g x n nλλ 因此∑==ni i X n X 11的概率密度为 ⎪⎩⎪⎨⎧≤>−==−−0,00,)!1()()()(1y y e y n n ny ng y h ny n n λλ 10. (1) 根据正态分布的性质,与21X X +21X X −服从二维正态分布,所以要证明它们相互独立,只需它们不相关,由于0)()()])([(22212121=−=−+X E X E X X X X E 0)()(2121=−+X X E X X E 所以 0),(2121=−+X X X X Cov 即与相互独立21X X +21X X −(2) 由于0=μ,所以)2,0(~221σN X X +⇒)1,0(~221N X X σ+ ⇒)1(~212221χσ⎟⎠⎞⎜⎝⎛+X X⇒)2,0(~221σN X X −)1,0(~221N X X σ− ⇒)1(~212221χσ⎟⎠⎞⎜⎝⎛−X X由上面证明的独立性,再由F 分布的定义知)1,1(~2/2/)()(21221221221F X X X X X X X X F ⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+=−+=σσ 所以 25.0}83.5{}4{4)()(221221=<<<=⎭⎬⎫⎩⎨⎧<−+F P F P X X X X P。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习一一、1.BCD 2. ABC 3. CD 4. BD 5. D二.1. 88365365A 2. 41/90 3. 0.4 0.6 4. 25/42 三、已知:P (A )=0.45,P (B )=0.35,P (C )=0.3,P (AB )=0.1,P (AC )=0.08,P (BC )=0.05,P (ABC )=0.03(1)3.0)]()()([)()}({)()(=-+-=-=ABC P AC P AB P A P C B A P A P C B A P Y (2)07.0)()()(=-=ABC P AB P C AB P (3)3.0)(=C B A P23.0)]()()([)()}({)()(=-+-=-=ABC P BC P AB P B P C A B P B P C B A P Y 2.0)]()()([)()}({)()(=-+-=-=ABC P BC P AC P C P B A C P C P C B A P Y得73.0)()()(=++=C B A P C B A P C B A P P(4)14.0)()()()(=-+-+-==ABC BC P ABC AC P ABC AB P BC A C B A C AB P P Y Y (5)P (A ∪B ∪C )=0.73+0.14+0.03=0.9 (6)1.09.01)(=-=C B A P四、令x 、y 为所取两数,则Ω={(x ,y )|0<x <1, 0<y <1}; 令事件A :“两数之积不大于2/9,之和不大于1”,则A ={(x ,y )| xy ≤2/9, x +y ≤1, 0<x <1, 0<y <1}S Ω=S OAED =1×1=1; 2ln 9231)921(11213231+=---⨯⨯==⎰dx x x S S A 阴得2ln 9231+==ΩS S P A 练习二一、1.ABCD 2. ABC 3. ABC 4. C二、Ω:“全厂的产品”;A 、B 、C 分别为:“甲、乙、丙各车间的产品”,S :“次品”,则(1)由全概率公式,得 P (S )=P (A )P (S |A )+P (B )P (S |B )+P (C )P (S |C )=25%×5%+35%×4%+40%×2%=3.45%(2)由贝叶斯公式,得%23.366925345125%45.3%5%25)()|()()|(≈==⨯==S P A S P A P S A P三、Ω={(女,女,女),(女,女,男),(女,男,女),(男,女,女),(女,男,男),(男,女,男),(男,男,女)}有:P {至少有一男}=6/7或132333331C C C C P ++-= 四、101)(,157)(,154)(===AB P B P A P有:143157101)()()|(===B P AB P B A P 83154101)()()|(===A P AB P A B P 3019)()()()(=-+=AB P B P A P B A P Y五、bB A P b a B P B A P B P A P B P AB P B A P )()()()()()()()|(Y Y -+=-+==又P (A ∪B )≤1,则bb a B A P 1)|(-+≥练习三一、1.BD 2. ABCD 3. AD 4. B二、A 1、A 2、A 