三角形与四边形类比探究题(中考收集)

合集下载

四边形之类比探究(中点)(人教版)(含答案)

四边形之类比探究(中点)(人教版)(含答案)

四边形之类比探究(中点)(人教版)一、单选题(共6道,每道16分)1.如图1,在等腰直角三角形ABC和等腰直角三角形CDE中,,点C,B,D在同一直线上,M是AE的中点,易证MD⊥MB,MD=MB.(1)如图2,将图1中的△CDE绕点C顺时针旋转45°,使△CDE的斜边CE恰好与△ABC 的边BC垂直,题干中的其他条件不变,若要证明MD⊥MB,MD=MB,需要证明两次三角形全等,则判定第二次三角形全等使用的条件是( )A.SASB.AASC.ASAD.HL答案:A解题思路:1.解题要点①首先需要弄明白图1中的结论是如何证明的.M是AE的中点,AB∥DE,有“平行+中点”的结构,所以延长BM,交DE于点N,可以得到△ABM≌△ENM,进而得到BM=MN,AB=BC=EN,∴DN=DB,∴△DBN是等腰直角三角形,∴MD⊥MB,MD=MB.②图2中,M是AE的中点,AB∥CE,补全“平行+中点”的结构,照搬图1中的证明思路.延长BM,交CE于点N,连接BD,DN,能够得到△ABM≌△ENM,BM=MN,要证明△DBN是等腰直角三角形,需要证明△BCD≌△NED,利用SAS可以证明.③图1和图2中没有发生变化的是“两个三角形是等腰直角三角形,M是AE的中点”.④整个证明的路线图是:构造“平行+中点”的辅助线;△ABM≌△ENM;△BCD≌△NED;△DBN是等腰直角三角形,证明结论成立.2.解题过程如图,延长BM,交CE于点N,连接BD,DN.∵BC⊥CE,AB⊥BC,∴AB∥CE.∵AM=EM,∠AMB=∠EMN,∴△ABM≌△ENM,∴BM=MN,BC=AB=EN.∵∠BCD=∠NED=45°,CD=ED,∴△BCD≌△NED(SAS),∴∠BDC=∠NDE,BD=ND.∵∠NDE+∠CDN=90°,∴∠BDC+∠CDN=90°,即∠BDN=90°,∴△DBN是等腰直角三角形.∵BM=MN,∴MD⊥MB,MD=MB.试题难度:三颗星知识点:类比探究之“平行+中点”结构2.(上接第1题)(2)将图2中的△ABC绕点C逆时针旋转大于0°且小于45°的角,如图3,原问题中的其他条件不变,则要证明MD⊥MB,MD=MB,在走通思路之前,需要添加的辅助线是( )A.延长BM,交CE于点N,连接BD,DNB.过点E作EN∥AB,交BM的延长线于点N,连接BD,DNC.延长BM,DE交于点N,连接BDD.连接BD答案:B解题思路:题目当中两个等腰直角三角形没有变化,M是AE的中点也没有发生变化,所以可以照搬(1)中的证明思路.构造“平行+中点”的辅助线;△ABM≌△ENM;△BCD≌△NED;△DBN是等腰直角三角形,证明结论成立.辅助线用来构造“平行+中点”,所以需要过点E作AB的平行线,交BM的延长线于点N,连接BD,DN.此时得到△ABM≌△ENM,接下来需要证明△BCD≌△NED,也就需要证明∠BCD=∠NED.试题难度:三颗星知识点:类比探究之“平行+中点”结构3.(上接第1,2题)(3)在(2)中,作完辅助线之后,要证明结论,需要证明两次三角形全等,在第二次全等证明时需要证明∠BCD=∠NED,下列辅助线作法或证明方式不能够证明这两个角相等的是( )A.B.C.D.答案:C解题思路:承接上一题辅助线,对各选项进行研究,发现只有C选项不能证明∠BCD=∠NED.证明完∠BCD=∠NED,可以得到△BCD≌△NED,则DB=DN,∠BDN=90°,即△DBN是等腰直角三角形,结合证明△ABM≌△ENM得到的BM=MN,能够证明MD⊥MB,MD=MB,结论成立.试题难度:三颗星知识点:类比探究之“平行+中点”结构4.(1)如图1,在正方形ABCD的边AB上任取一点E,过点E作EF⊥AB,交BD于点F,取DF的中点G,连接EG,CG.为了研究线段EG和CG之间的数量和位置关系,可通过作辅助线:延长EG,交AD的延长线于点H,连接EC,HC,来进行分析.则得到的结论是( )A.EG=CG且EG⊥CGB.EG=CG但EG与CG不垂直C.EG⊥CG但EG≠CGD.答案:A解题思路:1.解题要点利用题干中给出的辅助线信息继续研究,寻找进一步的结论来说明EG和CG之间的关系.由“平行+中点”可以得到DH=EF=BE,则△CBE≌△CDH(SAS),进而得到△ECH是等腰直角三角形,所以EG=CG且EG⊥CG.2.解题过程如图,延长EG,交AD的延长线于点H,连接EC,HC.由题意得,EF∥AD,△BEF是等腰直角三角形.∵G是DF的中点,∴FG=DG.∵DH∥EF,∴∠DHG=∠FEG,∠EFG=∠HDG,∴△EFG≌△HDG,∴DH=EF=BE,EG=HG.∵BC=DC,∠EBC=∠HDC=90°,∴△CBE≌△CDH,∴EC=HC,∠BCE=∠DCH,∴∠ECH=∠ECD+∠DCH=∠ECD+∠BCE=90°,∴△ECH是等腰直角三角形.∵EG=HG,∴EG=CG且EG⊥CG.试题难度:三颗星知识点:类比探究之“平行+中点”结构5.(上接第4题)(2)在图1的基础上,将△BEF绕点B逆时针旋转90°,其他条件不变,如图2,为了证明EG和CG之间的数量和位置关系仍成立,类比(1)中的辅助线和证明思路,需要作出的辅助线是( )A.延长EG,交AD于点H,连接HCB.延长BG,交AD于点H,连接HCC.延长EG,交CD的延长线于点HD.延长EF,交DA的延长线于点H,连接HC答案:C解题思路:1.解题要点①要类比(1)中的辅助线和证明思路,需要明白(1)中的辅助线和思路带给我们什么.首先能够得到全等,利用的是“平行+中点”,也即是“EF∥CD,FG=DG”.那么此题中也应该利用“平行+中点”,所以需要延长EG,交CD的延长线于点H.其次是△CBE≌△CDH,进而得到△ECH是等腰直角三角形.而在此题中△CBE和△CDH是不存在的,但是可以直接利用EC=HC判断△ECH是等腰直角三角形.②比较两问的特点,都是观察到G是DF的中点,从“平行+中点”入手判断结论.证明框架是:辅助线(平行+中点);△CBE≌△CDH(EC=HC,∠ECH=90°);△ECH是等腰直角三角形.2.解题过程完整地证明结论的过程如下:如图,延长EG,交CD的延长线于点H.由题意得,EF∥CD,FG=DG,∴∠H=∠GEF,∠EFG=∠HDG,∴△EFG≌△HDG,∴HD=EF=BE,EG=HG.∵CB=CD,∴EC=HC,∴△ECH是等腰直角三角形.∵EG=HG,∴EG=CG且EG⊥CG.试题难度:三颗星知识点:类比探究之“平行+中点”结构6.(上接第4,5题)(2)在图1的基础上,将△BEF绕点B逆时针旋转180°,其他条件不变,如图3,为了证明EG和CG之间的数量和位置关系仍成立,类比(1),(2)中的辅助线和证明思路,需要证明两个直角三角形全等,则判断这两个三角形全等时使用的条件是( )A.AASB.ASAC.HLD.SAS答案:D解题思路:1.解题要点照搬(1),(2)中的证明思路:辅助线(平行+中点);△CBE≌△CDH(EC=HC,∠ECH=90°);△ECH是等腰直角三角形.2.解题过程如图,延长EG,交AD于点H,连接EC,HC.由题意得,F,B,D三点共线,EF∥AD,∴∠DHG=∠FEG,∠F=∠HDG.∵FG=DG,∴△FEG≌△DHG,∴DH=EF=BE,EG=HG.∵BC=DC,∠HDC=∠EBC=90°,∴Rt△BEC≌Rt△DHC(SAS),∴EC=HC,∠ECB=∠HCD,∴∠ECH=∠ECB+∠BCH=∠HCD+∠BCH=90°,∴△ECH是等腰直角三角形.∵EG=HG,∴EG=CG且EG⊥CG,故证明过程中,判断两个直角三角形全等时使用的条件是SAS.试题难度:三颗星知识点:类比探究之“平行+中点”结构。

四边形之类比探究(一)(习题及答案)

四边形之类比探究(一)(习题及答案)

四边形之类比探究(一)(习题)例题示范例1:已知等腰三角形ABC 中,∠ACB =90°,点E 在AC 的延长线上,且∠DEC =45°,M ,N 分别是DE ,AE 的中点,连接MN ,交直线BE 于点F .当点D 在CB 的延长线上时,如图1所示,易证MF +FN =1BE .2(1)如图2,当点D 在CB 边上时,上述结论是否成立?若成立,请给出证明;若不成立,请写出你的猜想,并说明理由.(2)当点D 在BC 的延长线上时,如图3所示,请直接写出线段MF ,FN ,BE 之间的数量关系(不需要证明).1【思路分析】1.里面有多个中点,考虑中位线,先证明易证的思路.连接AD ,由中位线定理可知MN =1AD ,2由题意可证△ACD ≌△BCE ,得到AD =BE ,即MN =1BE ,2所以MF +FN =1BE .22.照搬易证的思路解决第一问.连接AD ,由中位线定理可知MN =1AD ,2由题意可证△ACD ≌△BCE ,得到AD =BE ,即MN =1BE ,2所以NF -MF =1BE .23.照搬易证的思路解决第二问.连接AD ,由中位线定理可知MN =1AD ,2由题意可证△ACD ≌△BCE ,得到AD =BE ,即MN =1BE ,2所以MF -NF =1BE .2【过程书写】证明:(1)不成立,理由如下:连接AD ,在△AED 中,M 是DE 的中点,N 是AE 的中点,∴MN 是中位线∴MN =1AD2在等腰三角形ABC 中,∠ACB =90°∴AC =CB ,∵∠ACB =90°,∠DEC =45°∴CD =CE∴△ACD ≌△BCE (SAS )∴AD =BE∴MN=1BE 2∴FN-MF=1BE 2(2)MF-FN=1BE 2巩固练习1.已知△ABC是等边三角形,D是直线BC上一动点(不与点B,C重合),以AD为边作菱形ADEF(A,D,E,F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在BC边上时,求证:①BD=CF;②AC=CD+CF.(2)如图2,当点D在BC的延长线上时,其他条件不变,结论AC=CD+CF是否仍成立?若成立,请证明;若不成立,请写出AC,CD,CF之间的数量关系,并说明理由.(3)如图3,当点D在CB的延长线上时,其他条件不变,探究AC,CD,CF之间的数量关系.图1图2图32.如图1,C是线段BG上一点,分别以BC,CG为边,向外作正方形BCDA和正方形CGEF,使点D落在线段CF上,M是AE的中点,连接DM,FM.(1)求证:DM=FM,DM⊥FM.(2)如图2,将正方形CGEF绕点C顺时针旋转45°,其他条件不变,探究线段DM,FM之间的关系,并加以证明.(3)如图3,将正方形CGEF绕点C旋转任意角度,其他条件不变,探究线段DM,FM之间的关系,并加以证明.图1图2图33.(1)如图1,△ABC和△BDE都是等腰直角三角形,AB⊥AC,BD⊥DE,点D在AB边上.取CE的中点F,连接AF,DF,猜想AF,DF之间的数量关系和位置关系,并加以证明.(2)将△BDE旋转至如图2所示的位置,使点E在AB的延长线上,点D在CB的延长线上,其他条件不变,判断(1)中AF,DF之间的数量关系和位置关系是否发生变化,并加以证明.图1图2【参考答案】巩固练习1.(1)证明略.提示:证明△ABD≌△ACF,得到BD=CF,进而得到AC=CD+CF.(2)AC=CF-CD,理由略.(3)AC=CD-CF.2.(1)证明略.提示:延长DM,交EF于点H.证明△ADM≌△EHM(ASA),得到AD=EH,DM=HM,进而得到△DFH是等腰直角三角形,所以DM=FM,DM⊥FM.(2)DM=FM,DM⊥FM,证明略.提示:延长DM,交CE于点H,连接DF,HF.证明△ADM≌△EHM(ASA),得到AD=EH,DM=HM,再证明△CDF≌△EHF(SAS),得到DF=HF,∠CFD=∠EFH,进而得到△DFH是等腰直角三角形,则可得证.(3)DM=FM,DM⊥FM,证明略.提示:过点E作EH∥AD,交DM的延长线于点H,连接DF,HF.3.(1)AF=DF,AF⊥DF,证明略.提示:延长DF,交AC于点H.证明△DEF≌△HCF,得到DE=HC,DF=HF,进而得到△ADH是等腰直角三角形,所以AF=DF,AF⊥DF.(2)(1)中AF,DF之间的数量关系和位置关系不发生变化,证明略.提示:过点C作CH∥DE,交DF的延长线于点H,连接AD,AH.。

