高中数学备课教案范文

合集下载

高中数学深度备课教案范文

高中数学深度备课教案范文

高中数学深度备课教案范文
教学目标:
1. 了解向量的定义和性质。

2. 掌握向量的加法、减法、数量乘法和向量的数量乘积。

3. 能够解决平面内向量的相关问题。

教学重点:
1. 向量的定义和性质。

2. 向量的加法、减法、数量乘法。

3. 向量的数量乘积。

教学难点:
1. 向量的数量乘积。

2. 解决平面内向量相关问题。

教具准备:
1. 板书和彩色粉笔。

2. 教材《高中数学》。

3. 数学练习册。

4. 讲台和幻灯片投影仪。

教学过程:
1. 引入:通过举例向学生介绍什么是向量,引导学生思考向量的意义和特点。

2. 学习向量的定义和性质,包括平行向量、共线向量、零向量等。

3. 学习向量的加法和减法,并进行相关练习。

4. 学习向量的数量乘法,讲解向量数量乘积的性质和计算方法。

5. 讲解向量的数量积,引导学生理解向量的数量积的概念和性质。

6. 练习:分小组进行向量练习题,巩固所学知识。

7. 总结:回顾本节课的内容,强化学生对向量的理解和应用能力。

8. 作业布置:布置相关练习作业,加深学生对向量的理解。

课后反思:通过本节课的教学,学生对向量的概念和相关运算有了更深入的理解,但教学内容较为抽象,需加强实例训练和应用能力的培养。

下节课需引导学生进行更多的实际问题解决,提高学生的应用能力和创新思维。

高中数学教案(优秀7篇)

高中数学教案(优秀7篇)

高中数学教案(优秀7篇)一般地,从m个不同的元素中,任取n(n≤m)个元素为一组,叫作从m个不同元素中取出n个元素的一个组合。

下面是小编帮大伙儿找到的高中数学教案(优秀7篇),希望对大家有一些参考价值。

高中数学教案篇一教学准备教学目标1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;归纳——猜想——证明的数学研究方法;3、数学思想:培养学生分类讨论,函数的数学思想。

教学重难点重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;难点:等比数列的性质的探索过程。

教学过程教学过程:1、问题引入:前面我们已经研究了一类特殊的数列——等差数列。

问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

要想确定一个等差数列,只要知道它的首项a1和公差d。

已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

(一次类比)类似的,我们提出这样一个问题。

问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列较相似的是“比”为同一个常数的情况。

而这个数列就是我们今天要研究的等比数列了。

)2、新课:1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。

高中数学教学教案模板范文5篇

高中数学教学教案模板范文5篇

高中数学教学教案模板范文5篇高中数学教学教案模板范文篇1教学目标:1.理解流程图的选择结构这种基本逻辑结构.2.能识别和理解简单的框图的功能.3. 能运用三种基本逻辑结构设计流程图以解决简单的问题.教学方法:1. 通过仿照、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.2. 在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构.教学过程:一、问题情境1.情境:某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为其中(单位:)为行李的重量.试给出计算费用(单位:元)的一个算法,并画出流程图.二、学生活动学生讨论,老师引导学生进行表达.解算法为:输入行李的重量;如果,那么,否则;输出行李的重量和运费.上述算法可以用流程图表示为:老师边讲解边画出第10页图1-2-6.在上述计费过程中,第二步进行了判断.三、建构数学1.选择结构的概念:先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构.如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行.2.说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执行,但或两个框中可以有一个是空的,即不执行任何操作;(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和两个退出点.3.思考:教材第7页图所示的算法中,哪一步进行了判断?高中数学教学教案模板范文篇2教学目标:(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.(2)进一步理解曲线的方程和方程的曲线.(3)初步掌握求曲线方程的方法.(4)通过本节内容的教学,培育学生分析问题和转化的能力.教学重点、难点:求曲线的方程.教学用具:计算机.教学方法:启发引导法,讨论法.教学过程:1.提问:什么是曲线的方程和方程的曲线.学生思考并回答.老师强调.2.坐标法和解析几何的意义、基本问题.对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过讨论方程的性质间接地来讨论曲线的性质,这一讨论几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:(1)根据已知条件,求出表示平面曲线的方程.(2)通过方程,讨论平面曲线的性质.事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先讨论如何求出曲线方程,再讨论如何用方程讨论曲线.本节课就初步讨论曲线方程的求法.如何根据已知条件,求出曲线的方程.例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.首先由学生分析:根据直线方程的知识,运用点斜式即可解决.解法一:易求线段的中点坐标为(1,3),由斜率关系可求得l的斜率为于是有即l的方程为①分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?(通过老师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).证明:(1)曲线上的点的坐标都是这个方程的解.设是线段的垂直平分线上任意一点,则即将上式两边平方,整理得这说明点的坐标是方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.设点的坐标是方程①的任意一解,则到、的距离分别为所以,即点在直线上.综合(1)、(2),①是所求直线的方程.至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:解法二:设是线段的垂直平分线上任意一点,也就是点属于集合由两点间的距离公式,点所适合的条件可表示为将上式两边平方,整理得果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.让我们用这个方法试解如下问题:例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.求解过程略.通过学生讨论,师生共同总结:分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;(2)写出适合条件的点的集合;(3)用坐标表示条件,列出方程;(4)化方程为最简形式;(5)证明以化简后的方程的解为坐标的点都是曲线上的点.一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.下面再看一个问题:例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合由距离公式,点适合的条件可表示为①将①式移项后再两边平方,得化简得由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程.分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.根据条件,代入坐标可得化简得①由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为师生共同总结:(1)解析几何讨论讨论问题的方法是什么?(2)如何求曲线的方程?(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?课本第72页练习1,2,3;高中数学教学教案模板范文篇3一、教学目标1.知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

