第一讲数列的极限典型例题

合集下载

高数数列极限经典例题

高数数列极限经典例题

高数数列极限经典例题高数数列是数学中重要的概念,它定义了一个数列中每一项的表达式,以及每一项和前面项之间的关系。

极限是描述数列无限接近某个值的重要概念,也是高数中最重要的内容之一,比较经典的例题是必须要掌握的。

首先,让我们来看一个经典的极限例题:求函数y=x3-3x2+3的极限,当x趋近于1的时候。

这道题的步骤是,先求x接近1时,函数值的上限和下限,然后利用极限的定义求解极限。

根据函数定义,当x取值接近1时,函数值的上限是x3-3x2+3+Δx,下限是x3-3x2+3-Δx,Δx表示x变化量,这里可以看出上下限的差值为2Δx。

接下来,我们可以利用极限的定义,得出结论:当x变化量趋于0时,上下限的差值也是趋于0,也就是说,当x趋于1时,函数值的极限就是x3-3x2+3。

通过这个例题,我们不仅学会了求函数极限的方法,还学会了求解其他类似例题的步骤。

再来看一道比较典型的极限例题:求函数y=2x2-2x+1的极限,当x趋近于0的时候。

这道题的步骤也是先求函数值的上限和下限,然后利用极限的定义求解极限。

根据函数定义,当x取值接近0时,函数值的上限是2x2-2x+1+Δx,下限是2x2-2x+1-Δx,Δx表示x变化量,这里可以看出上下限的差值为2Δx。

再利用极限的定义,得出结论:当x变化量趋于0时,上下限的差值也是趋于0,也就是说,当x趋于0时,函数值的极限就是2x2-2x+1。

可以看出,这两道极限例题,在步骤上有些类似,只是数值上的差别。

解决时只要注意函数的表达式,分析x趋于某个值时,函数值的上下限,从而利用极限定义求解极限。

当然,极限例题远不止上面两道,在解决这类例题的时候要更加熟悉解决的技巧,多练习解出一些类似的经典例题,以便应对考试中可能出现的问题。

以上就是关于高数数列极限经典例题的几个介绍,以帮助大家更好地理解极限和掌握求解极限的技巧。

当然,要想真正掌握极限知识,不能只依靠死记硬背,而要形成自己独立思考和解决问题的能力。

数列极限的例题和习题

数列极限的例题和习题

第1-7节 数列极限的例题和习题下面的例题和习题都是数列极限理论中的著名习题,初学者能够完全读懂其中例题的证明是不容易的,能够独立完成后面那些习题就更不容易.因此,你可以先粗读一下(因为不管你读懂多少,都暂时不会影响到你学习微积分),有兴趣的读者等有空时或假期中再去细读它.读一读它,你会在做题方法上受到严格的训练.称一个数列),2,1( =n x n 为无穷小量,即lim 0n n x →∞=,用“N ε-”说法,就是它满足条件:称一个数列),2,1( =n x n 为无穷大量,即lim n n x →∞=∞,用“M N -”说法,就是它满足条件:特别,lim nx =+∞,就是它满足条件:而lim nn x →∞=-∞,就是它满足条件:无穷大量与无穷小量是两个对偶的概念,即当0(1,2,)n x n ≠= 时,若n x 是无穷大量,则1n x 是无穷小量;若n x 是无穷小量,则1nx 是无穷大量. 在第0章(看我做题)中,那些有关数列极限的习题,如果说可以凭借直觉和四则运算规则能够做出来的话,那么下面这些结论,就必须用“N -ε”说法才能够证明.你看一看其中的证明,可以学习到如何用“N -ε”说法做数列极限证明题的方法.例1 设有数列),2,1( =n x n .证明:若有极限n n x ∞→lim ,则算术平均值的数列12(1,2,)nn x x x y n n+++==也有极限且12limlim nn n n x x x x n→∞→∞+++= .证 设lim n n x a →∞=. 考虑1212()()()n n n x x x x a x a x a y a a n n+++-+-++--=-=任意给定正数ε. 因为lim n n x a →∞=,所以有正整数1N 使1||()2n x a n N ε-≤≥. 于是,第1章 函数的极限和连续函数25251212()()()n n n x x x x a x a x a y a a n n+++-+-++--=-= 11121()()()()()N N n x a x a x a x a x a n--+-++-+-++-=11211()()()(1)2N x a x a x a n N n n ε--+-++--+≤+⋅1121()()()2N x a x a x a n ε--+-++-≤+再取正整数1N N ≥足够大,使当N n ≥时,右边第一项也小于2ε. 这样,当N n ≥时,就会有||22n y a εεε-≤+=,即证明了有极限12limlim nn n n x x x a x n →∞→∞+++==请注意...:有极限12lim n n x x x n→∞+++ ,不一定有极限lim n n x →∞!考虑数列 1(1):1,0,1,0,1,0,,,2nn x --【应用】作为例1的应用,例如⑴ 1111123lim lim 0n n n n n →∞→∞++++== ; ⑵limlim 1n n →∞=. 例2 若),2,1(0 =>n x n 且有极限lim n n x →∞,则几何平均值的数列),2,1(21 ==n x x x z n n n也有极限且lim n n n x →∞=.证 根据极限单调性,必有lim 0n n x →∞≥. 首先设lim 0n n x →∞=,ε为任意给定的正数.先取正整数1N 使12()n x n N ηε≤=>,则1()2n N nn εηη-=→=→∞(你知道为什么吗?见第0章题33)因此,必有正整数1N N ≥,使当N n ≥ε≤,即0lim n n n x →∞==【注】假若你知道“几何平均值不超过算术平均值”的话, 根据例1的结论, 则有1200()nx x x n n+++→→∞26所以lim 0lim n n n x →∞==.其次,设lim 0n n x a →∞=>,ε为任意给定的正数(不妨认为1<ε).因为lim1nn x a→∞=,所以有正整数N 使11()nx n N aεε-≤≤+> 从而有(1)(1)n N n Nn n n z a εε---≤=≤+ 让∞→n ,则得1lim1nn z aεε→∞-≤≤+ (你知道为什么吗?见第0章题33)由于正数ε可以任意地小,故有lim 1n n za→∞=,即lim lim n n n a x →∞==【应用】作为上述结论的应用,若0(1,2,)n x n >= 且有极限1lim n n nxx +→∞,则也有极限nlim n 1limn n nx x +→∞=这是因为1(2)1lim lim n n n n n n n nx x x x +→∞→∞-==例 请你根据lim n 1limn n nx x +→∞=,求极限:⑴n (答案:e ); ⑵n (答案:e 4).例3 设有数列),2,1( =n x n .⑴ 若lim 0n n x →∞=,则必有单调增大数列n y ,使lim n n y →∞=+∞且lim()0n n n y x →∞=;⑵ 若lim n n x →∞=+∞,则必有单调减小数列n y ,使lim 0n n y →∞=且lim()n n n y x →∞=+∞.证 下面证明⑴.你可用类似的方法证明⑵.设lim 0n n x →∞=. 根据数列极限的定义,必有正整数1N 使11||()2n x n N ≤≥;同理,必有正整数12N N >使221||()2n x n N ≤≥. 一般地,必有正整数1k k N N +>使第1章 函数的极限和连续函数2727111(;1,2,)2n k k x n N k ++≤≥= 现在,当1n N <时,取0n y =;当12N n N ≤<时,取1=n y ;一般地,当1k k N n N +≤<时,取),2,1( ==k k y n .显然,数列n y 是单调增大的且lim n n y →∞=+∞; 另一方面,由于1||||||(;1,2,)2n n n n k k kky x y x N n N k +=≤≤<= 所以有0lim ||lim02n n kn k ky x →∞→∞≤≤=(见第0章题32)即lim()0n n n y x →∞=.【注】这里是根据数列极限的定义, 构造出了一个满足题中要求的数列n y .在数学中, 称这种证明方法为“构造性证明”.