中考数学专题《与三角形、四边形相关的压轴题》2022年中考数学真题分项汇编(全国通用)原卷

中考数学专题《与三角形、四边形相关的压轴题》2022年中考数学真题分项汇编(全国通用)原卷

专题21 与三角形、四边形相关的压轴题解答题1.(2022·黑龙江)如图,在平面直角坐标系中,平行四边形ABCD 的边AB 在x 轴上,顶点D 在y 轴的正7x 12 0的两个根OA OB半轴上,M 为BC 的中点,OA、OB 的长分别是一元二次方程x2,4tan DAB ,动点P 从点D 出发以每秒 1 个单位长度的速度沿折线DC CB 向点B 运动,到达B 点停3止.设运动时间为t 秒,△APC 的面积为S.(1)求点C 的坐标;(2)求S 关于t 的函数关系式,并写出自变量t 的取值范围;(3)在点P 的运动过程中,是否存在点P,使!CMP 是等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2.(2022·贵州黔东南)阅读材料:小明喜欢探究数学问题,一天杨老师给他这样一个几何问题:如图,V ABC 和V BDE 都是等边三角形,点A 在DE 上.求证:以AE 、AD 、AC 为边的三角形是钝角三角形.(1)【探究发现】小明通过探究发现:连接DC ,根据已知条件,可以证明DC AE ,ADC 120,从而得出V ADC 为钝角三角形,故以AE 、AD 、AC 为边的三角形是钝角三角形.请你根据小明的思路,写出完整的证明过程.(2)【拓展迁移】如图,四边形ABCD 和四边形BGFE 都是正方形,点A 在EG 上.①试猜想:以AE 、AG 、AC 为边的三角形的形状,并说明理由.2②若AE2AG 10 ,试求出正方形ABCD 的面积.3.(2022·海南)如图 1,矩形ABCD 中,AB 6, AD 8,点P 在边BC 上,且不与点B、C 重合,直线AP 与DC 的延长线交于点E.(1)当点P 是BC 的中点时,求证:△ABP≌△ECP ;V,点B落在矩形ABCD 的内部,延长PB交直线AD 于点F.(2)将△APB 沿直线AP 折叠得到APB①证明F A FP ,并求出在(1)条件下AF 的值;②连接B C ,求△PCB周长的最小值;③如图 2,BB 交AE 于点H,点G 是AE 的中点,当EAB 2AEB 时,请判断AB 与H G的数量关系,并说明理由.4.(2022·吉林)如图,在V ABC 中,ACB 90, A 30, AB 6cm .动点 P 从点 A 出发,以 2cm/ s 的速度沿边 AB 向终点 B 匀速运动.以 P A 为一边作A P Q 120 ,另一边 PQ 与折线 AC CB 相交于点 ,以Q PQ 为边作菱形 PQMN ,点 N 在线段 PB 上.设点 P 的运动时间为 x (s) ,菱形 PQMN 与V ABC 重叠部分图形y (cm ) .(1)当点Q 在边 AC 上时, PQ 的长为cm ;(用含 x 的代数式表示) 的面积为 2 (2)当点 M 落在边 BC 上时,求 的值;(3)求 关于 的函数解析式,并写出自变量 的取值范围.x y x x 5.(2022·黑龙江牡丹江)在菱形 ABCD 和正三角形 BGF 中,ABC 60 , P 是 DF 的中点,连接 PG 、 PC .(1)如图 1,当点G 在 BC 边上时,写出 PG 与 PC 的数量关系 .(不必证明)(2)如图 2,当点 F 在 AB 的延长线上时,线段 PC 、 PG 有怎样的数量关系,写出你的猜想,并给予证明;(3)如图 3,当点 F 在CB 的延长线上时,线段 PC 、 PG 又有怎样的数量关系,写出你的猜想(不必证 明).6.(2022·内蒙古呼和浩特)下面图片是八年级教科书中的一道题:如图,四边形ABCD 是正方形,点E 是边BC 的中点,AEF 90,且EF 交正方形外角的平分线CF 于点F .求证AE EF .(提示:取AB 的中点G ,连接EG .)(1)请你思考题中“提示”,这样添加辅助线的意图是得到条件:;(2)如图 1,若点E 是BC 边上任意一点(不与B 、C 重合),其他条件不变.求证:AE EF ;BE(3)在(2)的条件下,连接AC ,过点E 作EP AC,垂足为P .设kBC,当k 为何值时,四边形ECFP 是平行四边形,并给予证明.△△7.(2022·福建)已知ABC ≌DEC ,AB=AC,AB>BC.(1)如图 1,CB 平分∠ACD,求证:四边形ABDC 是菱形;(2)如图 2,将(1)中的△CDE 绕点C 逆时针旋转(旋转角小于∠BAC),BC,DE 的延长线相交于点F,用等式表示∠ACE 与∠EFC 之间的数量关系,并证明;(3)如图 3,将(1)中的△CDE 绕点C 顺时针旋转(旋转角小于∠ABC),若BAD BCD ,求∠ADB 的度数.8.(2022·湖南衡阳)如图,在菱形ABCD 中,AB 4 ,BAD 60,点P 从点A 出发,沿线段AD 以每秒 1PQ AB个单位长度的速度向终点D 运动,过点P 作于点,作Q PM AD交直线AB于点,交直线BCM于点F ,设V PQM 与菱形ABCD重叠部分图形的面积为S (平方单位),点P 运动时间为t (秒).(1)当点M 与点B 重合时,求t 的值;(2)当t 为何值时,APQ 与BMF 全等;(3)求S 与的函数关系式;V V t(4)以线段PQ为边,在PQ右侧作等边三角形PQE ,当 2 t 4时,求点E 运动路径的长.39.(2022·浙江金华)如图,在菱形ABCD 中,AB 10,sin B,点E 从点B 出发沿折线B C D 向终点D5运动.过点E 作点E 所在的边(BC 或CD )的垂线,交菱形其它的边于点F,在EF 的右侧作矩形EFGH .(1)如图 1,点G 在AC 上.求证:F A FG .(2)若EF FG ,当EF 过AC 中点时,求AG 的长.(3)已知FG 8 ,设点E 的运动路程为s.当s 满足什么条件时,以G,C,H 为顶点的三角形与BEF 相似V(包括全等)?10.(2022·四川南充)如图,在矩形 ABCD 中,点 O 是 AB 的中点,点 M 是射线 DC 上动点,点 P 在线段 AM1 上(不与点 A 重合),OP AB .(1)判断△ABP 的形状,并说明理由.(2)当点 M 为边 D C 中点时,连接CP CPQ 90 ,当 时, 28 Q AB 5, AD 4,DQ 在边 AD 上,并延长交 AD 于点 N .求证: PN AN .(3) 点 5 求 DM 的长.11.(2022·湖北武汉)已知CD 是V ABC 的角平分线,点 E ,F 分别在边 AC , BC 上,AD m , BD n , V ADE 与V BDF 的面积之和为 S .(1)填空:当ACB 90, DE AC , DF BC时, n n S _____________; S _____________;①如图 1,若 B 45 , m 5 2 ,则 _____________, ②如图 2,若 B 60 , m 4 3 ,则 _____________, (2)如图 3,当 ACB EDF 90 时,探究 S 与 m 、n 的数量关系,并说明理由: (3)如图 4,当 ACB 60 , EDF 120 n 4时,请直接写出 S 的大小., m 6 ,12.(2022·山东临沂)已知V ABC 是等边三角形,点B,D 关于直线AC 对称,连接AD,CD.(1)求证:四边形ABCD 是菱形;(2)在线段AC 上任取一点Р(端点除外),连接PD.将线段PD 绕点Р 逆DPQ 时针旋转,使点D 落在BA 延长线上的点Q 处.请探究:当点Р 在线段AC 上的位置发生变化时,的大小是否发生变化?说明理由.(3)在满足(2)的条件下,探究线段AQ 与CP 之间的数量关系,并加以证明.13.(2022·江西)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角PEF90 , FP 60的一个顶点放在正方形中心处,并绕点逆时针旋转,探究直角三角板O O PEF板与正方形ABCD 重叠部分的面积变化情况(已知正方形边长为 2).(1)操作发现:如图 1,若将三角板的顶点P 放在点O 处,在旋转过程中,当OF 与OB 重合时,重叠部分的面积为__________;当OF 与BC 垂直时,重叠部分的面积为__________;一般地,若正方形面积为S,在S 1S的关系为__________;旋转过程中,重叠部分的面积与(2)类比探究:若将三角板的顶点F 放在点O 处,在旋转过程中,OE,OP 分别与正方形的边相交于点M,N.①如图 2,当BM CN 时,试判断重叠部分V OMN的形状,并说明理由;②如图 3,当CM CN 时,求重叠部分四边形OMCN 的面积(结果保留根号);(3)拓展应用:若将任意一个锐角的顶点放在正方形中心O 处,该锐角记为GOH (设GOH ),将GOH绕点O 逆时针旋转,在旋转过程中,GOH ABCD 的边所围成的图形的面积为S2 ,的两边与正方形请直接写出S2 的最小值与最大值(分别用含的式子表示),6 2 6 2(参考数据:sin15,cos15, tan15 2 3 )4414.(2022·贵州贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.AD如图,在□ABCD 中,AN 为BC 边上的高,m ,点M 在AD 边上,且BA BM ,点E 是线段AM 上AN任意一点,连接BE ,将△ABE 沿BE 翻折得V FBE .AMAN (1)问题解决:如图①,当BAD 60,将△ABE 沿BE 翻折后,使点F 与点M 重合,则BE 翻折后,使EF ∥BM ,求ABE______;(2)问题探究:如图②,当BAD 45 ,将△ABE 沿的度数,并求出此m的最小值;(3)拓展延伸:当BAD 30,将△ABE 沿BE 翻折后,若EF AD ,且AE MD ,根据题时m意在备用图中画出图形,并求出的值.15.(2022·吉林长春)【探索发现】在一次折纸活动中,小亮同学选用了常见的A4 纸,如图①,矩形ABCD 为它的示意图.他查找了A4 纸的相关资料,根据资料显示得出图①中AD 2AB .他先将A4 纸沿过点A 的直线折叠,使点B 落在AD 上,点B 的对应点为点E,折痕为AF ;再沿过点F 的直线折叠,使点C 落在EF 上,点C 的对应点为点H,折痕为FG ;然后连结AG ,沿AG 所在的直线再次折叠,发现点D 与点F 重合,进而猜想△ADG≌△AFG .【问题解决】(1)小亮对上面△ADG≌△AFG 的猜想进行了证明,下面是部分证明过程:证明:四边形ABCD 是矩形,∴BAD B C D 90.12由折叠可知,BAF B AD 45 ,BF A EF A.∴EF A BFA 45 .∴AF 2AB AD .请你补全余下的证明过程.FG【结论应用】(2) DAG 的度数为________度,的值为_________;AF1(3)在图①的条件下,点P 在线段AF 上,且AP AB ,点Q 在线段AG 上,连结FQ 、PQ ,如图②,设2FQ PQAB =a ,则的最小值为_________.(用含a 的代数式表示)16.(2022·广东深圳)(1)【探究发现】如图①所示,在正方形ABCD 中,E 为AD 边上一点,将△AEB 沿BE 翻折到V BEF 处,延长EF 交CD 边于G 点.求证:△BFG≌△BCGAD 8, AB 6,(2)【类比迁移】如图②,在矩形ABCD 中,E 为AD 边上一点,且将△AEB 沿BE 翻折到V BEF 处,延长EF 交BC 边于点G, 延长BF 交CD 边于点H,且FH CH, 求AE 的长.(3)【拓展应用】如图③,在菱形ABCD 中,E为CD 边上的三等分点, D 60,将V ADE 沿AE 翻折得到BC 于点P, 求CP 的长.△AFE ,直线EF 交17.(2022·黑龙江)V ABC 和V ADE 都是等边三角形.(1)将V ADE 绕点A 旋转到图①的位置时,连接BD,CE 并延长相交于点P(点P 与点A 重合),有P A PB PC (或P A PC PB )成立;请证明.(2)将ADE 绕点A 旋转到图②的位置时,连接BD,CE 相交于点PV,连接 P A ,猜想线段 P A 、PB 、PC 之间有怎样的数量关系?并加以证明;(3)将V ADE 绕点 A 旋转到图③的 位置时,连接 BD ,CE 相交于点 P ,连接 P A ,猜想线段 P A 、PB 、PC 之间有怎样的数量关系?直接写出结 论,不需要证明.18.(2022·辽宁锦州)在V ABC 中, AC BC ,点 D 在线段 AB 上,连接CD 并延长至点 E ,使 DE CD ,过点 E 作 EF AB ,交直线 AB 于点 F .(1)如图 1,若 ACB 120 ,请用等式表示 AC 与 EF 的数量关系:____________.(2)如图 2.若ACB 90,完成以下问题:①当点 D ,点 F 位于点 A 的异侧时,请用等式表示 AC , AD ,DF 之间的数量关系,并说明理由; ②当点 D ,点 F 位于点 A 的同侧时,若 DF 1, AD 3,请直接写出 AC 的长. 19.(2022·广西)已知 MON ,点 A ,B 分别在射线OM ,ON 上运动, AB 6.(1)如图①,若 90,取 AB 中点 D ,点 A ,B 运动时,点 D 也随之运动,点 A ,B ,D 的对应点分别为 A , B , D OD ,OD OD 与OD 60,以 AB,连接 .判断 有什么数量关系 证明你的结论:(2)如图②,若 ? 45,当点 A ,B 运 为斜边在其右侧作等腰直角三角形 ABC ,求点 O 与点 C 的最大距离:(3)如图③,若 动到什么位置时,V AOB 的面积最大?请说明理由,并求出V AOB 面积的最大值.20.(2022·湖北十堰)【阅读材料】如图①,四边形ABCD 中,AB AD , B D180,点E ,F 分别在BC ,CD 上,若BAD 2EAF ,则EF BE DF .【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知CD CB 100m ,D 60ABC 120BCD 150M N DM 100m,,,道路AD ,AB 上分别有景点,,且,M A N的长少_________ BN 50 3 1 m,若在M,N M N之间修一条直路,则路线的长比路线m (结果取整数,参考数据: 3 1.7 ).21.(2022·陕西)问题提出(1)如图 1,AD 是等边V ABC 的中线,点P 在AD 的延长线上,且AP AC ,则APC的度数为__________.问题探究(2)如图 2,在V ABC 中,CA C B 6, C 120.过点 l BC ,分别交 AB 、BC 于点 O 、E ,求四边形OECA 的面积.A 作 ,且 AP BC,过点 P 作直线 AP ∥BC 问题解决(3)如图 3,现有一块V ABC 型板材,ACB 为钝角, BAC 45 .工人师傅想用这块板材裁出一个 BAP 15, AP AC △ABP 型部件,并要求 .工人师傅在这块板材上的作法如下: ①以点 C 为圆心,以CA 长为半径画弧,交 AB 于点 D ,连接CD ;②作CD 的垂直平分线 l ,与CD 于点 E ;③以点 A 为圆心,以 AC 长为半径画弧,交直线 l 于点 P ,连接 AP 、BP ,得△ABP . 请问,若按上述作法,裁得的△ABP 型部件是否符合要求?请证明你的结论.。

中考数学类比探究专项练习(二)(含答案)

中考数学类比探究专项练习(二)(含答案)

学生做题前请先回答以下问题问题1:想一想类比探究问题常见的不变结构有哪些,处理方式是什么?问题2:类比探究问题在处理时若常见的结构不能解决问题,需要分析不变特征,如何分析不变特征?中考数学类比探究专项练习(二)一、单选题(共4道,每道7分)1.已知四边形ABCD中,E,F分别是边AB,AD上的点,DE与CF相交于点G.(1)如图1,若四边形ABCD是矩形,且DE⊥CF,求证:;(2)如图2,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,成立?并证明你的结论;(3)如图3,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF,请直接写出的值.(2)中∠B与∠EGC应满足的关系是( )A.∠B=∠EGCB.∠B+∠EGC=90°C.∠B+∠EGC=120°D.∠B+∠EGC=180°答案:D解题思路:见第2题中解析试题难度:三颗星知识点:中考数学几何中的类比探究2.(上接第1题)(3)中的值为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:中考数学几何中的类比探究3.问题情境:张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC中,AB=AC,P为BC 边上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.小军的证明思路是:如图2,连接AP,由△ABP与△ACP的面积之和等于△ABC的面积可以证得:PD+PE=CF.小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.(1)变式探究:如图3,当点P在BC的延长线上时,其他条件不变,求证:PD-PE=CF;(2)结论运用:如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点处,点P为折痕EF上的任一点,过点P作PG⊥BE,PH⊥BC,垂足分别为G,H,若AD=8,CF=3,求PG+PH的值;(3)迁移拓展:图5是一个航模的截面示意图,已知在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D,C,且,.M,N分别为AE,BE的中点,连接DM,CN,求△DEM与△CEN的周长之和.(2)中PG+PH的值为( )A.3B.4C.5D.答案:B解题思路:见第4题中解析试题难度:三颗星知识点:翻折变换(折叠问题)4.(上接第3题)(3)中△DEM与△CEN的周长之和为( )A.6B.C. D.答案:B解题思路:试题难度:三颗星知识点:直角三角形斜边中线等于斜边的一半。