高一数学教案范文

高一数学教案范文

高一数学教案范文人教版高一数学教案篇一教学目标:(1)了解集合的表示方法;(2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:掌握集合的表示方法;教学难点:选择恰当的表示方法;教学过程:一、复习回顾:1、集合和元素的定义;元素的三个特性;元素与集合的关系;常用的数集及表示。

2、集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系二、新课教学(一)。

集合的表示方法我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

(1)列举法:把集合中的元素一一列举出来,并用花括号“”括起来表示集合的方法叫列举法。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

2、各个元素之间要用逗号隔开;3、元素不能重复;4、集合中的元素可以数,点,代数式等;5、对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为例1.(课本例1)用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1到20以内的所有质数组成的集合;(4)方程组的解组成的集合。

思考2:(课本P4的思考题)得出描述法的定义:(2)描述法:把集合中的元素的公共属性描述出来,写在花括号{}内。

具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

一般格式:如:{x,x-3>2},{(x,y),y=x2+1},{x,直角三角形},…;说明:1、课本P5最后一段话;2、描述法表示集合应注意集合的代表元素,如{(x,y),y=x2+3x+2}与{y,y=x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x,整数},即代表整数集Z。

高中数学辅导备课教案范文

高中数学辅导备课教案范文

高中数学辅导备课教案范文
一、教学目标:
1.掌握数学基本概念和方法,提高数学运算能力;
2.培养学生分析问题、解决问题的能力;
3.激发学生学习兴趣,提高学生学习动力。

二、教学内容:
本节课主要讲解平方根的概念和计算方法。

三、教学重难点:
1.平方根的定义和性质;
2.如何计算一个数的平方根。

四、教学准备:
1.教师:准备PPT课件、教材、教具等;
2.学生:课本、笔记本、铅笔等。

五、教学过程:
1.导入:通过实际例子引入平方根的概念,激发学生兴趣。

2.讲解:介绍平方根的定义和性质,讲解平方根的计算方法。

3.练习:让学生做一些简单的练习题,巩固所学内容。

4.讨论:与学生讨论平方根的应用和实际意义。

5.总结:对本节课所学内容进行总结,澄清学生对平方根的理解。

六、课后作业:
1.完成课后练习题;
2.预习下节课内容。

七、教学反思:
本节课教学过程中,学生积极参与,表现出较强的学习兴趣,但有些学生在计算平方根时存在困难,需要加强相关练习。

下节课将针对这一问题进行更多练习,提高学生的计算能力。

高中老师备课数学教案范文

高中老师备课数学教案范文

高中老师备课数学教案范文
备课内容:直线方程的性质
备课内容:
一、教学目标:
1. 知识目标:掌握直线的斜率与方程之间的关系,能够根据给定直线求出其斜率和方程;了解直线的平行和垂直关系,能够判断两条直线是否平行或垂直;掌握直线与坐标轴的相交关系,能够求出直线与坐标轴的交点坐标。

