数列极限与函数极限习题

合集下载

极限的四则运算(数列极限、函数极限)

极限的四则运算(数列极限、函数极限)


a
k
,lim(C n

an)
Ca

例1、已知 lnim(6an bn ) 11 lnim(3an 2bn ) 7
求 lnim(2an bn ) 的值。
解:2an+bn=
1 15
(6an-bn)+
8 15
(3an+bn),
∴ lnim(2an bn )
3)
lim (
x
x3 2x2 1

x2 2x
) 1
KEY:1) 0(分子分母同除以x4); 2)0(分子有理化) 3)1/4(通分)
例3、(1)求
lim
x1
2x2 x3
x 1 2x2 1
的值。
x2 1
(2)求
lim
x1
2x2
x 1
的值
(见课本P87,注意其中的说明。)

3 5
( 2)n1 5
[1 ( 2)n ] 5
2

3 [(2)n1 55
( 2)2n1] 5

lim
n
Tn

3 5
[ 1
1
2

5 1
4
]
3 (5 10) 5 . 5 3 21 7
5 25
例5、有一个边长为1的正方形,以其四边中点为顶点画 第二个正方形,再以第二个正方形的四边中点为顶点画
=
lim[ 1 n 15
(6an

bn
)

185(3an

2bn
)]
=
1 15
×11+
185×(-7)

函数与极限练习题

函数与极限练习题

函数与极限练习题----题型⼀.求下列函数的极限⼆.求下列函数的定义域、值域判断函数的连续性,以及求它的间断点的类型三.内容⼀.函数1.函数的概念2.函数的性质——有界性、单调性、周期性、奇偶性3.复合函数4.基本初等函数与初等函数5.分段函数⼆.极限(⼀)数列的极限 1.数列极限的定义 2.收敛数列的基本性质 3.数列收敛的准则(⼆)函数的极限 1.函数在⽆穷⼤处的极限 2.函数在有限点处的极限3.函数极限的性质 4.极限的运算法则(三)⽆穷⼩量与⽆穷⼤量 1.⽆穷⼩量 2.⽆穷⼤量3.⽆穷⼩量的性质 4.⽆穷⼩量的⽐较 5.等价⽆穷⼩的替换原理三.函数的连续性x 处连续的定义函数在点1.0函数的间断点2. 间断点的分类 3. 连续函数的运算4. 闭区间上连续函数的性质 5.例题详解函数的概念与性质题型I II题型求函数的极限(重点讨论未定式的极限)III题型求数列的极限已知极限,求待定参数、函数、函数值IV 题型⽆穷⼩的⽐较题型V 判断函数的连续性与间断点类型VI 题型与闭区间上连续函数有关的命题证明VII 题型---------⾃测题⼀填空题⼀.选择题⼆.解答题三.3 ⽉18 ⽇函数与极限练习题⼀.填空题x,则1若函数lim f (x)______1f (x)1.x212,则lim f ( x)xf (x)2.若函数_______x1x 1u2 , v3 ,uv则复合函数为ytan x, 设=_________3.f ( x)ycos xx0设= __________4. f ( x),则f (0) 0xx0(的值为,则 f (0) 已知函数)xaxb 5.f ( x)2 x01x(A)(B)(C)1(D) 2a bb a函数的定义域是(6.)y2x3x(A)(B)[2, ](2,)(D)(C),3)(3,)((3,)[2,3)1) f ( 已知,则7.__________1f (2)x1x1其定义域为__________,8.4x y1 x2x的定义域是______119.y arcsin2x12函数___________x 1) 为考虑奇偶性,函数10. ln( xysin xx7 2)_______;(111.计算极限:()limlim______1 x x1x 1x---------2))(3;(3nlimlimx= _______= _______42xn5n2nxsin x1阶的⽆穷⼩量;计算:()当时,______是⽐x cos x1112.0x 与时,)当( 2 ______;若是等价⽆穷⼩量,则ax a sin 2 xx02,x1和,则已知函数 f ( x)13. )0(1xx1,lim limf ( x) f ( x),x0x11x 0x12(A)都存在(B)都不存在(C)第⼀个存在,第⼆个不存在(D)第⼀个不存在,第⼆个存在14. 设,则()limf (x)f ( x)3x2,x02x 02,0xx(B)(D)(C)(A)22011时,n sin是(15. 当)nn(A)⽆穷⼩量(B)(C)(D)有界变量⽆界变量⽆穷⼤量计算与应⽤题2x3x2, x2x2在点处连续,且f ( x),求a设 f ( x) 2 x a,x23x2x 112xcos x1求极限:求极限:求极限:1 x limlimlim()42xxx 0x2x2x15111c o sxx x 2x求极限:求极限:lim (1 lim (1))求极限:lim22xx4x x 0x 0 x1211求极限:求极限:求极限:x2n lim( lim(1))lim() n2xnn1n222x2ex11 0 022xx求极限:求极限:求极限) lim liml i m ( 1 12x 1xx ln xx x x 0x求极限:( l i m1 ))求极限:lim求极限:x 313 lim(1 2 x3x21 xx1 x13 x8x 1x---------4 ⽉28 ⽇函数与极限练习题⼀.基础题1, f ( x)则 1.设函数x e1x 1的第⼀类间断点都是f(x) )x=0,x=1 (A .的第⼆类间断点x=0,x=1 都是f(x) (B)的第⼆类间断点是f(x) 是f(x) 的第⼀类间断点,x=1 (C )x=0 .的第⼀类间断点f(x) f(x) 的第⼆类间断点,x=1 是(D )x=0是.)下列极限正确的(2.x sin x sin xlim .B lim1不存在A.x xx sin x x1 lim x sin C.1lim arctan x.Dx x2x10)sin x(xx0)0(x a x lim f=存在,则且f x)(设3. 1x 0xsina(x 0)x2-1 B.0C.1 D.A.x lim ( a)4. 已知a9 (,则。

函数与极限练习题

函数与极限练习题

题型一.求下列函数的极限二.求下列函数的定义域、值域三.判断函数的连续性,以及求它的间断点的类型内容一.函数1.函数的概念2.函数的性质——有界性、单调性、周期性、奇偶性3.复合函数4.基本初等函数与初等函数5.分段函数二.极限(一)数列的极限1.数列极限的定义2.收敛数列的基本性质3.数列收敛的准则(二)函数的极限1.函数在无穷大处的极限2.函数在有限点处的极限3.函数极限的性质4.极限的运算法则(三)无穷小量与无穷大量1.无穷小量2.无穷大量3.无穷小量的性质4.无穷小量的比较5.等价无穷小的替换原理三.函数的连续性x处连续的定义1.函数在点02.函数的间断点3.间断点的分类4.连续函数的运算5.闭区间上连续函数的性质例题详解题型I函数的概念与性质题型II求函数的极限(重点讨论未定式的极限)题型III求数列的极限题型IV已知极限,求待定参数、函数、函数值题型V无穷小的比较题型VI判断函数的连续性与间断点类型题型VII与闭区间上连续函数有关的命题证明自测题一一.填空题二.选择题三.解答题3月18日函数与极限练习题一.填空题1.若函数121)x (f x-⎪⎭⎫⎝⎛=,则______)x (f lim x =+∞→2.若函数1x 1x )x (f 2--=,则______)x (f lim _1x =→3. 设23,,tan ,u y u v v x === 则复合函数为 ()y f x = = _________4. 设cos 0()0xx f x x ≤⎧⎪=⎨>⎪⎩ ,则 (0)f = __________5.已知函数 20()1ax bx f x x x +<⎧=⎨+≥⎩,则(0)f 的值为 ( )(A) a b + (B) b a - (C) 1 (D) 2 6. 函数 3x 2x y --=的定义域是 ( ) (A) (2,)+∞ (B) [2,]+∞ (C) (,3)(3,)-∞+∞ (D) [2,3)(3,)+∞7. 已知 11()1f x x=- ,则 (2)f = __________8.y =+,其定义域为 __________ 9. 22x11x 1arcsin y -+-= 的定义域是 ______10. 考虑奇偶性,函数ln(y x = 为 ___________ 函数11.计算极限:(1) sin lim x xx →∞= _______;(2)711lim1x x x →-=- ______ (3)xx xx sin lim +∞→ = _______;(4)1253lim 22-+∞→n n n n = _______12.计算:(1)当 0x → 时,1cos x - 是比 x ______ 阶的无穷小量;(2)当 0x → 时, 若 sin 2x 与 ax 是等价无穷小量,则 a = ______;13.已知函数2,()1,f x x ⎧-⎪=-⎨11001x x x ≤--<<≤<,则1lim ()x f x →- 和 0lim ()x f x →( )(A) 都存在 (B) 都不存在(C) 第一个存在,第二个不存在 (D) 第一个不存在,第二个存在14. 设 232,0()2,0x x f x x x +≤⎧=⎨->⎩ ,则 0lim ()x f x +→= ( ) (A) 2 (B) 0 (C) 1- (D) 2-15. 当 n →∞ 时,1sin n n是 ( )(A)无穷小量 (B) 无穷大量 (C) 无界变量 (D) 有界变量计算与应用题设 )(x f 在点 2x =处连续,且232,2(),x x x f x a ⎧-+⎪-⎪⎪=⎨⎪⎪⎪⎩22=≠x x ,求 a求极限:20cos 1lim 2x x x →- 求极限: 121lim()21x x x x +→∞+- 求极限: 512lim43-+-∞→x x x x求极限:x x x 10)41(lim -→ 求极限:2x x )x 211(lim -∞→- 求极限:20cos 1lim xxx -→求极限: 2111lim()222n n →∞+++求极限:22lim(1)n n n →∞- 求极限:lim()1xx x x →∞+求极限 211lim ln x x x →- 求极限:201lim x x e x x →-- 求极限:21002lim(1)x xx +→∞+求极限: lim x →- 求极限:21lim()1x x x x →∞-+ 求极限: 3131lim()11x x x →---4月28日函数与极限练习题一.基础题 1.设函数,11)(1-=-x x ex f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点(C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. 2. 下列极限正确的( )A . sin lim1x x x →∞= B . sin limsin x x xx x→∞-+不存在 C . 1lim sin 1x x x →∞= D . limarctan 2x x π→∞=3. 设()1sin (0)0(0)1sin (0)x x x x f x x a x x ⎧<⎪⎪=⎪=⎨⎪+>⎪⎪⎩且()0lim x f x →存在,则a = ( )A .-1B .0C .1D .2 4. 已知9)ax a x (lim xx =-+∞→,则=a ( )。