中招考试几何类比探究题集锦一参考答案

中招考试几何类比探究题集锦一参考答案

中招考试几何类比探究题集锦(附参考答案)参考答案与试题解析一.解答题(共11小题)1.在△ABC中,AB=AC,∠BAC=2∠DAE=2α.(1)如图1,若点D关于直线AE的对称点为F,求证:△ABD≌△ACF;(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;(3)如图3,若α=45°,点E在BC的延长线上,请直接写出DE2,BD2,CE2三者之间的等量关系.【解答】解:(1)∵点D关于直线AE的对称点为F,∴EF=DE,AF=AD,∠DAE=∠EAF=α∴∠CAE+∠CAF=α∵∠BAC=2∠DAE=2α.∴∠BAD+∠CAE=∠BAC﹣∠DAE=α,∴∠BAD=∠CAF,在△ABD和△ACF中,第1页(共33页)第2页(共33页)∴△ABD ≌△ACF (SAS ),(2)由(1)知,△ABD ≌△ACF (SAS ),∴CF=BD ,∠ACF=∠B ,∵AB=AC ,∠BAC=2α,α=45°,∴△ABC 是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB +∠ACF=45°+45°=90°,在Rt △CEF 中,由勾股定理得,EF 2=CF 2+CE 2,∴DE 2=BD 2+CE 2,(3)DE 2=BD 2+CE 2;理由:如图,∵∠BAC=2∠DAE=2α.∴∠DAE=α,∵点D 关于直线AE 的对称点为F ,∴EF=DE ,AF=AD ,∠DAE=∠EAF=α∴∠CAF=∠EAF +∠CAE=α+∠CAE∴∠BAD=∠BAC ﹣∠DAC=2α﹣∠DAC=2α﹣(∠DAE ﹣∠CAE )=2α﹣(α﹣∠CAE)=α+∠CAE∴∠BAD=∠CAF,在△ABD和△ACF中,∴△ABD≌△ACF(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=2α,α=45°,∴△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,∴DE2=BD2+CE2,2.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.猜测DE、BD、CE三条线段之间的数量关系(直接写出结果即可).(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问第(1)题中DE、BD、CE之间的关系是否仍然成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF 均为等第3页(共33页)边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断线段DF、EF的数量关系,并说明理由.【解答】解:(1)DE=BD+CE.理由如下:如图1,∵BD⊥l,CE⊥l,∴∠BDA=∠AEC=90°又∵∠BAC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ABD和△CAE中,,∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2)如图2,∵∠BDA=∠AEC=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,第4页(共33页)∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE;(3)DF=EF.理由如下:由(2)知,△ADB≌△CAE,BD=EA,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,第5页(共33页)∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.∴DF=EF.3.(1)问题发现如图1,△ABC和△ADE均为等边三角形,点D在边BC上,连接CE.请填空:①∠ACE的度数为60°;②线段AC、CD、CE之间的数量关系为AC=CD+CE.(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC 上,连接CE.请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.(3)解决问题如图3,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC与BD交于点E,请直接写出线段AC的长度.第6页(共33页)【解答】解:(1)①∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,故答案为:60°;②线段AC、CD、CE之间的数量关系为:AC=CD+CE;理由是:由①得:△BAD≌△CAE,∴BD=CE,∵AC=BC=BD+CD,∴AC=CD+CE;故答案为:AC=CD+CE;(2)∠ACE=45°,AC=CD+CE,理由是:如图2,∵△ABC和△ADE均为等腰直角三角形,且∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,第7页(共33页)∴△ABD≌△ACE,∴BD=CE,∠ACE=∠B=45°,∵BC=CD+BD,∴BC=CD+CE,∵在等腰直角三角形ABC中,BC=AC,∴AC=CD+CE;(3)如图3,过A作AC的垂线,交CB的延长线于点F,∵∠BAD=∠BCD=90°,AB=AD=2,CD=1,∴BD=2,BC=,∵∠BAD=∠BCD=90°,∴∠BAD+∠BCD=180°,∴A、B、C、D四点共圆,∴∠ADB=∠ACB=45°,∴△ACF是等腰直角三角形,由(2)得:AC=BC+CD,∴AC===.第8页(共33页)4.【探究发现】如图1,△ABC是等边三角形,∠AEF=60°,EF交等边三角形外角平分线CF所在的直线于点F,当点E是BC的中点时,有AE=EF成立;【数学思考】某数学兴趣小组在探究AE、EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E是直线BC上(B,C除外)任意一点时(其它条件不变),结论AE=EF仍然成立.假如你是该兴趣小组中的一员,请你从“点E是线段BC上的任意一点”;“点E是线段BC延长线上的任意一点”;“点E是线段BC反向延长线上的任意一点”三种情况中,任选一种情况,在备用图1中画出图形,并证明AE=EF.【拓展应用】当点E在线段BC的延长线上时,若CE=BC,在备用图2中画出图形,并运用上述结论求出S△ABC :S△AEF的值.【解答】证明:第一种情况:点E是线段BC上的任意一点,可作三种辅助线:方法一:如图1,在AB上截取AG,使AG=EC,连接EG,第9页(共33页)∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=60°.∵AG=EC,∴BG=BE,∴△BEG是等边三角形,∠BGE=60°,∴∠AGE=120°.∵FC是外角的平分线,∠ECF=120°=∠AGE.∵∠AEC是△ABE的外角,∴∠AEC=∠B+∠GAE=60°+∠GAE.∵∠AEC=∠AEF+∠FEC=60°+∠FEC,∴∠GAE=∠FEC.在△AGE和△ECF中,∴△AGE≌△ECF(ASA),∴AE=EF;方法二:在CA上截取CG=CE,连结GE,证明类似方法一;方法三:延长FC到G,使CG=CE,连结EG,易证△CEG是等边三角形,第10页(共33页)∴CE=EG,∠G=∠ACB=60°,∠CEG=∠AEF=60°,∴∠CEG+∠CEF=∠AEF+∠CEF,即∠GEF=∠AEC,∴△GEF≌△CEA,∴AE=EF.第二种情况:点E是线段BC延长线上的任意一点如图2,可作三种辅助线:①在CF上截取CG=CE,连接GE②延长AC到G,使CG=CE,连结EG;③或延长BA到G,使BG=BE,连结EG.第②种添加辅助线的方法证明如下:证明:延长AC到G,使CG=CE,连结EG,易证△CEG为等边三角形,∴∠G=∠ECF=60°,EG=CE,又∠AEG=∠CEG+∠AEC=60°+∠AEC,∠CEF=∠AEF+∠AEC=60°+∠AEC,第11页(共33页)∴∠AEG=∠CEF,∴△AEG≌△FEC,∴AE=EF.第三种情况:点E是线段BC反向延长线上的任意一点如图3,可作三种辅助线:①延长AB到G,使BG=BE,连结EG;②延长CF到G,使CG=CE,连结EG;③在CE上截取CG=CF,连结GF现就第①种添加辅助线的方法证明如下:证明:延长AB到G,使BG=BE,连结EG,易证△BEG为等边三角形,∴∠G=∠ECF=60°,第12页(共33页)∵∠AEB+∠BAE=∠ABC=60°,∠AEB+∠CEF=∠AEF=60°,∴∠BAE=∠CEF,∵AB=BC,BG=BE,∴AB+BG=BC+BE,即AG=CE,∴△AEG≌△EFC,∴AE=EF.拓展应用:如图4:作CH⊥AE于H点,∴∠AHC=90°.由数学思考得AE=EF,又∵∠AEF=60°,∴△AEF是等边三角形,∴△ABC∽△AEF.第13页(共33页)∵CE=BC=AC,△ABC是等边三角形,∴∠CAH=30°,AH=EH.∴CH=AC,AH=AC,AE=AC,∴.∴==.5.问题情境:在Rt△ABC中,AB=BC,∠B=90°,将一块等腰直角三角板的直角顶点O放在斜边AC上,将三角板绕点O旋转.(1)操作发现:当点O为AC中点时:①如图1,三角板的两直角边分别交AB,BC于E、F两点,连接EF,猜想线段AE、CF与EF之间存在的等量关系:AE2+CF2=EF2(无需证明);②如图2,三角板的两直角边分别交AB,BC延长线于E、F两点,连接EF,判断①中的结论是否成立.若成立,请证明;若不成立,请说明理由;第14页(共33页)(2)类比延伸:当点O不是AC中点时,如图3,三角板的两直角边分别交AB,BC于E、F两点,若=,请直接写出=.【解答】解:(1)①猜想:AE2+CF2=EF2,连接OB,如图1,∵AB=BC,∠ABC=90°,O点为AC的中点,∴OB=AC=OC,∠BOC=90°,∠ABO=∠BCO=45°.∵∠EOF=90°,∴∠EOB+∠BOF=∠FOC+∠BOF.∴∠EOB=∠FOC,在△OEB和△OFC中,,∴△OEB≌△OFC(ASA).∴BE=CF,又∵BA=BC,∴AE=BF.在Rt△EBF中,∵∠EBF=90°,∴BF2+BE2=EF2,∴AE2+CF2=EF2;故答案为:AE2+CF2=EF2;第15页(共33页)②成立.证明:连结OB.如图2,∵AB=BC,∠ABC=90°,O点为AC的中点,∴OB=AC=OC,∠BOC=90°,∠ABO=∠BCO=45°.∵∠EOF=90°,∴∠EOB=∠FOC.在△OEB和△OFC中,,∴△OEB≌△OFC(ASA).∴BE=CF,又∵BA=BC,∴AE=BF.在Rt△EBF中,∵∠EBF=90°,∴BF2+BE2=EF2,∴AE2+CF2=EF2;(2)=,如图3,过点O作OM⊥AB于M,ON⊥BC于N.∵∠B=90°,第16页(共33页)∴∠MON=90°,∵∠EOF=90°,∴∠EOM=∠FON.∵∠EMO=∠FNO=90°,∴△OME∽△ONF,∴=,∵△AOM和△OCN为等腰直角三角形,∴△AOM∽△OCN,∴=,∵=,∴=,故答案为.第17页(共33页)第18页(共33页)6.阅读发现:(1)如图①,在Rt △ABC 和Rt △DBE 中,∠ABC=∠DBE=90°,AB=BC=3,BD=BE=1,连结CD ,AE .易证:△BCD ≌△BAE .(不需要证明) 提出问题:(2)在(1)的条件下,当BD ∥AE 时,延长CD 交AE 于点F ,如图②,求AF 的长.解决问题:(3)如图③,在Rt △ABC 和Rt △DBE 中,∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,连结CD ,AE .当∠BAE=45°时,点E 到AB 的距离EF 的长为2,求线段CD的长为 .【解答】(2)解:如图②中,AB与CF交于点O.由(1)可知:△BCD≌△BAE,∴∠OAF=∠OCB,CD=AE,∵∠AOF=∠COB,∴∠AFO=∠CBO=90°,∴CF⊥AE,∵BD∥AE,∴BD⊥CF,在RT△CDB中,∵∠CDB=90°,BC=3,BD=1,∴CD=AE==2,∵∠BDF=∠DFE=∠DBE=90°,∴四边形EFDB是矩形,∴EF=BD=1,∴AF=AE﹣EF=2﹣1.(3)解:在RT△ABC,RT△EBD中,∵∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,∴AB=BC,BE=BD,∴==,∵∠ABC=∠EBD=90°,∴∠ABE=∠DBC,∴△ABE∽△CBD,∴==,第19页(共33页)第20页(共33页)在RT △AEF 中,∵∠AFE=90°,∠EAF=45°,EF=2,∴AF=EF=2,AE=2,∴=,∴CD=.故答案为.7.如图1,两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,请猜想(1)中S1与S2的数量关系是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)拓展探究已知∠ABC=60°,BD平分∠ABC,BD=CD,BC=9,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请求相应的BF的长.【解答】解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,第21页(共33页)∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;故答案为:DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2=×2×2=2;故答案为:S1=S2;(2)如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,第22页(共33页)∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,第23页(共33页)∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×6÷cos30°=3÷=2,∴BF1=2,BF2=BF1+F1F2=2+2=4,故BF的长为2或4.8.问题解决:如图(1),将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D 重合),压平后得到折痕MN.当时,求的值.类比归纳:第24页(共33页)在图(1)中,若,则的值等于;若,则的值等于;若(n 为整数),则的值等于.(用含n的式子表示)联系拓广:如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D 重合),压平后得到折痕MN,设,则的值等于.(用含m,n的式子表示)【解答】解:(1)方法一:如图(1﹣1),连接BM,EM,BE.由题设,得四边形ABNM和四边形FENM关于直线MN对称.∴MN垂直平分BE,∴BM=EM,BN=EN.∵四边形ABCD是正方形,∴∠A=∠D=∠C=90°,设AB=BC=CD=DA=2.∵,∴CE=DE=1.第25页(共33页)设BN=x,则NE=x,NC=2﹣x.在Rt△CNE中,NE2=CN2+CE2.∴x2=(2﹣x)2+12,解得x=,即BN=.在Rt△ABM和在Rt△DEM中,AM2+AB2=BM2,DM2+DE2=EM2,∴AM2+AB2=DM2+DE2.设AM=y,则DM=2﹣y,∴y2+22=(2﹣y)2+12,解得y=,即AM=(6分)∴.方法二:同方法一,BN=.如图(1﹣2),过点N做NG∥CD,交AD于点G,连接BE.∵AD∥BC,∴四边形GDCN是平行四边形.∴NG=CD=BC.同理,四边形ABNG也是平行四边形.∴AG=BN=∵MN⊥BE,∴∠EBC+∠BNM=90度.∵NG⊥BC,∴∠MNG+∠BNM=90°,第26页(共33页)∴∠EBC=∠MNG.在△BCE与△NGM中,∴△BCE≌△NGM,EC=MG.∵AM=AG﹣MG,AM=﹣1=.∴.(2)如图1,当四边形ABCD为正方形时,连接BE,=,不妨令CD=CB=n,则CE=1,设BN=x,则EN=x,EN2=NC2+CE2,x2=(n﹣x)2+12,x=;作MH⊥BC于H,则MH=BC,又点B,E关于MN对称,则MN⊥BE,∠EBC+∠BNM=90°;而∠NMH+∠BNM=90°,故∠EBC=∠NMH,则△EBC≌△NMH,∴NH=EC=1,AM=BH=BN﹣NH=﹣1=则:==.故当=,则的值等于;若=,则的值等于;第27页(共33页)(3)若四边形ABCD为矩形,连接BE,=,不妨令CD=n,则CE=1;又==,则BC=mn,同样的方法可求得:BN=,BE⊥MN,易证得:△MHN∽△BCE.故=,=,HN=,故AM=BH=BN﹣HN=,故==.故答案为:;;;.第28页(共33页)第29页(共33页)9.阅读理解:如图1,在直角梯形ABCD 中,AB ∥CD ,∠B=90°,点P 在BC 边上,当∠APD=90°时,易证△ABP ∽△PCD ,从而得到BP•PC=AB•CD ,解答下列问题.(1)模型探究:如图2,在四边形ABCD 中,点P 在BC 边上,当∠B=∠C=∠APD 时,结论BP•PC=AB•CD 仍成立吗?试说明理由;(2)拓展应用:如图3,M 为AB 的中点,AE 与BD 交于点C ,∠DME=∠A=∠B=45°且DM 交AC 于F ,ME 交BC 于G .AB=,AF=3,求FG 的长.【解答】解:(1)∵∠APC=∠APD +∠CPD ,∠APC=∠BAP +∠B (三角形外角定理),∠B=∠APD (已知),∴∠BAP=∠CPD,又∵∠B=∠C,∴△ABP∽△PCD∴=,∴BP•PC=AB•CD;(2)∵∠AFM=∠DME+∠E(三角形外角定理),∠DME=∠A(已知),∴∠AFM=∠A+∠E(等量代换),又∠BMG=∠A+∠E(三角形外角定理),∴∠AFM=∠BMG.∵∠A=∠B,∴△AMF∽△BGM.当∠A=∠B=45°时,∠ACB=180°﹣∠A﹣∠B=90°,即AC⊥BC且AC=BC.∵M为AB的中点,∴AM=BM=,AC=BC=4.又∵△AMF∽△BGM,∴,∴BG===,又∵,CF=4﹣3=1,∴.第30页(共33页)10.基本模型如下图,点B、P、C在同一直线上,若∠B=∠1=∠C=90°,则△ABP∽△PCD成立,(1)模型拓展如图1,点B、P、C在同一直线上,若∠B=∠1=∠C,则△ABP∽△PCD成立吗?为什么?(2)模型应用①如图2,在等腰梯形ABCD中,AD∥BC,AD=1,AB=2,BC=4,在BC上截取BP=AD,作∠APQ=∠B,PQ交CD于点Q,求CQ的长;②如图3,正方形ABCD的边长为1,点P是线段BC上的动点,作∠APQ=90°,PQ交CD于Q,当P在何处时,线段CQ最长?最长是多少?【解答】解:(1)成立,∵∠A=180°﹣(∠B+∠APB),第31页(共33页)∠CPD=180°﹣(∠1+∠APB),∠B=∠1,∴∠A=∠CPD,∵∠B=∠C,∴△ABP∽△PCD;(2)①∵四边形ABCD是等腰梯形,∴∠B=∠C,∵∠B=∠APQ,∴∠B=∠APQ=∠C,由(1)知,△ABP∽△PCD,∴=,∴=,∴CQ=;②设BP=x,CQ=y.∵∠B=∠APQ=90°,∴△ABP∽△PCQ,∴=,即=,∴y=﹣x2+x=﹣(x﹣)2+,第32页(共33页)∴当x=时,y=,最大即当P是BC的中点时,CQ最长,最长为.第33页(共33页)。

中考复习之四边形之类比探究学案,附练习题含参考答案

中考复习之四边形之类比探究学案,附练习题含参考答案

中考复习之四边形之类比探究学案知识梳理:解决类比探究问题的一般方法:1. 若属于类比探究常见的结构类型,调用结构类比解决.类比探究结构举例:旋转结构、中点结构.2. 若不属于常见结构类型①根据题干条件,结合分支条件先解决第一问. ①类比解决下一问.如果不能,分析条件变化,寻找不变特征.结合所求目标,依据不变特征,大胆猜测、尝试、验证.例:已知等腰三角形ABC 中,①ACB =90°,点E 在AC 的延长线上,且①DEC =45°,M ,N 分别是DE ,AE 的中点,连接MN ,交直线BE 于点F .当点D 在CB 的延长线上时,如图1所示,易证.(1)如图2,当点D 在CB 边上时,上述结论是否成立?若成立,请给出证明;若不成立,请写出你的猜想,并说明理由.(2)当点D 在BC 的延长线上时,如图3所示,请直接写出线段MF ,FN ,BE 之间的数量关系(不需要证明).【思路分析】1. 里面有多个中点,考虑中位线,先证明易证的思路.连接AD ,由中位线定理可知,由题意可证①ACD ①①BCE ,得到AD =BE ,即,所以.2. 照搬易证的思路解决第一问.连接AD ,由中位线定理可知,由题意可证①ACD ①①BCE ,得到AD =BE ,即,所以.3. 照搬易证的思路解决第二问.连接AD ,由中位线定理可知,12MF FN BE +=图1AD BCNMEF 图2ADBCN M F图3ADBC NME F12MN AD =12MN BE =12MF FN BE +=12MN AD =12MN BE =12NF MF BE -=12MN AD=MN =ADM 是DE 的中点,N 是AE 的中点MF +FN =12BEMN=12AD=12BEAD=BE△ACD ≌△BCE (SAS )由题意可证①ACD ①①BCE ,得到AD =BE ,即, 所以. 【过程书写】 证明:(1)不成立,理由如下: 连接AD ,在①AED 中,M 是DE 的中点,N 是AE 的中点,①MN 是中位线① 在等腰三角形ABC 中,①ACB =90°①AC =CB ,①①ACB =90°,①DEC =45°①CD =CE ①①ACD ①①BCE (SAS ) ①AD =BE ①①(2) 练习题1. 已知,在①ABC 中,①BAC =90°,①ABC =45°,D 为直线BC 上一动点(不与点B ,C 重合),以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,求证:BC =CF +CD .(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请直接写出BC ,CD ,CF 三条线段之间的数量关系.(3)如图3,当点D 在线段BC 的反向延长线上时,且点A ,F 分别在直线BC 的两侧,其他条件不变.①请直接写出BC ,CD ,CF 三条线段之间的数量关系;①若正方形ADEF的边长为AE ,DF 相交于点O ,连接OC ,求OC 的长.12MN BE =12MF NF BE -=12MN AD =12MN BE =12FN MF BE -=12MF FN BE -=图3ABC DE FO 图2AB C D EF 图1FEBA图3ABC DE FO图2ABC DEF图1图3ABC DE FO图22. 如图1,在四边形ABCD 中,AB =CD ,E ,F 分别为BC ,AD 的中点,连接EF 并延长,与BA ,CD 的延长线分别交于点M ,N ,则①BME =①CNE . (1)如图2,在四边形ADBC 中,AB 与CD 相交于点O ,AB =CD ,E ,F 分别为BC ,AD 的中点,连接EF ,与CD ,AB 分别交于点M ,N ,判断OM ,ON 之间的数量关系,并证明你的结论.(2)如图3,在①ABC 中,AC AB ,点D 在AC 边上,且AB =CD .E ,F 分别为BC ,AD 的中点,连接EF 并延长,与BA 的延长线交于点G ,连接DG ,若①EFC =60°,判断①ADG 的形状,并证明你的结论.3. 已知,在正方形ABCD 中,△BEF 是以BF 为斜边的等腰直角三角形,取DF 的中点G ,连接EG ,CG .(1)如图1,若△BEF 的斜边BF 在BC 上,猜想EG ,CG 之间的数量关系和位置关系,并证明.(2)将图1中的△BEF 绕点B 顺时针旋转45°,如图2所示,则(1)中的结论是否仍成立?若成立,请给出证明;若不成立,请说明理由.(3)将图1中的△BEF 绕点B 顺时针旋转任意角度,如图3所示,则(1)中的结论是否仍成立?若成立,请给出证明;若不成立,请说明理由.G E FDCB A 图1图2图3E FNM OC BDAN M FE DCBAGEFD CB A图2图3EFNM OCBDAGE F DCBA图3GFE DCBA GFE DCBA GFE DCBA4. 在菱形ABCD 和正三角形BEF 中,①ABC =60°,P 是DF 的中点,连接PE ,PC .如图1,当点E在BC边上时,易证:PE (不必证明).(1)如图2,当点F 在AB 的延长线上时,线段PC ,PE 有怎样的数量关系?写出你的猜想,并给予证明;(2)如图3,当点F 在CB 的延长线上时,线段PC ,PE 又有怎样的数量关系?请写出你的猜想(不必证明).5. 如图1,点E 为正方形ABCD 边 CB 延长线上一点,在①BEF 中,①BEF =90°, EF =BE ,连接DF .取DF 的中点G ,连接CG ,EG ,易证CG =EG 且CG ①EG .(1)如图2,将①BEF 绕点B 顺时针旋转,使BE 落在AB 边上,此时点F 恰好落在BD 上,其他条件不变,则线段CG ,EG 有怎样的数量关系和位置关系?请写出你的猜想,并加以证明. (2)如图3,将①BEF 绕点B 逆时针旋转90°,其他条件不变.若AB =3,BE =1,请直接写出CG 的长.图1 图2 图3图3F EPDCB AA BCD PEF 图1FEPDCBA图2图3FE PDCBA ABCDPE F图2图3FEP DCBAGFEDC BAGFE DC B AGF EDCBA6. 已知①ABC 是等边三角形,D 是直线BC 上一动点(不与点B ,C 重合),以AD 为边作菱形ADEF(A ,D ,E ,F 按逆时针排列),使①DAF =60°,连接CF .(1)如图1,当点D 在BC 边上时,求证:①BD =CF ;①.(2)如图2,当点D 在BC 的延长线上时,其他条件不变,结论是否仍成立?若成立,请证明;若不成立,请写出AC ,CD ,CF 之间的数量关系,并说明理由.(3)如图3,当点D 在CB 的延长线上时,其他条件不变,探究AC ,CD ,CF 之间的数量关系.图1 图2 图37. 如图1,C 是线段BG 上一点,分别以BC ,CG 为边,向外作正方形BCDA 和正方形CGEF ,使点D 落在线段CF 上,M 是AE 的中点,连接DM ,FM .(1)求证:DM =FM ,DM ①FM .(2)如图2,将正方形CGEF 绕点C 顺时针旋转45°,其他条件不变,探究线段DM ,FM 之间的关系,并加以证明.(3)如图3,将正方形CGEF 绕点C 旋转任意角度,其他条件不变,探究线段DM ,FM 之间的关系,并加以证明.图1 图2 图38. (1)如图1,①ABC 和①BDE 都是等腰直角三角形,AB ①AC ,BD ①DE ,点D 在AB 边上.取AC CD CF =+AC CD CF =+FED CB AFEAFED CBAMFE GD CBA MFEG DC B A MFEGDCB ACE 的中点F ,连接AF ,DF ,猜想AF ,DF 之间的数量关系和位置关系,并加以证明.(2)将①BDE 旋转至如图2所示的位置,使点E 在AB 的延长线上,点D 在CB 的延长线上,其他条件不变,判断(1)中AF ,DF 之间的数量关系和位置关系是否发生变化,并加以证明.图1 图2【参考答案】1.提示:题目中有旋转结构,证明△ABD ≌△ACF (SAS ), 得到BD =CF ,进而得证. (2).(3)①;①. 2.(1)提示:取BD 的中点H ,连接EH ,FH .则FH ∥AB ,,EH ∥CD ,; 由得,进而可得.(2)△ADG 是含30°角的直角三角形,提示:连接BD ,取BD 的中点H ,连接EH ,FH . 3.(1),EG ①CG ,提示:直角三角形斜边中线等于斜边的一半. (2)(1)中的结论仍成立, 提示:延长EG ,交CD 于点H .证明△EFG ≌△HDG (ASA ),得到,; 再由直角三角形斜边中线等于斜边的一半即可得证. (3)(1)中的结论仍成立;提示:过点D 作DH ∥EF ,交EG 的延长线于点H ,连接CE ,CH . 4.(1),提示:延长EP ,交AD 于点G .证明△DGP ≌△F E P (ASA ),得到,DG =FE ; 证明△CGD ≌△C E B (SAS ),得到, 由三线合一得,PE ①PC ,进而可得.(2).5.(1)CG =EG 且CG ①EG ,FED CBAFEDCBABC CF CD =-BC CD CF =-2OC =OM ON =12FH AB =12EH CD =AB CD =EH FH =OM ON =EG CG =EF HD =EG HG=PE =PG PE =CE CG=PE=PE =(26.(1)提示:证明△ABD ≌△ACF ,得到BD =CF , 进而得到. (2), (3).7.(1)提示:延长DM ,交EF 于点H .证明△ADM ≌△EHM (ASA ),得到AD =EH ,DM =HM , 进而得到△DFH 是等腰直角三角形, 所以DM =FM ,DM ①FM . (2)DM =FM ,DM ①FM ,提示:延长DM ,交CE 于点H ,连接DF ,HF .证明△ADM ≌△EHM (ASA ),得到AD =EH ,DM =HM , 再证明△CDF ≌△EHF (SAS ), 得到DF =HF ,∠CFD =∠EFH ,进而得到△DFH 是等腰直角三角形,则可得证. (3)DM =FM ,DM ①FM提示:过点E 作EH ∥AD ,交DM 的延长线于点H ,连接DF ,HF . 8.(1)AF =DF ,AF ①DF 提示:延长DF ,交AC 于点H .证明△DEF ≌△HCF ,得到DE =HC ,DF =HF ,进而得到△ADH 是等腰直角三角形,所以AF =DF ,AF ①DF . (2)(1)中AF ,DF 之间的数量关系和位置关系不发生变化 提示:过点C 作CH ∥DE ,交DF 的延长线于点H , 连接AD ,AH .AC CD CF =+AC CF CD =-AC CD CF =-。