2. 能力目标:培养学生运用所学知识解决实际问题的能力,引导学生思考如何应用直线方程的性质解决实际问题。

3. 情感目标:激发学生对数学的兴趣,培养学生解决问题的耐心和毅力。

二、教学重点和难点:
1. 重点:直线斜率与方程的关系,直线的平行和垂直关系,直线与坐标轴的相交关系。

2. 难点:运用直线方程的性质解决实际问题。

三、教学过程:
1. 导入:通过一个简单的实际问题导入本节课的内容,引发学生的思考和讨论。

2. 讲解:逐一讲解直线斜率与方程的关系、直线的平行和垂直关系、直线与坐标轴的相交关系,通过例题演示如何求解。

3. 练习:让学生进行一些练习,巩固所学知识,培养学生的解题能力。

4. 拓展:引导学生思考如何将所学知识应用到实际问题中,开展一些拓展性的问题讨论。

5. 总结:对本节课的内容进行总结,梳理所学知识,强化学生的记忆。

四、作业布置:
1. 完成课堂上未能完成的练习题。

2. 拓展练习:要求学生自主探究如何应用直线方程的性质解决实际问题。

以上为本节数学课的备课内容,祝教学顺利!。

高中数学教学计划范文五篇

高中数学教学计划范文五篇

高中数学教学计划范文五篇高中数学是学习生涯里非常重要的一门学科,作为数学老师,为接下来的教学工作制定好计划,可以有效的帮助同学们提高数学成绩。

下面是我整理的高中数学教学计划范文5篇,欢迎大家阅读分享借鉴,希望大家喜欢,也希望对大家有所帮助。

高中数学教学计划范文1一、学情分析高三x班现有学生_人,其中男生_人,女生_人,作为文科普通班,学生学习基础较差,行为习惯较差,高二下学期的期末考试中进入文科全年级前50名的学生有_人,总成绩在_分的学生有_人。

二、工作要点1.加强思想教育,提高思想觉悟水准。

思想是行动的先驱。

为提高学生的思想素质应对高三学习,对学生的思想教育主要从以下几个方面进行;理想教育——确定学习的具体目标,人生的大目标。

态度教育——敢于吃苦,敢于拼搏(通过学习往届高三毕业生的优秀事例,激发学生学习的主动性与积极性)。

典型教育——向好学生学习,向第一看齐。

信心教育——相信自己一定能行,为自己的人生做最后的拼搏。

2.加强规范训练,即让学生养成:(1)一丝不苟的学习态度。

让学生每页书都要认认真真地读,每节课都要认认真真地听,每道题都要认认真真地做,每个错题要认认真真地改。

(2)一滴不漏的学习要求。

培养学生互帮互学,凡是学过的知识都应该会,凡是做过的题都应该对,凡是要求记住的都应该牢记在心。

努力做到四清:堂堂清、日日清、周周清、月月清。

不留疑点,不留死角,切实打好基础。

(3)始终如一的学习习惯。

严格的学风,不仅应坚持一周、一月、一学期,而且应该坚持几年、十几年甚至几十年。

做到“活到老,学到老”。

治学严谨的学风应始终如一。

3.加强学法指导。

根据“新教材、新大纲、新教法”的特点,依据高考形势的变化,要在总结学习以前教学管理工作的基础上,结合高考最新形式,认真研究教学管理的新对策,着重抓好以下几个方面的工作:(1)教育学生在突出语数外的同时,综合科目要在应用和学科渗透上下功夫,特长科顺其自然。

(2)加强学法指导并对学生进行分类,实行分层推进。

高中数学教案教学设计(精选11篇)

高中数学教案教学设计(精选11篇)

高中数学教案教学设计高中数学教案教学设计教学设计的特征第一,教学设计是把教学原理转化为教学材料和教学活动的计划。

教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。

第二,教学设计是实现教学目标的计划性和决策性活动。

教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。

第三,教学设计是以系统方法为指导。

教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。

第四,教学设计是提高学习者获得知识、技能的效率和兴趣的技术过程。

教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。

高中数学教案教学设计(精选11篇)作为一名教职工,有必要进行细致的教案准备工作,教案有助于学生理解并掌握系统的知识。

我们该怎么去写教案呢?以下是小编收集整理的高中数学教案教学设计(精选11篇),希望对大家有所帮助。

高中数学教案教学设计1一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。

因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。

所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。

因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。

在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.四、教学目标(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.五、教学重点和难点1.教学重点理解并掌握诱导公式.2.教学难点正确运用诱导公式,求三角函数值,化简三角函数式.六、教法学法以及预期效果分析高中数学优秀教案高中数学教学设计与教学反思“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.1.教法数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.2.学法“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题.在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。