3分别“甲、乙、丙击中飞机”,则A 1、A 2、A 3相互独立 B i :“有i 个人击中飞机”(i =1,2,3),有:Ω==Y 31i i B ;B :“飞机被击落”由已知:P (A 1)=0.4,P (A 2)=0.5,P (A 3)=0.73213213211A A A A A A A A A B Y Y =36.0075.06.03.05.06.03.05.04.0 )()()()()()()()()()(3213213211=⨯⨯+⨯⨯+⨯⨯=++=A P A P A P A P A P A P A P A P A P B P41.0)(23213213212=⇒=B P A A A A A A A A A B Y YB 3=A 1A 2A 3⇒P (B 3)=0.14又P (B |B 1)=0.2,P (B |B 2)=0.6,P (B |B 3)=1 由全概率公式,得:458.0114.06.041.02.036.0)|()()(31=⨯+⨯+⨯==∑=i i i B B P B P B P三、A i :“C 发生时第i 只开关闭合”,由已知有:P (A i )=0.96 (1)P (A 1∪A 2)=P (A 1)+P (A 2)-P (A 1A 2)=0.96+0.96-0.96×0.96=0.9984 (2)设需k 只开关满足所需可靠性,在情况C 发生时,k 只开关中至少有一只闭合的概率为:39999.004.01)96.01(1)()()(1)(1)(1)(min 21212121=⇒≥-=--=-=-=-=k A P A P A P A A A P A A A P A A A P kkk k k k ΛΛY ΛY Y Y ΛY Y四、(1)3087.0)3.01(3.0)2(32255=-=C P(2)A :“5个样品中至少有2个一级品”,有:47178.07.03.01)(1)()(15515525=-=-==∑∑∑=-==i i i i i i C i P i P A P练习四一、1. ABCD 2. D 3. A 4. AB 二、(1)任掷两骰子所得点数和i 有2→12共11种可能令ωi 表示和数为i 的样本点(i =2,3,…,12),则基本事件集Ω={ω2, ω3,…, ω12 }(2)由已知,得:∀ωi ∈Ω,有ξ(ωi )=2i (i =2,3,…,12),则ξ的可能值为2i (i =2,3,…,12) (3){ξ<4}=φ; {ξ≤5.5}={ξ=4}={ω2}; {6≤ξ≤9}={ξ=6}∪{ξ=8}={ω3}∪{ω4}; {ξ>20}={ξ=22}∪{ξ=24}={ω11}∪{ω12}(4)P {ξ<4}=0;P {ξ≤5.5}=P {ω2}=1/36;P {6≤ξ≤9}=P {ω3}+P {ω4}=2/36+3/36=5/36; P {ξ>20}= P {ω11}+P {ω12}=2/36+1/36=3/36=1/12 三、(1) ξ的所有可能值为0,1,2P {ξ=0}=3522315313=C C ; P {ξ=1}=3512321312=C C ; P {ξ=2}=35131511322=C C C 故ξ的分布律为: (2)F (x )=P {ξ≤x }当x <0时,{ξ≤x }为不可能事件,得F (x )=P {ξ≤x }=0当0≤x <1时,{ξ≤x }={ξ=0},得F (x )=P {ξ≤x }=P {ξ=0}=22/35当1≤x <2时,{ξ≤x }={ξ=0}∪{ξ=1},又{ξ=0}与{ξ=1}是两互斥事件,得F (x )=P {ξ≤x }=P {ξ=0}+P {ξ=1}=22/35+12/35=34/35当x ≥2时,{ξ≤x }为必然事件,得F (x )=P {ξ≤x }=1 综合即得 四、五、(1)ππ11111)(112=⇒=⇒=-⇒=⎰⎰-+∞∞-A A dx x A dx x f (2)3111)2121(21212=-=<<-⎰-dx xP πξ(3)dt t f x F x⎰∞-=)()( 当x <-1时,00)(==⎰∞-dt x F x当-1≤x ≤1时,x dt x dt x F xarcsin 121110)(121ππ+=-+=⎰⎰--∞- 当x >1时, 10110)(11121=+-+=⎰⎰⎰--∞-dt dt xdt x F xπ 综合即得六、(1)P {2<ξ≤5}=Φ(235-)-Φ(232-)=Φ(1)-Φ(-0.5)=Φ(1)-[1-Φ(0.5)]=0.5328P {-4<ξ<10}=Φ(2310-)-Φ(234--)=Φ(3.5) -Φ(-3.5)= 2Φ(3.5) -1=0.9996 P {|ξ|>2}=1-P {-2≤ξ≤2}=1-Φ(232-)+Φ(232--)=1-Φ(-0.5)+Φ(-2.5)=0.6977P {ξ>3}=1-P {ξ≤3}=1-Φ(233-)=1-Φ(0)=1-0.5=0.5(2) P {ξ>C}=1-P {ξ≤C}=P {ξ≤C}⇒P {ξ≤C}=0.5⇒Φ(23-C )=0.5⇒23-C =0.5⇒练习五一、1.AB 2. BC 3. AC 4. BD 5. B二、⎩⎨⎧∉∈=)1,0( ,0)1,0( ,1)(x x x f X(1)y =e x 在(0,1)严格单调增且可导,则x =ln y 在(1,e )上有:(ln y )'=y1∴⎪⎩⎪⎨⎧<<=其它 ,01 |,1|)(ln )(e y y y f y f X Y ⇒⎪⎩⎪⎨⎧<<=其它 ,01 ,1)(e y y y f Y (2)y = -2ln x 在(0,1)严格单调减且可导,则2yex -=在(0,+∞)上有:2221)(yy e e---='∴⎪⎩⎪⎨⎧>-=--其它 ,00 |,21|)()(22y e e f y f y y X Y ⇒⎪⎩⎪⎨⎧>=-其它 ,00,21)(2y e y f y Y 三、⎩⎨⎧-∈=其它 ,0]2/ ,2/[ ,/1)(πππx x f Xy =cosx 在[-π/2,0]上严格单调增且可导,则x 1=h 1(y )= -arccosy 在[0,1]上有:x 1'=211y - y =cosx 在[0, π/2]上严格单调减且可导,则x 2=h 2(y )=arccosy 在[0,1]上有:x 2'=211y-- ∴⎪⎩⎪⎨⎧∈-='+'=其它 ,0]1,0[ ,12|)(|)]([|)(|)]([)(22211y y y h y h f y h y h f y f X X Y π四、五、(1)12112/1),(0403=⇒==⇒=⎰⎰⎰⎰+∞-+∞∞-+∞-+∞∞-k k dy e dx e k dxdy y x f y x(2)⎪⎩⎪⎨⎧>>--===--+-∞-∞-⎰⎰⎰⎰其它,00,0 ),1)(1(12),(),(4300)43(y x e e dxdy edxdy y x f y x F y x y xy x yx(3)P (0<X ≤1,0<Y ≤2)=F (1,2)-F (1,0)-F (0,2)+F (0,0)= (1-e -3)(1-e -8)六、(1)X 与Y 独立,则⎪⎩⎪⎨⎧>>⨯==+-其它, 00,0 ,1021)()(),(200026y x e y f x f y x f y x Y X(2)311021),()(02000206=⨯==>⎰⎰⎰⎰+-∞+>dy edx dxdy y x f Y X P x yx yx练习六1.(1)2211),(ππ=⇒==⎰⎰+∞∞-+∞∞-A A dxdy y x f (2) 161)1)(1(11010222=++=⎰⎰dxdy y x P π (3))1(1)1)(1(1)(2222x dy y x x f X +=++=⎰+∞∞-ππ,同理)1(1)(2y y f Y +=⇒π 有f (x ,y )=f X (x )f Y (y ),故X 与Y 独立2.X 与Y 独立,则P {X =x i ,Y =y j }=P {X =x i }P {Y =y j }有:3.(1)2,10)]3/()[2/(0),(0)2/)](2/([0),(1)2/)(2/(1),(2ππππππ===⇒⎪⎭⎪⎬⎫=+-⇒=-∞=-+⇒=-∞=++⇒=+∞+∞C B A y arctg C B A y F C x arctg B A x F C B A F(2))9)(4(6),(),()32)(22(1),(22222++=∂∂∂=⇒++=y x y x y x F y x f y arctg x arctg y x F ππππ (3)2121)22)(22(1),()(2x arctg x arctg x F x F X πππππ+=++=+∞=则有)4(2)(2+=x x f X π;同理得:3121)(yarctg y F Y π+=,)9(3)(2+=y y f Y π4.5.设第i 周需要量为X i (i =1,2,3)⎩⎨⎧≤>=⇒-0 ,00,)(i i x i i X x x e x x f i i (i =1,2,3)(1)令X =X 1+X 2,则⎩⎨⎧>>=+-其它 ,00,0 ,),(21)(212121x x e x x x x f x x⎪⎩⎪⎨⎧≤>+++-===--+-≤+⎰⎰⎰⎰0,00,)12161(1),()(2320)(2101212112121x x e x x x dx e x x dx dx dx x x f x F x x x x x x x x x X ⎪⎩⎪⎨⎧≤>=⇒-0,00 ,61)(3x x e x x f x X(2)令Y =X 1+X 2+X 3=X +X 3,则⎪⎩⎪⎨⎧>>=--其它,00,0 ,61),(33333x x e x e x