中考数学几何压轴题(有关三角形、四边形)的综合专题(含答案解析)

中考数学几何压轴题(有关三角形、四边形)的综合专题(含答案解析)

中考数学几何压轴题(有关三角形、四边形)的综合专题1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.7、(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于时,线段BC的长取得最大值,且最大值为(用含b,c的式子表示)(直接填空).模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.17、在△ABC中,∠BAC=60°,点D、E分别在边AC、AB上,AD=AE,连接CE、BD相交于点F,且∠BEC=∠ADF,连接AF.(1)如图1,连接ED,求证:∠ABD=∠CED;(2)如图2,求证:EF+FD=AF;(3)如图3,取BC的中点G,连接AG交BD于点H,若∠GAC=3∠ABD,BH=7,求△ABH的面积.18、点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠F AE=∠F AD,FE=FD.(1)如图1,若∠AEF=∠ADF,求证:AE=AD;(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.中考数学几何压轴题(有关三角形、四边形)的综合专题参考答案1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,∴∠WNG=∠BND,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.4、如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.5、如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.7、如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为a+b(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.(1)解:∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a+b,(2)①证明:如图2中,∵△ACD与△BCE是等边三角形,∴CD=AC,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴AE=BD.②∵线段AE长的最大值=线段BD的最大值,由(1)知,当线段BD的长取得最大值时,点D在BA的延长线上,∴最大值为AD+AB=3+10=13;(3)如图3中,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠F AD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.9、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.解:(1)CP=BQ,理由:如图1,连接OQ,由旋转知,PQ=OP,∠OPQ=60°⊅∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(2)CP=BQ,理由:如图2,连接OQ,由旋转知,PQ=OP,∠OPQ=60°∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(3)如图3,在Rt△ABC中,∠A=30°,AC=,∴BC=AC•tan∠A=,过点O作OH⊥BC,∴∠OHB=90°=∠BCA,∴OH∥AB,∵O是AB中点,∴CH=BC=,OH=AC=,∵∠BPQ=45°,∠OHP=90°,∴∠BPQ=∠PQH,∴PH=OH=,∴CP=PH﹣CH=﹣=,连接BQ,同(1)的方法得,BQ=CP=.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为5.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC=3+2=5,∵AE=BD,∴线段AE长的最大值为5,模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线。

中考复习数学--类比探究专题

中考复习数学--类比探究专题

类比探究专题1. 如图1,在Rt △ABC 中,∠BAC =90°,AB =AC ,点D ,E 分别在边AB ,AC上,AD =AE ,连接DC ,BE ,点P 为DC 的中点. (1)观察猜想图1中,线段AP 与BE 的数量关系是________,位置关系是________; (2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,小航猜想(1)中的结论仍然成立,请你证明小航的猜想; (3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出线段AP 的取值范围.(1)操作:如图1,点O 为线段MN 的中点,直线PQ 与MN 相交于点O ,请利用图1画出一对以点O 为对称中心的全等三角形.(不写画法)根据上述操作得到的经验完成下列探究活动:(2)探究一:如图2,在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE =∠EAF ,AF 与DC 的延长线相交于点F .试探究线段AB 与AF ,CF 之间的等量关系,并证明你的结论. (3)探究二:如图3,DE ,BC 相交于点E ,BA 交DE 于点A ,且BE :EC =1:2,∠BAE =∠EDF ,CF ∥AB .若AB =5,CF =1,求DF 的长度.PEDA BC 图1PEDABC图2图1M NQ PO图2F EDC B AAB C D E F图32.特殊:(1)如图1,在等腰直角三角形ABC中,∠ACB=90°.作CM平分∠ACB交AB于点M,点D为射线CM上一点,以点C为旋转中心将线段CD逆时针旋转90°得到线段CE,连接DE交射线CB于点F,连接BD,BE.填空:①线段BD,BE的数量关系为_________________;②线段BC,DE的位置关系为_________________.一般:(2)如图2,在等腰三角形ABC中,∠ACB=α,作CM平分∠ACB交AB于点M,点D为△ABC外部射线CM上一点,以点C为旋转中心将线段CD逆时针旋转α度得到线段CE,连接DE,BD,BE.请判断(1)中的结论是否成立,请说明理由.特殊:(3)如图3,在等边三角形ABC中,作BM平分∠ABC交AC于点M,点D为射线BM上一点,以点B为旋转中心将线段BD逆时针旋转60°得到线段BE,连接DE交射线BA于点F,连接AD,AE.若AB=4,当△ADM 与△AFD全等时,请直接写出DE的值.M F ED CB A图1EMDCBA图2MFEDC BA图33. 已知△ABC 中,CA =CB ,0°<∠ACB ≤90°.点M ,N 分别在边CA ,CB 上(不与端点重合),BN =AM ,射线AG ∥BC 交BM 延长线于点D ,点E 在直线AN 上,EA =ED .(1)【观察猜想】如图1,点E 在射线NA 上,当∠ACB =45°时, ①线段BM 与AN 的数量关系是_________; ②∠BDE 的度数是____________.(2)【探究证明】如图2,点E 在射线AN 上,当∠ACB =30°时,判断并证明线段BM 与AN 的数量关系,求∠BDE 的度数;(3)【拓展延伸】如图3,点E 在直线AN 上,当∠ACB =60°时,AB =3,点N 是BC 边上的三等分点,直线ED 与直线BC 交于点F ,请直接写出线段CF 的长.图1A B CD ENMG图2AB CD MN EG 图3A BCG4.如图,在Rt△ABC中,∠ACB=90°,BC mAC n=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则DEDF=__________.(2)数学思考:①如图2,若点E在线段AC上,则DEDF=__________(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明.(3)拓展应用:若ACBC=DF=CE的长.FEDC BA图1图2ABCDEFDB FECA图3DC BA备用图5. (1)【问题发现】如图1,△ABC 和△CEF 都是等腰直角三角形,∠BAC =∠EFC =90°,点E 与点A 重合,则线段BE 与AF 的数量关系为__________; (2)【拓展研究】在(1)的条件下,将△CEF 绕点C 旋转,连接BE ,AF ,线段BE 与AF 的数量关系有无变化?仅就图2的情形给出证明; (3)【问题发现】当AB =AC =2,△CEF 旋转到B ,E ,F 三点共线时,直接写出线段AF 的长.(1)问题发现:如图1,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 的中点,以点D 为顶点作正方形DFGE ,使点A ,C 分别在DE 和DF 上,连接BE ,AF ,则线段BE 和AF 数量关系是________.(2)类比探究:如图2,保持△ABC 固定不动,将正方形DFGE 绕点D 旋转α(0<α≤360°),则(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由.(3)解决问题:若BC =DF =2,在(2)的旋转过程中,连接AE ,请直接写出AE 的最大值.F图1CBA (E )EABC图2F备用图CBA图1A BC DEF G图2GFED CB A 备用图A BC DEFG6.在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是__________,CE与AD的位置关系是__________.(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明).(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=BE= ADPE的面积.(直接写出结果)P EDCBA图1图2ABCDEPPEDCBA图3图4ABCDEP7. (1)操作发现如图1,AD 是等边三角形ABC 的角平分线,请你按下列要求画图:过点A 作AM ⊥AB ,过点C 作CN ∥AB ,AM 与CN 相交于点E .则AD 与AE 的数量关系是________,∠EAC =________°. (2)问题探究将图1中的△AEC 绕点A 逆时针旋转,点C 落在点F 的位置,连接EC ,DF ,如图2所示,请你探究DF 与EC 的数量关系并说明理由. (3)拓展延伸若(2)中等边△ABC 的边长为2,当F A ⊥AC 时,请直接写出DF 2的值.在Rt △ABC 中,∠BAC =90°,AC =AB =4,D ,E 分别是边AB ,AC 的中点,若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)问题发现如图1,当α=90°时,线段BD 1的长等于__________,线段CE 1的长等于__________. (2)探究证明如图2,当α=135°时,求证:BD 1=CE 1,且BD 1⊥CE 1. (3)问题解决求点P 到AB 所在直线的距离的最大值.(直接写出结果)图1AB CD图2EFDCBA备用图CBAE1(D1)ABCDE PEDCBAD1E1图2图18. 如图1,在正方形ABCD 和正方形AB′C′D′中,AB =2,AB′=,连接CC′.(1)问题发现:CC BB'='__________;(2)拓展探究:将正方形AB′C′D′绕点A 逆时针旋转,记旋转角为θ,连接BB′,试判断:当0°≤θ<360°时,CC BB ''的值有无变化?请仅就图2中的情形给出你的证明;(3)问题解决:请直接写出在旋转过程中,当C ,C′,D′三点共线时BB′的长.问题发现:如图1,△ABC 是等边三角形,点D 是边AB 上的一点,过点D 作DE ∥BC 交AC 于E ,则线段BD 与CE 的数量关系为___________;拓展探究:如图2,将△ADE 绕点A 逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明;问题解决:如果△ABC的边长等于AD =2,直接写出当△ADE 旋转到DE 与AC 所在的直线垂直时BD 的长.D′C′B′ABCD 图1图2DCBA B′C′D′A BCD备用图图1EDCBA 图2ABCDE备用图E D A9. 如图1,已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F . (1)证明与推断:①求证:四边形CEGF 是正方形;②推断AGBE的值为_______.(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG 与BE 之间的数量关系,并说明理由. (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图3所示,延长CG 交AD 于点H .若AG =6,GH=BC =________.GFDC BAE图1ABCD EFG图2H GF EDCBA 图310. (1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P 是等边三角形ABC 内一点,P A =1,PB,PC =2.求∠BPC 的度数. 为利用已知条件,不妨把△BPC 绕点C 顺时针旋转60°得△AP′C ,连接PP′,则PP′的长为__________;在△P AP′中,易证∠P AP′=90°,且∠PP′A 的度数为__________,综上可得∠BPC 的度数为__________. (2)类比迁移 如图2,点P 是等腰Rt △ABC 内一点,∠ACB =90°,P A =2,PB,PC =1.求∠APC 的度数. (3)拓展应用如图3,在四边形ABCD 中,BC =3,CD =5,AB =AC =12AD ,∠BAC =2∠ADC ,请直接写出BD 的长.P′ABCP图1图2P CBAD图3C BA11. 如图,在□ABCD 中,AC 与BD 交于点O ,以点O 为顶点的∠EOF 的两边分别与边AB ,AD 交于点E ,F ,且∠EOF 与∠BAD 互补. (1)观察猜想若四边形ABCD 是正方形,则线段OE 与OF 有何数量关系?请直接写出结论.(2)延伸探究若四边形ABCD 是菱形,那么(1)中的结论是否成立?若成立,请画出图形并给出证明;若不成立,请说明理由. (3)拓展证明若AB :AD =m :n ,探索线段OE 与OF 的数量关系,并证明你的结论.(1)阅读理解:如图1,在四边形ABCD 中,AB ∥DC ,E 是BC 的中点,若AE 是∠BAD 的平分线,试判断AB ,AD ,DC 之间的等量关系.解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证△AEB ≌△FEC ,得到AB =FC ,从而把AB ,AD ,DC 转化在一个三角形中即可判断.AB ,AD ,DC 之间的等量关系为_____________;(2)问题探究:如图2,在四边形ABCD 中,AB ∥DC ,AF 与DC 的延长线交于点F ,E 是BC 的中点,若AE 是∠BAF 的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论.(3)问题解决:如图3,AB ∥CF ,AE 与BC 交于点E ,BE :EC =2:3,点D 在线段AE 上,且∠EDF =∠BAE ,试判断AB ,DF ,CF 之间的数量关系,并证明你的结论.A BCDOEFABCD EF图1ABCDE F图2A BCDE F图312. 如图1,菱形ABCD 与菱形GECF 的顶点C 重合,点G 在对角线AC 上,且∠BCD =∠ECF =60°. (1)问题发现: AGBE的值为__________. (2)探究与证明:将菱形GECF 绕点C 按顺时针方向旋转α角(0°<α<60°),如图2所示,试探究线段AG 与BE 之间的数量关系,并说明理由. (3)拓展与运用:菱形GECF 在旋转过程中,当点A ,G ,F 三点在一条直线上时,如图3所示,连接CG 并延长,交AD 于点H ,若CE =2,GHAH 的长为__________.已知∠AOB =90°,点C 是∠AOB 的角平分线OP 上的任意一点,现有一个直角∠MCN 绕点C 旋转,两直角边CM ,CN 分别与直线OA ,OB 相交于点D ,点E .(1)如图1,若CD ⊥OA ,猜想线段OD ,OE ,OC 之间的数量关系,并说明理由.(2)如图2,若点D 在射线OA 上,且CD 与OA 不垂直,则(1)中的数量关系是否仍成立?如成立,请说明理由;如不成立,请写出线段OD ,OE ,OC 之间的数量关系,并加以证明.图1AB CDEFGG FE DCB A图2H图3AB CD E FG(3)如图3,若点D 在射线OA 的反向延长线上,且OD =2,OE =8,请直接写出线段CE 的长度.图1OABC D EMPN N PMED CBAO图2图3O ABCD E MPN13.如图,在矩形ABCD中,AB=8,AD=6,点E,F分别是边DC,DA的中点,四边形DFGE为矩形,连接BG.(1)问题发现在图1中,CEBG__________.(2)拓展探究将图1中的矩形DFGE绕点D旋转一周,在旋转过程中,CEBG的大小有无变化?请仅就图2的情形给出证明. (3)问题解决当矩形DFGE 旋转至B ,G ,E 三点共线时,请直接写出线段CE 的长.GFED CBA 图1图2ABCDEFG备用图ABCD14. 四边形是我们在学习和生活中常见的图形,而对角线互相垂直的四边形也比较常见,比如筝形、菱形、图1中的四边形ABCD 等.它们给我们的学习和生活带来了很多的乐趣和美感.(1)如图2,在四边形ABCD 中,AB =AD ,CB =CD ,则AC 与BD 的位置关系是__________,请说明理由.(2)试探究图1中四边形ABCD 的两组对边AB ,CD 与BC ,AD 之间的数量关系,请写出证明过程.(3)问题解决:如图3,分别以Rt △ACB 的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连接CE ,BG ,GE ,已知AC =4,AB =5,求GE 的长.观察猜想(1)如图1,在Rt △ABC 中,∠BAC =90°,AB =AC =3,点D 与点A 重合,点E 在边BC 上,连接DE ,将线段DE 绕点D 顺时针旋转90°得到线段DF ,连接BF ,BE 与BF 的位置关系是_________,BE +BF =_________; 探究证明(2)在(1)中,如果将点D 沿AB 方向移动,使AD =1,其余条件不变,如图2,判断BE 与BF 的位置关系,并求BE +BF 的值,请写出你的理由或计算过程; 拓展延伸ABCD图1图2DCB AABCDEFG图3(3)如图3,在△ABC 中,AB =AC ,∠BAC =α,点D 在边BA 的延长线上,BD =n ,连接DE ,将线段DE 绕着点D 顺时针旋转,旋转角∠EDF =α,连接BF ,则BE +BF 的值是多少?请用含有n ,α的式子直接写出结论.图1A (D )B CE FD FE C B A 图2图3A C D E F。

2019、2020年浙江中考数学试题分类(5)——三角形与四边形(含答案)

2019、2020年浙江中考数学试题分类(5)——三角形与四边形(含答案)