例4 海因定理(函数极限与数列极限的关系)(1)有极限lim ()x af x A →=的充分必要条件是:对于以a 为极限的任何数列()n x a ≠,都有极限lim ()n n f x A →∞=;(2)有极限lim ()x f x A →∞=的充分必要条件是:对于任何数列()n x n →∞→∞,都有极限lim ()n n f x A →∞=.证 为简单起见,下面证明结论(1).你可用类似的方法证明结论(2).设ε为给定的任意正数.若lim ()x af x A →=,则有正数δ,(※) 当0||x a δ<-≤时,有|()|f x A ε-≤又因为n x a ≠且lim n n x a →∞=,所以有正整数N ,当N n ≥时,0||n x a δ<-≤;根据结论(※),|()|n f x A ε-≤即lim ()n n f x A →∞=.反之,设上面(1)中的条件满足.(反证法)假若A 不是函数()f x 在点a 的极限,用“δε-”的话说,就是:至少有一个正数0ε,不论取正数δ多么小,总有对应的点δx ,使 0||x a δδ<-≤,但0|()|f x A δε->.于是,当取正数1(1,2,)n n n δ== 时,就会有相对应的点),2,1( =n x n ,使10||n x a n<-≤,但0()0n f x A ε->>. 这说明,虽然有lim n n x a →∞=,但A 不是数列)(n x f 的极限,这与假设lim ()n n f x A →∞=矛盾.【注】海因定理就像是架在函数极限与数列极限之间的一座“桥梁”,沟通了两者之间的关系.因此,不仅可以把数列极限看作函数极限的特例,而且函数极限的某些结论,根据海因定理,28可以用数列极限的相应结论来证明.在有的微积分教科书中,先讲数列极限的理论,然后根据海因定理,把有关数列极限的结论转移到函数极限上.回答问题⑴ 一个数列),2,1( =n x n 的前面有限个项(如),,,21m x x x ,对该数列是否有极限或有极限时的极限值有影响吗?⑵ 正数数列的极限一定是正数吗?⑶若),2,1( =>n y x n n 且有极限n n x ∞→lim 与n n y ∞→lim ,则有>∞→n n x lim n n y ∞→lim 还是有n n n n y x ∞→∞→≥lim lim ?⑷ 有界数列一定有极限吗?无界数列一定没有极限吗?⑸ 若数列n x 和n y 都没有极限,那么数列)(n n y x +与n n y x 一定也没有极限吗? ⑹ 若数列n x 有极限,而数列n y 没有极限,那么你对数列)(n n y x +是否有极限,可以做出什么结论?⑺ 若lim n n x c →∞=,则必有lim n n x c →∞=吗?反之如何?答案:⑴没有;⑵不一定,例如正数数列1n的极限是0;⑶n n n n y x ∞→∞→≥lim lim ;⑷有界数列不一定有极限,例如n n x )1(-=就没有极限;无界数列一定没有极限,因为有极限的数列是有界数列;⑸不一定,例如1)1(,)1(--=-=n n n n y x ,则)(n n y x +与n n y x 都有极限;⑹一定没有极限.(反证法)若)(n n y x +有极限,则n n n n x x y y -+=)(也有极限,与数列n y 没有极限矛盾.⑺是,因为||||n n x c x c -≤-;反之不成立.习题·提示和选解1.下面的习题都出现在第0章(看我做题)中,你不会做时,可去再看一下那里的做法.证明:⑴lim 1n →∞⎛⎫++= ; ⑵ {}b a b a nnnn ,max lim =+∞→(其中0,0>>b a ); ⑶ 1lim =∞→nn n ; ⑷lim 0!nn a n →∞=;⑸135(21)lim 0246(2)n n n →∞⋅⋅⋅⋅-=⋅⋅⋅⋅ ;⑹ lim 1n .2.证明:⑴ 211lim 36k nn k k n k =→∞==+∑; ⑵ 2311lim 39k n n k k n k=→∞==+∑;⑶lim 1k n n k =→∞==;⑷ lim 1k n n k =→∞==. 提示:用夹挤规则证.第1章 函数的极限和连续函数29293.证明:若lim n n x →∞=+∞,则也有12limnn x x x n→∞+++=+∞ .提示:参考例1的证明.4.设有lim ,lim n n n n x a y b →∞→∞==. 证明:1211limn n n n x y x y x y ab n -→∞+++=提示:设(lim 0),(lim 0)n n n n n n n n x a y b ααββ→∞→∞=+==+=,则1111()()k n k k n k n k k k n k x y a b ab a b αββααβ-+-+-+-+=++=+++于是,121111k nn n n k n k k x y x y x y x y =--+=+++=∑ 11111k nk nk nn k k k n k k k k nab a b βααβ===-+-+====+++∑∑∑5.设0(1,2,)n y n >= 且12()n n y y y s n +++=→+∞→∞ .证明:若有极限lim n n x →∞,则也有极限112212limlim n nn n n n x y x y x y x y y y →∞→∞+++=+++提示:设lim n n x c →∞=,则(lim 0)n n n n x c αα→∞=+=. 于是,11221112()k nk n k kk kn nk k nnnx y c y x y x y x y y y y s s α====++++==+++∑∑ 1k nk kk ny c s α===+∑6.设0(1,2,)n y n >= 且12()n n y y y s n +++=→+∞→∞证明:若有极限limnn nx y →∞,则也有极限 1212limlim n n n n n nx x x xy y y y →∞→∞+++=+++提示:用n n x y 替换上一题中的n x .7.施笃兹(Stolz)定理 若数列n x 与n y 满足条件: (i)-<<<<< 121n n y y y y , 且lim n n y →∞=+∞;(ii)有极限11lim n n n n n x x y y -→∞---;则也有极限limn n nx y →∞,且11lim lim n n n n n n n n x x x y y y -→∞→∞--=-.证 令111,(2,)n n n z y z y y n -==-= ,则0(2)n z n >≥且3012()n n n s z z z y n =+++=→+∞→∞再令111,(2,3,)n n n w x w x x n -==-= ,则1212n nn n w w w x z z z y +++=+++ (※) 根据假设条件(ii),有极限lim n n nw z →∞11lim n n n n n x x y y -→∞--=-,而根据上式(※)和题6,则有极限121121lim lim lim lim n n n nn n n n n n n n n n x w w w w x x y z z z z y y -→∞→∞→∞→∞-+++-===+++- 【注】作为施笃兹定理的应用,则有112limp p pp n n n +→∞+++ (p 为正整数)11lim (1)p p p n n n n ++→∞=-- 1111lim(1)(1)(1)2!pn p p p p p n p p n n p n n →∞++-+=+⎡⎤--++-+-⎢⎥⎣⎦11p =+ 8.设有数列(1,2,)n x n = .证明:若2lim()0n n n x x -→∞-=,则1lim0n n n x x n-→∞-=证 设ε为任意给定的正数.