数列的极限函数的极限与洛必达法则的练习题及解析

数列的极限函数的极限与洛必达法则的练习题及解析

数列的极限函数的极限与洛必达法则的练习题及解析一、单项选择题(每小题4分,共24分)3. 若()0lim x x f x →=∞,()0lim x x g x →=∞,则下列正确的是 ( ) A . ()()0lim x x f x g x →+=∞⎡⎤⎣⎦ B . ()()0lim x x f x g x →-=∞⎡⎤⎣⎦ C . ()()01lim 0x x f x g x →=+ D . ()()0lim 0x x kf x k →=∞≠ 解:()()000lim lim x x x x k kf x k f x k →→≠==⋅∞∞ ∴选D6.当n →∞时,1k n 与1k n 为等价无穷小,则k=( ) A .12B .1C .2D .-2 解:2211sin lim lim 1,211n n k kn n k n n →∞→∞=== 选C 二 、填空题(每小题4分,共24分)8.2112lim 11x x x →⎛⎫-= ⎪--⎝⎭ 解:原式()()()112lim 11x x x x →∞-∞+--+ 10.n =解:原式n ≡有理化 11.1201arcsin lim sin x x x e x x -→⎛⎫+= ⎪⎝⎭解:11220011sin 1,lim 0lim sin 0x x x x e e x x -→→≤=∴=又00arcsin lim lim 1x x x x xx →→== 故 原式=112.若()220ln 1lim 0sin n x x x x →+= 且0sin lim 01cos n x x x→=-,则正整数n = 解:()222200ln 1lim lim sin n n x x x x x x x x→→+⋅= 20420,lim 02n x n x n x→<>2,4,n n ∴>< 故3n =三、计算题(每小题8分,共64分)14.求0x → 解:原式有理化16.求0ln cos 2lim ln cos3x x x→ 解:原式[][]0ln 1cos 21lim ln 1cos31x x x →--+-变形注:原式02sin 2cos3lim cos 23sin 3x x x x x→∞⎛⎫ ⎪∞⎝⎭-⨯- 17.求02lim sin x x x e e x x x-→--- 解: 原式0020lim 1cos x x x e e x-→+-- 19.求lim 111lim 11n n n n n e e n →∞--+→∞⎛⎫-== ⎪+⎝⎭解: (1) 拆项,111...1223(1)n n +++⋅⋅+ 1111111...122311n n n ⎛⎫⎛⎫⎛⎫=-+-+-=- ⎪ ⎪ ⎪⎝⎭++⎝⎭⎝⎭(2) 原式=lim 111lim 11n n n n n e e n →∞--+→∞⎛⎫-== ⎪+⎝⎭20.求21lim ln 1x x x x →∞⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦解: 原式()201ln 11lim t t t x t t →=+⎡⎤-⎢⎥⎣⎦四、证明题(共18分)21.当x →∞时且()()lim 0,lim x x u x v x →∞→∞==∞, 证明()()()()lim lim 1x u x v x v x x u x e →∞→∞+=⎡⎤⎣⎦ 证:()()lim 1v x x u x →∞+⎡⎤⎣⎦ ()()lim x u x v x e →∞⋅=证毕22.当0x →时,证明以下四个差函数的等价无穷小。

专题十数列极限与函数极限

专题十数列极限与函数极限

专题十 数列极限与函数极限一、选择题1.(2008年高考·湖北卷)已知m ∈N *, a 、b ∈R ,若0n lim →b xa x)(1m =++,则a ·b=( ) A .-m B .m C .-1 D .1 2.∞→n lim )2n8641864164141(+++++++++++ 的值为( ) A .1 B .411 C .1811 D .2411 3.若函数⎪⎩⎪⎨⎧>+≤+-=1)(x 13x 15a 1)(x a 2x x f(x)23在点x=1处连续,则实数a=( ) A .4 B .-41 C .4或-41 D .41或-4 4.下列命题:①发果f(x)=x1,那么∞→x lim f(x)=0;②如果f(x)=1x -,那么f(x)=0;③如果f(x)=2x 2x x 2++,那么2x lim -→f(x)不存在;④如果⎪⎩⎪⎨⎧<+≥=0x 1,x 0x ,x f(x),那么0lim →x f(x)=0,其中真命题是( )A .①②B .①②③C .③④D .①②④5.设abc ≠0,∞→x lim 31b ax a cx =++,∞→x lim 43c bx bx ax 22=-+,则∞→x lim acx bx c bx cx 233+--+的值等于( ) A .4 B .94 C .41 D .49 6.设正数a, b 满足2x lim →(x 2+ax-b)=4,则n1n 1n 1n n 2b a ab a lim ++--+∞→等于( ) A .0 B .41 C .21 D .17.把1+(1+x)+(1+x)2+…+(1+x)n 展开成关于x 的多项式,其各项系数和为a n ,则1a 12a lim nn n +-∞→等于( ) A .41 B .21 C .1 D .2二、填空题 8.已知数列的通项a n =-5n+2,其前n 项和为S n ,则2n n n S lim∞→=________. 9.2x lim →)2x 14x 4(2---=________.10.(2008年高考·安徽卷)在数列{a n }中,a n =4n-25, a 1+a 2+…+a n =an 2+bn, n ∈N *,其中a, b 为常数,则nn nn n b a b a lim +-∞→的值为__________. 11.关于函数⎩⎨⎧>≤-=-0)(x 2ax,0)(x 1,e f(x)x (a 是常数且a>0).下列表述正确的是_________.(将你认为正确的答案的序号都填上)①它的最小值是0②它在每一点处都连续③它在每一点处都可导④它在R 上是增函数⑤它具有反函数12.如图所示,如果一个凸多面体是n 棱锥,那么这个凸多面体的所有顶点所确定的直线共有_______条.这些直线中共有f(n)对异面直线,则f(4)=_______; f(n)=_______.(答案用数字或n 的解析式表示)三、解答题13.已知⎪⎩⎪⎨⎧≥+<--=0).bx(x a 0),(x x x 11f(x)(1)求f(-x); (2)求常数a 的值,使f(x)在区间(-∞, +∞)内处处连续.14.已知{a n }, {b n }都是公差不为0的等差数列,且2b a lim nn n =∞→,求2n n 21n nb a a a lim +++∞→ 的值. 15.已知数列{a n }中a 1=2, a n+1=(2-1)(a n +2), n=1, 2, 3, ….(1)求{a n }的通项公式;(2)若数列{b n }中b 1=2, b n+1=32b 43b n n ++, n=1, 2, 3, ….证明:2<b n ≤a 4n-3, n=1, 2, 3,….。

(完整版)函数与极限习题与答案

(完整版)函数与极限习题与答案

(完整版)函数与极限习题与答案第⼀章函数与极限(A )⼀、填空题 1、设x x x f lg lg 2)(+-=,其定义域为。

2、设)1ln()(+=x x f ,其定义域为。

3、设)3arcsin()(-=x x f ,其定义域为。

4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为。

5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为。

6、432lim23=-+-→x kx x x ,则k= 。

7、函数xxy sin =有间断点,其中为其可去间断点。

8、若当0≠x 时,xxx f 2sin )(= ,且0)(=x x f 在处连续,则=)0(f 。

9、=++++++∞→)21(lim 222nn nn n n n n Λ。

10、函数)(x f 在0x 处连续是)(x f 在0x 连续的条件。

11、=++++∞→352352)23)(1(lim xx x x x x 。

12、3)21(lim -∞→=+e nknn ,则k= 。

13、函数231x1是⽐3-+x 15、当0→x 时,⽆穷⼩x --11与x 相⽐较是⽆穷⼩。

16、函数xe y 1=在x=0处是第类间断点。

17、设113--=x x y ,则x=1为y 的间断点。

18、已知33=??πf ,则当a 为时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。

19、设??>+<=0)1(02sin )(1x ax x xxx f x 若)(lim 0x f x →存在,则a= 。

20、曲线2sin 2-+=xxx y ⽔平渐近线⽅程是。

21、114)(22-+-=x x x f 的连续区间为。

22、设??>≤+=0,cos 0,)(x x x a x x f 在0=x 连续,则常数a= 。

⼆、计算题1、求下列函数定义域(1)211xy -= ;(2)x y sin = ;(3)x2、函数)(x f 和)(x g 是否相同?为什么?(1)x x g x x f ln 2)(,ln )(2 == ;(2)2)(,)(x x g x x f == ;(3)x x x g x f 22tan sec )(,1)(-== ;3、判定函数的奇偶性(1))1(22x x y -= ;(2)323x x y -= ;(3))1)(1(+-=x x x y ;4、求由所给函数构成的复合函数(1)22,sin ,x v v u u y === ;(2)21,x u uy +==;5、计算下列极限(1))2141211(lim n n ++++∞→Λ;(2)2)1(321lim nn n -++++∞→Λ;(3)35lim 22-+→x x x ;(4)112lim 221-+-→x x x x ;(5))12)(11(lim 2x x x -+∞→;(6)2232) 2(2lim -+→x x x x ;(7)x x x 1sin lim 20→;(8)xx x x +---→131lim 21 ;(9))1(lim 2x x x x -++∞→;6、计算下列极限(1)xwx x sin lim 0→;(2)x x→;(4)xx xx )1(lim +∞→;(5)1)11(lim -∞→-+x x x x ;(6)x x x 10)1(lim -→;7、⽐较⽆穷⼩的阶(1)32220x x x x x --→与,时;(2))1(21112x x x --→与,时;8、利⽤等价⽆穷⼩性质求极限(1)30sin sin tan lim x x x x -→;(2)),()(sin ) sin(lim0是正整数m n x x m n x →;9、讨论函数的连续性。