高中数学教案(精选7篇)

高中数学教案(精选7篇)

高中数学教案(精选7篇)高中数学教案篇一一、教学内容分析圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象。

恰当地利用定义解题,许多时候能以简驭繁。

因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

二、学生学习情况分析我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

三、设计思想由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。

在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。

四、教学目标1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

3.借助多媒体辅助教学,激发学习数学的兴趣。

五、教学重点与难点:教学重点1.对圆锥曲线定义的理解2.利用圆锥曲线的定义求“最值”3.“定义法”求轨迹方程教学难点:巧用圆锥曲线定义解题六、教学过程设计【设计思路】(一)开门见山,提出问题一上课,我就直截了当地给出——例题1:(1) 已知a(-2,0),b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是()。

(a)椭圆(b)双曲线(c)线段(d)不存在(2)已知动点m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是()。

(a)椭圆(b)双曲线(c)抛物线(d)两条相交直线【设计意图】定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

高三数学教案设计(通用8篇)

高三数学教案设计(通用8篇)

高三数学教案设计(通用8篇)高三数学教案设计篇1一、教学目标知识与技能:理解任意角的概念(包括正角、负角、零角)与区间角的概念。

过程与方法:会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

情感态度与价值观:1、提高学生的推理能力;2、培养学生应用意识。

二、教学重点、难点:教学重点:任意角概念的理解;区间角的集合的书写。

教学难点:终边相同角的集合的表示;区间角的集合的书写。

三、教学过程(一)导入新课回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

(二)教学新课1、角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

②角的名称:注意:⑴在不引起混淆的情况下,“角α”或“∠α”可以简化成“α”;⑵零角的终边与始边重合,如果α是零角α=0°;⑶角的概念经过推广后,已包括正角、负角和零角。

请说出角α、β、γ各是多少度?2、象限角的概念:定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

高三数学教案设计篇2一、指导思想今年是我省使用新教材的第八年,即进入了新课程标准下高考的第六年。

高三数学教学要以《数学课程标准》为依据,全面贯彻教育方针,积极实施素质教育。

提高学生的学习能力仍是我们的奋斗目标。

近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。

高考试题不但坚持了考查全面,比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。

更加注重考查考生进入高校学习所需的基本素养,这些问题应引起我们在教学中的关注和重视。

二、注意事项1、高度重视基础知识,基本技能和基本方法的复习。

“基础知识,基本技能和基本方法”是高考复习的重点。

高中数学教案(精选10篇)

高中数学教案(精选10篇)

⾼中数学教案(精选10篇)⾼中数学教案 什么是教案? 教案是教师为顺利⽽有效地开展教学活动,根据课程标准,教学⼤纲和教科书要求及学⽣的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学⽅法等进⾏的具体设计和安排的⼀种实⽤性教学⽂书。

⾼中数学教案(精选10篇) 作为⼀位⽆私奉献的⼈民教师,可能需要进⾏教案编写⼯作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

那么应当如何写教案呢?下⾯是⼩编精⼼整理的⾼中数学教案(精选10篇),欢迎阅读,希望⼤家能够喜欢。

⾼中数学教案1 ⼀、教学⽬标 【知识与技能】 在掌握圆的标准⽅程的基础上,理解记忆圆的⼀般⽅程的代数特征,由圆的⼀般⽅程确定圆的圆⼼半径,掌握⽅程x+y+Dx+Ey+F=0表⽰圆的条件。

【过程与⽅法】 通过对⽅程x+y+Dx+Ey+F=0表⽰圆的的条件的探究,学⽣探索发现及分析解决问题的实际能⼒得到提⾼。

【情感态度与价值观】 渗透数形结合、化归与转化等数学思想⽅法,提⾼学⽣的整体素质,激励学⽣创新,勇于探索。

⼆、教学重难点 【重点】 掌握圆的⼀般⽅程,以及⽤待定系数法求圆的⼀般⽅程。

【难点】 ⼆元⼆次⽅程与圆的⼀般⽅程及标准圆⽅程的关系。

三、教学过程 (⼀)复习旧知,引出课题 1、复习圆的标准⽅程,圆⼼、半径。

2、提问1:已知圆⼼为(1,—2)、半径为2的圆的⽅程是什么? ⾼中数学教案2 ⼀、教学⽬标 知识与技能: 理解任意⾓的概念(包括正⾓、负⾓、零⾓)与区间⾓的概念。