2019、2020年浙江中考数学试题分类(5)——三角形与四边形一.三角形三边关系(共3小题)1.(2020•绍兴)长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.4 B.5 C.6 D.72.(2019•台州)下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,113.(2019•金华)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.8二.三角形内角和定理(共2小题)4.(2019•绍兴)如图,墙上钉着三根木条a,b,c,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A.5°B.10°C.30°D.70°5.(2019•杭州)在△ABC中,若一个内角等于另外两个内角的差,则()A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°三.全等三角形的判定与性质(共4小题)6.(2020•湖州)如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是()A.DC=DT B.AD=√2DT C.BD=BO D.2OC=5AC7.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC 内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长8.(2020•台州)如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.9.(2020•温州)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.(1)求证:△ABC≌△DCE.(2)连结AE,当BC=5,AC=12时,求AE的长.四.角平分线的性质(共1小题)10.(2019•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24 B.30 C.36 D.42五.等腰三角形的性质(共2小题)11.(2019•衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C 点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°12.(2020•绍兴)问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.六.等边三角形的判定与性质(共1小题)13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA ,CA 方向各剪一刀,则剪下的△DEF 的周长是 .七.勾股定理(共2小题)14.(2019•宁波)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )A .直角三角形的面积B .最大正方形的面积C .较小两个正方形重叠部分的面积D .最大正方形与直角三角形的面积和15.(2020•绍兴)如图,已知边长为2的等边三角形ABC 中,分别以点A ,C 为圆心,m 为半径作弧,两弧交于点D ,连结BD .若BD 的长为2√3,则m 的值为 .八.勾股定理的证明(共1小题)16.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO =GP ,则S 正方形SSSSS 正方形SSSS 的值是( )A .1+√2B .2+√2C .5−√2D .154 九.勾股定理的应用(共3小题)17.(2019•绍兴)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( )A .245B .325C .12√3417D .20√341718.(2019•衢州)一块圆形宣传标志牌如图所示,点A ,B ,C 在⊙O 上,CD 垂直平分AB 于点D .现测得AB =8dm ,DC =2dm ,则圆形标志牌的半径为( )A .6dmB .5dmC .4dmD .3dm19.(2020•衢州)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O ,P 两点固定,连杆P A =PC =140cm ,AB =BC =CQ =QA =60cm ,OQ =50cm ,O ,P 两点间距与OQ 长度相等.当OQ 绕点O 转动时,点A ,B ,C 的位置随之改变,点B 恰好在线段MN 上来回运动.当点B 运动至点M 或N 时,点A ,C 重合,点P ,Q ,A ,B 在同一直线上(如图3).(1)点P 到MN 的距离为 cm .(2)当点P ,O ,A 在同一直线上时,点Q 到MN 的距离为 cm .一十.等腰直角三角形(共1小题)20.(2019•宁波)已知直线m ∥n ,将一块含45°角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若∠1=25°,则∠2的度数为( )A .60°B .65°C .70°D .75°一十一.三角形中位线定理(共1小题)21.(2020•宁波)如图,在Rt △ABC 中,∠ACB =90°,CD 为中线,延长CB 至点E ,使BE =BC ,连结DE ,F 为DE 中点,连结BF .若AC =8,BC =6,则BF 的长为( )A .2B .2.5C .3D .4一十二.三角形综合题(共1小题)22.(2020•金华)如图,在△ABC 中,AB =4√2,∠B =45°,∠C =60°.(1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将△AEF 折叠得到△PEF .①如图2,当点P 落在BC 上时,求∠AEP 的度数.②如图3,连结AP ,当PF ⊥AC 时,求AP 的长.一十三.多边形(共2小题)23.(2020•湖州)四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD 的内角,正方形ABCD 变为菱形ABC ′D ′.若∠D ′AB =30°,则菱形ABC ′D ′的面积与正方形ABCD 的面积之比是( )A .1B .12C .√22 D .√3224.(2019•衢州)如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为( )A.1 B.√2C.√3D.2一十四.平面镶嵌(密铺)(共1小题)25.(2019•绍兴)把边长为2的正方形纸片ABCD分割成如图的四块,其中点O为正方形的中心,点E,F 分别为AB,AD的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是.一十五.平行四边形的性质(共2小题)26.(2020•温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为()A.40°B.50°C.60°D.70°27.(2020•绍兴)如图,点E是▱ABCD的边CD的中点,连接AE并延长,交BC的延长线于点F.(1)若AD的长为2,求CF的长.(2)若∠BAF=90°,试添加一个条件,并写出∠F的度数.一十六.平行四边形的判定与性质(共1小题)28.(2019•湖州)如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.一十七.菱形的性质(共1小题)29.(2019•温州)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为cm.一十八.菱形的判定(共1小题)30.(2020•嘉兴)如图,▱ABCD 的对角线AC ,BD 相交于点O ,请添加一个条件: ,使▱ABCD 是菱形.一十九.矩形的性质(共6小题)31.(2019•台州)如图,有两张矩形纸片ABCD 和EFGH ,AB =EF =2cm ,BC =FG =8cm .把纸片ABCD 交叉叠放在纸片EFGH 上,使重叠部分为平行四边形,且点D 与点G 重合.当两张纸片交叉所成的角α最小时,tan α等于( ) A .14 B .12 C .817 D .815 32.(2019•金华)如图,矩形ABCD 的对角线交于点O .已知AB =m ,∠BAC =∠α,则下列结论错误的是( )A .∠BDC =∠αB .BC =m •tan α C .AO =S 2SSSSD .BD =S SSSS 33.(2020•绍兴)将两条邻边长分别为√2,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的 (填序号).①√2,②1,③√2−1,④√32,⑤√3. 34.(2019•绍兴)有一块形状如图的五边形余料ABCDE ,AB =AE =6,BC =5,∠A =∠B =90°,∠C =135°,∠E >90°,要在这块余料中截取一块矩形材料,其中一条边在AE 上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.35.(2019•舟山)如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.36.(2019•宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.二十.正方形的性质(共5小题)37.(2020•湖州)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1 B.1和2 C.2和1 D.2和238.(2019•绍兴)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E 从点A移动到点B的过程中,矩形ECFG的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变39.(2020•绍兴)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为.40.(2019•绍兴)如图,在直线AP上方有一个正方形ABCD,∠P AD=30°,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则∠ADE的度数为.41.(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.二十一.正方形的判定与性质(共1小题)42.(2020•台州)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②二十二.四边形综合题(共8小题)43.(2020•衢州)【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当S1S2=13时,求SSSS的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的110时,请直接写出tan∠BAE的值.44.(2020•嘉兴)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF =4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.45.(2020•绍兴)如图1,矩形DEFG中,DG=2,DE=3,Rt△ABC中,∠ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG⊥BC,OG=2,OC=4.将△ABC绕点O逆时针旋转α(0°≤α<180°)得到△A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.①当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.②当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.46.(2020•温州)如图,在四边形ABCD中,∠A=∠C=90°,DE,BF分别平分∠ADC,∠ABC,并交线段AB,CD于点E,F(点E,B不重合).在线段BF上取点M,N(点M在BN之间),使BM=2FN.当点P从点D匀速运动到点E时,点Q恰好从点M匀速运动到点N.记QN=x,PD=y,已知y=−65x+12,当Q为BF中点时,y=24 5.(1)判断DE与BF的位置关系,并说明理由.(2)求DE,BF的长.(3)若AD=6.①当DP=DF时,通过计算比较BE与BQ的大小关系.②连结PQ,当PQ所在直线经过四边形ABCD的一个顶点时,求所有满足条件的x的值.47.(2019•舟山)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=a,AD=h,求正方形PQMN的边长(用a,h表示).(2)操作:如何画出这个正方形PQMN呢?如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB上任取一点P',画正方形P'Q'M'N',使点Q',M'在BC边上,点N'在△ABC内,然后连结BN',并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:小波把图2中的线段BN称为“波利亚线”,在该线上截取NE=NM,连结EQ,EM(如图3),当∠QEM=90°时,求“波利亚线”BN的长(用a,h表示).请帮助小波解决“温故”、“推理”、“拓展”中的问题.48.(2019•宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.49.(2019•嘉兴)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC边上,N'在△ABC内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=34时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.50.(2019•台州)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;()②若AD=BE=CF,则六边形ABCDEF是正六边形.()2019、2020年浙江中考数学试题分类(5)——三角形与四边形参考答案与试题解析一.三角形三边关系(共3小题)1.【解答】解:①长度分别为5、3、4,能构成三角形,且最长边为5;②长度分别为2、6、4,不能构成三角形;③长度分别为2、7、3,不能构成三角形;④长度分别为6、3、3,不能构成三角形;综上所述,得到三角形的最长边长为5.故选:B.2.【解答】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.3.【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有3,故选:C.二.三角形内角和定理(共2小题)4.【解答】解:∠3=∠2=100°,∴木条a,b所在直线所夹的锐角=180°﹣100°﹣70°=10°,故选:B.5.【解答】解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.三.全等三角形的判定与性质(共4小题)6.【解答】解:如图,连接OD.∵OT是半径,OT⊥AB,∴DT是⊙O的切线,∵DC是⊙O的切线,∴DC=DT,故选项A正确,∵OA=OB,∠AOB=90°,∴∠A=∠B=45°,∵DC是切线,∴CD⊥OC,∴∠ACD=90°,∴∠A=∠ADC=45°,∴AC=CD=DT,∴AC=√2CD=√2DT,故选项B正确,∵OD=OD,OC=OT,DC=DT,∴△DOC≌△DOT(SSS),∴∠DOC=∠DOT,∵OA=OB,OT⊥AB,∠AOB=90°,∴∠AOT=∠BOT=45°,∴∠DOT=∠DOC=22.5°,∴∠BOD=∠ODB=67.5°,∴BO=BD,故选项C正确,根据筛选法,故选:D.7.【解答】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.8.【解答】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.9.【解答】证明:(1)∵AB∥DE,∴∠BAC=∠D,又∵∠B=∠DCE=90°,AC=DE,∴△ABC≌△DCE(AAS);(2)∵△ABC≌△DCE,∴CE=BC=5,∵∠ACE=90°,∴AE=√SS2+SS2=√25+144=13.四.角平分线的性质(共1小题)10.【解答】解:过D作DH⊥AB交BA的延长线于H,∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4,∴四边形ABCD的面积=S△ABD+S△BCD=12AB•DH+12BC•CD=12×6×4+12×9×4=30,故选:B.五.等腰三角形的性质(共2小题)11.【解答】解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°,∵∠CDE+∠ODC=180°﹣∠BDE=105°,∴∠CDE=105°﹣∠ODC=80°.故选:D.12.【解答】解:(1)∠DAC的度数不会改变;∵EA=EC,∴∠EAC=∠C,①,∵BA=BD,∴∠BAD=∠BDA,∵∠BAE=90°,∴∠B=90°﹣∠AED=90°﹣2∠C,∴∠BAD=12(180°﹣∠B)=12[180°﹣(90°﹣2∠C)]=45°+∠C,∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°﹣∠C+∠C=45°;(2)设∠ABC=m°,则∠BAD=12(180°﹣m°)=90°−12m°,∠AEB=180°﹣n°﹣m°,∴∠DAE=n°﹣∠BAD=n°﹣90°+12m°,∵EA=EC,∴∠CAE=12S AEB=90°−12n°−12m°,∴∠DAC=∠DAE+∠CAE=n°﹣90°+12m°+90°−12n°−12m°=12n°.六.等边三角形的判定与性质(共1小题)13.【解答】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵△ABC是等边三角形,∴∠B=∠C=60°,又∵DE∥AB,DF∥AC,∴∠DEF=∠B=60°,∠DFE=∠C=60°,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.七.勾股定理(共2小题)14.【解答】解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2﹣b2﹣a(c﹣b)=a2﹣ac+ab=a(a+b﹣c),较小两个正方形重叠部分的宽=a﹣(c﹣b),长=a,则较小两个正方形重叠部分底面积=a(a+b﹣c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C.15.【解答】解:由作图知,点D在AC的垂直平分线上,∵△ABC是等边三角形,∴点B在AC的垂直平分线上,∴BD垂直平分AC,设垂足为E,∵AC=AB=2,∴BE=√3,当点D、B在AC的两侧时,如图,∵BD=2√3,∴BE=DE,∴AD=AB=2,∴m=2;当点D、B在AC的同侧时,如图,∵BD′=2√3,∴D′E=3√3,∴AD′=√(3√3)2+12=2√7,∴m=2√7,综上所述,m的值为2或2√7,故答案为:2或2√7.八.勾股定理的证明(共1小题)16.【解答】解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG =22.5°, 又∵∠DBC =45°, ∴∠GBC =22.5°, ∴∠PBG =∠GBC ,∵∠BGP =∠BGC =90°,BG =BG , ∴△BPG ≌△BCG (ASA ), ∴PG =CG .设OG =PG =CG =x , ∵O 为EG ,BD 的交点, ∴EG =2x ,FG =√2x ,∵四个全等的直角三角形拼成“赵爽弦图”, ∴BF =CG =x , ∴BG =x +√2x ,∴BC 2=BG 2+CG 2=S 2(√2+1)2+S 2=(4+2√2)S 2, ∴S 正方形SSSS S 正方形SSSS=(4+2√2)S 22S 2=2+√2.故选:B .九.勾股定理的应用(共3小题) 17.【解答】解:过点C 作CF ⊥BG 于F ,如图所示:设DE =x ,则AD =8﹣x ,根据题意得:12(8﹣x +8)×3×3=3×3×6, 解得:x =4, ∴DE =4, ∵∠E =90°,由勾股定理得:CD =√SS 2+SS 2=√42+32=5, ∵∠BCE =∠DCF =90°, ∴∠DCE =∠BCF ,∵∠DEC =∠BFC =90°, ∴△CDE ∽△CBF , ∴SS SS =SS SS ,即3SS=58,∴CF =245.故选:A .18.【解答】解:连接OA ,OD ,∵点A ,B ,C 在⊙O 上,CD 垂直平分AB 于点D .AB =8dm ,DC =2dm , ∴AD =4dm ,设圆形标志牌的半径为r ,可得:r 2=42+(r ﹣2)2, 解得:r =5, 故选:B . 19.【解答】解:(1)如图3中,延长PO 交MN 于T ,过点O 作OH ⊥PQ 于H .由题意:OP =OQ =50cm ,PQ =P A ﹣AQ =140﹣60=80(cm ),PM =P A +BC =140+60=200(cm ),PT ⊥MN ,∵OH ⊥PQ ,∴PH =HQ =40(cm ), ∵cos ∠P =SSSS =SSSS , ∴4050=SS 200,∴PT =160(cm ),∴点P 到MN 的距离为160cm , 故答案为160.(2)如图4中,当O ,P ,A 共线时,过Q 作QH ⊥PT 于H .设HA =xcm .由题意AT =PT ﹣P A =160﹣140=20(cm ),OA =P A ﹣OP =140﹣50=90(cm ),OQ =50cm ,AQ =60cm , ∵QH ⊥OA ,∴QH 2=AQ 2﹣AH 2=OQ 2﹣OH 2, ∴602﹣x 2=502﹣(90﹣x )2, 解得x =4609,∴HT =AH +AT =6409(cm ), ∴点Q 到MN 的距离为6409cm .故答案为6409.一十.等腰直角三角形(共1小题) 20.【解答】解:设AB 与直线n 交于点E , 则∠AED =∠1+∠B =25°+45°=70°. 又直线m ∥n ,∴∠2=∠AED =70°.故选:C .一十一.三角形中位线定理(共1小题) 21.【解答】解:∵在Rt △ABC 中,∠ACB =90°,AC =8,BC =6, ∴AB =√SS 2+SS 2=√82+62=10. 又∵CD 为中线, ∴CD =12AB =5.∵F 为DE 中点,BE =BC 即点B 是EC 的中点, ∴BF 是△CDE 的中位线,则BF =12CD =2.5. 故选:B .一十二.三角形综合题(共1小题) 22.【解答】解:(1)如图1中,过点A 作AD ⊥BC 于D .在Rt △ABD 中,AD =AB •sin45°=4√2×√22=4.(2)①如图2中,∵△AEF ≌△PEF ,∴AE =EP ,∵AE =EB ,∴BE =EP ,∴∠EPB =∠B =45°,∴∠PEB =90°,∴∠AEP =180°﹣90°=90°.②如图3中,由(1)可知:AC =SS SSS60°=8√33, ∵PF ⊥AC ,∴∠PF A =90°,∵△AEF ≌△PEF ,∴∠AFE =∠PFE =45°,∴∠AFE =∠B ,∵∠EAF =∠CAB ,∴△AEF ∽△ACB ,∴SS SS =SS SS ,即4√2=√28√33,∴AF =2√3,在Rt △AFP ,AF =FP ,∴AP =√2AF =2√6.方法二:AE =BE =PE 可得直角三角形ABP ,由PF ⊥AC ,可得∠AFE =45°,可得∠F AP =45°,即∠P AB =30°. AP =AB cos30°=2√6.一十三.多边形(共2小题)23.【解答】解:根据题意可知菱形ABC ′D ′的高等于AB 的一半,∴菱形ABC ′D ′的面积为12SS 2,正方形ABCD 的面积为AB 2. ∴菱形ABC ′D ′的面积与正方形ABCD 的面积之比是12.故选:B .24.【解答】解:边长为2的正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,所以原来的纸带宽度=√32×2=√3.故选:C .一十四.平面镶嵌(密铺)(共1小题)25.【解答】解:如图所示:图1的周长为1+2+3+2√2=6+2√2;图2的周长为1+4+1+4=10;图3的周长为3+5+√2+√2=8+2√2.故四边形MNPQ 的周长是6+2√2或10或8+2√2.故答案为:6+2√2或10或8+2√2.一十五.平行四边形的性质(共2小题)26.【解答】解:∵在△ABC 中,∠A =40°,AB =AC ,∴∠C =(180°﹣40°)÷2=70°,∵四边形BCDE 是平行四边形,∴∠E =70°.故选:D .27.【解答】解:(1)∵四边形ABCD 是平行四边形,∴AD ∥CF ,∴∠DAE =∠CFE ,∠ADE =∠FCE ,∵点E 是CD 的中点,∴DE =CE ,在△ADE 和△FCE 中,{∠SSS =∠SSS SSSS =SSSS SS =SS,∴△ADE ≌△FCE (AAS ),∴CF =AD =2;(2)∵∠BAF =90°,添加一个条件:当∠B =60°时,∠F =90°﹣60°=30°(答案不唯一).一十六.平行四边形的判定与性质(共1小题)28.【解答】(1)证明:∵D ,E ,F 分别是AB ,BC ,AC 的中点,∴DF ∥BC ,EF ∥AB ,∴DF ∥BE ,EF ∥BD ,∴四边形BEFD 是平行四边形;(2)解:∵∠AFB =90°,D 是AB 的中点,AB =6,∴DF =DB =DA =12AB =3,∵四边形BEFD 是平行四边形,∴四边形BEFD 是菱形,∵DB =3,∴四边形BEFD 的周长为12.一十七.菱形的性质(共1小题)29.【解答】解:如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,∵三个菱形全等,∴CO=HO,∠AOH=∠BOC,又∵∠AOB=∠AOH+∠BOH=90°,∴∠COH=∠BOC+∠BOH=90°,即△COH是等腰直角三角形,∴∠HCO=∠CHO=45°=∠HOG=∠COK,∴∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO=√2x,IK=√2x﹣x,∵Rt△CIK中,(√2x﹣x)2+x2=22,解得x2=2+√2,又∵S菱形BCOI=IO×CK=12IC×BO,∴√2x2=12×2×BO,∴BO=2√2+2,∴BE=2BO=4√2+4,AB=AE=√2BO=4+2√2,∴△ABE的周长=4√2+4+2(4+2√2)=12+8√2,故答案为:12+8√2.一十八.菱形的判定(共1小题)30.【解答】解:∵邻边相等的平行四边形是菱形,∴当AD=DC,▱ABCD为菱形;故答案为:AD=DC(答案不唯一).一十九.矩形的性质(共6小题)31.【解答】解:如图,∵∠ADC=∠HDF=90°∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°∴△CDM≌△HDN(ASA)∴MD=ND,且四边形DNKM是平行四边形∴四边形DNKM是菱形∴KM=DM∵sinα=sin∠DMC=SS SS∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=a=BM,则CM=8﹣a,∵MD2=CD2+MC2,∴a 2=4+(8﹣a )2,∴a =174 ∴CM =154 ∴tan α=tan ∠DMC =SS SS =815 故选:D .32.【解答】解:A 、∵四边形ABCD 是矩形,∴∠ABC =∠DCB =90°,AC =BD ,AO =CO ,BO =DO ,∴AO =OB =CO =DO ,∴∠DBC =∠ACB ,∴由三角形内角和定理得:∠BAC =∠BDC =∠α,故本选项不符合题意;B 、在Rt △ABC 中,tan α=SS S ,即BC =m •tan α,故本选项不符合题意;C 、在Rt △ABC 中,AC =S SSSS ,即AO =S 2SSSS ,故本选项符合题意; D 、∵四边形ABCD 是矩形,∴DC =AB =m ,∵∠BAC =∠BDC =α,∴在Rt △DCB 中,BD =S SSSS,故本选项不符合题意; 故选:C .33.【解答】解:如图所示:则其中一个等腰三角形的腰长可以是①√2,②1,③√2−1,④√32,不可以是√3. 故答案为:①②③④.34.【解答】解:(1)①若所截矩形材料的一条边是BC ,如图1所示:过点C 作CF ⊥AE 于F ,S 1=AB •BC =6×5=30;②若所截矩形材料的一条边是AE ,如图2所示:过点E 作EF ∥AB 交CD 于F ,FG ⊥AB 于G ,过点C 作CH ⊥FG 于H ,则四边形AEFG 为矩形,四边形BCHG 为矩形,∵∠C =135°,∴∠FCH =45°,∴△CHF 为等腰直角三角形,∴AE =FG =6,HG =BC =5,BG =CH =FH ,∴BG =CH =FH =FG ﹣HG =6﹣5=1,∴AG =AB ﹣BG =6﹣1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=CG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,即:AM=5.5时,FM=11﹣5.5=5.5,S的最大值为30.25.35.【解答】解:添加的条件是BE=DF(答案不唯一).证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.36.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.二十.正方形的性质(共5小题)37.【解答】解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.38.【解答】解:连接DE,∵S△SSS=12S四边形SSSS,S △SSS =12S 正方形SSSS ,∴矩形ECFG 与正方形ABCD 的面积相等.故选:D .39.【解答】解:由题意可得,直角三角形的斜边长为3,一条直角边长为2,故直角三角形的另一条直角边长为:√32−22=√5,故阴影部分的面积是:2×√52×4=4√5,故答案为:4√5.40.【解答】解:∵四边形ABCD 是正方形,∴AD =AE ,∠DAE =90°,∴∠BAM =180°﹣90°﹣30°=60°,AD =AB ,当点E 与正方形ABCD 的直线AP 的同侧时,由题意得,点E 与点B 重合, ∴∠ADE =45°,当点E 与正方形ABCD 的直线AP 的两侧时,由题意得,E ′A =E ′M , ∴△AE ′M 为等边三角形,∴∠E ′AM =60°,∴∠DAE ′=360°﹣120°﹣90°=150°,∵AD =AE ′,∴∠ADE ′=15°,故答案为:15°或45°.41.【解答】解:(1)设正方形CEFG 的边长为a ,∵正方形ABCD 的边长为1,∴DE =1﹣a ,∵S 1=S 2,∴a 2=1×(1﹣a ),解得,S 1=−√52−12(舍去),S 2=√52−12,即线段CE 的长是√52−12; (2)证明:∵点H 为BC 边的中点,BC =1,∴CH =0.5,∴DH =√12+0.52=√52,∵CH =0.5,CG =√52−12, ∴HG =√52, ∴HD =HG .二十一.正方形的判定与性质(共1小题)42.【解答】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B ,C ,D 错误,故选:A .二十二.四边形综合题(共8小题)43.【解答】(1)解:如图1中,△AFG 是等腰三角形.理由:∵AE 平分∠BAC ,∴∠1=∠2,∵DF ⊥AE ,∴∠AHF =∠AHG =90°,∵AH =AH ,∴△AHF ≌△AHG (ASA ),∴AF =AG ,∴△AFG 是等腰三角形.(2)证明:如图2中,过点O 作OL ∥AB 交DF 于L ,则∠AFG =∠OLG .∵AF =AG ,∴∠AFG =∠AGF ,∵∠AGF =∠OGL ,∴∠OGL =∠OLG ,∴OG =OL ,∵OL ∥AB ,∴△DLO ∽△DFB ,∴SS SS =SS SS ,∵四边形ABCD 是矩形,∴BD =2OD ,∴BF =2OL ,∴BF =2OG .(3)解:如图3中,过点D 作DK ⊥AC 于K ,则∠DKA =∠CDA =90°,∵∠DAK =∠CAD ,∴△ADK ∽△ACD ,∴SS SS =SS SS ,∵S 1=12•OG •DK ,S 2=12•BF •AD , 又∵BF =2OG ,S 1S 2=13, ∴SS SS=23=SS SS ,设CD =2x ,AC =3x ,则AD =√5x , ∴SS SS =SS SS =√52.(4)解:设OG =a ,AG =k .①如图4中,连接EF ,当点F 在线段AB 上时,点G 在OA 上.∵AF =AG ,BF =2OG ,∴AF =AG =k ,BF =2a ,∴AB =k +2a ,AC =2(k +a ),∴AD 2=AC 2﹣CD 2=[2(k +a )]2﹣(k +2a )2=3k 2+4ka ,∵∠ABE =∠DAF =90°,∠BAE =∠ADF ,∴△ABE ∽△DAF ,∴SS SS =SS SS ,即SS SS =SS SS ,∴SS S +2S =S SS ,∴BE =S (S +2S )SS ,由题意:10×12×2a ×S (S +2S )SS =AD •(k +2a ), ∴AD 2=10ka ,即10ka =3k 2+4ka ,∴k =2a ,∴AD =2√5a ,∴BE =S (S +2S )SS =4√55a ,AB =4a , ∴tan ∠BAE =SS SS =√55.②如图5中,当点F 在AB 的延长线上时,点G 在线段OC 上,连接EF .∵AF =AG ,BF =2OG ,∴AF =AG =k ,BF =2a ,∴AB =k ﹣2a ,AC =2(k ﹣a ),∴AD 2=AC 2﹣CD 2=[2(k ﹣a )]2﹣(k ﹣2a )2=3k 2﹣4ka ,∵∠ABE =∠DAF =90°,∠BAE =∠ADF ,∴△ABE ∽△DAF ,∴SS SS =SS SS ,即SS SS =SS SS ,∴SS S −2S =S SS , ∴BE =S (S −2S )SS , 由题意:10×12×2a ×S (S −2S )SS =AD •(k ﹣2a ), ∴AD 2=10ka ,即10ka =3k 2﹣4ka ,∴k =143a ,∴AD =2√1053a , ∴BE =S (S −2S )SS =8√10545a ,AB =83a , ∴tan ∠BAE =SS SS =√10515, 综上所述,tan ∠BAE 的值为√55或√10515.44.【解答】解:【思考】四边形ABDE 是平行四边形.证明:∵△ABC ≌△DEF ,∴AB =DE ,∠BAC =∠EDF ,∴AB ∥DE ,∴四边形ABDE 是平行四边形;【发现】如图1,连接BE 交AD 于点O ,∵四边形ABDE 为矩形,∴OA =OD =OB =OE ,设AF =x (cm ),则OA =OE =12(x +4),∴OF =OA ﹣AF =2−12x ,在Rt △OFE 中,∵OF 2+EF 2=OE 2,∴(2−12S )2+32=14(S +4)2,解得:x =94,∴AF =94cm .【探究】BD =2OF ,证明:如图2,延长OF 交AE 于点H ,由矩形的性质及旋转的性质知:OA =OB =OE =OD ,∴∠OAB =∠OBA =∠ODE =∠OED ,∴∠OBD =∠ODB ,∠OAE =∠OEA ,∴∠BDE +∠DEA =∠ABD +∠EAB ,∵∠ABD +∠BDE +∠DEA +∠EAB =360°,∴∠ABD +∠BAE =180°,∴AE ∥BD ,∴∠OHE =∠ODB ,∵EF 平分∠OEH ,∴∠OEF =∠HEF ,∵∠EFO =∠EFH =90°,EF =EF ,∴△EFO ≌△EFH (ASA ),∴EO =EH ,FO =FH ,∴∠EHO =∠EOH =∠OBD =∠ODB ,∴△EOH ≌△OBD (AAS ),∴BD =OH =2OF .45.【解答】解:(1)如图1中,过点C′作C′H⊥OF于H.∵∠HC′O=∠C'OC=α=30°,∴C′H=C′O•cos30°=2√3,∴点C′到直线OF的距离为2√3.(2)①如图2中,当C′P∥OF时,过点C′作C′M⊥OF于M.∵C′P∥OF,∴∠O=180°﹣∠OC′P=45°,∴△OC′M是等腰直角三角形,∵OC′=4,∴C′M=2√2,∴点C′到直线DE的距离为2√2−2.如图3中,当C′P∥DG时,过点C′作C′N⊥FG于N.同法可证△OC′N是等腰直角三角形,∴C′N=2√2,∴点C′到直线DE的距离为2√2+2.②设d为所求的距离.第一种情形:如图4中,当点A′落在DE上时,连接OA′,延长ED交OC于M.∵OA′=2√5,OM=2,∠OMA′=90°,∴A′M=√S′S2−SS2=√(2√5)2−22=4,∴A′D=2,即d=2,如图5中,当点P落在DE上时,连接OP,过点P作PQ⊥C′B′于Q.。