函数极限与连续练习题

函数极限与连续练习题

极限、无穷小与连续性专项练习题1.极限(1)数列极限(极限存在准则)历年真题1.(2006年)证明数列x1=a,x2=a+a=a+x1,…,x n=a+a+a+⋯a=a+x n−1,a> 0收敛,并求出它的极.考点预测利用极限存在准则证明:1limn→∞1+1n;(2)limn→∞n(1n2+π+1n2+2π+⋯+1n2+nπ)=1(3)数列2,,2+2,,2+2+2,…的极限存在,并求出该极限(2)函数极限、无穷小与连续性真题再现1选择、填空题(1)若limx→2x2+ax+bx2−x−2=2,则必有()A.a=2,b=8B.a=2,b=5C.a=0,b=-8D.a=2,b=-8(2)函数f x=sinxx,x≠02,x=0在x=0处()A.连续B.不连续但是极限存在C.无定义D.极限不存在(3)limx→0sin3x5x=_________.(4)当x→0时,4+ax−2与sin3x是等价无穷小量,则a=______.(5)limx→∞xsin1ax=__________.(6)若f x=ae x,x<02+x,x≥0在x=0处连续,则a=______.(7)limx→01−cosx=__________.(8)下列变量是当x→+∞时的无穷小量的是()A.y=e2xB.y=lnxC.y=sinxD.y=1x2+1(9)极限limx→∞(1+12x)x=________.(10)极限lim x →2sin ⁡(x−2)x 2−4=__________.(11)lim x →∞6x 3−2x 2+13x 3+5x=_________.(12)lim x →∞(1−x )2x =________.(13)lim x →∞13xsin 3x =________.(14)lim x →∞2x 2−3x +2014−5x 2−2014=_______.(15)若lim n →∞(n 2+2nn+an )=2,则a =__________.2.计算题(1)求lim x →2x 2−x−2sin ⁡(x−2)(2)求lim x →3sin ⁡(x−3)x 2−7x +12(3)求limx →∞(1−2x )3x(4)计算lim x →0tanxsin 3x(5)计算lim x → x +2− 2(6)计算lim x →3 x +1−2x−3(7)计算lim x →2(1x−2−4x 2−4) (8)求lim x →1(1lnx −1x−1)。

函数与极限练习题

函数与极限练习题

题型一. 求下列函数的极限二. 求下列函数的定义域、值域三.判断函数的连续性,以及求它的间断点的类型内容一. 函数 1. 函数的概念2. 函数的性质——有界性、单调性、周期性、奇偶性3. 复合函数4. 基本初等函数与初等函数5. 分段函数 二. 极限 (一) 数列的极限 1. 数列极限的定义2. 收敛数列的基本性质3. 数列收敛的准则 (二) 函数的极限 1. 函数在无穷大处的极限 2. 函数在有限点处的极限 3. 函数极限的性质4. 极限的运算法则 (三) 无穷小量与无穷大量 1. 无穷小量 2. 无穷大量3. 无穷小量的性质4. 无穷小量的比较5. 等价无穷小的替换原理 三. 函数的连续性 1. 函数在点0x 处连续的定义2. 函数的间断点3. 间断点的分类4. 连续函数的运算5. 闭区间上连续函数的性质例题详解题型I 函数的概念与性质题型II 求函数的极限(重点讨论未定式的极限) 题型III 求数列的极限题型IV 已知极限,求待定参数、函数、函数值 题型V 无穷小的比较题型VI 判断函数的连续性与间断点类型题型VII 与闭区间上连续函数有关的命题证明自测题一一. 填空题 二. 选择题 三. 解答题3月18日函数与极限练习题一.填空题1.若函数121)x (f x-⎪⎭⎫⎝⎛=,则______)x (f lim x =+∞→2.若函数1x 1x )x (f 2--=,则______)x (f lim _1x =→3. 设23,,tan ,u y u v v x === 则复合函数为 ()y f x = = _________4. 设 cos 0()0xx f x xx ≤⎧⎪=⎨>⎪⎩ ,则 (0)f = __________5.已知函数 20()1ax bx f x x x +<⎧=⎨+≥⎩,则(0)f 的值为 ( )(A) a b + (B) b a - (C) 1 (D) 2 6. 函数 3x 2x y --=的定义域是 ( ) (A) (2,)+∞ (B) [2,]+∞ (C) (,3)(3,)-∞+∞ (D) [2,3)(3,)+∞7. 已知 11()1f x x=- ,则 (2)f = __________8.141y x x =++-,其定义域为 __________ 9. 22x11x 1arcsin y -+-= 的定义域是 ______10. 考虑奇偶性,函数 2ln(1)y x x =++ 为 ___________ 函数11.计算极限:(1) sin lim x xx→∞= _______;(2)711lim 1x x x →-=- ______(3)xx xx sin lim +∞→ = _______;(4)1253lim 22-+∞→n n n n = _______12.计算:(1)当 0x → 时,1cos x - 是比 x ______ 阶的无穷小量;(2)当 0x → 时, 若 sin 2x 与 ax 是等价无穷小量,则 a = ______;13. 已知函数22,()1,1,f x x x ⎧-⎪=-⎨⎪-⎩11001x x x ≤--<<≤<,则1lim ()x f x →- 和 0lim ()x f x →( )(A) 都存在 (B) 都不存在(C) 第一个存在,第二个不存在 (D) 第一个不存在,第二个存在14. 设 232,0()2,0x x f x x x +≤⎧=⎨->⎩,则 0lim ()x f x +→= ( )(A) 2 (B) 0 (C) 1- (D) 2-15. 当 n →∞ 时,1sin n n是 ( )(A)无穷小量 (B) 无穷大量 (C) 无界变量 (D) 有界变量计算与应用题设 )(x f 在点 2x =处连续,且232,2(),x x x f x a ⎧-+⎪-⎪⎪=⎨⎪⎪⎪⎩22=≠x x ,求 a求极限:20cos 1lim 2x x x →- 求极限: 121lim()21x x x x +→∞+- 求极限: 512lim 43-+-∞→x x x x求极限:x x x 10)41(lim -→ 求极限:2x x )x 211(lim -∞→- 求极限:20cos 1lim x x x -→求极限: 2111lim()222n n →∞+++求极限:22lim(1)n n n→∞- 求极限:lim()1xx x x →∞+求极限 211lim ln x x x →- 求极限:201lim x x e x x →-- 求极限:21002lim(1)x x x +→∞+求极限: 3813lim2x x x →---+ 求极限:21lim()1x x x x →∞-+ 求极限: 3131lim()11x x x →---4月28日函数与极限练习题一.基础题 1.设函数,11)(1-=-x x ex f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点(C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. 2. 下列极限正确的( )A . sin lim1x x x →∞= B . sin limsin x x xx x→∞-+不存在 C . 1lim sin 1x x x →∞= D . lim arctan 2x x π→∞=3. 设()1sin (0)0(0)1sin (0)x x x x f x x a x x ⎧<⎪⎪=⎪=⎨⎪+>⎪⎪⎩且()0lim x f x →存在,则a = ( )A .-1B .0C .1D .2 4. 已知9)ax a x (lim xx =-+∞→,则=a ( )。

函数与极限练习题

函数与极限练习题

函数与极限练习题第一章函数与极限§1 函数一、是非判断题1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界。

[ ]2、)(x f 在X 上有界的充分必要条件是存在数A 与B ,使得对任一X x ∈都有B x f A ≤≤)( [ ]3、)(),(x g x f 都在区间I 上单调增加,则)(·)(x g x f 也在I 上单调增加。

[ ]4、定义在(∞+∞-,)上的常函数是周期函数。

[ ]5、任一周期函数必有最小正周期。

[ ]6、)(x f 为(∞+∞-,)上的任意函数,则)(3x f 必是奇函数。

[ ]7、设)(x f 是定义在[]a a ,-上的函数,则)()(x f x f -+必是偶函数。

[ ] 8、f(x)=1+x+2x 是初等函数。

[ ]二.单项选择题1、下面四个函数中,与y=|x|不同的是(A )||ln x e y = (B )2x y = (C )44x y = (D )x x y sgn = 2、下列函数中既是奇函数,又是单调增加的。

(A )sin 3x (B )x 3+1 (C )x 3+x (D )x 3-x 3、设[])(,2)(,)(22x x f x x f x ??则函数==是(A )x 2log (B )x 2 (C )22log x (D )2x 4、若)(x f 为奇函数,则也为奇函数。

(A));0(,)(≠+c c x f (B) )0(,)(≠+-c c x f (C) );()(x f x f + (D))].([x f f -三.下列函数是由那些简单初等函数复合而成。

1、 y=)1arctan(+x e2、 y=x x x ++3、 y=xln ln ln四.设f(x)的定义域D=[0,1],求下列函数的定义域。

(1) f()2x(2) f(sinx)(3) f(x+a) (a>0)(3) f(x+a)+f(x-a) (a>0)五.设??=,,2)(x x x f 00≥<="">-=,3,5)(x x x g 00≥<="" 及)]([x="" ,求)]([x="">六.利用x x f sin )(=的图形作出下列函数的图形:1.|)(|x f y = 2。