因为2lim()0n n n x x -→∞-=,所以有正整数K ,使22n n x x ε--≤(n K ≥)于是,当n K ≥时,1212()()n n n n n n x x x x x x -----=---[]21323()(1)()()n n n n n n x x x x x x -----=-+----221323()(1)()(1)()n n n n n n x x x x x x -----=-+--+--213()(1)()n n n n x x x x ---=-+--[]22434(1)()()n n n n x x x x ----+---- 221324()(1)()(1)()n n n n n n x x x x x x -----=-+--+--+1111(1)()(1)()n K n K K K K K x x x x ---+--+--+--因此,当n K ≥时,11()2n n K K x x n K x x ε---≤-+-,从而有11122n n K K K K x x x x x x n K n n n nεε-------≤+≤+()n K ≥ 再取正整数N ()K ≥足够大,使当n N ≥时,12KK x x n ε--≤. 于是,当n N ≥()K ≥时, 11222n n K K x x x x n n εεεε----≤+≤+= 即1lim 0n n n x x n-→∞-=.第1章 函数的极限和连续函数 31319.若正项级数1(0)n n n n x x =∞=≥∑收敛,且通项n x 单调减小,证明lim 0n n n x →∞=.证 因为1(0)n n n n x x =∞=≥∑收敛,所以余和120()m m m r x x m ++=++→→∞ (见下注)对于m n >,由于通项n x 单调减小,所以有12()n m m n m n m x x x x r ++-≤+++≤ ,即 ()mn r x n m n m≤>- 于是,当m n 2≥时,02()222n m m m m n n nn x r r r r n n n n m m ≤≤=≤=-+-任意给定正数ε,先取m 足够大,使2m r ε≤,再取正整数m N 2≥,则当N n ≥时,02n m n x r ε≤≤≤即lim 0n n n x →∞=【注】设级数1n n n x s =∞==∑,余和12,m m m m r x x s s ++=++=- 则lim lim 0m m m m r s s s s →∞→∞=-=-=在求方程的近似解时,常常会得到叠代数列(逐次逼近数列).当它收敛时,它能够逐步接近精确解.因此,就需要研究叠代数列的收敛性(不必求出数列的极限值),有时还可以进一步求出叠代数列的极限值.例如,10.研究数列n x 的收敛性.若收敛,试求极限lim n n x →∞.⑴ 设0x a =和1x b =为已知实数.令11(1,2,)2n nn x x x n -++== 解 0101211(1)222x x x x b ax x x +---=-==-, 121232222x x x x x x x +--=-=22(1)2b a-=-,323234333(1)222x x x x b ax x x +---=-==-,一般地, 111(1)2n n n n b a x x -----=-. 将以上这些等式依次相加,则得3223112311(1)(1)(1)()2222n n n x x b a --⎡⎤-----=++++-⎢⎥⎣⎦111(1)11(1)11222222()()()()33131222n n n nb a b a b a a b -------⋅+=-=--→--=--⎛⎫- ⎪⎝⎭即1lim()3n n a bx x →∞--=. 因此, 12lim 333n n a b a b a bx x b →∞--+=+=+=⑵ 设10x c =>. 13(1)(1,2,)3n n nx x n x ++==+提示:一方面,103(1,2,)n x n +<<= ;另一方面,对于任何2n ≥,111113(1)3(1)6()33(3)(3)n n n n n n n n n n x x x x x x x x x x --+--++--=-=++++ 即1()n n x x +-与1()n n x x --具有相同的符号.因此,数列(2)n x n ≥是单调增大或单调减小的有界数列.答案:lim n n x →∞=⑶ 设实数0c ≥.211,(1,2,)222nn x c c x x n +==+= 提示:首先指出,假如有极限lim n n x a →∞=,在2122nn x c x +=+两端取极限,则得二次方程220a a c -+=解得1a =因此,当1c >时,数列n x 没有极限.剩下来就是讨论01c ≤≤的情形.在这种情形下,01(1,2,)n x n ≤≤= 且1(1,2,)n n x x n +≥=.答案:lim 1n n x →∞=-11.设0b a >>. 数列n x 和(1,2,)n yn = 由下式所确定:1111,,2n nn n x y x a y b x y +++====证明它们有公共极限lim lim (,)n n n n x y a b μ→∞→∞== [称它为数a 和b 的算术-几何平均数]证 因为0ba >>,所以21x a x ====, 1121222x y a b b by b y +++==<==第1章 函数的极限和连续函数 33332a b+<,因此得1221x x y y <<<. 我们用相同的方法,可以证明一般的不等式 11(1,2,)n n n n x x y y n ++<<<=根据单调有界原理,有极限lim n n x α→∞= 和 lim n n y β→∞=在12n n n x y y ++=两端让n →∞,则得2αββ+=. 因此,αβ=,即 lim lim n n n n x y αβ→∞→∞===我们就把这个公共极限值记成(,)a b μ.【注】德国数学家高斯(Gauss)求出了这个极限值(,)a b μ,即(,)a b μ2Gπ=,其中2G x π=⎰(椭圆积分,见第6章)12.证明数列1n x =+- 有极限.证 根据单调有界原理,只要证明它是单调减小有下界就行了.事实上,11n n x x +⎛-=+++- ⎝1⎛-++- ⎝2=--0=<即1(1,2,)n n x x n +<= .其次,因为)2(1,2,)k k =<= ,所以22,2<<把这些同向不等式依次相加,则得不等式12++> 因此,()12n x =++-222>->-13.证明:数列1111ln (1,2,3,)23n x n n n=++++-=有极限.此时,设lim n n x C →∞=,则34 1111ln (lim 0)23n n n n x n C n εε→∞=++++-=+= 因此, 1111ln (lim 0)23n n n n C n εε→∞++++=++= 其中常数C 称为“欧拉常数”.证 我们要证明数列n x 单调减小且0(1,2,)n x n >= .事实上,11111ln 23n n x x n n +⎛⎫-=++++- ⎪⎝⎭ 1111ln(1)231n n ⎛⎫-++++-+ ⎪+⎝⎭111ln(1)ln ln 1011n n n n n ⎛⎫=+--=+-> ⎪++⎝⎭(见第1-6节) 即1(1,2,)n n x x n +>= . 另一方面,根据[]111111111ln(1)ln(1)ln 23k n k n k n k k k k k n k k ======++++=>+=+-∑∑∑ ln(1)ln n n =+> [11ln 1k k ⎛⎫≥+ ⎪⎝⎭,见第1-6节] 则有0(1,2,)n x n >= . 根据单调有界原理,必有极限lim n n x C →∞=. 14.证明:[]lim sin (2e !)2n n n →∞π=π. 证 因为1111e 11!2!3!!!n n n nθ=++++++ (01)n θ<<,所以 111111e 11!2!3!!(1)!(1)!(1)n n n n n θ+=++++++++++ 1(01)n θ+<< 因此,121111!e !11!2!!1(1)n n n n n n θ+⎡⎤⎛⎫=++++++⎢⎥ ⎪++⎝⎭⎣⎦ 上式右端第一项是正整数,而第二项1211(1)n n R n n θ+=+++满足lim 0,n n R →∞=lim()1n n nR →∞=.注意到sin x 是以2π为周期的周期函数,所以[][]lim sin(2e !)lim sin(2)n n n n n n R →∞→∞π=πsin 22lim 2n n n n R nR R →∞⎡⎤π=π⎢⎥π⎣⎦2=π [注意,lim()1n n nR →∞=,0sin lim 1x x x→=]。