过程与⽅法: 会建⽴直⾓坐标系讨论任意⾓,能判断象限⾓,会书写终边相同⾓的集合;掌握区间⾓的集合的书写。

情感态度与价值观: 1、提⾼学⽣的推理能⼒; 2、培养学⽣应⽤意识。

⼆、教学重点、难点: 教学重点: 任意⾓概念的理解;区间⾓的集合的书写。

教学难点: 终边相同⾓的集合的表⽰;区间⾓的集合的书写。

三、教学过程 (⼀)导⼊新课 1、回顾⾓的定义 ①⾓的第⼀种定义是有公共端点的两条射线组成的图形叫做⾓。

高中数学教案教学设计范文(7篇)

高中数学教案教学设计范文(7篇)

高中数学教案教学设计范文(7篇)高中数学教案教学设计范文(7篇)数学,是研究数量、结构、变化、空间以及信息等概念的一门学科,更是现代社会学习和研究现代科学技术必不可少的基本工具。

以下是准备的高中数学教案教学设计范文,欢迎借鉴参考。

高中数学教案教学设计范文(篇1)教学目标1、明确等差数列的定义。

2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3、培养学生观察、归纳能力。

教学重点1、等差数列的概念;2、等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。

这两个公式从不同的角度反映数列的特点,下面看一些例子。

(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6;①10,8,6,4,2,…;②生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)对于数列②-2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。

具有这种特点的数列,我们把它叫做等差数。

一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2。

二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。

若一等差数列的首项是,公差是d,则据其定义可得:若将这n-1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

高中数学备课教案5篇

高中数学备课教案5篇

高中数学备课教案5篇高中数学备课教案(篇1)一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。

教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。

根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。

概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

高中数学教案模板

高中数学教案模板

高中数学教案模板【篇一:高中数学备课教案模板】《空间中的垂直关系》教学计划- 1 -- 2 -- 3 -- 4 -【篇二:高中数学教案模板(1)】课题:三角函数模型的简单应用学校莱钢高中姓名李红一、教学目标:(1)通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解析式的方法,根据解析式作出图象并研究性质;(2)体验实际问题抽象为三角函数模型问题的过程,体会三角函数是描述周期变化现象的重要函数模型;(3)让学生体验一些具有周期性变化规律的实际问题的数学建模思想,从而培养学生的建模、分析问题、数形结合、抽象概括等能力。

二、教学重点、难点:重点:用三角函数模型解决一些具有周期变化规律的实际问题.难点:将某些问题抽象为三角函数模型。

三、教学方法:数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是三角函数的应用,所以应让学生多参与,让其自主探究分析问题,然后由老师启发、总结、提炼,升华为分析和解决问题的能力。

四、教学过程:(一)课题引入生活中普遍存在着周期性变化规律的现象,昼夜交替四季轮回,潮涨潮散、云卷云舒,情绪的起起落落,庭前的花开花谢,一切都逃不过数学的眼睛!这节课我们就来学习如何用数学的眼睛洞察我们身边存在的周期现象-----1.6三角函数模型的简单应用。

(二)典型例题(1)由图象探求三角函数模型的解析式例1.如图,某地一天从6~14时的温度变化曲线近似满足函数错误!未找到引用源。

.(1)求这一天6~14时的最大温差;(2)写出这段曲线的函数解析式设计意图:切入本节课的课题,让学生明确学习任务和目标。

同时以设问和探索的方式导入新课,创设情境,激发思维,做好基础铺垫,让学生带着问题,有目的地参与后续教学活动。

解:(1)由图可知:这段时间的最大温差是20 c;t=14-6=8∴t=16 2∵t=830-10?a==10??a=10?2又∵? ∴?b=20??b=30+10=20?2?8x+?)+20+?)=-1, 4将点(6,10)代入得:∴, ,k∈z,取?=44∴y=10x+)+20,(6≤x≤14)。

高中数学教学设计案例【精彩9篇】

高中数学教学设计案例【精彩9篇】

高中数学教学设计案例【精彩9篇】高中数学教学设计案例篇一一、指导思想:贯彻教育部的有关教育教学计划,在学校、年级组的直接领导下,认真执行学校的各项教育教学制度和要求,认真完成各项任务。

教学的宗旨是使学生在获得作为一个现代公民所必须的基本数学知识和技能的同时,在情感、态度、价值观和一般能力等方面都能获得充分的发展,为学生的终身学习、终身受益奠定良好的基础。