高数极限基础练习题

高数极限基础练习题

高数极限基础练习题一、数列极限1. 计算下列数列的极限:(1) $\lim_{n \to \infty} \frac{1}{n}$(2) $\lim_{n \to \infty} \frac{n+1}{2n+3}$(3) $\lim_{n \to \infty} \frac{n^2 1}{n^2 + 1}$(4) $\lim_{n \to \infty} \frac{\sqrt{n^2 + n}}{n + 1}$ 2. 判断下列数列极限是否存在,若存在,求出其极限值:(1) $\lim_{n \to \infty} (1)^n$(2) $\lim_{n \to \infty} \sin(n\pi)$(3) $\lim_{n \to \infty} \frac{n!}{n^n}$二、函数极限1. 计算下列函数的极限:(1) $\lim_{x \to 0} \frac{\sin x}{x}$(2) $\lim_{x \to 1} \frac{x^2 1}{x 1}$(3) $\lim_{x \to \infty} \frac{1}{x}$(4) $\lim_{x \to 0} \frac{e^x 1}{x}$2. 判断下列函数极限是否存在,若存在,求出其极限值:(1) $\lim_{x \to 0} \frac{\sin 3x}{x}$(2) $\lim_{x \to \infty} \frac{\ln x}{x}$(3) $\lim_{x \to \infty} (1 + \frac{1}{x})^x$三、无穷小与无穷大1. 判断下列表达式是否为无穷小:(1) $\frac{1}{x^2}$ 当 $x \to \infty$(2) $\sin \frac{1}{x}$ 当 $x \to \infty$(3) $e^{x}$ 当 $x \to \infty$2. 判断下列表达式是否为无穷大:(1) $x^3$ 当 $x \to \infty$(2) $\ln x$ 当 $x \to \infty$(3) $\frac{1}{\sqrt{x}}$ 当 $x \to 0^+$四、极限运算法则1. 利用极限运算法则计算下列极限:(1) $\lim_{x \to 0} (3x^2 + 2x 1)$(2) $\lim_{x \to 1} \frac{x^3 3x^2 + 2x}{x^2 2x + 1}$(3) $\lim_{x \to \infty} (x^3 2x^2 + 3)$2. 利用极限的性质,计算下列极限:(1) $\lim_{x \to 0} \frac{\sin x}{x} \cdot\frac{1}{\cos x}$(2) $\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x + 1}$(3) $\lim_{x \to 0} \frac{e^x e^{x}}{2x}$五、复合函数极限1. 计算下列复合函数的极限:(1) $\lim_{x \to 0} \frac{\sin(\sqrt{x^2 + 1})}{x}$(2) $\lim_{x \to \infty} \frac{\ln(x^2 + 1)}{x}$(3) $\lim_{x \to 0} \frac{e^{x^2} 1}{x^2}$2. 判断下列复合函数极限是否存在,若存在,求出其极限值:(1) $\lim_{x \to 0} \frac{\sin(\tan x)}{x}$(2) $\lim_{x \to \infty} \frac{\ln(e^x + 1)}{x}$(3) $\lim_{x \to 0} \frac{1 \cos(\sqrt{x})}{x}$六、极限的应用1. 计算下列极限问题:(1) 设 $f(x)2. 已知函数 $f(x) = \frac{x^2 1}{x 1}$,求 $\lim_{x \to 1} f(x)$。