x x f x x⎪⎩⎪⎨⎧≤>+++++-===----≤+⎰⎰⎰⎰0,00,)12624120(161),()(2345303303333y y e y y y y y dx e x e x dx dxdx x x f y F y x y x x y y x x Y ⎪⎩⎪⎨⎧≤>=⇒-0,00 ,1201)(5y y e y y f y Y6.dxdy y x f dxdy y x f z Z P z F z y x z yx Z ⎰⎰⎰⎰≤+≤+==≤=22),(),()()((1)z ≤0⇒F Z (z )=0; (2)z z xz y x zZ ze e dy e dx z F z 2220)(2021)(0---+---==⇒>⎰⎰故⎩⎨⎧≤>=⇒⎩⎨⎧≤>--=---0,00 ,4)(0 ,00 ,21)(222z z ze z f z z ze e z F zZ z z Z练习七一、1. D 2. B 3. AD 4. D 5. BC 二、令Z 表示整数,则P {Z =i }=1/10=0.1 (i =1,2, (10)除的尽1的整数有且只有整数1这一个;除的尽2,3,5,7的有二个;除的尽4,9的有三个;除的尽6,8,10的有四个,则 P {X =1}=P {Z =1}=0.1; P {X =2}=P {Z =2}+P {Z =3}+P {Z =5}+P {Z =7}=0.4 P {X =3}=P {Z =4}+P {Z=8}+P {Z =10}=0.3 得X 的分布律为:E (X )=1×0.1+2×0.4+3×0.2+4×0.3=2.7三、E (X )=p q pq q p q p q p kqp kpqk k k kk k k k 1)1()1()()(2111111=-='-='='==∑∑∑∑∞=∞=∞=-∞=- E (X 2)=)()()(1111112112'='='==∑∑∑∑∑∞=-∞=∞=∞=-∞=-k k k kk kk k k k kq q p kq p kq p qk p pqk222])1([p pq q p -='-=D (X )=E (X 2)-E 2(X )=221pqp p =- 四、E (X )=0)(2||==⎰⎰∞+∞--∞+∞-dx xe dx x xf xD (X )=322)()]([0222||22===-⎰⎰⎰∞+-∞+∞--∞+∞-dx e x dx ex dx x f X E x x x五、令搜索时间为T ,则T 的分布函数为⎩⎨⎧≤>-=-0,00,1)( t t e t F t λ,得:⎩⎨⎧≤>=-0,00,)( t t e t f t λλ,则有E (T )=λλλ1)(0 ==⎰⎰+∞-+∞∞-dt e t dt t tf t六、b X E a b dx x bf dx x xf X E dx x af a ba b a b a ≤≤⇒=≤=≤=⎰⎰⎰)()()()()(E [(X -x )2]=E (X 2)-2xE (X )+x 2=E (X 2)+[x -E (X )]2-E 2(X )=[x -E (X )]2+D (X )可见,当x =E (X )时,E [(X -x )2]取最小值D (X ) 则当2b a x +=时,有:D (X )=E {[X -E (X )]2}2222)2(])2[(])2[(])2[(a b a b E b a b E b a X E -=-=+-≤+-≤练习八一、1. AD 2. AD 3. B 4. D 5. ABD 二、(1)2/112)sin(1),(22=⇒==+⇒=⎰⎰⎰⎰∞+∞-∞+∞-A A dxdy y x A dxdy y x f ππ(2)4)sin(21)(22πππ=+=⎰⎰dxdy y x x X E228)sin(21)(220222-+=+=⎰⎰ππππdxdy y x x X E2216)()()(222-+=-=ππX E X E X D同理可得:2216)( ,4)(2-+==πππY D Y E(3)12)sin(21)(22-=+=⎰⎰πππdxdy y x xy XY E 1612)()()(),(2ππ--=-=Y E X E XY E Y X Cov 328168)()(),(22-+-+-==ππππρY D X D Y X Cov XY 三、(1)设X i 为第i 个加数取整后的误差,则X i ~U[-0.5,0.5] (i =1, (1500)总误差∑==15001i i X X ,且125211500)()(,0)()(1500115001=⨯====∑∑==i i i i X D X D X E X E由独立同分布的中心极限定理:P {|X |>15}=1-P {|X |≤15}1802.0)34.1(22)553(22)125015()125015(1=Φ-=Φ-=--Φ+-Φ-≈(2)在(1)的假设下,设∑==ni