二。

学情分析:上学期期末考学生的数学成绩相对于高一期末考有进步,但还不是很理想,理科生数学学习的难度本学期将增大,加上学业水平考试,所以本学期学生面临的压力将更大,任务艰巨。

三。

教学目的任务要求分析:本学期教学的主要任务是数学选修2-2,2-3和学考复习。

(1)认真把握“标准”的教学要求。

(2)通过建立相关知识的联系,渗透“数形结合”等思想方法。

(3)关注现代信息技术的运用。

(4)把握学考大纲复习标准四、主要措施1、明确一个观念:高考好才是真的好。

平时不好高考肯定不好,但平时红旗飘飘高考时未必红旗不倒。

这就要求我们在日常工作中在照顾到学生实际的前提下起点要高,注意培养后劲,从整体上把握好的自己的教学。

2、以老师的精心备课与充满激情的教学,换取学生学习高效率。

3.将学校和教研组安排的有关工作落到实处。

高中数学教学设计案例篇二1.把握菱形的判定。

2.通过运用菱形知识解决具体问题,提高分析能力和观察能力。

3.通过教具的演示培养学生的学习爱好。

4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。

二、教法设计观察分析讨论相结合的方法三、重点·难点·疑点及解决办法1.教学重点:菱形的判定方法。

2.教学难点:菱形判定方法的综合应用。

四、课时安排1课时五、教具学具预备教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具六、师生互动活动设计教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨七、教学步骤复习提问1.叙述菱形的定义与性质。

高中数学教案模板范文

高中数学教案模板范文

高中数学教案模板范文作为一位杰出的教职工,时常需要用到教案,借助教案可以让教学工作更科学化。

那要怎么写好教案呢?下面带来高中数学教案范文7篇,希望大家喜欢。

高中数学教案范文篇1一、教材分析1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。

“二面角”是人教版《数学》第二册(下B)中9.7的内容。

它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。

因此,它起着承上启下的作用。

通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。

2、教学目标:知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

(2)进一步培养学生把空间问题转化为平面问题的化归思想。

能力目标:(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。

(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。

3、重点、难点:重点:“二面角”和“二面角的平面角”的概念难点:“二面角的平面角”概念的形成过程二、教法分析1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。

2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。

3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。

高中数学优秀教学设计(4篇)

高中数学优秀教学设计(4篇)

高中数学优秀教学设计(4篇)高中数学优秀教学设计1一、课题:人教版全日制普通高级中学教科书数学第一册(上)《2.7对数》二、指导思想与理论依据:《数学课程标准》指出:高中数学课程应讲清一些基本内容的实际背景和应用价值,开展“数学建模”的学习活动,把数学的应用自然地融合在平常的教学中。

任何一个数学概念的引入,总有它的现实或数学理论发展的需要。

都应强调它的现实背景、数学理论发展背景或数学发展历史上的背景,这样才能使教学内容显得自然和亲切,让学生感到知识的发展水到渠成而不是强加于人,从而有利于学生认识数学内容的实际背景和应用的价值。

在教学设计时,既要关注学生在数学情感态度和科学价值观方面的发展,也要帮助学生理解和掌握数学基础知识和基本技能,发展能力。

在课程实施中,应结合教学内容介绍一些对数学发展起重大作用的历史事件和人物,用以反映数学在人类社会进步、人类文化建设中的作用,同时反映社会发展对数学发展的促进作用。

三、教材分析:本节内容主要学习对数的概念及其对数式与指数式的互化。

它属于函数领域的知识。

而对数的概念是对数函数部分教学中的核心概念之一,而函数的思想方法贯穿在高中数学教学的始终。

通过对数的学习,可以解决数学中知道底数和幂值求指数的问题,以及对数函数的相关问题。

四、学情分析:在ab=N(a>0,a≠1)中,知道底数和指数可以求幂值,那么知道底数和幂值如何求求指数,从学生认知的角度自然就产生了这样的需要。

因此,在前面学习指数的`基础上学习对数的概念是水到渠成的事。

五、教学目标:(一)教学知识点:1.对数的概念。

2.对数式与指数式的互化。

(二)能力目标:1.理解对数的概念。

2.能够进行对数式与指数式的互化。

(三)德育渗透目标:1.认识事物之间的相互联系与相互转化,2.用联系的观点看问题。

六、教学重点与难点:重点是对数定义,难点是对数概念的理解。

七、教学方法:讲练结合法八、教学流程:问题情景(复习引入)——实例分析、形成概念(导入新课)——深刻认识概念(对数式与指数式的互化)——变式分析、深化认识(对数的性质、对数恒等式,介绍自然对数及常用对数)——练习小结、形成反思(例题,小结)八、教学反思:对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,教材内容的处理收到了一定的预期效果,尤其是练习的处理,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。