经济数学(极限与连续习题及答案)——习题集资料文档

经济数学(极限与连续习题及答案)——习题集资料文档

第二章 函数的极限与连续习题 2-11.写出下面数列的前5项,并观察当n —>∞时,哪些数列有极限,极限为多少? 哪些数列没有极限.{}{}{}{}{}{}{}211(1) 1 (2) 21(3) (4) (1)11(1)(5) sin (6) 2n n n nn n n n n n x x n n x x nn x x n π⎧⎫-⎪⎪⎧⎫=-=⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭-⎧⎫==-⎨⎬+⎩⎭⎧⎫+-⎪⎪⎧⎫==⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭解 (1)3231,1615 ,87 ,43 ,21 有极限 , 极限为 1.(2)524,415 ,38 ,23 ,0 没有极限. (3)64,53 ,42 ,31 0, 有极限 , 极限为 1. (4) -1, 2, -3, 4, -5 没有极限.(5)5sin,4sin ,3sin ,2sin ,sin πππππ, 有极限 , 极限为 0 . (6) 0, 1, 0 , 1, 0 没有极限 . 2. 用极限的定义证明:(1) 若k >0,则 1lim0kn n →∞=n 212(2) lim313n n →∞+=+解 (1) 因为对任给的ε> 0,要使不等式110(0)k kk n n ε-=<>11().k n ε>即便可所以对任给的ε> 0, 取正整数 N =11[()]1kε+ , 则当n >N 时, 就恒有 10k n ε-<故由数列极限的定义知, 1lim0kn n →∞=.(2) 因为对任给的ε > 0, 不妨设10ε<3<,要使不等式2121ε31393n n n +-=<++11(3) 9εn >-即便可.所以对任给的ε> 0, 取正整数N = 11[(3)]19ε-+, 则当n > N 时, 就 恒有 212313n n ε+-<+故由数列极限的定义知,3213n 12n lim=++∞>-n .3. 设 120.9,0.99,,0.999,lim .nn n n x x x x →∞===求如果要使x n 与其极限之差的绝对值小于 0.0001 , 问n 应满足什么条件?解 因为0.999,lim 1, 0.0001,nn n n x x ε→∞===由则取要使110.000110000n x -<=110.999910000n x >-=只要便可.所以n > 4 .4. 设数列{x n }有界,且lim 0, lim 0.n n n n n y x y →∞→∞==证明证 因为数列{x n }有界, 所以存在正整数M > 0, 使得nx < M,又因为0lim =∞→n n y , 则对任给的M ε> 0, 存在正整数N , 使得当n > N 时, 就恒有0n y M ε-<所以对任给的ε> 0, 存在正整数N , 使得当n >N 时, 就恒有n n n n x y x y M Mεε=<⋅=故由数列极限的定义知, .0lim =∞→n n n y x5. 设数列{x n }收敛, 求证数列{x n }必定有界.解 由数列{x n }收敛, 设Ax n n =∞→lim .因为对于任意ε > 0, 存在正整数N , 使得当n > N 时的一切x n , 就恒有 n x A ε-<即n A x A εε-<<+所以对任给的ε > 0,取正数{}12max ,,,,,,N M x x x A A εε=+-使得当n > N 时 ,就恒有 n x M <故数列{x n }必定有界.习题 2-21. 用极限的定义证明 :2324(1) lim(31)8 (2) lim 4223(3) lim 2 (4) lim 20x x x x x x x x x x →→-→∞→-∞--==-++==解 (1)因为对任给的ε> 0, 要使不等式|(3 x – 1) – 8| =|3(x – 3)| < ε只要取正数δ= ε3就可以了.所以对任给的ε> 0, 取正数δ= ε3,使得当0 < | x – 3|<δ时, 就恒有|(3x – 1) – 8| < ε故由极限定义知 3lim(31)8x x ->-=.(2)因为对任给的ε > 0, 要使不等式244242ε2x x x x -+=-+=+<+只要取正数δ= ε就可以了.所以对任给的ε> 0, 取正数δ= ε, 使得当0<|x + 2|<δ时, 就恒有244ε2x x -+<+ 故由极限定义知 224lim 42x x x →--=-+.(3)因为对任给的ε> 0, 要使不等式2332εx x x +-=<,则 |x |> 3ε, 只要取正数M = 3ε就可以了.所以对任给的ε> 0, 取正数M =3ε, 使得当| x | > M 时, 就恒有232εx x +-<故由极限定义知 23lim2x x x ->∞+=.(4)因为对任给的ε> 0 (不妨设0<ε<1), 要使不等式ln 202, ln 2x x x εε-=<<即ln ln 2M ε=只要取正数就可以了.所以对任给的ε>0,取正数2ln ln ε=M , 使得当x <-M 时, 就恒有20x ε-<故由极限定义知 lim 20xx ->-∞=.2*. 当x →-2时,x 2 →4. 问δ等于多少,在0<|x + 2|<δ时, 有| x 2 - 4|< 0.003 ?解 因为当x →-2时,x -2 →-4, 取 ε= 0.003, 要使不等式| x 2 - 4|=| x + 2| | x – 2 |< ε设21x +<, 即有 -3< x <-1, -5< x -2 <-3所以当2x -< 5时,取0.0035δ==0.0006, 有240.003x ε-<=.3*. 当x —>∞ 时,102x →-. 问M 等于多少时,在|x |> M 时, 有100.012x -<-?解 因为当x —>∞ 时,要使不等式100.012x -<-2100, 102.x x ->>只要便可 即M = 102.4. 设函数1, 0() 0, 01, 0x x f x x x x -<⎧⎪==⎨⎪+>⎩, 讨论当x —> 0时,f (x )的极限是否存在.解 00lim ()lim (1)1x x f x x --→->=-=-因为00lim ()lim (1)1lim ()lim ()lim ()x x x x x f x x f x f x f x ++-+→->→→->=+=≠即故 不存在.5. 证明函数f (x ) = x | x |, 当x →0时极限为零.22, 0(), 0x x f x x x ⎧≥⎪=⎨-<⎪⎩解 因为--2020lim ()lim ()0lim ()lim 0lim ()0.x x x x x f x x f x x f x ++→→→→→=-====即故6* . 利用定义证明:0, 11lim , 01x x a a a →+∞>⎧=⎨+∞<<⎩. 证 因为当a >1时,对任意ε> 0,不妨设0<ε<1, 要使110x x a a ε-=<1ln ln x a ε->只要取正数便可.所以对于0<ε<1,1ln 0,,ln M x M a ε->>取=当时就恒有10xa ε-<即 1limx x a →+∞=.又因为当0< a < 1时,令11b a =>时,由上述可得1 lim 0x x b →+∞=于是 1lim limx xx x b a →+∞→+∞==+∞故由极限定义知0, 11lim, 01xx a a a →+∞>⎧=⎨+∞<<⎩. 7.设函数21, 2()2, 2x x f x x k x ⎧+≥=⎨+<⎩, 问当k 取何值时,函数f (x )在x —> 2时的极限存在. 解 2lim (), ,x f x ->因为要使存在必须左右极限存在且相等222lim (1)5lim (2)4 1.x x x x k k k ->->+==+=+=+-即解得故 2lim () 5.x f x ->=8. 求(),()x xf x x x x ϕ==当x —> 0时的左、右极限,并说明它们在 x —> 0时的极限是否存在.解 1 , 0(), 0x f x x ≠⎧=⎨=⎩因为不存在lim () lim101 , 0()1, 0x x f x x x x ϕ→→==>⎧=⎨-<⎩即而习题 2-31. 1. 求下列极限:3222010203031222042412(1)(1) lim (2)lim 2(2)(23)31(3) lim (4) lim()1(13)112((5) lim[ ] (6 ) limx n x x n h x x x n x x nx x x x x n x n n n→→∞→∞→→∞→-++++-+------++++222) (7) x x h x h →→-解 322200424424(1)lim lim 2.22x x x x x x x x x x →→-+-+==++22102010202030303012(1)(1)1(2) lim=lim=.2223(1)(2)(2)(23)2(3) lim lim .1(13)3(3)n n x x n n n n n x x x x x x →∞→∞→∞→∞+++------==-- 233112122222313(1)(4) lim()lim111(2)(1)lim1.(1)(1)1212 (5) lim[]lim1(1)1lim .22 (6) lim x x x n n n h x x x x x x x x x x n nn n n n n n n →→→→∞→∞→∞-++-=---+-==-++++++++=+=⋅=22200022200()2lim lim(2)2.(1 (7) lim1(1) lim(1 2.(8) h h x x x x x x h x xh h x h x h h x x →→→→→→→→+-+==+==-+=-+=-=4x x →→===2. 求下列数极限:n n n n n n 1(1)(1) lim111(3) lim[]1223(1)(1) 0.1(1)(2) lim 0.nnnn n n →∞→∞→∞→∞→∞+-+++⨯⨯⨯+==+-=解111(3) (1)1n n n n =-⨯++因为111lim[]1223(1)11111lim[(1)()()]22311lim(1) 1.1n n n n n n n n →∞→∞→∞+++⨯⨯⨯+=-+-++-+=-=+故2. 2. 设 22lim()51x x ax b x →∞--+=--, 求常数a, b 的值.解 222(1)()2lim ()lim 511x x x a x b a x bax b x x →∞→∞--++---+==---由1051, 6.a a b a b -=⎧⎨+=-⎩==-得故3. 3. 若常数k 使233lim 222-++++-→x x k kx x x 存在, 试求出常数k 与极限值. 解 2222233lim lim (2)02x x x kx k x x x x →-→-++++-=+-由己知存在,且 22lim (33)150 15.x x kx k k k →-+++=-==所以得22222315183(2)(3)limlim2(2)(1)3(3)lim 1.1x x x x x x x x x x x x x →-→-→-++++=+-+-+==--则5. 求下列函数的极限:12100(1)1ln(1) (1) lim(2) limln(1)nx x x x x xx x →→∞+--+++解1(1) (1) , 1,n nx t x t +==-令当0x →时, 1t →, 则11201122210109102910(1)1111limlimlim .1(1)(1)11ln (1)ln(1)(2) lim lim 11ln(1)ln (1)112ln ln(1)2 lim lim 1110ln ln(1)nn n n x t t x x x x x t t x nt t t t x x x x x x x x x xx x x x x x --→→→→∞→∞→∞→∞+---===--+++-+-+=+++++-++==+++291011ln(1)/ln 1110ln(1)/ln 15xx x xx x-++++=6 .求下列曲线的渐近线:3222122(1) (2) 232(3) 2 (4) 21xx x y y x x x x x y y x --==+---==-解 332(1) (3)(1)23x x y x x x x ==+-+-3321133233lim lim (3)(1)231;lim lim(3)(1)233;x x x x x x x x x x x x x x x x x x →→→-→-==∞+-+-===∞+-+-=- 因为 所以是铅垂渐近线 因为 所以是铅垂渐近线 323222lim lim 1(23)23 lim[]lim 223232.x x x x y x x x x x x x xx x x x x y x →∞→∞→∞→∞==+--+-==-+-+-=- 又因为 且所以是斜渐近线2222222222121102 (2) lim 121;2(lim lim (2)(1)222lim lim 221,2. (3) lim 21 lim 2x x x x x xxx x x x x y x x x x x x x x x x x x x x x -→∞→→→-→--→∞→-=--=-+==∞-+----==∞----=-===∞因为 所以是水平渐近线 又因为 且所以是铅垂渐近线因为 且所1,0.y x ==以是水平渐近线是铅垂渐近线212(4) lim211.2x xx x →=∞-=因为 所以是铅垂渐近线2221lim lim (21)22(21)11lim[]lim lim 2122(21)4241124x x x x x y x x x x x x x x x x x x y x →∞→∞→∞→∞→∞==----===---=+又因为且 所以是斜近渐近线.7. 已知 2200012000lim 0,,.x x x x b a b x a →+++-=≠-求的值解 2200012000limx x x x b x a →+++-=-由己知存在习题 2-41. 1. 利用极限存在准则,计算下列各题:22221111(1)lim[] (1)(2)()(2)limn n n n n n n →∞→∞+++++++解2222111111(1)4(1)(2)()n nn n n n n ≤++++≤+++因为 222211lim lim 041111lim[]0.(1)(2)() (2)1sin1,n n n nn n n n n n n →∞→∞→∞==++++=+++-≤≤≤≤且 所以因为则有lim lim lim 0.n n n →∞→∞→∞===所以 2.求下列极限:0022021sin (1) lim (2) lim cot 2sin 22(3) lim (4) lim sin tan 3sin(1)(5) lim (6) li 1x x x x x kxx xxx x x x x x →→→→∞→--01cos msin sin (7) lim (8) lim 2sin 2x n nx n xx x x xx ππ→→→∞-- 解 00sin sin (1) lim lim .x x kx kxk k x kx →→==0021(2) lim cot 2lim.2tan 22x x x x x x →→==0022222221112000sin 2sin 2322(3) lim lim .tan 32tan 333222(4) lim sin lim 2sin / 2.sin(1)sin(1)(5) lim lim lim(1) 2.112sin s 1cos 2(6) lim lim2lim sin sin x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x →→→∞→∞→→→→→→=⋅⋅===--=⋅+=---==20in 22sin cos22sin 112 lim cos .2222x x x x x x x x →=⋅=00sin()sin sin (7) limt lim lim = 1.(8) lim 2sin lim sin /.222x t t n n n n n n t x tx x t tx x xx x ππππ→→→→∞→∞+-=-=--== 3.求下列极限:2123sec 03(1) lim (1) (2) 121 (3) lim () (4) lim ()23 (5) lim (1cos ) (6) lim x x x x xx x xx x xx x x x x π+→∞→→∞→∞→→++-++2112cot0(12sin) (7) lim(14) (8) lim(13tan )xxxxx x x x x -→→+-+解 3133333(1) lim (1) lim (1)(1).xx x x e x x x ⋅+→∞→∞+=++=11(3)330222(2) lim(13)lim(13)].11(3) lim () lim (1) .x x x x x x x x x x x e x e x x ---→→→→∞→∞=-=-=+=+=2223113()2()232222133sec cos 1121132(4) lim ()lim ()lim (1)lim (1)323221213 lim (1)lim (1).22(5) lim(1cos ) lim(1cos )x x x xx x x x x x x x x x xx x x x x x x xe e e x xx x ππ-→∞→∞→∞→∞⋅⋅--⋅----→∞→∞→→--==-⋅+++=-⋅+=⋅=+=+223112sin 22sin 011(44)440132cot 233tan 022000.(6) lim(12sin)lim(12sin).(7) lim(14) lim(14).(8) lim(13tan )lim(13tan).1001 4.lim ()5xx xx xx x xx xx x x xx x x x c x e x x e x x e x x e x e x →→-⋅---→→⋅→→+→∞=+=+=-=-=+=+=+=-已知,.c 求解 220001001lim()5x x x x +→∞+-由510062200010065201210061001 lim (1)lim ()552012.x x x x x c x x x e e c -⋅-→∞→∞+=+⋅--===故习题 2-51.下列函数在什么情况下是无穷小量,什么情况下是无穷大量?3211(1) (2) 1(2) (4) ln(1)x x y y x x y e y x --==-==+解 (1)因为 301lim x x →=∞,所以当0x →时,31y x =是无穷大量. 又因为 31lim 0x x →∞=,所以当x →∞时,31y x =是无穷小量. (2)因为21111lim lim 11x x x x x →-→--==∞+-,所以当1x →-时,21 1x y x -=-是无穷大量. 又因为 211lim lim 011x x x x x →∞→∞-==+-,所以当x →∞时,21 1x y x -=-是无穷小量. (3)因为lim x x e -→-∞=∞,所以当x →-∞时,xy e -=是无穷大量. 又因为lim 0x x e -→+∞=,所以当x →+∞时,x y e -=是无穷小量. (4)因为1lim ln(1)lim ln(1)x x x x +→+∞→-+=∞+=∞或,所以当x →+∞,1, ln(1)x y x +→-=+时或时是无穷大量.又因为0limln(1)0x x →+=,所以当0 , ln(1)x y x →=+时是无穷小量.2.当0x →时,指出关于x 的同阶无穷小量、高阶的无穷小量、等价的无穷小量.22211,sin ,cos 1,(1),sin .2xx x e x ---解 因为01lim2x x →→==所以当0x +→时,与x1-;又因为 2200sin sin lim lim 0x x x x x x →→==200cos 1lim lim 02x x x x x x →→-=-= 所以当0x +→时,比x 高阶的无穷小量有2sin x ,2sin x ,cos 1x -;又因为 2001(1)122lim lim 12xx x e xx x →→-=⋅=所以当0x →时,与x 等价的无穷小量有21(1)2xe -.3.把下列函数表示为常数(极限值)与一个当x —>∞时的无穷小量之和的形式.3333(1)() (2) ()121x x f x f x x x ==-+解 (1)因为33lim 11x x x →∞=-,所以3331() 111x f x x x ==+--. (2)因为 33311lim lim 0 22142x x x x x →∞→∞-==++且 所以311()242f x x =-+. 4.证明: 当x —>0 时,(1) e x -1 ∽ x ; (2) arcsin x ∽ x .