中考压轴题—三角形、四边形综合(解析版)--2024年中考数学

中考压轴题—三角形、四边形综合(解析版)--2024年中考数学

中考压轴题-三角形、四边形综合1.线段、角的计算与证明问题中考的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目的在于考察基础。

第二部分往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。

2.图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。

在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。

3.动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。

动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

4.几何图形的归纳、猜想问题中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。

对于这类归纳总结问题来说,思考的方法是最重要的。

5.阅读理解问题如今中考题型越来越活,阅读理解题出现在数学当中就是最大的一个亮点。

阅读理解往往是先给一个材料,或介绍一个超纲的知识,或给出针对某一种题目的解法,然后再给条件出题。

对于这种题来说,如果考生为求快速而完全无视阅读材料而直接去做题的话,往往浪费大量时间也没有思路,得不偿失。

所以如何读懂题以及如何利用题就成为了关键。

解题策略1.学会运用数形结合思想数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想.数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。

中考数学类比探究型几何综合题专题训练(含答案与解析)

中考数学类比探究型几何综合题专题训练(含答案与解析)

中考数学类比探究型几何综合题专题训练【类型1】通过位置变化(图形变换)进行类比探究〖例1〗已知:如图,等边△AOB的边长为4,点C为OA中点.(1)如图1,将OC绕点O顺时针旋转,使点C落到OB边的点D处,设旋转角为α(0°<α≤360°).则此时α=;此时△COD是三角形(填特殊三角形的名称).(2)如图2,固定等边△AOB不动,将(1)中得到的△OCD绕点O逆时针旋转,连接AC,BD,设旋转角为β(0°<β≤360°).①求证:AC=BD;②当旋转角β为何值时,OC∥AB,并说明理由;③当A、C、D三点共线时,直接写出线段BD的长.〖例2〗现有与菱形有关的三幅图,如图:(1)(感知)如图①,AC是菱形ABCD的对角线,∠B=60°,E、F分别是边BC、CD上的中点,连结AE、EF、AF.若AC=2,则CE+CF的长为.(2)(探究)如图②,在菱形ABCD中,∠B=60°.E是边BC上的点,连结AE,作∠EAF=60°,边AF交边CD于点F,连结EF.若BC=2,求CE+CF的长.(3)(应用)在菱形ABCD中,∠B=60°.E是边BC延长线上的点,连结AE,作∠EAF=60°,边AF交边CD延长线于点F,连结EF.若BC=2,EF⊥BC时,借助图③求△AEF的周长.〖尝试练习〗1.如图1,等边△ABC与等边△BDE的顶点B重合,D、E分别在AB、BC上,AB=2√2,BD=2.现将等边△BDE从图1位置开始绕点B顺时针旋转,如图2,直线AD、CE相交于点P.(1)在等边△BDE旋转的过程中,试判断线段AD与CE的数量关系,并说明理由;(2)在等边△BDE顺时针旋转180°的过程中,当点B到直线AD的距离最大时,求PC的长;(3)在等边△BDE旋转一周的过程中,当A、D、E三点共线时,求CE的长.2.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)探究猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:;②BC、CD、CF之间的数量关系为:;(2)深入思考如图2,当点D在线段CB的延长线上时,结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,正方形ADEF对角线交于点O.若已知AB=2√2,CD =14BC,请求出OC的长.3.如图1,正方形ABCD与正方形AEFG有公共的顶点A,且正方形AEFG的边AE,AG分别在正方形ABCD的边AB,AD上,显然BE=DG,BE⊥DG.(1)将图1的正方形AEFG绕点A转动一定的角度到图2的位置.求证:①BE=DG;②BE⊥DG;(2)如图3,若点D,G,E在同一条直线上,且正方形ABCD的边长是4√2,正方形AEFG的边长为3√2,求BE的长.【类型2】通过形状变化进行类比探究〖例3〗如图1,在△ABC中,AB=AC,∠BAC=α.D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转α,得到AE,连接DE,CE.(1)求证:CE=BD;(2)若α=60°,其他条件不变,如图2.请猜测线段AC,CD,CE之间的数量关系,并说明理由;(3)若α=90°,其他条件不变,如图3,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由.〖例4〗如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且PC =PE,PF交CD于点F.(1)求证:∠PCD=∠PED;(2)连接EC,求证:EC=√2AP;(3)如图2,把正方形ABCD改成菱形ABCD,其他条件不变,当∠DAB=60°时,请直接写出线段EC和AP的数量关系.〖尝试练习〗4.已知菱形ABCD和菱形DEFG有公共的顶点D,C点在DE上,且∠ADC=∠EDG,连接AE,CG,如图1.(1)试猜想AE与CG有怎样的数量关系(直接写出关系,不用证明);(2)将菱形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和CG.你认为(1)中的结论是否还成立?若成立,请给出证明;若不成立,请说明理由;(3)在(2)的条件下,如果∠ADC=∠EDG=90°,如图3,你认为AE和CG是否垂直?若垂直,请给出证明;若不垂直,请说明理由.5.已知在平行四边形ABCD中,AB≠BC,将△ABC沿直线AC翻折,点B落在点E处,AD与CE相交于点O,联结DE.(1)如图1,求证:AC∥DE;(2)如图2,如果∠B=90°,AB=√3,BC=√6,求△OAC的面积;(3)如果∠B=30°,AB=2√3,当△AED是直角三角形时,求BC的长.6.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF 为邻边作平行四边形ECFG.(1)求证:四边形ECFG是菱形;(2)连结BD、CG,若∠ABC=120°,则△BDG是等边三角形吗?为什么?(3)若∠ABC=90°,AB=10,AD=24,M是EF的中点,求DM的长.【自主反馈】7.如图1,△ABC是等边三角形,点D,E分别是BC,AB上的点,且BD=AE,AD与CE交于点F.(1)求∠DFC的度数;(2)将CE绕着点C逆时针旋转120°,得到CP,连接AP,交BC于点Q.①补全图形(图2中完成);②用等式表示线段BE与CQ的数量关系,并证明.8.已知△ABC是等腰三角形.(1)如图1,若△ABC,△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,求证:△ABD ≌△ACE;(2)如图2,若△ABC为等边三角形,将线段AC绕点A逆时针旋转90°,得到AD,连接BD,∠BAC的平分线交BD于点E,连接CE.①求∠AED的度数;②试探究线段AE、CE、BD之间的数量关系,并证明.9.在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转一定的角度α得到△AED,点B、C的对应点分别是E、D.(1)如图1,当点E恰好在AC上时,求∠CDE的度数;(2)如图2,若α=60°时,点F是边AC中点,求证:DF=BE;(3)如图3,点B、C的坐标分别是(0,0),(0,2),点Q是线段AC上的一个动点,点M 是线段AO上的一个动点,是否存在这样的点Q、M使得△CQM为等腰三角形且△AQM为直角三角形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.10.在等腰直角三角形纸片ABC中,点D是斜边AB的中点,AB=10,点E为BC上一点,将纸片沿DE折叠,点B的对应点为点B'.(1)如图①,连接CD,则CD的长为;(2)如图②,B'E与AC交于点F,DB'∥BC.①求证:四边形BDB'E为菱形;②连接B'C,则△B'FC的形状为;(3)如图③,则△CEF的周长为.11.已知正方形ABCD,以CE为边在正方形ABCD外部作正方形CEFG,连AF,H是AF的中点,连接BH,HE.(1)如图1所示,点E在边CB上时,则BH,HE的关系为;(2)如图2所示,点E在BC延长线上,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请给出新的结论并证明.(3)如图3,点B,E,F在一条直线上,若AB=13,CE=5,直接写出BH的长.12.(1)操作发现:如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.(2)简单应用:在(1)中,如果AB=4,AD=6,求CG的长.(3)类比探究:如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.13.我们知道,平行四边形的对边平行且相等,利用这一性质,可以为证明线段之间的位置关系和数量关系提供帮助.重温定理,识别图形(1)如图①,我们在探究三角形中位线DE和第三边BC的关系时,所作的辅助线为“延长DE到点F,使EF=DE,连接CF”,此时DE与DF在同一直线上且DE=12DF,又可证图中的四边形为平行四边形,可得BC与DF的关系是,于是推导出了“DE∥BC,DE=12BC”.寻找图形,完成证明(2)如图②,四边形ABCD和四边形AEFG都是正方形,△BEH是等腰直角三角形,∠EBH=90°,连接CF、CH.求证CF=√2BE.构造图形,解决问题(3)如图③,四边形ABCD和四边形AEFG都是菱形,∠ABC=∠AEF=120°,连接BE、CF.直接写出CF与BE的数量关系.类比探究型几何综合题专题训练(不用相似)答案与解析〖例1〗解:(1)如图1,∵△AOB是等边三角形,∴AO=BO=AB,∠AOB=60°,∵将OC绕点O顺时针旋转,使点C落到OB边的点D处,∴OC=OD,∠COD=∠AOB=60°=α,∴△COD是等边三角形,答案为:60°,等边;(2)①∵△COD是等边三角形,∴OC=OD,∠COD=∠AOB=60°,∴∠AOC=∠BOD,又∵AO=BO,∴△AOC≌△BOD(SAS),∴AC=BD;②如图2,当点C在点O的上方时,若OC∥AB,∴∠AOC=∠OAB=60°=β,如图2﹣1,当点C在点O的下方时,若OC∥AB,∴∠ABO=∠BOC=60°,∴β=360°﹣60°﹣60=240°,综上所述:β=60°或240°;③如图3,当点D在线段AC上时,过点O作OE⊥AC于E,∵等边△AOB的边长为4,点C为OA 中点,∴AO=AB=OB=4,OC=OD=CD=2,∵∠AOB=∠COD=60°,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∵OE⊥CD,OC=OD,∴CE=DE=1,∴OE=√OC2−CE2=√3,∴AE=√OA2−OE2=√13,∴AC=AE+CE=1+√13=BD;如图4,当点C在线段AD上时,过点O作OF⊥AD于F,同理可求DF=CF=1,AF=√13,∴AC=BD=√13﹣1,综上所述:BD=√13+1或√13﹣1.〖例2〗解:(1)感知:∵四边形ABCD是菱形,∴BC=CD=AB=2,∵E,F分别是边BC,CD的中点,∴CE=12BC,CF=12CD=1,∴CE+CF=2.故答案为:2.(2)探究:如图,连结AC.∵四边形ABCD是菱形,∴AB=BC,AB∥CD.∴∠B+∠BCD=180°.∵∠B=60°,∴△ABC是等边三角形,∠BCD=120°.∴∠BAC=∠ACB=60°,AB=AC.∴∠ACF=∠B=60°.∵∠EAF=60°,∴∠BAC﹣∠CAE=∠EAF﹣∠CAE.∴∠BAE=∠CAF.∴△ABE≌△ACF(ASA).∴BE=CF.∴CE+CF=BC=2.(3)应用:如图所示:∵四边形ABCD是菱形,∴AB=BC,AB∥CD.∴∠B+∠BCD=180°.∵∠B=60°,∴△ABC是等边三角形,∠BCD=120°.∴∠BAC=∠ACB=60°,AB=AC.∴∠CAD=∠B=60°.∵∠EAF=60°,∴∠CAD﹣∠DAE=∠EAF ﹣∠DAE.∴∠CAE=∠DAF.∵∠ACE=∠ADF,AC=AD∴△ACE≌△ADF(ASA).∴CE=DF,AE=AF,∵∠EAF=60°,∴△AEF为等边三角形,∵EF⊥BC,∠ECF=60°,∴CF=2CE,∵CD=BC=2,∴CE=2,∴EF=√CF2−CE2=2√3,∴△AEF的周长为6√3.〖尝试练习〗1.解:(1)AD=CE,理由:∵△ABC与△BDE都是等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE =60°,∴∠ABD =∠CBE , ∴△ABD ≌△CBE (SAS ),∴AD =CE ;(2)如图2,过点B 作BH ⊥AD 于H ,在Rt △BHD 中,BD >BH ,∴当点D ,H 重合时,BD =BH ,∴BH ≤BD ,∴当BD ⊥AD 时,点B 到直线AD 的距离最大,∴∠EDP =90°﹣∠BDE =30°,同(1)的方法得,△ABD ≌△CBE (SAS ),∴∠BEC =∠BDA =90°,EC =AD ,在Rt △ABD 中,BD =2,AB =2√2, 根据勾股定理得,AD =√AB 2−BD 2=2, ∴CE =2,∵∠BEC =90°,∠BED =60°, ∴∠DEP =90°﹣60°=30°=∠EDP , ∴DP =EP ,如图2﹣1,过点P 作PQ ⊥DE 于Q , ∴EQ =12DE =1,在Rt △EQP 中,∠PEQ =30°, ∴EP =EQ cos∠DEP =2√33,∴PC =2−2√33; (3)①当点D 在AE 上时,如图3,∴∠ADB =180°﹣∠BDE =120°,∴∠BDE =60°, 过点B 作BF ⊥AE 于F ,在Rt △BDF 中,∠DBF =30°,BD =2, ∴DF =1,BF =√3,在Rt △ABF 中,根据勾股定理得,AF =√AB 2−BF 2=√5,AD =AF ﹣DF =√5﹣1,∴CE =AD =√5﹣1; ②当点D 在AE 的延长线上时,如图4,同①的方法得,AF =√5,DF =1,∴AD =AF +DF =√5+1,∴CE =AD =√5+1, 即满足条件的CE 的长为√5+1和√5﹣1. 2.解:(1)①正方形ADEF 中,AD =AF , ∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF , 又∵AB=AC ,∴△DAB ≌△FAC (SAS ),∴∠ABC =∠ACF ,∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∴∠ACB +∠ACF ═45°+45°=90°, 即BC ⊥CF ;②△DAB ≌△FAC ,∴CF =BD ,∵BC =BD +CD , ∴BC =CF +CD ;故答案为:BC =CF +CD ;(2)CF ⊥BC 成立;BC =CD +CF 不成立,CD =CF +BC .理由如下:∵正方形ADEF 中,AD =AF ,∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF ,又∵AB=AC , ∴△DAB ≌△FAC (SAS ),∴∠ABD =∠ACF , ∵∠BAC =90°,AB =AC , ∴∠ACB =∠ABC =45°.∴∠ABD =180°﹣45°=135°,∴∠BCF =∠ACF ﹣∠ACB =135°﹣45°=90°,∴CF ⊥BC . ∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .(3)过点A 作AH ⊥BC 于点H ,过点E 作EM ⊥BD 于点M ,EN ⊥CF 于点N , ∵∠BAC =90°,AB =AC =2√2, ∴BC =4,∴CD =14BC =1,∴BD =5, 由(2)同理可证得△DAB ≌△FAC ,∴BC ⊥CF ,CF =BD =5,∵四边形ADEF 是正方形,∴OD =OF ,∵∠DCF =90°, ∴DF =√CD 2+CF 2=√26,∴OC =√262.3.