用极限的定义证明极限例题

用极限的定义证明极限例题

用极限的定义证明极限例题
为了能够使用极限的定义证明极限例题,我们需要首先回顾一下极限的定义。

假设我们有一个数列(a_n),如果存在一个实数L,对于任意给定的正数ε,都存在一个正整数N,使得当n>N 时,满足|a_n - L| < ε,那么我们说数列(a_n)的极限为L。

现在,我们将使用这个定义来证明一个极限例题。

例题:证明极限lim(n->∞) (1/n) = 0.
证明:
根据极限的定义,我们需要证明对于任意给定的正数ε,都存在一个正整数N,使得当n>N时,满足|(1/n) - 0| < ε。

注意到当n是任意正整数且不为0时,我们有1/n > 0。

因此,我们可以进一步改写不等式为1/n < ε。

现在,我们需要找到一个满足上述不等式的正整数N。

为了找到这个N,我们可以通过分析不等式1/n < ε,解出n关于ε的不等式形式。

从1/n < ε中,我们可以得到n > 1/ε。

由于n必须是正整数,我们可以取N = ceil(1/ε),其中ceil(x)表示不小于x 的最小整数。

现在,我们需要证明当n>N时,满足|(1/n) - 0| < ε。

根据我们取得的N,当n>N时,我们有n > N = ceil(1/ε)。

因此,我们可以进一步得到:
1/n < 1/N = 1/ceil(1/ε) <= 1/(1/ε) = ε.
这说明当n>N时,满足|(1/n) - 0| < ε。