高中数学教案怎么写(精选8篇)

高中数学教案怎么写(精选8篇)

高中数学教案怎么写(精选8篇)高中数学教案怎么写篇1教学目标:(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.(2)理解直线与二元一次方程的关系及其证明(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.教学重点、难点:直线方程的一般式.直线与二元一次方程(、不同时为0)的对应关系及其证明.教学用具:计算机教学方法:启发引导法,讨论法教学过程:下面给出教学实施过程设计的简要思路:教学设计思路:(一)引入的设计前边学习了如何根据所给条件求出直线方程的方法,看下面问题:问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.肯定学生回答,并纠正学生中不规范的表述.再看一个问题:问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:【问题1】“任意直线的方程都是二元一次方程吗?”(二)本节主体内容教学的设计这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.学生或独立研究,或合作研究,教师巡视指导.经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:思路一:…思路二:………教师组织评价,确定最优方案(其它待课下研究)如下:按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程.当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.综合两种情况,我们得出如下结论:在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程.至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”.同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?学生们不难得出:二者可以概括为统一的形式.这样上边的结论可以表述如下:在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程.启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?师生共同讨论,评价不同思路,达成共识:回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即(1)当时,方程可化为这是表示斜率为、在轴上的截距为的直线.(2)当时,由于、不同时为0,必有,方程可化为这表示一条与轴垂直的直线.因此,得到结论:在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线.为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的.【动画演示】演示“直线各参数”文件,体会任何二元一次方程都表示一条直线.至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.(三)练习巩固、总结提高、板书和作业等环节的设计略高中数学教案怎么写篇2教学目标:1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.2.会求一些简单函数的反函数.3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.4.进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力.教学重点:求反函数的方法.教学难点:反函数的概念.教学过程:教学活动设计意图一、创设情境,引入新课1.复习提问①函数的概念②y=f(x)中各变量的意义2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt 的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.3.板书课题由实际问题引入新课,激发了学生学习兴趣,展示了教学目标.这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.二、实例分析,组织探究1.问题组一:(用投影给出函数与;与()的图象)(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)(2)由,已知y能否求x?(3)是否是一个函数?它与有何关系?(4)与有何联系?2.问题组二:(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(3)函数 ()的定义域与函数()的值域有什么关系?3.渗透反函数的概念.(教师点明这样的函数即互为反函数,然后师生共同探究其特点) 从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力.通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.三、师生互动,归纳定义1.(根据上述实例,教师与学生共同归纳出反函数的定义)函数y=f(x)(x∈A) 中,设它的值域为 C.我们根据这个函数中x,y 的关系,用 y 把 x 表示出来,得到 x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数.这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成.2.引导分析:1)反函数也是函数;2)对应法则为互逆运算;3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;5)函数y=f(x)与x=f(y)互为反函数;6)要理解好符号f;7)交换变量x、y的原因.3.两次转换x、y的对应关系(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的.)4.函数与其反函数的关系函数y=f(x)函数定义域AC值域CA四、应用解题,总结步骤1.(投影例题)【例1】求下列函数的反函数(1)y=3x-1 (2)y=x 1【例2】求函数的反函数.(教师板书例题过程后,由学生总结求反函数步骤.)2.总结求函数反函数的步骤:1°由y=f(x)反解出x=f(y).2°把x=f(y)中 x与y互换得.3°写出反函数的定义域.(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?(2)的反函数是________.(3)(x0)的反函数是__________.在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力.题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.五、巩固强化,评价反馈1.已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)(1)y=-2x 3(xR) (2)y=-(xR,且x)( 3 ) y=(xR,且x)2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.五、反思小结,再度设疑本节课主要研究了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究.(让学生谈一下本节课的学习体会,教师适时点拨)进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性."问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂.六、作业习题2.4第1题,第2题进一步巩固所学的知识.教学设计说明"问题是数学的心脏".一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维.使学生自然成为学习的主人。