证明:(1)如图2,延长DG交BE于H,∵四边形ABCD,四边形AEFG是正方形,∴AB=AD,AG=AE,∠DAB=∠GAE=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE(SAS),∴BE=DG,∠ADG=∠ABE,∵∠C+∠CBA+∠ABE+∠BHD+∠CDH=360°,∴90°+90°+∠ADG+∠CDH+∠BHD=360°,∴∠BHD=90°,∴DG⊥BE;(2)如图3,连接BD,∵正方形ABCD的边长是4√2,正方形AEFG的边长为3√2,∴BD=√2AD=8,GE=√2AE=6,∵BD2=DE2+BE2,∴64=(6+BE)2+BE2,∴BE=√23﹣3.〖例3〗证明:(1)∵将线段AD绕点A逆时针旋转α,∴AD=AE,∠DAE=α,∴∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS)∴BD=CE;(2)AC=CD+CE,理由如下:∵AB=AC,∠BAC=60°∴△ABC是等边三角形,∴AC=BC,由(1)可知:BD=CE,∴BC=BD+CD=CE+CD,∴AC=CD+CE;(3)∠ACE=45°,BD2+CD2=2AD2,理由如下:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵△BAD≌△CAE∴∠ACE=∠ABC=45°,∴∠BCE=∠ACE+∠ACB=90°,∴CE2+CD2=DE2,∵AD=AE,∠DAE=90°,∴DE2=2AD2,∴CE2+CD2=2AD2,∴BD2+CD2=2AD2.〖例4〗(1)证明:∵四边形ABCD是正方形,∴AD=DC,∠ADP=∠CDP=45°,又∵PD=PD,∴△ADP≌△CDP(SAS),∴∠PAD=∠PCD,AP=CP,∵PC=PE,∴AP=PE,∴∠PAD=∠PED,∴∠PCD=∠PED;(2)证明:∵四边形ABCD是正方形,∴∠ADC=∠EDF=90°,由(1)知,∠PCD=∠PED,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠CFP﹣∠PCD=180°﹣∠EFD﹣∠PED,即∠CPF=∠EDF=90°,∵PC=PE,∴△CPE是等腰直角三角形,∴EC=√2CP,由(1)知,AP=CP,∴EC=√2AP;(3)解:AP=CE;理由如下:∵四边形ABCD是菱形,∠DAB=60°,∴AB=BC,∠ABP=∠CBP =60°,∠BAD=∠BCD,∠EDC=∠DAB=60°,又∵PB=PB,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵PC=PE,∴PA=PE,∴∠DAP=∠AEP,∴∠DCP=∠AEP,∵∠CFP=∠EFD,∴180°﹣∠CFP﹣∠PCF=180°﹣∠EFD﹣∠AEP,即∠CPF=∠EDF=60°,∴△EPC是等边三角形,∴PC=EC,∴EC=AP,〖尝试练习〗4.解:(1)AE=CG,理由如下:∵四边形ABCD和四边形DEFG都是菱形,∴DA=DC,DE=DG,又∵∠ADE=∠CDG,∴△DAE≌△DCG(SAS),∴AE=CG;(2)成立,理由如下:∵∠ADC=∠EDG,∴∠ADC﹣∠EDC=∠EDG﹣∠EDC,即∠ADE=∠CDG,又∵DA=DC,DE=DG,∴△DAE≌△DCG(SAS),∴AE=CG;(3)AE ⊥CG ,理由如下:延长线段AE 、GC 交于点H ,∵AD ∥BC ,∴∠CEH =∠DAE , 由(2)可知,△DAE ≌△DCG ,∴∠DAE =∠DCG ,∴∠CEH =∠DCG ,∵四边形ABCD 是菱形,∠ADC =90°, ∴四边形ABCD 是正方形,∴∠BCD =90°,∴∠ECH +∠DCG =90°,∴∠ECH +∠CEH =90°,∴∠CHE =90°,∴AE ⊥CG . 5.(1)证明:由折叠的性质得:△ABC ≌△△ AEC ,∴∠ACB =∠ACE ,BC =EC ,∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC .∴EC =AD ,∠ACB =∠CAD ,∴∠ACE =∠CAD ,∴OA =OC ,∴OD =OE ,∴∠ODE =∠OED ,∵∠AOC =∠DOE ,∴∠CAD =∠ACE =∠OED =∠ODE ,∴AC ∥DE ;(2)解:∵平行四边形ABCD 中,∠B =90°,∴四边形ABCD 是矩形,∴∠CDO =90°,CD =AB =√3,AD =BC =√6,由(1)得:OA =OC ,设OA =OC =x ,则OD =√6﹣x ,在Rt △OCD 中,由勾股定理得:(√3)2+(√6﹣x )2=x 2,解得:x =3√64,∴OA =3√64,∴△OAC 的面积=12OA ×CD =12×3√64×√3=9√28;(3)解:分两种情况:①如图3,当∠EAD =90°时,延长EA 交BC 于G ,∵AD =BC ,BC =EC ,∴AD =EC , ∵AD ∥BC ,∠EAD =90°,∴∠EGC =90°, ∵∠B =30°,AB =2√3,∴∠AEC =30°, ∴GC =12EC =12BC ,∴G 是BC 的中点, 在Rt △ABG中,BG =√32AB =3,∴BC =2BG =6;②如图4,当∠AED =90°时∵AD =BC ,BC =EC ,∴AD =EC ,由折叠的性质得:AE =AB ,∴AE =CD ,又∵AC=AC ,∴△ACE ≌△CAD (SSS ), ∴∠ECA =∠DAC ,∴OA =OC ,∴OE =OD , ∴∠OED =∠ODE ,∴∠AED =∠CDE , ∵∠AED =90°,∴∠CDE =90°,∴AE ∥CD , 又∵AB ∥CD ,∴B ,A ,E 在同一直线上, ∴∠BAC =∠EAC =90°, ∵Rt △ABC 中,∠B =30°,AB =2√3, ∴AC =√33AB =2,BC =2AC =4;综上所述,当△AED 是直角三角形时,BC 的长为4或6.6.证明:(1)∵AF 平分∠BAD ,∴∠BAF =∠DAF ,∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴∠DAF =∠CEF ,∠BAF =∠CFE ,∴∠CEF =∠CFE ,∴CE =CF , 又∵四边形ECFG 是平行四边形, ∴四边形ECFG 为菱形;(2)△BDG 是等边三角形,理由如下:∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB =DC ,AD ∥BC ,∵∠ABC =120°,∴∠BCD =60°,∠BCF =120°,由(1)知,四边形CEGF 是菱形,∴CE =GE ,∠BCG =12∠BCF =60°, ∴CG =GE =CE ,∠DCG =120°,∵EG ∥DF , ∴∠BEG =120°=∠DCG ,∵AE 是∠BAD 的平分线,∴∠DAE =∠BAE ,∵AD ∥BC , ∴∠DAE =∠AEB ,∴∠BAE =∠AEB ,∴AB =BE ,∴BE =CD ,∴△BEG ≌△DCG (SAS ),∴BG =DG ,∠BGE =∠DGC ,∴∠BGD =∠CGE ,∵CG =GE =CE ,∴△CEG 是等边三角形, ∴∠CGE =60°,∴∠BGD =60°,∵BG =DG , ∴△BDG 是等边三角形;(3)如图2中,连接BM ,MC ,∵∠ABC =90°,四边形ABCD 是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=10,AD=24,∴BD=√AB2+AD2=26,∴DM=√22BD=13√2.【自主反馈】7.解:(1)∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠B=∠ACB=60°,又∵BD=AE,∴△ABD≌△CAE(SAS),∴∠BAD=∠ACE,∵∠BAD+∠DAC=60°,∴∠DFC=∠ACE+∠DAC=60°;(2)①根据题意补全图形如图2所示:②线段BE与CQ的数量关系为:CQ=12BE;理由如下:∵CE绕着点C逆时针旋转120°,得到CP,∴CE=CP,∠ECP=120°,∵∠DFC=60°,∴AD∥CP,∴∠ADC=∠DCP,∵△ABD≌△CAE,∴CE=AD,∴AD=CP,∴△ADQ≌△PCQ(AAS),∴CQ=DQ=12CD,∵AB=BC,BD=AE,∴BE=CD,∴CQ=12BE.8.解:(1)∵△ABC,△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS);(2)①∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,由旋转知,AC=AD,∠CAD=90°,∴AB=AD,∠BAD=∠BAC+∠CAD=150°,∴∠D=12(180°﹣∠BAD)=15°,∵AE是∠BAC的平分线,∴∠CAE=12∠BAC=30°,∴∠DAE=∠CAD+∠CAE=120°,∴∠AED=180°﹣∠D﹣∠DAE=45°;②BD=2CE+√2AE;证明:如图,∵△ABC是等边三角形,∴AB=AC,∵AE是∠BAC的角平分线,∴∠BAE=∠CAE,∵AE=AE,∴△BAE≌△CAE(SAS),∴BE=CE,过点A作AF⊥AE交DE于F,∴∠EAF=90°,由旋转知,∠CAD=90°,∴∠CAE=∠DAF,由①知,∠AED=45°,∴∠AFE=45°=∠AEF,∴AE=AF,∴EF=√2AE,∵AC=AD,∴△ACE≌△ADF(SAS),∴DF=CE,∴BD=BE+EF+DF=CE+√2AE+CE =2CE+√2AE.9.解:(1)∵∠ABC=90°,∠BAC=30°,∴∠ACB=60°,∵△ABC绕点A顺时针旋转α得到△AED,点E恰好在AC上,∴CA=AD,∠EAD=∠BAC=30°,∴∠ACD=∠ADC=12(180°﹣30°)=75°,∵∠EDA=∠ACB=60°,∴∠CDE=∠ADC﹣∠EDA=15°;(2)连接BF,∵点F是边AC中点,∴BF=AF=12AC,∵∠BAC=30°,∴BC=12AC,∴∠FBA=∠BAC=30°,∵△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=∠CAD=60°,CB =DE ,∠DEA =∠ABC =90°, ∴DE =BF ,延长BF 交AE 于点G ,则∠BGE =∠GBA +∠BAG =90°, ∴∠BGE =∠DEA ,∴BF ∥ED ,∴四边形BFDE 是平行四边形,∴DF =BE ; (3)∵点B 、C 的坐标分别是(0,0),(0,2), ∴BC =2,∵∠ABC =90°,∠BAC =30°, ∴AC =4,AB =2√3,若∠QMA =90°,CQ =MQ 时,如图3,设CQ =QM =x ,∠CAB =30°,∴AQ =2x ,AM =√3x , ∴AC =x +2x =3x =4,∴x =43,∴AM =43√3,∴BM =AB ﹣AM =2√3﹣4√33=2√33,∴点M (2√33,0);若∠AQM =90°,CQ =QM 时,如图4, 设CQ =QM =x ,∠CAB =30°, ∴AQ =√3x ,AM =2x , ∴AC =x +√3x =4,∴x =2√3﹣2,∴AM =4√3﹣4, ∴BM =2√3﹣(4√3﹣4)=4﹣2√3, ∴点M (4﹣2√3,0);综上所述:M (2√33,0)或(4﹣2√3,0).10.(1)解:∵△ABC 是等腰直角三角形,点D 是斜边AB 的中点,AB =10,∴CD =12AB =5(2)①证明:由折叠的性质得:B 'D =BD ,B 'E =BE ,∠B 'DE =∠BDE ,∵DB '∥BC ,∴∠B 'DE =∠BED ,∴∠BDE =∠BED ,∴BD =BE ,∴B 'D =BE ,∴四边形BDB 'E 是平行四边形,又∵B 'D =BD ,∴四边形BDB 'E 为菱形;②解:∵△ABC 是等腰直角三角形,点D 是斜边AB 的中点,∴CD =12AB =BD , 由折叠的性质得:B 'D =BD ,∴CD =B 'D ,∴∠DCB '=∠DB 'C ,∵∠ACB =90°,∴AC ⊥BC ,∵DB '∥BC ,∴DB '⊥AC ,∴∠ACB '=90°﹣∠DB 'C ,由①得:四边形BDB 'E 为菱形, ∴AB ∥B 'E ,∵CD ⊥AB ,∴CD ⊥B 'E , ∴∠EB 'C =90°﹣∠DCB ',∴∠ACB '=∠EB 'C , ∴FB '=FC ,即△B 'FC 为等腰三角形;(3)解:连接B 'C ,如图③所示:∵△ABC 是等腰直角三角形,点D 是斜边AB 的中点,AB =10,∴BC =√22AB =5√2,∠B =45°,CD =12AB =BD ,∠ACD =12∠ACB =45°,由折叠的性质得:B 'D =BD ,∠B '=∠B =45°, ∴CD =B 'D ,∴∠DCB '=∠DB 'C ,∴∠FCB '=∠FB 'C ,∴CF =B 'F ,∴△CEF 的周长=EF +CF +CE =EF +B 'F +CE =B 'E +CE =BE +CE =BC =5√2; 11.解:(1)BH ⊥HE ,BH =HE ;理由如下: 延长EH 交AB 于M ,如图1所示: ∵四边形ABCD 和四边形CEFG 是正方形,∴AB ∥CD ∥EF ,AB =BC ,CE =FE ,∠ABC =90°,∴∠AMH =∠FEH ,∵H 是AF 的中点,∴AH =FH ,∴△AMH ≌△FEH (AAS ), ∴AM =FE =CE ,MH =EH ,∴BM =BE ,∵∠ABC=90°,∴BH⊥HE,BH=12ME=HE;(2)结论仍然成立.BH⊥HE,BH=HE.理由如下:延长EH交BA的延长线于点M,如图2所示:∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ABE=∠BEF=90°,AB=BC,AB∥CD∥EF,CE=FE,∴∠HAM=∠HFE,∴△AHM≌△FHE(ASA),∴HM=HE,AM=EF=CE,∴BM=BE,∵∠ABE=90°,∴BH⊥EH,BH=12EM=EH;(3)延长EH到M,使得MH=EH,连接AH、BH,如图3所示:同(2)得:△AMH≌△FEH(SAS),∴AM=FE=CE,∠MAH=∠EFH,∴AM∥BF,∴∠BAM+∠ABE=180°,∴∠BAM+∠CBE=90°,∵∠BCE+∠CBE=90°∴∠BAM=∠BCE,∴△ABM≌△CBE(SAS),∴BM=BE,∠ABM=∠CBE,∴∠MBE=∠ABC=90°,∵MH=EH,∴BH⊥EH,BH=12EM=MH =EH,在Rt△CBE中,BE=√CB2−CE2=12,∵BH=EH,BH⊥EH,∴BH=√22BE=6√2.12.解:(1)GF=GC.理由如下:如图1,连接GE,∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵四边形ABCD是矩形,∴∠C=∠B=90°,∴∠EFG=90°,∴Rt△GFE≌Rt△GCE(HL),∴GF=GC;(2)设GC=x,则AG=4+x,DG=4﹣x,在Rt△ADG中,62+(4﹣x)2=(4+x)2,解得x=94.∴GC=94;(3)(1)中的结论仍然成立.证明:如图2,连接FC,∵E是BC的中点,∴BE=CE,∵将△ABE沿AE折叠后得到△AFE,∴BE=EF,∠B=∠AFE,∴EF=EC,∴∠EFC=∠ECF,∵矩形ABCD为平行四边形,∴∠B=∠D,∵∠ECD=180°﹣∠D,∠EFG=180°﹣∠AFE=180°﹣∠B=180°﹣∠D,∴∠ECD=∠EFG,∴∠GFC=∠GFE﹣∠EFC=∠ECG﹣∠ECF=∠GCF,∴∠GFC=∠GCF,∴FG=CG;即(1)中的结论仍然成立.13.解:(1)∵AE=CE,DE=EF,∠AED=∠CEF,∴△AED≌△CEF(SAS),∴AD=CF,∠ADE=∠F,∴BD∥CF,∵AD=BD,∴BD=CF,∴四边形BCFD是平行四边形,∴DF=BC,DF∥BC,(2)证明:∵四边形ABCD是正方形∴AB=BC,∠ABC=90°,即∠ABE+∠CBE=90°∵△BEH是等腰直角三角形,∴EH=2BE=2BH,∠BEH=∠BHE=45°,∠EBH=90°,即∠CBH+∠CBE=90°∴∠ABE=∠CBH,∴△ABE≌△CBH(SAS),∴AE=CH,∠AEB=∠CHB,∴∠CHE=∠CHB﹣∠BHE=∠CHB﹣45°=∠AEB﹣45°,∵四边形AEFG是正方形,∴AE=EF,∠AEF=90°,∴EF=HC,∠FEH=360°﹣∠AEF﹣∠AEB﹣∠BEH=225°﹣∠AEB,∴∠CHE+∠FEH=∠AEB﹣45°+225°﹣∠AEB=180°,∴EF∥HC且EF=HC,∴四边形EFCH是平行四边形,∴CF=EH=√2BE;(3)CF=√3BE,如图,过点B作BH,使∠EBH=120°,且BH=BE,连接EH、CH,则∠BHE=∠BEH=30°,∵∠ABC=∠EBH=120°,∴∠ABE=∠CBH,∵AB=BC,BE=BH,∴△AEB≌△CHB(SAS),∴CH=AE=EF,∠CHB=∠AEB,∵∠CHE=∠CHB﹣∠BHE=∠AEB﹣30°,∠FEH=360°﹣∠AEF﹣∠AEB﹣∠BEH=210°﹣∠AEB,∴∠CHE+∠FEH=180°,∴CH∥EF且CH=EF,∴四边形EFCH是平行四边形,∴CF=EH,过B作BN⊥EH于N,在△EBH中,∠EBH=120°,BH=BE,∴∠BEN=30°,EH=2EN,BE,∴EN=√32∴EH=√3BE,∴CF=EH=√3BE.。