综上所述,根据极限的定义,我们证明了极限lim(n->∞) (1/n) = 0。

数列的极限

数列的极限

数列的极限1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限.注:a 不一定是{a n }中的项.2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n limn1=0;③∞→n lim q n =0(|q |<1).3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞→n lim a n =a , ∞→n lim b n =b 时,∞→n lim (a n ±b n )=a ±b ;∞→n lim(a n ·b n )=a ·b ; ∞→n limnnb a =ba (b ≠0).●点击双基1.下列极限正确的个数是 ①∞→n lim αn 1=0(α>0) ②∞→n lim q n =0③∞→n limnnn n 3232+-=-1 ④∞→n lim C =C (C 为常数)D.都不正确 解析:①③④正确. 答案:B2. ∞→n lim [n (1-31)(1-41)(1-51) (1)21+n )]等于 解析: ∞→n lim [n (1-31)(1-41)(1-51) (1)21+n )]=∞→n lim [n ×32×43×54×…×21++n n ]=∞→n lim22+n n=2. 答案:C ●典例剖析【例1】 求下列极限: (1)∞→n lim757222+++n n n ;(2) ∞→n lim (nn +2-n );(3)∞→n lim (22n +24n +…+22nn ). 剖析:(1)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(2)因nn +2与n 都没有极限,可先分子有理化再求极限;(3)因为极限的运算法则只适用于有限个数列,需先求和再求极限.解:(1)∞→n lim757222+++n n n =∞→n lim 2275712nn n +++=52.(2)∞→n lim (nn +2-n )= ∞→n limnn n n ++2=∞→n lim1111++n=21.(3)原式=∞→n lim22642n n++++ =∞→n lim2)1(n n n +=∞→n lim (1+n 1)=1. 评述:对于(1)要避免下面两种错误:①原式=)75(lim )72(lim 22+++∞→∞→n n n n n =∞∞=1,②∵∞→n lim (2n 2+n +7), ∞→n lim (5n 2+7)不存在,∴原式无极限.对于(2)要避免出现下面两种错误: ①∞→n lim (nn +2-n )=∞→n limnn +2-∞→n lim n =∞-∞=0;②原式=∞→n limnn +2-∞→n lim n =∞-∞不存在.对于(3)要避免出现原式=∞→n lim 22n +∞→n lim24n +…+∞→n lim22n n =0+0+…+0=0这样的错误.【例2】 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ; (2)求∞→n lim1122+-+-n n n n a a 的值.解:(1)由已知得a n =c·a n -1,∴{a n }是以a 1=3,公比为c 的等比数列,则a n =3·cn -1.∴S n =⎪⎩⎪⎨⎧≠>--=).10(1)1(3)1(3c c cc c nn 且(2) ∞→n lim1122+-+-n n n n a a =∞→n lim nnn n c c 323211+---.①当c =2时,原式=-41;②当c>2时,原式=∞→n lim ccc n n 3)2(23)2(11+⋅---=-c 1;③当0<c<2时,原式=∞→n lim11)2(32)2(31--⋅+-n n cc c =21.评述:求数列极限时要注意分类讨论思想的应用.【例3】 已知直线l :x -ny =0(n ∈N *),圆M :(x +1)2+(y +1)2=1,抛物线ϕ:y =(x -1)2,又l 与M 交于点A 、B ,l 与ϕ交于点C 、D ,求∞→n lim22||||CD AB .剖析:要求∞→n lim22||||CD AB 的值,必须先求它与n 的关系.解:设圆心M (-1,-1)到直线l 的距离为d ,则d 2=1)1(22+-n n .又r =1,∴|AB |2=4(1-d 2)=218n n +.设点C (x 1,y 1), D (x 2,y 2),由⎩⎨⎧-==-2)1(0x y ny x ⇒nx 2-(2n +1)x +n =0, ∴x 1+x 2=nn 12+, x 1·x 2=1.∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=214n n +,(y 1-y 2)2=(n x 1-nx 2)2=414nn +,∴|CD |2=(x 1-x 2)2+(y 1-y 2)2 =41n (4n +1)(n 2+1).∴∞→n lim22||||CD AB =∞→n lim225)1)(14(8++n n n =∞→n lim2)11)(14(8nn ++=2.评述:本题属于解析几何与数列极限的综合题.要求极限,需先求22||||CD AB ,这就要求掌握求弦长的方法.【例4】 若数列{a n }的首项为a 1=1,且对任意n ∈N *,a n 与a n +1恰为方程x 2-b n x +c n =0的两根,其中0<|c |<1,当∞→n lim (b 1+b 2+…+b n )≤3,求c 的取值范围.解:首先,由题意对任意n ∈N *,a n ·a n +1=c n 恒成立.∴121+++⋅⋅n n n n a a a a =nn a a 2+=nn cc 1+=c .又a 1·a 2=a 2=c .∴a 1,a 3,a 5,…,a 2n -1,…是首项为1,公比为c 的等比数列,a 2,a 4,a 6,…,a 2n ,…是首项为c ,公比为c 的等比数列.其次,由于对任意n ∈N *,a n +a n +1=b n 恒成立.∴nn b b 2+=132+++++n n n n a a a a =c .又b 1=a 1+a 2=1+c ,b 2=a 2+a 3=2c ,∴b 1,b 3,b 5,…,b 2n -1,…是首项为1+c ,公比为c 的等比数列,b 2,b 4,b 6,…,b 2n ,…是首项为2c ,公比为c 的等比数列,∴∞→n lim (b 1+b 2+b 3+…+b n )= ∞→n lim (b 1+b 3+b 5+…)+ ∞→n lim (b 2+b 4+…)=c c -+11+cc-12≤3.解得c ≤31或c >1.∵0<|c |<1,∴0<c ≤31或-1<c <0.故c 的取值范围是(-1,0)∪(0,31].评述:本题的关键在于将题设中的极限不等式转化为关于c 的不等式,即将{b n }的各项和表示为关于c 的解析式,显然“桥梁”应是一元二次方程根与系数的关系,故以根与系数的关系为突破口.●闯关训练 夯实基础 1.已知a 、b 、c是实常数,且∞→n lim cbn can ++=2, ∞→n lim bcn cbn --22=3,则∞→n limacn can ++22的值是 C.21解析:由∞→n limcbn c an ++=2,得a =2b .由∞→n lim bcn cbn --22=3,得b =3c ,∴c =31b .∴ca =6.∴∞→n lim a cn c an ++22=∞→n lim 22nac n ca ++=ca =6.答案:D 2.(2003年北京)若数列{a n }的通项公式是a n =2)23()1(23n n n n n ------++,n =1,2,…,则∞→n lim (a 1+a 2+…+a n )等于A.2411B.2417C.2419D.2425 解析:a n =⎪⎪⎩⎪⎪⎨⎧-++--+--------),(22323),(2)23(23为偶数为奇数n n n n nn n n n n 即a n =⎪⎩⎪⎨⎧--).3),(2(为偶数为奇数n n nn∴a 1+a 2+…+a n =(2-1+2-3+2-5+…)+(3-2+3-4+3-6+…). ∴∞→n lim (a 1+a 2+…+a n )=411213132122221-=-+-----+91191-=.2419答案:C3.(2004年春季上海)在数列{a n }中,a 1=3,且对任意大于1的正整数n ,点(na ,1-n a )在直线x -y -3=0上,则∞→n lim2)1(+n a n =__________________.解析:由题意得na -1-n a =3 (n ≥2).∴{n a }是公差为3的等差数列,1a =3.∴na =3+(n -1)·3=3n .∴a n =3n 2.∴∞→n lim 2)1(+n a n=∞→n lim 12322++n n n =∞→n lim21213nn ++=3.答案:34.(2004年 上海,4)设等比数列{a n }(n ∈N )的公比q =-21,且∞→n lim (a 1+a 3+a 5+…+a 2n -1)=38,则a 1=_________________.解析:∵q =-21,∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=4111-a =38.∴a 1=2.答案:25.(2004年湖南,理8)数列{a n }中,a 1=51,a n +a n +1=156+n ,n ∈N *,则∞→n lim(a 1+a 2+…+a n )等于 A.52 B.72 C.41D.254 解析:2(a 1+a 2+…+a n )=a 1+[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )]+a n =51+[256+356+…+n56]+a n . ∴原式=21[51+511256-+∞→n lim a n ]=21(51+103+∞→n lim a n ).∵a n +a n +1=156+n ,∴∞→n lim a n +∞→n lim a n +1=0.∴∞→n lim a n =0. 答案:C6.已知数列{a n }满足(n -1)a n +1=(n +1)(a n -1)且a 2=6,设b n =a n +n (n ∈N *).(1)求{b n }的通项公式; (2)求∞→n lim (212-b +213-b +214-b +…+21-n b )的值.解:(1)n =1时,由(n -1)a n +1=(n +1)(a n -1),得a 1=1.n =2时,a 2=6代入得a 3=15.同理a 4=28,再代入b n =a n +n ,有b 1=2,b 2=8,b 3=18,b 4=32,由此猜想b n =2n 2.要证b n =2n 2,只需证a n =2n 2-n . ①当n =1时,a 1=2×12-1=1成立. ②假设当n =k 时,a k =2k 2-k 成立.那么当n =k +1时,由(k -1)a k +1=(k +1)(a k -1),得a k +1=11-+k k (a k -1)=11-+k k (2k 2-k -1)=11-+k k (2k +1)(k -1)=(k +1)(2k +1)=2(k +1)2-(k +1).∴当n =k +1时,a n =2n 2-n 正确,从而b n =2n 2. (2)∞→n lim (212-b +213-b +…+21-n b )=∞→n lim (61+161+…+2212-n )=21∞→n lim[311⨯+421⨯+…+)1)(1(1+-n n ]=41∞→n lim[1-31+21-41+…+11-n -11+n ]=41∞→n lim [1+21-n 1-11+n ]=83. 培养能力7.已知数列{a n }、{b n }都是无穷等差数列,其中a 1=3,b 1=2,b 2是a 2与a 3的等差中项,且∞→n limnn b a =21,求极限∞→n lim (111b a +221b a +…+nn b a 1)的值.解:{a n }、{b n }的公差分别为d 1、d 2.∵2b 2=a 2+a 3,即2(2+d 2)=(3+d 1)+(3+2d 1), ∴2d 2-3d 1=2. 又∞→n limnn b a =∞→n lim21)1(2)1(3d n d n -+-+=21d d =21,即d 2=2d 1,∴d 1=2,d 2=4.∴a n =a 1+(n -1)d 1=2n +1,b n =b 1+(n -1)d 2=4n -2. ∴nn b a 1=)24()12(1-⋅+n n =41(121-n -121+n ). ∴原式=∞→n lim41(1-121+n )=41. 8.已知数列{a n }、{b n }都是由正数组成的等比数列,公比分别为p 、q ,其中p >q 且p ≠1,q ≠1,设c n =a n +b n ,S n 为数列{c n }的前n 项和,求∞→n lim1-n nS S .解:S n =p p a n --1)1(1+qq b n --1)1(1,.1)1(1)1(1)1(1)1(1111111qq b p p a q q b p p a S S n n n n n n--+----+--=--- 当p >1时,p >q >0,得0<pq <1,上式分子、分母同除以p n -1,得.1])(1[1)11(1)1(1)1(11111111111qp q pb p p a q pq p b p p p a S S n n n n nn n n n --+----+--=-------∴∞→n lim1-n n S S =p .当p <1时,0<q <p <1, ∞→n lim 1-n n S S =qbp a q bp a -+--+-11111111=1.探究创新9.已知数列{a n }满足a 1=0,a 2=1,a n =221--+n n a a ,求∞→n lim a n .解:由a n =221--+n n a a ,得2a n +a n -1=2a n -1+a n -2,∴{2a n +a n -1}是常数列. ∵2a 2+a 1=2,∴2a n +a n -1=2. ∴a n -32=-21(a n -1-32).∴{a n -32}是公比为-21,首项为-32的等比数列.∴a n -32=-32×(-21)n -1.∴a n =32-32×(-21)n -1.∴∞→n lim a n =32. ●思悟小结1.运用数列极限的运算法则求一些数列的极限时必须注意以下几点:(1)各数列的极限必须存在;(2)四则运算只限于有限个数列极限的运算.2.熟练掌握如下几个常用极限:(1) ∞→n lim C =C (C 为常数); (2) ∞→n lim (n1)p =0(p >0); (3) ∞→n lim dcn b an k k ++=c a (k ∈N *,a 、b 、c 、d ∈R 且c ≠0); (4) ∞→n lim q n =0(|q |<1).●教师下载中心教学点睛1.数列极限的几种类型:∞-∞,∞∞,0-0,00等形式,必须先化简成可求极限的类型再用四则运算求极限,另外还有先求和,约分后再求极限,对含参数的题目一定要控制好难度,不要太难了.2.重视在日常学习过程中化归思想、分类讨论思想和极限思想的运用.拓展题例【例题】 已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求首项a 1的取值范围. 解: ∞→n lim (q a +11-q n )=21, ∴∞→n lim q n 一定存在.∴0<|q |<1或q =1. 当q =1时,21a -1=21,∴a 1=3. 当0<|q |<1时,由∞→n lim (q a +11-q n )=21得q a +11=21,∴2a 1-1=q . ∴0<|2a 1-1|<1.∴0<a 1<1且a 1≠21. 综上,得0<a 1<1且a 1≠21或a 1=3.。