i X X 1,有E (X )=0,12)(n X D =则求最小自然数n ,使P {|X |≤10}≥0.90,即65.112/1095.0)12/10(9.01)12/10(2)12/010()12/010(≥⇒≥Φ⇒≥-Φ=--Φ--Φn n n n n ⇒n ≤440.77⇒n =440为所求四、E (X )=E (Y )=μ, D (X )=D (Y )=σ2E (Z 1)=αE (X )+βE (Y )=μ(α+β), E (Z 2)=αE (X )-βE (Y )=μ(α-β) E (Z 1Z 2)=E (α2X 2-β2Y 2)=α2E (X 2)-β2E (Y 2)=α2[D (X )+E 2(X )]-β2[D (Y )+E 2(Y )]=α2(σ2+μ2)-β2(σ2+μ2) =(σ2+μ2)(α2-β2)D (Z 1)=α2D (X )+β2D (Y )=σ2(α2+β2), D (Z 2)=α2D (X )+β2D (Y )=σ2(α2+β2)22222222222121212121)()()()()()()()()(),(21βαβαβασβασρ+-=+-=-==Z D Z D Z E Z E Z Z E Z D Z D Z Z Cov Z Z 阶段自测一一、1. D 2. A 3. B 4. A 5. B二、1. 0 3/4 5/8 1/8 2. 1/2 1/[π(1+x 2)] 3. 20 16 4. 41 41 5. 1 三、X 的可能值为:2,3,4,5P {X =2}=101125=C =0.1 P {X =3}=104251212=C C C =0.4 P {X =4}=103)1(2512=+C C =0.3 P {X =5}=1022512=C C =0.2 得X 的分布律:E (X )=2×0.1+3×0.4+4×0.3+5×0.2=3.6 E (X 2)=22×0.1+32×0.4+42×0.3+52×0.2=13.8 D (X )=E (X 2)-E 2(X )=0.84 四、令A i :第i 台车床加工的零件;B :废品,则A 1与A 2不相容 由已知:P (B |A 1)=0.03, P (B |A 2)=0.02, P (A 1)=2/3, P (A 2)=1/3由贝叶斯公式:25.0413/203.03/102.03/102.0)()|()()|()|(21222==⨯+⨯⨯==∑=i ii A P A B P A P A B P B A P 五、(1)1)(2)arcsin (lim )(lim ==+=+=--→→a F B A a x B A x F a x a x π0)(2)(lim )(=-=-=+-→a F B A x F a x π,则得:A =1/2, B =1/π(2)31)21arcsin 121()21arcsin 121()2()2(}22{=--+=--=<<-ππa F a F a X a P(3)⎪⎩⎪⎨⎧<-='=其它 ,0|| ,1)()(22a x x a x F x f π六、⎪⎩⎪⎨⎧≤-=⎪⎩⎪⎨⎧≤==⎰⎰---∞+∞-其它其它 ,01|| ,12 ,01|| ,1),()(21122x x x dy dy y x f x f x x X ππ同理:⎪⎩⎪⎨⎧≤-=其它,01|| ,12)(2y y y f Y πf (x ,y )≠f X (x )f Y (y ),则X 和Y 不独立012)()(112=-==⎰⎰-+∞∞-dx x x dx x xf X E Xπ,同理:E (Y )=001),()0)(0(),(122==--=⎰⎰⎰⎰≤++∞∞-+∞∞-dxdy xy dxdy y x f y x Y X Cov y x π, 则X 和Y 不相关七、设A i :第i 次误差的绝对值不超过30米 , ξ~N (20,402)所求为:3321321)](1[1)()()(1)(i A P A P A P A P A A A P --=-=Y Y8698.0)]402030()402030(1[1}]30|{|1[133=--Φ+-Φ--=≤--=ξP八、⎰⎰⎰⎰⎰⎰+∞∞-∞-≤≤===≤dy dx x f y f dxdy y f x fdxdy y x f Y X P yyx Y Xyx ])()([)()(),(}{21)]()([21)(21)()()()(222=-∞-+∞====+∞∞-+∞∞-+∞∞-⎰⎰F F y F y dF y F dy y F y f练习九一、1. C 2. A 3. C 4. C 5. A 二、(1)∵)1,0(~/N nX σμ- ∴}05.02)(05.0{}/21.0/2||{}1.0|{|n X n n P nn X P X P ≤-≤-=≤-=≤-μμμ153764.153695.01)05.0(2)05.0()05.0(≥⇒≥⇒≥-Φ=-Φ-Φ=n n n n n(2)n p p p np n X n D X D p np n X n E X E ni i n i i )1()1(1)1()( ,1)1()(211-=-=====∑∑==p (1-p )在p =1/2处取得最大值1/4,nX D X E X E p X E 41)(|)(|||22≤=-=-要使01.0||2≤-p X E ,只需1/4n ≤0.01,即n ≥25三、X 1,X 2,X 3,X 4~N (μ,σ2),且相互独立⇒X 1-X 2~N (0,2σ2), X 3-X 4~N (0,2σ2),且X 1-X 2与X 3-X 4相互独立则)1(~)2();1(~)2()1,0(~2);1,0(~2224322214321χσχσσσX X X X N X X N X X --⇒-- )1,1(~)()()1,1(~)2()2(243221243221F X X X X F X X X X --⇒--⇒σσ 05.095.01)()(1)()(243221243221=-=⎭⎬⎫⎩⎨⎧≤---=⎭⎬⎫⎩⎨⎧>--a X X X X P a X X X X P ⇒a =F 0.05(1,1)=161.4四、由题意知:)1,0(~)(212N X X C i i +- (i =1,2,3)22222122112)()]([σσσσ=⇒==+=+⇒-C C C X X C D i i又σ2212i i X X +- (i =1,2,3)是相互独立的,得Y ~χ2(3),即自由度为3五、X 1,X 2,...,X 16相互独立,且)16(~)()1,0(~21612χσμσμ∑=-⇒-i i i X N X }32)({}8)({}32)(8{161216121612>--≥-=≤-≤=∑∑∑===i i i i i i X P X P X P P σμσμσμ=0.95-0.01=0.94六、X 1,X 2,...,X n 相互独立,且E (X i )=D (X i )=λn n nX n D X D n n X n E X E ni i n i i λλλλ======∑∑==2111)1()( ;1)1()()(112122X n X n S ni i --=∑=E (X i 2)=D (X i )+E 2(X i )=λ+λ2, 222)()()(λλ+=+=nX E X D X Eλλλλλ=--+-=)(11)(222n n n n S E练习十一、1. A 2. D 3. A 4. B 5. B 二、矩估计量:⎪⎪⎩⎪⎪⎨⎧++===+===⎰⎰∞+--∞+--22222122)()(θμθμθμθμθμμθμμθμdx e x X E dx e x X E x x ⎪⎪⎩⎪⎪⎨⎧===∑∑==n i i n i i X n A X X n A 1221111 令⎩⎨⎧==2211A A μμ⇒⎪⎩⎪⎨⎧=++=+∑=n i i X n X1222122θμθμθμ⇒⎪⎪⎩⎪⎪⎨⎧-=--=∑∑==2122121ˆ1ˆX X n X X n X ni i n i i θμ 极大似然估计量:设x 1, x 2,..., x n 是相应于样本X 1, X 2,..., X n 的一个样本值 似然函数L (x 1, x 2,..., x n , μ, θ )=∑==--=--∏ni i i x n ni x ee1)(1111μθθμθθ(x i ≥μ, i =1,2,..., n )⇒ln L = -n ln θ -∑=-n i i x 1)(1μθ,令⎪⎪⎩⎪⎪⎨⎧=-+-=∂∂==∂∂∑=0)(1ln 0ln 12ni ixn L n L μθθθθμ⇒μ和θ无解∵x i ≥μ,取k nk x ≤≤=1min ˆμ,有 L =∑=--ni i x n e 1)(11μθθ≤∑=≤≤--ni k nk i x x n e 11)min (11θθ=∑=--ni i x n e 1)ˆ(11μθθ令g (θ )=∑=≤≤--ni k n k i x x n e 11)min (11θθ令0)(=∂∂θθg ⇒0)min (1112=-+-∑=≤≤ni k n k i x x n θθ,得⎪⎩⎪⎨⎧-==≤≤=≤≤∑)min (1ˆmin ˆ111k nk n i i k nk x x n x θμ三、似然函数L (x 1, x 2,..., x n , σ )=∑==-=-∏ni i i x nni x ee1||1||)2(121σσσσ⇒ln L = -n ln(2σ) -∑=ni i x 1||σ= -n ln(2σ) -∑=ni ix1||1σ令0ln =∂∂σL ⇒0||112=+-∑=n i i x n σσ⇒∑==n i i X