高一数学教案范文5篇

高一数学教案范文5篇

高一数学教案范文5篇对于高一的学生来说,高中数学还是有一定的难度的,老师应该怎么制作教案,带领他们尽快适应高中数学呢?今天在这给大家整理了(高一数学)教案大全,接下来随着一起来看看吧!高一数学教案(一)教学目标:1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题.2.培养学生数形结合的思想,以及分析推理的能力.教学重点:对数函数性质的应用.教学难点:对数函数的性质向对数型函数的演变延伸.教学过程:一、问题情境1.复习对数函数的性质.2.回答下列问题.(1)函数y=log2x的值域是;(2)函数y=log2x(x≥1)的值域是;(3)函数y=log2x(03.情境问题.函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?二、学生活动探究完成情境问题.三、数学运用例1 求函数y=log2(x2+2x+2)的.定义域和值域.练习:(1)已知函数y=log2x的值域是[-2,3],则x的范围是________________.(2)函数,x(0,8]的值域是.(3)函数y=log (x2-6x+17)的值域.(4)函数的值域是_______________.例2 判断下列函数的奇偶性:(1)f (x)=lg (2)f (x)=ln( -x)例3 已知loga 0.751,试求实数a 取值范围.例4 已知函数y=loga(1-ax)(a0,a≠1).(1)求函数的定义域与值域;(2)求函数的单调区间.练习:1.下列函数(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域为R的有(请写出所有正确结论的序号).2.函数y=lg( -1)的图象关于对称.3.已知函数(a0,a≠1)的图象关于原点对称,那么实数m= .4.求函数,其中x [ ,9]的值域.四、要点归纳与(方法)小结(1)借助于对数函数的性质研究对数型函数的定义域与值域;(2)换元法;(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合).五、作业课本P70~71-4,5,10,11.高一数学教案(二)教学类型:探究研究型设计思路:通过一系列的猜想得出德.摩根律,但是这个结论仅仅是猜想,数学是一门科学,所以需要论证它的正确性,因此本节通过剖析维恩图的四部分来验证猜想的正确性,并对德摩根律进行简单的应用,因此我们制作了本微课.教学过程:一、片头(20秒以内)内容:你好,现在让我们一起来学习《集合的运算——自己探索也能发现的数学规律(第二讲)》。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学备课教案范文
【篇一:高中数学备课教案模板[1]】
高中数学备课教案模板
【篇二:高中数学教案模版】
高中数学备课教案模板
【篇三:高中数学教案模板】
高中数学教案模板
各位老师你们好!今天我要为大家讲的课题是
首先,我对本节教材进行一些分析:
一、教材分析(说教材):
1. 教材所处的地位和作用:
本节内容在全书和章节中的作用是:《》是中数学教材第册第章第节内容。

在此之前学生已学习了基础,这为过渡到本节的学习起着铺垫作用。

本节内容是在中,占据的地位。

以及为其他学科和今后的学习打下基础。

2. 教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:

2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,(3)情感目标:通过的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。

3. 重点,难点以及确定依据:
下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:
二、教学策略(说教法)
1. 教学手段:
如何突出重点,突破难点,从而实现教学目标。

在教学过程中拟计
划进行如下操作:教学方法。

基于本节课的特点:应着重采用的教
学方法。

2. 教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的
原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨
论教学法。

在学生看书,讨论的基础上,在老师启发引导下,运用
问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。

在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发
其学习热情。

有效的开发各层次学生的潜在智能,力求使学生能在
原有的基础上得到发展。

同时通过课堂练习和课后作业,启发学生
从书本知识回到社会实践。

提供给学生与其生活和周围世界密切相
关的数学知识,学习基础性的知识和技能,在教学中积极培养学生
学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生
的学习积极性,激发来自学生主体的最有力的动力。

3. 学情分析:(说学法)
(1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的
教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。

生理上表少年好动,注意力易分散
(2)知识障碍上:知识掌握上,学生原有的知识,许多学生出现
知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识学生不易理解,所以教学中老师应予以简单明白,深入浅出的
分析。

(3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
最后我来具体谈谈这一堂课的教学过程:
4. 教学程序及设想:
(1)由引入:把教学内容转化为具有潜在意义的问题,让学生产
生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的
沉思,期待录找理由和证明过程。

在实际情况下学习可以使学生利
用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取
知识,不但易于保持,而且易于迁移到陌生的问题情境中。

(2)由实例得出本课新的知识点
(3)讲解例题。

在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。

(4)能力训练。

课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

(5)总结结论,强化认识。

知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。

(6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。

(7)板书
(8)布置作业。

针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,
教学程序:
(一)课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分。

相关文档
最新文档