数列极限概念与性质例题和知识点总结

数列极限概念与性质例题和知识点总结

数列极限概念与性质例题和知识点总结一、数列极限的概念数列是按照一定顺序排列的一列数,例如1,2,3,4,…,n,… 。

数列极限则是描述当数列中的项数无限增大时,数列的取值趋近于某个确定的常数。

用数学语言来表示,如果对于任意给定的正数ε ,总存在正整数 N ,使得当 n > N 时,|an A| <ε 恒成立,那么就称常数 A 是数列{an} 的极限,记作lim(n→∞) an = A 。

通俗地说,就是当数列的项数变得非常大时,数列的项与某个常数A 的距离可以任意小。

二、数列极限的性质1、唯一性:如果数列{an} 有极限,那么极限值是唯一的。

2、有界性:如果数列{an} 有极限,那么数列{an} 一定是有界的。

3、保号性:如果lim(n→∞) an = A ,且 A > 0 (或 A < 0 ),那么存在正整数 N ,当 n > N 时,an > 0 (或 an < 0 )。

三、数列极限的例题例 1:求数列{1 / n} 的极限。

解:对于任意给定的正数ε ,要使| 1 / n 0 |<ε ,即 1 / n<ε ,解得 n > 1 /ε 。

取 N = 1 /ε + 1 (其中 x 表示不超过 x 的最大整数),当 n > N 时,| 1 / n 0 |<ε 恒成立。

所以lim(n→∞) 1 / n = 0 。

例 2:证明数列{(-1)^n / n} 的极限为 0 。

解:对于任意给定的正数ε ,因为|(-1)^n / n 0 |= 1 / n ,要使 1 / n <ε ,解得 n > 1 /ε 。

取 N = 1 /ε + 1 ,当 n > N 时,|(-1)^n / n 0 |<ε 恒成立。

所以lim(n→∞)(-1)^n / n = 0 。

例 3:判断数列{n /(n + 1)}的极限。

解:lim(n→∞) n /(n + 1) =lim(n→∞) 1 /(1 + 1 / n)当n → ∞ 时,1 /n → 0 ,所以 1 /(1 + 1 /n) → 1 。

(优选)数列的极限讲解

(优选)数列的极限讲解

目录 上一页 下一页 退 出
观察上述数列当n 时的变化趋势:
可以看到, 随着n 趋于无穷, 数列的 通项有以下两种变 化趋势:
(1) 通项无限趋近于 一个确定的常数;
(2) 通项不趋近于任何确定的常数.
问题: 当 n无限增大时, xn是否无限接近于某一
确定的数值?如果是,如何确定?
通过上面演示实验的观察:
1 a
目录 上一页 下一页 退 出
例4-1 证明当a 1时,lim n a 1.
n
证 注意到 n a 1. n a 1 n a 1.
令n a 1 n 0, 于是
a = (1 n )n 1 nn nn
1 nn nn
0, 为了使
n
a
1
λn
a n
ε,
λn
a n
只要使
n
a, ε
n
n
n
目录 上一页 下一页 退 出
例2
设xn
C(C为常数),
证明 lim n
xn
C.
证 任给 0 , 对于一切自然数n ,
xn C C C 0 成立,
所以,
lim
n
xn
C.
说明:常数列的极限等于同一常数.
小结: 用定义证数列极限存在时,关键是任意给 定 0,寻找N,但不必要求最小的N.
lim
n
xn
a
0, N 0,使n N时, 恒有 xn a .
其中 : 每一个或任给的; : 至少有一个或存在.
几何解释:
a
2 a
x2 x1 xN 1 a xN 2 x3 x
当n N时, 所有的点 xn都落在(a , a )内,
只有有限个(至多只有N个) 落在其外.

证明数列极限的题目及答案

证明数列极限的题目及答案

证明数列极限的题目及答案关键信息项:1、数列的表达式:____________________2、所给定的极限值:____________________3、证明所使用的方法:____________________4、证明过程中的关键步骤和推理:____________________5、最终得出结论的依据:____________________11 题目设数列{an} 满足 an =(n + 1) / n ,证明当 n 趋向于无穷大时,数列{an} 的极限为 1 。

111 证明对于任意给定的正数ε ,要找到一个正整数 N ,使得当 n > N 时,|an 1| <ε 成立。

\\begin{align}|an 1| &=\left|\frac{n + 1}{n} 1\right|\\&=\left|\frac{n + 1 n}{n}\right|\\&=\frac{1}{n}\end{align}\为了使\(\frac{1}{n} <ε\),即\(n >\frac{1}{ε}\)。

所以取\(N =\left\frac{1}{ε}\right + 1\)(其中\(\cdot\)表示取整函数),当\(n > N\)时,有\(n >\frac{1}{ε}\),即\(\frac{1}{n} <ε\),所以\(|an 1| <ε\)。

综上,根据数列极限的定义,当 n 趋向于无穷大时,数列{an} 的极限为 1 。

12 题目设数列{bn} 满足\(bn =\frac{1}{n}\),证明当 n 趋向于无穷大时,数列{bn} 的极限为 0 。

121 证明对于任意给定的正数ε ,要找到一个正整数 N ,使得当 n > N 时,\(|bn 0| <ε\)成立。

\|bn 0| =\left|\frac{1}{n} 0\right| =\frac{1}{n}\为了使\(\frac{1}{n} <ε\),即\(n >\frac{1}{ε}\)。

数列的极限(1)

数列的极限(1)