解 (1)100011lim 1lim lim 1ln(1)ln(1)x x x x x te t t e x t t →→→-=-==++令.(2)00arcsin limarcsin lim 1sin x t x tt x x t →→==令.5.利用等价替换原理, 计算下列极限:sin 2002000sin 31(1) lim (2) limsin tan 52ln(123)(3) lim (4) limsin()arcsin 2(5)lim(6) lims (sin )xx x x x n mx x x x e x xx x x x x x x →→→→→→-+-233in 235(7) lim(8) lim42tan x n xx x x x x→+-+解 (1)因为当0x →时,sin 33,sin ,tan 5522x xx x x x所以 00sin 336limlim 5sin tan 5522x x x x x x x x x x →→⋅==⋅⋅.(2)因为当sin 2sin 0,12xxx e →-时 所以sin 201sin 1limlim22xx x ex xx →→-==.(3)因为当220,ln(123)23x x x x x →+--时所以 22000ln(123)23lim lim lim(23)2x x x x x x x x x x →→→+--==-=. (4)因为当0,sin 22x x x →时所以x x →→=20021)1)lim lim 41x x x x x x →→===++.(5)因为当0,sin ,sin n nx x x x x →时 所以 000, sin lim lim 1, (sin ), nnm mx x n m x x n m x x n m →→>⎧⎪===⎨⎪∞<⎩.(6)因为当0,arcsin 22,sin x x x x x →时所以 00arcsin 22limlim 2sin x x x xx x →→==.(7)因为当230,,x x x x →时都是比更高的无穷小所以 233002352lim lim 12tan 2tan x x x x x x x x x →→+-==+.(8)因为当3433,2n n n n n →∞--limlim0.n n ==所以6. 设x —>0 时, 函数122(1)1cos 1kx x +--与为等价无穷小量,求常数k 的值.解 因为 12220021(1)12lim lim 11cos 12x x kxkx k x x →→+-==-=--所以 k = -1.*7. 求下列函数的极限:)tan 1ln(cos sin 1lim )1(20x xx x x +-+→ 11(2)lim ()x x x x a b →+∞-)]11ln(sin )31ln([sin lim )3(x x xx +-+∞→解 0x →(1)x→=因为222210,1cos ,ln(1tan )tan 2x xx x x x →-+当时所以2201sin cos limlim ln(1tan )2x x x x xx x →→+-=+2001cos sin 113limlim 24242x x x x x x →→-=+=+=.(2)111111(1)(1)lim ()limlim11x x x xx xx x x a b a b x a b x x →+∞→+∞→+∞-----==11(1)(1)limlim11xxx x a bx x →+∞→+∞--=-因为当1,0x x →+∞→时,11111ln ,1ln xx a a b bx x --11lim()ln ln lnxxx ax a b a b b →+∞-=-=所以31(3)lim [sin ln(1)sin ln(1)]x x x x →∞+-+31sin ln(1)sin ln(1)limlim 11x x x x x x →∞→∞++=-因为当x →∞时,333sinln(1)ln(1)x xx ++111sin ln(1)ln(1)x xx ++31lim [sin ln(1)sin ln(1)]31lim lim 31 2.11x x x x x xx x x x →∞→∞→∞+-+=-=-=所以习题 2-61.求函数 xy +=1 在x = 3, ⊿x = -0.2时的增量⊿y . 解 因为()()y f x x fx ∆=+∆-=3,0.2,2x x y =∆=-∆== 由所以2.利用连读函数的定义,证明下列函数在 x = 0 点的连续性.21(1)()1()21arctan , 10, 0(3)() (4) () 1, 01 0, 0x f x f x x x xx x f x f x xx x x x +=+=-⎧⎧-<<≠⎪⎪==⎨⎨⎪⎪-≤<=⎩⎩解 (1)因为(0)(0)1y f x f ∆=+∆-=lim lim 1)0()10.x x y f x x ∆→∆→∆=-==+=且所以 在处连续(2)因为21(0)(0)121x y f x f x ∆+∆=+∆-=+∆-2020001lim lim (1)110211()0.210, (0)0,lim ()lim (1)1,lim ()lim 11lim ()()0x x x x x x x x y x x f x x x x f f x f x f x f x x --++∆→∆→→→→→→∆+∆=+=-+=∆-+==-===-=-===且所以在处连续 (3)因为在 时且所以 不存在,故在不连续.0000,(0)1,arctan lim ()lim arctan lim 1tan x x t x f x tf x t x x t ---→→→===== (4)因为在时且00lim ()lim (1)1lim ()1(0)arctan , 10() 0.1, 01x x x f x x f x f xx f x x x x x ++→→→=-===⎧-<<⎪==⎨⎪-≤<⎩所以 在处连续3. 求下列函数的间断点, 并指出间断点的类型. 若是可去间断点,则补充定义,使其在该点连续.221(1)() (2) ()ln(21)(1)x x f x f x x x x -==--1, 11arctan , 0(3)()2, 10 (4) () 0, 01 sin , 02x x x f x x x f x xx x x x -⎧≤-⎪⎧⎪≠⎪=+-<≤=⎨⎨⎪⎪=⎩⎪<≤⎩ 解(1)0,1,1() ,x x x f x ==-=因为在处没有定义() 0,1,1. f x x x x ==-=所以在处间断而0000(1)lim ()lim 1(1)(1)(1)lim ()lim 1(1)(1)x x x x x x f x x x x x x f x x x x --++→→→→-==---+-==-+ 故 0lim ()x f x →不存在,x = 0是()f x 的跳跃间断点.又因为 11(1)1lim ()lim (1)(1)2x x x x f x x x x →→-==-+所以 x = 1是()f x 的可去间断点,补充定义1(1)2f =.又因为111(1)lim ()limlim (1)(1)(1)x x x x x xf x x x x x x →-→-→--===∞-++所以x = -1是()f x 的无穷间断点.(2) 因为1x =在处()f x 没有定义, 且111lim ()limln(21)x x f x x →→==∞-所以x = 1是()f x 的无穷间断点.(3)因为(1)1,f -=且11111 lim ()lim 1,lim ()lim (2)1x x x x f x xf x x --++→-→-→-→--===+=则1lim ()(1) 1.x f x f →-=-=所以x = 1是()f x 的连续点.(0)2, lim ()lim (2)21 lim ()lim sin0x x x x f f x x f x x x --++→→→→==+===又因为且所以 0lim ()x f x →不存在,x = 0是()f x 的跳跃间断点.0000(4)(0)0,1lim ()lim arctan21lim ()lim arctan 2x x x x f f x x f x x ππ--++→→→→===-==因为且 所以0lim ()x f x →不存在,x = 0是()f x 的跳跃间断点. 4.讨论下列函数的连续性,并作出函数图形.2211(1)()lim(0) (2) () lim11nnnn n x f x x f x xx x →∞→∞-=≥=++解 (1) 因为1, 011()lim0, 11n n x f x x x →∞≤≤⎧==⎨>+⎩(函数图形见图2-1)且11(1)1,lim ()1,lim ()0x x f f x f x -+→→===所以x = 1是()f x 的间断点.图2-122 , 11 (2)()lim0 , 11 , 1nnn x x xf x x x x x x →∞⎧<⎪-=⋅==⎨+⎪->⎩因为(函数图形见图2-2) 1111(1)0lim ()lim ()1 lim ()lim 1x x x x f f x x f x x --++→-→-→-→-±==-===-且1111lim ()lim 1 lim ()lim ()1x x x x f x x f x x --++→→→→===-=- 图2-211lim (),lim ()x x f x f x →-→所以都不存在.因此x = 1,x = -1是()f x 的跳跃间断点.5.已知2, 01() 2, 1ln(1), 13ax b x f x x bx x ⎧+<<⎪==⎨⎪+<≤⎩,问当 a , b 为何值时,()f x 在 x =1 处连续.解 因为(1)2,f =且21111lim ()lim () lim ()lim ln(1)ln(1)x x x x f x ax b a bf x bx b --++→→→→=+=+=+=+若函数()f x 在x = 1处连续,则必须 1lim ()2x f x →=.即 2ln(1)2a b b +=⎧⎨+=⎩解之,得223,1a e b e =-=-. 6.求函数32233()6x x x f x x x +--=+-的连续区间,并求 )(lim ),(lim ),(lim 32x f x f x f x x x -→→→.解 因为323223333()(3)(2)6x x x x x x f x x x x x +--+--==+-+-所以()(,3)(3,2)(2,),f x -∞-⋃-⋃+∞的连续区间是且3200331lim ()lim (3)(2)2x x x x x f x x x →→+--==+-322223233333lim ()lim (3)(2)(3)(1)338lim ()lim lim (3)(2)(3)(2)5x x x x x x x x f x x x x x x x x f x x x x x →→→-→-→-+--==∞+-+-+--===-+-+-7.设函数()f x 在[a , b ]上连续,且(),()f a a f b b <>,证明在(a , b )内至少存在一点ξ,使得f (ξ) = ξ.证 [][] ()(),(),,(),F x f x x f x a b F x a b =-设由已知在上连续则在上(),(),()()0,()()0f a a f b b F a f a a F b f b b <>=-<=->连续.又因为所以故由零值定理知,在(,)a b 内至少存在一点ξ,使得F (ξ)= 0, 即 ()f ξξ=.8.设函数()f x 在[a , b ]上连续,12n a x x x b <+++<, 求证在(a , b )内至少有点ξ,使n x f x f x f f n )()()()(21+++=ξ证 因为()f x 在[a , b ]上连续,则1()[,]n f x x x 在上也连续.由最大最小值定理知,1()[,]n f x x x 在上存在最小值m ,最大值M ,取12()()()((),1,2,,),n i f x f x f x C m f x M i n nm C M +++=≤≤=≤≤则由介值定理知, 在(a , b )内至少有点ξ,使12()()()()n f x f x f x f C nξ+++==.9. 证明方程331x x -=至少有一个根介于1和2之间.证 设3()31F x x x =--,由于F (x )在[1,2]内连续,且(1)30,(2)10F F =-<=>由零值定理知,在(1,2)内至少存在一点ξ,使得F (ξ)= 0. 即 331ξξ-=.故方程331x x -=在[1,2]内至少有一个根.综合习题二1.选择填空:(1) 数列{y n }有界是数列收敛的 ( ) .① 必要条件 ② 充分条件 ③ 充要条件 ④ 无关条件(2) 当x —>0 时,( )是与sin x 等价的无穷小量. ① tan2 x②x③ 1ln(12)2x + ④ x (x +2)(3) 设0, 0(), lim (), 0x x e x f x f x ax b x →⎧≤=⎨+>⎩若存在, 则必有( ) .① a = 0 , b = 0 ② a = 2 , b = -1③ a = -1 , b = 2 ④ a 为任意常数, b = 1(4)若31169x x→=--,则f (x) = ( ) .①x+1 ②x+5③(5) 方程x4–x– 1 = 0至少有一个实根的区间是( ) .①(0,1/2) ②(1/2, 1)③(2, 3) ④(1, 2)(6)函数10()lnxf xx-=+的连续区间是( ) .①(0, 5) ②(0, 1)③(1, 5) ④(0, 1)∪(1,5)解(1)①;(2)③;(3)④;(4)③; (5)②;(6)④.2.计算题:3sin()3(1) lim (2)lim12cos sin(3) 12(1)](4) lim0)x xxxnxaxe ex xn naαβππ+→→→∞→---++-+++->2300cot222tan sin(5)lim (6)limsin11(7)lim(cos) (8) lim(1)4(9)lim1x xx n x nxxx xxxn nxx→→→→∞→∞-++⎛⎫-⎪⎪-⎝⎭(10)lim[ln ln(2)]nn n n→∞-+解333sin()sin()sin()333(1) lim= lim lim112cos2(cos)2(cos cos)23x x xx x xx x xπππππππ→→→---=---33001112sin()cos()cos()1232323lim lim11124sin()sin()sin()232323(1)(1)(2) lim limsin sin0,1,1,sinx xx x x xx xx xx x xx x xe e e ex xx e x e x x xππαβαβαβππππππαβ→→→→-⋅--===+⋅-+----=→--因为当时所00lim lim.sinx xx xe e x xx xαβαβαβ→→--==-以(3) 12(1)]1lim2limnn nnn n→∞→∞++-+++-====3200(4) lim lim limlimlimtan sin tan1cos(5) lim limsinx a x a x axax ax xx x x xxx x+++++→→→→→→→-=-=-=--=⋅22001lim.22(6) limlimtan sin1tan1cos1lim lim.2(1cos)21cos2xxxx xx xx xx x x xx x x x→→→→→=⋅==--==⋅⋅=--221cot(cos1)cot cos100(7)lim(cos) =lim(1cos1)x xx xx xx x⋅⋅--→→+-因为222001cos112lim lim2tanx xxxx x→→--==-21cot2lim(cos).xxx e-→=所以22111()11221111(8) lim(1)lim(1)nn nn n nn nn nn n⋅⋅++→∞→∞++=++因为211lim()1nnn n→∞⋅+=211lim(1).nnen n→∞++=所以2222414(9)lim=lim111xxx xx xxx→∞→∞⎛⎫-⎪⎛⎫-⎪⎪⎪- ⎪⎝⎭-⎪⎝⎭2212222(1)(1)lim (1)lim (1) =lim =1111(1)(1)lim (1)lim (1) 1.(10)lim [ln ln(2)]lim ln()21 lim ln 2(1)x x x xx x x x x x xx x n n n n nx x x x x x x xe e e en n n n n n →∞→∞→∞→∞→∞--→∞→∞→∞-+-+-+-+⋅==⋅-+=+==+22lim ln(1)ln 2.n n e n →∞-+=-=-2. 1. 设 10sin , 02() , , lim ()(1), 0x x x x x f x a f x ax x →⎧<⎪⎪=⎨⎪+>⎪⎩试求使得存在.解00sin 1lim ()lim 22x x x f x x --→→==因为 10000 lim ()lim (1) lim ()lim ()1,ln 2.2a x x x x x a f x ax e f x f x e a +-+-→→→→=+====-则所以 即 3. 2. 作出函数()lim 1txtx t x e f x e →+∞+=+的图形,并指出间断点.解 由已知可得1, 0()lim , 01tx tx t x x e f x x x e →∞≥⎧+==⎨<+⎩ 则函数图形见图2-3.00 lim ()0lim ()1x x f x f x -+→→=≠=因为 0().x f x =所以是的跳跃间断点5. 求函数tan 32(3)x y x x =-的可去间断点. 图2-3 解 因为tan 32(3)x y x x =-在x = 0,x = 3处无意义,所以x = 0,x = 3都是函数f (x )的间断点.但00tan 331lim lim 2(3)2(3)2x x x x x x x x →→==--- 故 x = 0是f (x )的可去间断点.而 3tan 3lim 2(3)x x x x →=∞- 故 x = 3是f (x )的无穷间断点.6.设f (x )在点 x = x 0 处连续且 f (x 0)> 0, 试证在x 0 的某个邻域内有f (x )> 0.证 由已知f (x )在点 x = x 0 处连续,则00lim ()()x x f x f x →=.取00()0,0,02f x x x εδδ=>∃><-<使得时,恒有00()(),()()f x f x f x f x εεε-<→-<-< 故 0000()()()()()022f x f x f x f x f x ε>-=-=>. 7. 设本金为p 元,年利率为r, 若一年分为n 期, 存期为t 年, 则本金与利息之和是多少 ? 现某人将本金p = 1000元存入果银行, 规定年利率为 r = 0.06, t = 2, 请按季度、月、日以及连续复利计算本利和,并作出你的评价.解 依题意,第一期到期后的利息为本金×利率=r p n ⨯ 第一期到期的本利和是本金+利息=(1)r r p p p n n +⨯=+若按总利计算,第二期到期的本利和为 2(1)(1)(1)r r r r p p p n n n n+++⨯=+第n 期到期后的本利和为 (1)n r p n +存期若为t 年(事实上有t n 期),到期后的本利和为 (1)tnr p n + (*)由题设p = 1000 ,r = 0.06, t = 2,(1) (1) 一年分为四季,取n = 4带入得(*)式,得2480.061000(1)1000 1.0151126.494⨯⨯+=⨯≈(2) (2) 一年分为12个月,取n =12带入得(*)式,得 212240.061000(1)1000 1.0051127.1612⨯⨯+=⨯≈(3) (3) 一年分为365天,取n = 365带入得(*)式,得 23657300.061000(1)1000 1.0001643841127.49365⨯⨯+=⨯≈(4) 连续取息就是在(*)式中令n →+∞,得 20.120.060.120.060.06lim 1000(1)1000lim [(1)] 10001127.50nn n n n ne ⨯→+∞→+∞⨯+=⨯+=⨯≈ 结论是:用复利计算时,按季、月、日以及连续复利计算所得结果相差不大.8.证明方程sin x a x b =+(其中0,0a b >>)至少有一个正根,并且它不超过a b +. 证 设()sin F x x a x b =--,显然F (x )在[0,a b +]上连续,(0)0(0)()sin()[1sin()]0F b b F a b a b a a b b a a b =-<>+=+-+-=-+≥又则若()F a b +=0,则a b +为方程F (x )= 0的正根;若()F a b +>0,则由零值定理,至少有一点(0,)a b ξ∈+使得F (x )= 0,即sin a b ξξ=+.。