n1||1ˆσ由大数定律,有: ∑∑==−→−ni iPn i i X E n X n 11||1||1 E |X i |=E |X |=dx e x dx e x dx e x xxx ⎰⎰⎰∞+-∞-∞+∞--⋅+⋅-=⋅00||2121)(21||σσσσσσ=22σσ+=σ⇒σn n X E n n i i 1||11=∑==σ, 即σ−→−∑=P ni i X n 1||1⇒σˆ为σ的一致估计量 四、E (X )=2β, D (X )=122β⇒βˆ21)(ˆ=X E,2ˆ121)(ˆβ=X D 似然函数L (x 1, x 2,..., x n , β )=n ni ββ111=∏= (0≤x 1,..., x n ≤β)⇒ln L = -n ln β令0ln =∂∂βL ⇒0=-βn ⇒β无解∵L =n β1≤nn x )(1* (x n *=max(x 1,..., x n ))∴取*ˆnx =β时,有L (x 1, x 2,..., x n , β )≤L (x 1, x 2,..., x n ,βˆ) ∴21)(ˆ=X Emax(x 1,..., x n ), 121)(ˆ=X D [max(x 1,..., x n )]2 X 的观察值为1.3, 0.6, 1.7, 2.2, 0.3, 1.1时,最大值为2.2∴2.221)(ˆ⨯=X E=1.1, 22.2121)(ˆ⨯=X D =0.403 五、(1)证明连续型的情形: 设f (x )为X 的概率密度,则 P {|X -μ|≥ε}=dx x f y x ⎰≥-ε||)( ≤dx x f x y x )()(||22⎰≥--εεμ≤dx x f x ⎰∞+∞--)()(22εμ=21εE (X -μ)2(2)∀ε >0, P {|t n -θ |<ε}=1-P {|t n -θ |≥ε}≥1-22)(1θε-n t E22)(1θε-n t E =)]()([122θθε-+-n n t E t D =}])([)({122θε-+n n t E t D=])([122n n K t D +ε=0)(1222−−→−+∞→n n n K σε∴1}|{|lim =<-∞→εθn n t P , 即t n 是θ的一致估计量 练习十一一、n =16, 1-α =0.95⇒α =0.05, σ2未知)1(2-n t α=t 0.025(15)=2.131516029.01315.2705.2)1(2⨯-=--n t n s x α=2.6916029.01315.2705.2)1(2⨯+=-+n t n s x α=2.72∴μ的置信度为0.95的置信区间为(2.69, 2.72) 二、n =9, 1-α =0.95⇒α =0.05)8()1(2025.022χχα=-n =17.535, )8()1(2975.0221χχα=--n =2.180 535.171218)1()1(222⨯=--n s n αχ=55.20, 180.21218)1()1(2212⨯=---n s n αχ=444.04 ∴σ2的置信度为0.95的置信区间为(55.20, 444.04) 三、μ1, μ2分别为一号方案和二号方案的平均产量n 1= n 2=8, α =0.05, x =81.63, 21s =145.70, y =75.88, 22s =101.98)2(212-+n n t α=t 0.025(14)=2.14, 2)1()1(21222211-+-+-=n n s n s n s ω=11.132121211)2(n n s n n t y x +-+--ωα= -6.162121211)2(n n s n n t y x +-++-ωα=17.66 ∴μ1-μ2的置信度为0.95的置信区间为(-6.16, 17.66)四、n 1= n 2=10, α =0.05, )1,1()1,1(122212--=--n n F n n F αα=F 0.05(9, 9)=4.0303.416065.05419.0)1,1(121222⋅=--n n F S S BA α=0.222 )1,1()1,1(11)1,1(11222212222212122--=--=---n n F S S n n F S S n n F S S B A B A B A ααα03.46065.05419.0⋅==3.601 ∴22BAσσ的置信度为0.95的置信区间为(0.222, 3.601) 五、∵212111)()(n n S Y X +---ωμμ~t (n 1+n 2-2)∴P {212111)()(n n S Y X +---ωμμ< t α(n 1+n 2-2)}=1-α∴P {2111n n S Y X +--ωt α(n 1+n 2-2)<μ1-μ2}=1-α∴μ1-μ2的置信度为1-α的置信下限为2111n n