典型例题讲解例1.求323232lim 4321n n n nn n n →∞-+--+-.分析:当n →∞时,-3n 3+2n 2-n →∞,4n 3-3n 2+2n -1→∞,是一个∞∞型的问题,可以设法变形,使之出现1a n 的形式。

因为当a >0时,1an→0,为此只需将分子分母同除以n 3即可。

解:323232lim 4321n n n n n n n →∞-+--+-=2232133lim 32144n n n n n n→∞-+-=--+-. 例2.设a ∈R ,求112lim 2n n n n n a a -+→∞-+的值。

分析:求极限时,涉及到q n 型的极限,当|q |<1时,q n →0;q =1时,q n →1;q =-1时,q n 的极限不存在;|q |>1时,q n 的极限也不存在。

因此,在变形时,设法出现|q |<1时q n 的形式,为此必须对|a |与2的大小分类讨论。

解:(1)当|a |>2时,21a <,则原式=1121()1lim 2()n n n a a a aa -→∞-=+;(2)当|a |<2时,12a <,则原式=121()112lim 22()2n n n a a a a -→∞-⋅-==-+; (3)当a =2时,原式=1112221lim lim 22326n n n nn n n n --+→∞→∞-==+⋅; (4)当a =-2时,原式=1111(2)2(2)21lim lim 2(2)(2)[(2)2]2n n n n n n n n n n --+-→∞→∞----==-+----.例3.求n →∞分析:当n →∞时,所求的极限相当于0·∞型,需要设法化为我们相对熟悉的∞∞型。

解:n →∞12n n n ===. 说明:对于这种含有根号的0·∞型的极限,可以采用分子有理化或分母有理∞∞型。

数列极限中的典型例题

数列极限中的典型例题
于是
0<
+1
=1

− < 1, = 1,2, ⋯
所以数列 单调减且有下界,因此 lim = 存在。在递推公式 + = ( − )
→∞
两边令 → ∞取极限得, = (1 − ),所以
lim = =0
→∞
取 =
1
,

= 1,2, ⋯ , 则
1,2, ⋯ , ln( − )均有意义,由于对 > 0, 不等式ln ≤ − 1恒成立,因此有
+1 − = ln − ≤ − − 1, = 2,3, ⋯ .
由此得,
S+1 ≤ − 1, = 2,3, ⋯
.
从而得,
ln( − S+1 ) ≥ ln − + 1 = 0, = 2,3, ⋯


→∞
=0
证明令 = + + ⋯ + , = 1,2, ⋯ ,及 lim = .则
→∞
1 = 1, = − −1, = 1,2, ⋯ ,
于是
11 + 22 + ⋯ + 11 + 2(2−1) + ⋯ + ( −−1)

也存在或为+∞,且
→∞
+∞时, lim

− +1
lim
= lim
→∞
→∞ − +1

+1 −
存在或为+∞时,
→∞ +1 −
斯铎兹定理2(∞型) 设数列{ }单调增加且 lim = +∞.如果 lim

高等数学数列极限习题集及答案

高等数学数列极限习题集及答案

高等数学数列极限习题集及答案1. 数列的定义数列是由按确定的顺序排列的一列数所构成的。

数列可以用一般的形式表示为a1,a2,a3,...,a a,...,其中a a表示数列中的第n个数。

2. 数列的极限数列的极限可以理解为数列中的数随着a的增大而趋近于某个值。

数列极限的概念在高等数学中非常重要。

2.1 数列的无穷极限当数列的某一项越来越接近无穷大或无穷小的时候,我们称其为数列的无穷极限。

无穷极限可以分为正无穷大极限和负无穷大极限。

正无穷大极限:当数列的每一项都大于某一个正数M时,我们说数列逼近正无穷大,记为$\\lim_{n\\to\\infty}a_n=∞$。

负无穷大极限:当数列的每一项都小于某一个负数-M时,我们说数列逼近负无穷大,记为$\\lim_{n\\to\\infty}a_n=-∞$。

2.2 数列的有界性和有界变差性数列的有界性和有界变差性是数列收敛性的重要条件。

有界性:如果数列的所有元素都在某个范围内,就说这个数列是有界的。

即存在正数M,使得对所有的n有|a a|≤a。

有界变差性:对于给定的正整数N,把[a1,a2],[a2,a3],...,[aa−1,aa]称为数列的N个相邻项。

如果存在一个常数M,对于所有的N都有相邻项和的绝对值|a2−a1|+|a3−a2|+...+|a a−a a−1≤a,则称数列有界变差。

2.3 数列的收敛和散度数列的收敛和散度是数列极限的两种基本性质。

数列的收敛:如果对于任意给定的正数ε,存在正整数N,使得当n>N时,|a a−a|<a,则称数列收敛于L,记为$\\lim_{n\\to\\infty}a_n=L$。

数列的散度:如果数列不存在极限,就称该数列是发散的。

2.4 数列极限的性质数列极限具有以下性质:1.基本性质:数列极限若存在,则必唯一。

2.保号性质:如果数列的极限存在且为正数(或负数),则从某项开始,数列的各项都是正数(或负数)。

大一高数极限基础例题

大一高数极限基础例题

大一高数数列的极限例题解析一般你需要的最基础的那些方法就行,书上例题,有点难度的就是两个重要极限了。

此题就是比较简单的抓大头的方法。

上下全部除以3^n,那么,指数下于1的就全是0了,所以此题因为为(-1)^n,所以无极限欢迎评论指正,希望对你有帮助!大一高数数列的极限习题中间使用的不等式为三角不等式|a|+|b|>|a+b|有|a|+|un-a|>=|un| 所以|un|-|a|<=|un-a| 类似有|a|-|un|<=|a-un|所以||un|-|a||<=|un-a|反例:u(2n)=a,u(2n+1)=-a|u(n)|=a lim|u(n)|=a但limun不存在大学高数数列极限题•这个可以用夹挤定理吧,因为bn有界,则,存在正数M,使得lbnl<M,而0<=lanbnl=lanl*lbnl <M*Ianl极限=0,夹挤定理,知anbn极限是0高数数列极限定义证明(例题)对于任意的E,只要取N=[1/E],则n>N可推出n>1/E,也可推出1/n<E,而|xn-1|=1/n,所以有|xn-1|<E.这就满足了极限的定义,所以极限是1大一高数数列极限习题,答案是1/2想知道是怎么解的1-1/n²可化成(n+1)(n-1)/n²,每一项这样化解,然后约分剩(n+1)/2n,n趋向正无穷时等于1/2大一高数数列极限大一高数数列极限与函数极限的关系这个怎么理解看不懂。

函数极限存在,我们知道函数在定义区间上是连续的,但是我们可以从这些连续的点取一组离散的点,这些点横坐标不断接近x0,那么函数值自然也不断接近于f(x0)大一文科高数数列极限试题收大学大一高等数学数列的极限问题。