数列极限的例题和习题

数列极限的例题和习题


135 lim n
(2n 1) 1.
n 2 4 6 (2n)
2.证明:

lim
n
k n k 1
k 3n2 k

1 6

k n
⑶ lim
1
1;
n k 1 k nk 1
k n
⑵ lim
由于正数
可以任意地小,故有 lim n
zn a
1,即 lim n n
x1x2
xn

a

lim
n
xn
【应用】作为上述结论的应用,若 xn 0 (n 1, 2,
) 且有极限 lim xn1 ,则也有极限 n xn
lim n xn 且
n
这是因为
lim
n
n
xn
lim xn1 n xn
什么结论?


lim
n
xn
c ,则必有 lim n
xn

c
吗?反之如何?
答案:⑴没有;⑵不一定,例如正数数列 1 n
的极限是 0
;⑶
lim
n
xn

lim
n
yn ;⑷有界数列
不一定有极限,例如 xn (1)n 就没有极限;无界数列一定没有极限,因为有极限的数列是有界
数列;⑸不一定,例如 xn (1)n , yn (1)n1 ,则 (xn yn ) 与 xn yn 都有极限;⑹一定没有
种证明方法为“构造性证明”.
例 4 海因定理(函数极限与数列极限的关系)
(1)有极限 lim xa
f ( x)

A 的充分必要条件是:对于以 a

高等数学第一章函数极限练习题

高等数学第一章函数极限练习题
(1 x ) 1 lim x 0 x
- 17 -
习题课(一)
例7
第 一 章 函 数 极 限 连 续

x2 1 ax b] 0. 求常数 a, b, 使得 lim[ x x 1 x2 1 0 lim[ ax b] x x 1 (1 a ) x 2 (b a ) x 1 b lim x x 1 1 a 0, a b 0
第 一 章 函 数 极 限 连 续
x
3 2 1 ) e 3 原式 lim [(1 x 1 x x 1 lim [sin x 1 sin x 1]
x 1 3 x 3 ) ] (
sin x 1 sin x 1 x 1 x 1 x 1 x 1 2 cos sin 2 2 x 1 x 1 | cos | 1 2 1 x 1 x 1 lim sin 0 lim sin x x x 1 x 1 2 所以 原式 0
f A f f f
-6-
2
函数的趋向过程
习题课(一)
定义的四个主要部分
(1) 对任意给定的 , (2) 总存在 ,
第 一 章 函 数 极 限 连 续
(3) 使当 时,
(4) 恒有不等式 成立,
(1),(4)用来刻划函数的趋向过程 (2),(3)用来刻划自变量的趋向过程 (3)起着控制(4)的作用 例5 叙述下列极限的定义 (1) lim xn
1 lim f ( x ) x 0 2
- 20 -
(3)
设 f ( x)
x 1
x 1 e x
习题课(一)
, 考察 lim f ( x ), lim f ( x )

数列和函数极限部分习题课

数列和函数极限部分习题课
n→ ∞ n→ ∞ n→ ∞
例: lim (
n→ ∞
12 + 2 1 n +n
2
+L+ ≤ 1
1 n2 + n ≤ 1
) 1 n2 +1 ≤
注意到对任意的 k ,
n +k
2
,因此
n n +n
2

1 n +1
2
+
1 n +2
2
+L+
n n +1
2
n +n
2
而 lim
n→ ∞
n n2 +1
1
(5)使用两个基本极限 lim
例: lim
x→0
sin 2 x 2 sin x cos x sin x = lim = 2 lim lim cos x = 2 ⋅1⋅1 = 2 x → 0 x → 0 x x x x→0
也可以这样做:
sin 2 x sin 2 x sin u = 2 lim = 2 lim = 2 ⋅1 = 2(其中令u = 2 x) x→0 x→ 0 u →0 x 2x u arctan x 例: lim ,令 u = arctan x ,即 x = tan u , x → 0 变为 u → 0 。 x→0 x arctan x u u lim = lim = lim cos u = 1 。 x→0 u → 0 tan u u → 0 sin u x lim
(3)分子有理化和分母有理化
例:
lim 3
x→1
x −1 ( x − 1)( x + 1)(3 x 2 + 3 x + 1) ( x − 1)(3 x 2 + 3 x + 1) = lim = lim x − 1 x→1 (3 x − 1)(3 x 2 + 3 x + 1)( x + 1) x→1 ( x − 1)( x + 1)