S Y X +--ωt α(n 1+n 2-2)x =0.14125, s 12=0.0000083, y =0.1392, s 22=0.0000052,7432221s s s +=ω=0.0025495 2111n n s y x +--ωt α(n 1+n 2-2)=0.14125-0.1392-0.00254955141+t 0.05(7) = -0.0011901≈ -0.0012 ∴μ1-μ2的置信度为0.95的置信下限为-0.0012 六、∵S nX )(μ-~t (n -1), 且P {)1(|)(|2-<-n t S n X αμ}=1-α∴P {nS n t X nS n t X )1()1(22-+<<--ααμ}=1-α∴μ的置信度为1-α的置信区间为(n S n t X )1(2--α,n S n t X )1(2-+α)此时n S n t L )1(22-=α⇒2222222)]1([4)()]1([4)(-=-=n t n S E n t n L E αασ阶段自测二一、1. 1 2. 21σnn - 11--n 3. F (1, n -1) 4. 11-n 5.二、1. AD 2. AC 3. CD 4. 三、(1)∵22)1(σnS n -~χ 2(n -1)∴P {22σn S ≤1.5}=P {22)1(σnS n -≤1.5(n -1)}≥0.95⇒P {22)1(σnS n ->1.5(n -1)}≤0.05⇒1.5(n -1)≥)1(205.0-n χ查χ 2分布表得满足上式的最小的n 为27 (2)∵n X σμ-~N (0,1), n n X E X E σσμμ⋅-=-||||, 令Y =nX σμ-∴E |Y |=ππ22||2122=⎰∞+∞--dy ey y ∴nn X E ππμ24222||=⋅=-≤0.1⇒n ≥255 四、(1)矩估计量: μ1=E (X )=dx xe x ⎰+∞--θθ)(=1+θ, A 1=X 令μ1=A 1⇒θ+1=X ⇒1ˆ-=X θ⇒∑∑==-=-=ni i ni i X n X n 111)1(111ˆθ极大似然估计量: L (x 1,..., x n ,θ )=∑=--ni i x e1)(θ (x i ≥θ )⇒ln L = -∑=-n i i x 1)(θ, 令0ln =∂∂θL ⇒θ无解∵x i ≥θ时L 非零 ∴当θ =i ni x ≤≤1min 时, L 有最大值⇒i n i X ≤≤=12min ˆθ (2))()1()ˆ(1X E X E E =-=θ-1=E (X )-1=θ+1-1=θ⇒1ˆθ是θ的无偏估计量2ˆθ的分布函数G (y )=P {i ni x ≤≤1min ≤y }=1-P {i ni x ≤≤1min >y }=1-P {X 1>y , X 2>y ,..., X n >y }=1-[1-F (y )]nX 的分布函数F (x )=⎩⎨⎧<≥---θθθx x e x,0 ,1)(⇒G (y )=⎩⎨⎧<≥---θθθy y e y n ,0 ,1)(⇒g (y )=G ' (y )=⎩⎨⎧<≥--θθθy y ne y n,0 ,)(⇒ndy yne E y n 1)ˆ()(2+==⎰+∞--θθθθ⇒2ˆθ不是θ的无偏估计量 五、n 1=5, n 2=7, α=0.01103262842)1()1(22212221⨯+⨯=-+-+-=n n S n S n S BA ω=30.46)2(212-+n n t α=t 0.05(10)=3.16932121211)2(n n s n n t x x B A +-+--ωα=63.47, 2121211)2(n n s n n t x x B A +-++-ωα=176.52 ∴所求置信区间为(63.47, 176.52) 六、七、E (T )=)()(21X bE X aE +=a μ+b μ=(a +b )μ=μ⇒T 是μ的无偏估计 T =21)1(X a X a -+ ∵1X 与2X 相互独立∴D (T )=222122221222212])1([)1()()1()(σσσn a n a n a n aX D a X D a -+=-+=-+ 则问题归结为求2212)1(n a n a -+的最小值, 令f (a )=2212)1(n a n a -+令0)(=daa df ⇒0)1(2221=--n a n a ⇒a =211n n n + )()(2)(2112121n n n a n n n n a f +-+='⇒a >211n n n +时, f '(a )>0; a <211n n n+时, f '(a )<0⇒f (a )在点211n n n +处取得最小值 ∴使D (T )达到最小值的a =211n n n +, b =212n n n+。

相关文档
最新文档