第8题。

和第九题第一小题答案。

谢谢。

题8,原式=lim_{n->无穷}[a(k)+a(k-1)/n+...+a(k-k)/n^k]/[b(l)n^(l-k) + b(l-1)n^(l-k-1)+...+b(l-l)n^(l-l-k)] k=l时,原式=lim_{n->无穷}[a(k)+a(k-1)/n+...+a(k-k)/n^k]/[b(l) + b(l-1)/n+...+b(l-l)/n^(k)]=a(k)/b(l)k<l时,原式=lim_{n->无穷}[a(k)+a(k-1)/n+...+a(k-k)/n^k]/[b(l)n^(l-k) + b(l-1)n^(l-k-1)+...+b(l-l)n^(l-l-k)] = 0题9(1),lim_{n->无穷}1/n = 0,由“和的极限=极限的和”知,lim_{n->无穷}[1+1/n] = 1 +0=1,lim_{n->无穷}[1+1/n]^(1/2) = 1^(1/2) = 1.。

用数列极限的定义证明极限的例题

用数列极限的定义证明极限的例题

用数列极限的定义证明极限的例题1. 引言:极限,这是什么鬼?嘿,朋友们!今天我们来聊聊一个数学里的“小妖怪”——极限。

听到“极限”,大家可能会觉得心里一紧,像是看到一只可怕的蜘蛛,但其实它并没有那么可怕。

我们只需要用点小技巧,就能把它变成温顺的小猫咪。

极限的定义其实就像是一把钥匙,可以打开理解数列行为的神秘大门。

那么,准备好了吗?让我们一起探个究竟!2. 极限的定义:简单明了,没啥难的2.1 数列和极限首先,极限是个啥?简单说,就是数列在无限接近某个值的时候的“最终状态”。

比如说,想象一下你在海边,海浪一波接一波,你在等着最后一波冲到脚边。

那个脚边的水位,就是极限了。

更具体一点,假设我们有一个数列 ( a_n ),它的极限是 ( L ),那就意味着当 ( n ) 越来越大,( a_n ) 就会越来越接近 ( L )。

这就好比是你一路向前跑,目标就是那棵大树,跑得越快,你离树就越近。

2.2 形式化的定义现在我们把这个概念再说得正式一点。

根据极限的定义,如果对每一个小于( epsilon ) 的正数(就是一个小数,比如0.01,0.001啥的),都能找到一个正整数( N ),使得当 ( n > N ) 时,( |a_n L| < epsilon )。

哎呀,听上去有点复杂,但只要你理解了“接近”的感觉,就没问题了。

这就像是在说,只要我足够努力,就一定能让我的距离越来越小,直到几乎碰到目标。

3. 例子时间:举个栗子3.1 经典数列好了,咱们来个具体的例子吧,帮大家消化一下。

考虑数列 ( a_n = frac{1{n )。

那么,这个数列的极限是啥呢?从名字上看,它好像越来越小,越来越小。

其实没错,随着 ( n ) 的增加,( a_n ) 确实是往0靠近的。

那么,按照咱们刚才说的定义,咱们得找个 ( epsilon > 0 ),比如说 ( epsilon =0.01 )。

接下来,我们要找一个 ( N ),使得当 ( n > N ) 时,( |a_n 0| < 0.01 )。

数列极限习题及答案

数列极限习题及答案

数列极限习题及答案数列极限习题及答案数列是数学中的重要概念,它在许多领域中都有广泛的应用。

数列的极限是数学分析中的基本概念之一,它描述了数列随着项数的增加趋向于某个确定的值。

在这篇文章中,我们将讨论一些关于数列极限的习题,并给出相应的答案。

1. 习题一:考虑数列{an},其中an = 1/n。

求该数列的极限。

解答:要求该数列的极限,我们需要计算当n趋向于无穷大时,数列的值趋向于的值。

对于这个数列,当n趋向于无穷大时,an的值趋向于0。

因此,该数列的极限为0。

2. 习题二:考虑数列{bn},其中bn = (-1)^n/n。

求该数列的极限。

解答:对于这个数列,当n为奇数时,bn = -1/n;当n为偶数时,bn = 1/n。

当n趋向于无穷大时,奇数项和偶数项的绝对值都趋向于无穷大。

但是,由于数列中的负号交替出现,所以数列的极限不存在。

3. 习题三:考虑数列{cn},其中cn = (n+1)/n。

求该数列的极限。

解答:对于这个数列,当n趋向于无穷大时,cn的值趋向于1。

因此,该数列的极限为1。

4. 习题四:考虑数列{dn},其中dn = 2^n/n!。

求该数列的极限。

解答:要求该数列的极限,可以尝试计算数列的前几项并观察规律。

当n取1时,d1 = 2/1 = 2;当n取2时,d2 = 4/2 = 2;当n取3时,d3 = 8/6 = 4/3;当n取4时,d4 = 16/24 = 2/3。

观察可以发现,当n趋向于无穷大时,数列的值趋向于0。

因此,该数列的极限为0。

5. 习题五:考虑数列{en},其中en = (1+1/n)^n。

求该数列的极限。

解答:对于这个数列,当n趋向于无穷大时,(1+1/n)^n的值趋向于自然对数e 的值。

因此,该数列的极限为e。

通过以上习题的讨论,我们可以看到数列的极限与数列的定义和表达式有着密切的关系。

在计算数列的极限时,我们需要观察数列的规律,并利用数学知识进行推导和计算。

数列极限的概念在数学分析中有着广泛的应用,例如在微积分、实分析等领域中都会涉及到。

数列极限定义证明例题

数列极限定义证明例题

数列极限定义证明例题用极限定义证明数列极限的关键是对Πε>0,都能找到一个正整数N,当n>N时,有|an-a|<ε成立,这里的Πε>0,由证题者自己给出。

因此,关键是找出N。

1极限定义证明数列极限的关键1、对Πε>0,都能找到一个正整数N,当n>N时,有|an-a|<ε成立,这里的Πε>0,由证题者自己给出。

因此。

关键是找出N。

那么,如何寻找N呢?2、显然,要寻找的N,一定要满足当n>N时,有|an-a|<ε成立。

而|an-a|可以看成是关于正整数n的函数,我们可以通过求解不等式|an-a|<ε,找到使|an-a|<ε成立,n所要满足的条件,亦即不等式|an-a|<ε的解集。

该解集是自然数集N的无限子集,对同一个ε,N并不惟一。

3、因此,只需在该解集找出一个作为N即可。

这样寻找N的工作就转化成求解不等式|an-a|<ε的问题了。

2六种方法1、利用数列极限2、利用极限性质3、利用迫敛性4、利用级数收敛的必要条件5、利用单调有界原理6、利用柯西准则3数列极限设{Xn}为实数列,a为定数.若对任给的正数ε,总存在正整数N,使得当n>N时有∣Xn-a∣<ε则称数列{Xn}收敛于a,定数a称为数列{Xn}的极限,并记作Xn→a(n→∞)读作“当n趋于无穷大时,{Xn}的极限等于或趋于a”。

若数列{Xn}没有极限,则称{Xn}不收敛,或称{Xn}为发散数列。

该定义常称为数列极限的ε-N定义。

对于收敛数列有以下两个基本性质,即收敛数列的唯一性和有界性。

定理1:如果数列{Xn}收敛,则其极限是唯一的。

定理2:如果数列{Xn}收敛,则其一定是有界的。

即对于一切n(n=1,2……),总可以找到一个正数M,使|Xn|≤M。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档