高数练习题 第一章 函数与极限

高数练习题 第一章 函数与极限

‰高等数学(Ⅰ)练习 第一章 函数、极限与连续________系_______专业 班级 姓名______ ____学号_______习题一 函数一.选择题 1.函数216ln 1x xx y -+-=的定义域为 [ D ] (A )(0,1) (B )(0,1)⋃(1,4) (C )(0,4) (D )4,1()1,0(⋃] 2.3arcsin 2lgxx x y +-=的定义域为 [ C ] (A ))2,3(]3,(-⋃-∞ (B )(0,3) (C )]3,2()0,3[⋃- (D )),3(+∞- 3.函数)1ln(2++=x x y 是 [ A ](A )奇函数 (B )非奇非偶函数 (C )偶函数 (D )既是奇函数又是偶函数 4.下列函数中为偶函数且在)0,(-∞上是减函数的是 [ D ](A )222-+=x x y (B ))1(2x y -= (C )||)21(x y = (D ).||log 2x y =二.填空题1. 已知),569(log )3(22+-=x x x f 则=)1(f 22. 已知,1)1(2++=+x x x f 则=)(x f3. 已知xx f 1)(=,x x g -=1)(, 则()=][x g f4. 求函数)2lg(1-+=x y 的反函数5. 下列函数可以看成由哪些基本初等函数复合而成 (1) x y ln tan 2=:(2) 32arcsin lg x y =:__________ _____________________三.计算题1.设)(x f 的定义域为]1,0[, 求)(sin ),(2x f x f 的定义域21x x -+1102()x y x R -=+∈11x -2,tan ,ln ,y u u v v w w ====23,lg ,arcsin ,y v v w w t t x =====2()[11](sin )[2,2]()f x f x k k k Z πππ-+∈的定义域为,的定义域为2.设⎪⎩⎪⎨⎧<<-≤-=2||111||1)(2x x x x x ϕ , 求)23(),21(),1(ϕϕϕ-, 并作出函数)(x y ϕ=的图形.4.已知水渠的横断面为等腰梯形,斜角40=ϕ(图1-22)。

极限练习题及答案

极限练习题及答案

极限练习题及答案一. 选择题1.设F是连续函数f的一个原函数,”M?N”表示“M 的充分必要条件是N”,则必有.F是偶函数?f)是奇函数.F是奇函数?f是偶函数. F是周期函数?f是周期函数. F是单调函数?f是单调函数.设函数f?1x,则ex?1?1x?0,x x?0,x?1都是f?1都是f的第一类间断点. 的第二类间断点x?0是f的第一类间断点,x?1是f的第二类间断点. x?0是f的第二类间断点,x3.设f?x??x?1x?1是f的第一类间断点.1,则f[,x?0、,1f]?1A) 1?xB) 1?x4.下列各式正确的是 C)XD) x1+ )?exx11lim??elimC) D)?exxA) limx?0?1x?1B)limx?01x?x?xx??x??5.已知lim?9,则a?。

A.1;B.?;C.ln3;D.2ln3。

.极限:lim x??2A.1;B.?;C.e7.极限:lim; D.e。

2x??x3?2= x3A.1;B.?;C.0;D.2.8.极限:limx?0x?1?1x=A.0;B.?;C 1; D.2.29. 极限:lim=x???A.0;B.?;C.2;D. 1.2sinx10.极限: limtanx?=x?0sin2xA.0;B.?;C.二. 填空题 11.极限limxsinx??116; D.16.2xx?12= ; 12. limarctanx= ;x?0x13. 若y?f在点x0连续,则lim[f?f]= ; x?x?14. limsin5xxx?0?;15. limn?;16. 若函数y?x?1x?3x?222,则它的间断点是17. 绝对值函数?x,x?0;?f?x??0,x?0;??x,x?0.?其定义域是,值域是。

?1,x?0;?18.符号函数 f?sgnx??0,x?0;其定义域是,值域是三个点的集合。

??1,x?0.?19无穷小量是。

20. 函数y?f在点x0连续,要求函数y?f满足的三个条件是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

lim
x→1
x2−1 2x2−x−1

(3)
lim
x→0
(x−1)3+(1−3x) x2+2x3

(4)
lim
x→1
x2√−√x x

6

(5) lim
x→3
1+x−2 x−3

(6)
lim
x→3
x2−5x+6 x2−8x+15

(7)
lim
x→1
xn−1 xm−1
(n,
m为正整数);

(8) lim
(3) lim
n→∞
1
+
1 2n
n;
(4) lim
n→∞
1
+
1 n2
n.
§3 函数的极限
1.用极限定义证明下列极限:
(1)
lim
x→−1
x−3 x2−9
=
1 2

(2)
lim
x→3
x−3 x2−9
=
1 6

(3)
lim
x→1
√xx−−11
=
2;
(4)
lim
x→1
(x−2)(x−1) x−3
=
0;
√ (5) lim x2 + 5 = 3;
(5)
lim
x→∞
x2+3x x2

(6)
lim
x→+∞
x sin x x2−4

(7)
lim
x→−∞
x−cos x
x;
(8) lim
x→+∞
x+√x+√x
x+1
.
7.用变量替换求下列极限:
(1)
lim
x→0+
x[
1 x
];
(2) lim xa ln x(a > 0);
x→0+
(3)
lim
x→+∞
ln x xa
x→+∞
(17) lim
x→∞
1

2 x
−x;
(18)
lim
(1
+
nx)
1 x
(n为整数);
x→0
(19) lim (1 + tan x)cot x;
x→0
(20)
lim (
x→0
1+x 1−x
)
1 x

(21)
lim (
x→+∞
3x+2 3x−1
)2x−1;
(22) lim (sin x)tan x;
n→∞
an+k
=
a;
(2)
若 lim
n→∞
an
=
a,则 lim
n→∞
|an|
=
|a|.反之是否成立?
(3)
若 lim
n→∞
an
=
a,且a
>
b
,则存在N ,当n
>
N 时,有an
>
b;
(4)
若 lim
n→∞
an
=
a,且an
>
0,则 lim
n→∞
√an
=
√a.
4.极限的定义改成下面形式是否可以?(其中“∃”是逻辑符号,表 示“存在”.)
lim
n→∞
n
an1 + an2 + · · · + anm
=
max(a1, a2, · · ·
, am).
12.设 lim
n→∞
an
=
a,证明:
(1)
lim
n→∞
[nan] n
=
a;
(2)
若a
>
0,
an
>
0,则 lim
n→∞
√n an
=
1.
13.利用单调有界原理,证明 lim
n→∞
xn存在,并求出它:
(1)
x1
=
√ 2,
x2
=
√2xn−1,
n
=
2,
3,
·
·
·

(2) x1 = √c > 0, xn = √c + xn−1, n = 2, 3, · · · ;
(3)
xn
=
cn n!
(c
>
0);
(4)
x0
=
1,
xn
=
1
+
, xn−1
1+xn−1
n
=
1,
2, ·
·
·
.
14.若x1 = a > 0, y1 = b > 0(a < b),
+
···
+
1 (2n)2
);
(3)
lim (
n→∞
√1 n2+1
+
√1 n2+2
+
·
··
+
√1 n2+n
);
(4)
lim (
n→∞
1 2
+
3 22
+
···
+
2n−1 2n
);
(5)
lim (1 −
n→∞
√n12 ) cos n;
(6) lim
n→∞
1

1 n

(7)
lim
√√√ ( 2 4 2 8 2···
2
(3)
lim
n→∞
1+
1 2
+···+
1 2n
1+
1 4
+···+
1 4n

√√

(4) lim ( n 1 + n 2 + · · · + n 10).
n→∞
8.求下列极限:
(1)
lim (
n→∞
1 1·2
+
1 2·3
+
···
+
1 n(n+1)
);
(2)
lim (
n→∞
1 n2
+
1 (n+1)2
x→
π 2
9
(23) lim
x→∞
x2−1 x2−1
x2

(24) lim
x→+∞
n+x n−1
n.
11.证明 lim
x→0
cos
1 x
不存在.
12.证明 lim D(x) 不存在,其中
x→x0
1, x有理数, D(x) = 0, x无理数.
13.求极限
lim
n→+∞
cos
x 2
cos
x 4
第三章 极限与函数的连续性
§1 极限问题的提出
§2 数列的极限
1. 用定义证明下列数列的极限为零:
(1)
lim
n→∞
n+1 n2+1

(2)
lim
n→∞
sin n
n

(3)
lim
n→∞
π n

(4)
lim
n→∞
n+(−1)n n2−1

(5)
lim
√ (n
+
1

√n);
n→∞
(6)
lim
n→∞
10n n!
在xn

X, n
=
1, 2, · · ·
,使 lim |f (x)| =
n→∞
+∞.
10.利用重要极限求极限:
(1)
lim
x→0
sin 2x x

(2)
lim
x→0
sin (sin
x2 x)2

(3)
lim
x→0
tan 3x sin 5x

8
(4)
lim
x→0
2
sin
x−sin x3
2x

(5)
lim
n→∞
9. 证 明 : 若{an},{bn}中 一 个 是 收 敛 数 列 , 另 一 个 是 发 散 数 列 ,
则{an ± bn}是发散数列;又问{anbn}和
an bn
(bn = 0)是否也是发散数列?
为什么?
10.设xn = (−1)n,证明{xn}发散.
3
11.若a1, a2, · · · , am为m个正数,证明:
x→a
x→a
x→a
15.若 lim f (x) = A, lim g(x) = B,证明: lim [f (x)g(x)] = AB.
x→+∞
x→+∞
x→+∞
16.证明 lim f (x)
x→+∞
=
A的 充 要 条 件 是 : 对 任 何 数 列xn

+∞(n

∞),有
f (xn) → A(n → ∞).
x→0
cos
5x−cos x2
3x

(6)
lim
x→0
tan
x−sin x3
相关文档
最新文档