四边形之类比探究综合检测(探究不变特征)(含答案)

四边形之类比探究综合检测(探究不变特征)(含答案)

四边形之类比探究综合检测(探究不变特征)
一、单选题(共5道,每道20分)
1.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE,FE,则线段CE与EF之间的数量关系为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:类比探究
2.(上接第1题)将图1中的△AED绕点A顺时针旋转,使△AED的一边AE恰好与△ACB 的边
AC在同一条直线上(如图2),连接BD,取BD的中点F,则线段CE与FE之间的数量关系为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:类比探究
3.(上接第1,2题)将图1中的△AED绕点A顺时针旋转任意的角度(如图3),连接
BD,取BD的中点F,则线段CE与FE之间的数量关系为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:类比探究
4.如图1,平面内有一等腰直角三角板ABC(∠ACB=90°)和一直线MN.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,则线段AF,BF,CE之间的数量关系为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:类比探究
5.(上接第4题)若三角板绕点A顺时针旋转至图2的位置,其他条件不变,则线段AF,BF,CE之间的数量关系为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:类比探究。

四边形之类比探究(一)(习题)

四边形之类比探究(一)(习题)

图2ADBCN M EF四边形之类比探究(一)(习题)➢ 例题示范例1:已知等腰三角形ABC 中,∠ACB =90°,点E 在AC 的延长线上,且∠DEC =45°,M ,N 分别是DE ,AE 的中点,连接MN ,交直线BE 于点F .当点D 在CB 的延长线上时,如图1所示,易证12MF FN BE +=.(1)如图2,当点D 在CB 边上时,上述结论是否成立?若成立,请给出证明;若不成立,请写出你的猜想,并说明理由.(2)当点D 在BC 的延长线上时,如图3所示,请直接写出线段MF ,FN ,BE之间的数量关系(不需要证明).【思路分析】1. 里面有多个中点,考虑中位线,先证明易证的思路.图3ADBC NME F图1AD BC NMEF连接AD,由中位线定理可知12MN AD=,由题意可证△ACD≌△BCE,得到AD=BE,即12MN BE=,所以12MF FN BE+=.2.照搬易证的思路解决第一问.连接AD,由中位线定理可知12MN AD=,由题意可证△ACD≌△BCE,得到AD=BE,即12MN BE=,所以12NF MF BE-=.3.照搬易证的思路解决第二问.连接AD,由中位线定理可知12MN AD=,由题意可证△ACD≌△BCE,得到AD=BE,即12MN BE=,所以12MF NF BE-=.【过程书写】证明:(1)不成立,理由如下:连接AD,在△AED中,M是DE的中点,N是AE的中点,∴MN是中位线∴12 MN AD=在等腰三角形ABC中,∠ACB=90°∴AC=CB,∵∠ACB=90°,∠DEC=45°∴CD=CE∴△ACD≌△BCE(SAS)∴AD=BE∴12 MN BE=∴12FN MF BE-=MN=2ADM是DE的中点,N是AE的中点MF+FN=12BEMN=12AD=12BEAD=BE△ACD≌△BCE(SAS)(2)12 MF FN BE -=➢巩固练习1.已知△ABC是等边三角形,D是直线BC上一动点(不与点B,C重合),以AD为边作菱形ADEF(A,D,E,F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在BC边上时,求证:①BD=CF;②AC CD CF=+.(2)如图2,当点D 在BC 的延长线上时,其他条件不变,结论AC CD CF =+是否仍成立?若成立,请证明;若不成立,请写出AC ,CD ,CF 之间的数量关系,并说明理由.(3)如图3,当点D 在CB 的延长线上时,其他条件不变,探究AC ,CD ,CF 之间的数量关系.FEDCBA图1FED C B A图2图32. 如图1,C 是线段BG 上一点,分别以BC ,CG 为边,向外作正方形BCDA和正方形CGEF ,使点D 落在线段CF 上,M 是AE 的中点,连接DM ,FM . (1)求证:DM =FM ,DM ⊥FM .(2)如图2,将正方形CGEF 绕点C 顺时针旋转45°,其他条件不变,探究线段DM ,FM 之间的关系,并加以证明.(3)如图3,将正方形CGEF 绕点C 旋转任意角度,其他条件不变,探究线段DM ,FM 之间的关系,并加以证明.FED C B AMFEGD CBA图1MFEG DCBA图2MFEGDCB A图33. (1)如图1,△ABC 和△BDE 都是等腰直角三角形,AB ⊥AC ,BD ⊥DE ,点D 在AB 边上.取CE 的中点F ,连接AF ,DF ,猜想AF ,DF 之间的数量关系和位置关系,并加以证明.(2)将△BDE 旋转至如图2所示的位置,使点E 在AB 的延长线上,点D 在CB 的延长线上,其他条件不变,判断(1)中AF ,DF 之间的数量关系和位置关系是否发生变化,并加以证明.FED CBA图1FEDCBA图2【参考答案】➢ 巩固练习 1.(1)证明略.提示:证明△ABD ≌△ACF ,得到BD =CF , 进而得到AC CD CF =+. (2)AC CF CD =-,理由略. (3)AC CD CF =-. 2.(1)证明略.提示:延长DM ,交EF 于点H .证明△ADM≌△EHM(ASA),得到AD=EH,DM=HM,进而得到△DFH是等腰直角三角形,所以DM=FM,DM⊥FM.(2)DM=FM,DM⊥FM,证明略.提示:延长DM,交CE于点H,连接DF,HF.证明△ADM≌△EHM(ASA),得到AD=EH,DM=HM,再证明△CDF≌△EHF(SAS),得到DF=HF,∠CFD=∠EFH,进而得到△DFH是等腰直角三角形,则可得证.(3)DM=FM,DM⊥FM,证明略.提示:过点E作EH∥AD,交DM的延长线于点H,连接DF,HF.3.(1)AF=DF,AF⊥DF,证明略.提示:延长DF,交AC于点H.证明△DEF≌△HCF,得到DE=HC,DF=HF,进而得到△ADH是等腰直角三角形,所以AF=DF,AF⊥DF.(2)(1)中AF,DF之间的数量关系和位置关系不发生变化,证明略.提示:过点C作CH∥DE,交DF的延长线于点H,连接AD,AH.。

三角形与四边形重难点题型-三年中考数学真题分项汇编(解析版)

三角形与四边形重难点题型-三年中考数学真题分项汇编(解析版)

三角形与四边形重难点题型共23道题一、单选题1.(2022·浙江温州)如图,在Rt ABC 中,90ACB ∠=︒,以其三边为边向外作正方形,连结CF ,作GM CF ⊥于点M ,BJ GM ⊥于点J ,⊥AK BJ 于点K ,交CF 于点L .若正方形ABGF 与正方形JKLM 的面积之比为5,102CE =CH 的长为( )A 5B 35+C .2D 10【答案】C【解析】【分析】 设CF 交AB 于P ,过C 作CN ⊥AB 于N ,设正方形JKLM 边长为m ,根据正方形ABGF 与正方形JKLM 的面积之比为5,得AF =AB 5,证明⊥AFL ⊥⊥FGM (AAS ),可得AL =FM ,设AL =FM =x ,在Rt ⊥AFL 中,x 2+(x +m )2=5)2,可解得x =m ,有AL =FM =m ,FL =2m ,从而可得AP 5m ,FP =52m ,BP 5m ,即知P 为A B 中点,CP =AP =BP 5m 由⊥CPN ⊥⊥FP A ,得CN =m ,PN =12m ,即得AN 51+m ,而tan⊥BAC =51BC CN AC AN =+⊥AEC ⊥⊥BCH ,根据相似三角形的性质列出方程,解方程即可求解. 【详解】解:设CF 交AB 于P ,过C 作CN ⊥AB 于N ,如图:设正方形JKLM 边长为m ,⊥正方形JKLM 面积为m 2,⊥正方形ABGF 与正方形JKLM 的面积之比为5,⊥正方形ABGF 的面积为5m 2,⊥AF =AB 5,由已知可得:⊥AFL =90°-⊥MFG =⊥MGF ,⊥ALF =90°=⊥FMG ,AF =GF ,⊥⊥AFL ⊥⊥FGM (AAS ),⊥AL =FM ,设AL =FM =x ,则FL =FM +ML =x +m ,在Rt ⊥AFL 中,AL 2+FL 2=AF 2,⊥x 2+(x +m )2=5)2,解得x =m 或x =-2m (舍去),⊥AL =FM =m ,FL =2m ,1tan ,22AP ALmAFL AF FL m ∠====1,25m =∴AP 5m22225555()(5),522mm mAP AF m m BP AB A m FP P =+=+==-==∴⊥AP =BP ,即P 为A B 中点,⊥⊥ACB =90°,⊥CP =AP =BP 5m⊥⊥CPN =⊥APF ,⊥CNP =90°=⊥F AP ,⊥⊥CPN ⊥⊥FP A ,,CP CN PN FP AF AP ∴==即525552mm m m ==⊥CN =m ,PN =12m ,⊥AN =AP +PN 51+ ∴tan⊥BAC =51BC CN AC AN ==+ ⊥⊥AEC 和⊥BCH 是等腰直角三角形,⊥⊥AEC ⊥⊥BCH ,,BC CH AC CE∴= 102,CE =51102=++ 2,CH ∴=故选:C .【点睛】本题考查正方形性质及应用,涉及全等三角形判定与性质,相似三角形判定与性质,勾股定理等知识,解题的关键是用含m 的代数式表示相关线段的长度.2.(2020·浙江湖州)四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD 的内角,正方形ABCD 变为菱形ABC ′D ′.若⊥D ′AB =30°,则菱形ABC ′D ′的面积与正方形ABCD的面积之比是( )A .1B .12C 2D 3【答案】B【解析】【分析】 如图,连接DD ',延长C D ''交AD 于E ,由菱形ABC D '',可得AB C D '',进一步说明30ED D '∠=︒,得到菱形AE =12AD ;又由正方形ABCD ,得到AB =AD,即菱形的高为AB 的一半,然后分别求出菱形ABC D ''和正方形ABCD 的面积,最后求比即可.【详解】解:如图:延长C D ''交AD 于E⊥菱形ABC D ''⊥AB C D ''⊥30D AB '∠=︒⊥30AD E D AB ''∠=∠=︒⊥AE =12AD又⊥正方形ABCD∴AB =AD,即菱形的高为AB 的一半 ⊥菱形ABC ′D ′的面积为212AB ,正方形ABCD 的面积为AB 2. ⊥菱形ABC ′D ′的面积与正方形ABCD 的面积之比是12. 故答案为B .【点睛】本题主要考出了正方形的性质、菱形的性质以及含30°直角三角形的性质,其中表示出菱形ABC ′D ′的面积是解答本题的关键.3.(2020·浙江温州)如图,在Rt △AB C 中,⊥ACB =90°,以其三边为边向外作正方形,过点C 作CR ⊥FG 于点R ,再过点C 作PQ ⊥CR 分别交边DE ,BH 于点P ,Q .若QH =2PE ,PQ =15,则CR 的长为( )A .14B .15C .83D .5【答案】A【解析】【分析】 方法一:连接EC ,CH ,设AB 交CR 于点J ,先证得△ECP ⊥⊥HCQ ,可得12PC CE EP CQ CH HQ ===,进而可求得CQ =10,AC :BC =1:2,由此可设AC =a ,则BC =2a ,利用AC∴BQ ,CQ∴AB ,可证得四边形ABQC 为平行四边形,由此可得AB =CQ =10,再根据勾股定理求得25AC =5BC =4CJ =,进而可求得CR 的长.方法二:设AB 交CR 于点M ,先证得DCP BCQ ∆∆,可得DP CD PC DE BQ CB CQ BH ===、12PE PC QH CQ ==,进而可求得PC =5,CQ =10,设AC =a ,则BC =2a ,利用AC∴BQ ,CQ∴AB ,可证得四边形ABQC 为平行四边形,由此可得AB =CQ =10,再根据勾股定理求得25AC =45BC =4CJ =,进而可求得CR 的长.【详解】方法一:解:如图,连接EC ,CH ,设AB 交CR 于点J ,⊥四边形ACDE ,四边形BC I H 都是正方形,⊥⊥ACE =⊥BCH =45°,⊥⊥ACB =90°,⊥BC I =90°,⊥⊥ACE +⊥ACB +⊥BCH =180°,⊥ACB +⊥BC I =180°,⊥点E 、C 、H 在同一直线上,点A 、C 、I 在同一直线上,⊥DE∴A I ∴BH ,⊥⊥CEP =⊥CHQ ,⊥⊥ECP =⊥QCH ,⊥⊥ECP ⊥⊥HCQ , ⊥12PC CE EPCQ CH HQ ===,⊥PQ =15,⊥PC =5,CQ =10,⊥EC :CH =1:2,⊥AC :BC =1:2,设AC =a ,则BC =2a ,⊥PQ ⊥CR ,CR ⊥AB ,⊥CQ∴AB ,⊥AC∴BQ ,CQ∴AB ,⊥四边形ABQC 为平行四边形,⊥AB =CQ =10,⊥222AC BC AB +=,⊥25100a =, ⊥25a = ⊥25AC =45BC =⊥1122AC BC AB CJ ⋅⋅=⋅⋅, ⊥25454CJ ⨯=,⊥JR =AF =AB =10,⊥CR =CJ +JR =14,故选:A .方法二:⊥四边形ACDE ,四边形BC I H 都是正方形90,,D CBQ DC DE BC BH ∴∠=∠=︒==DCP BCQ ∠=∠ DCP BCQ ∴∆∆DPCD PC DEBQ CB CQ BH ∴===PEPCQH CQ ∴= 2QH PE =12PCCQ ∴=⊥PQ =15,⊥PC =5,CQ =10设CD DE AC a ===,则2BC BH a ==在Rt △AB C 中,⊥ACB =90°由勾股定理得 5AB a =由等面积法得 255AC BCCJ AB ==设CR 与AB 交于点J⊥四边形ABGF 是正方形PQ ⊥CR ,CR ⊥AB ,⊥ACB =90°⊥CQ ∥AB ,AC ∥BQ ,四边形AMRF 是矩形⊥四边形ABQC 为平行四边形,5JR AF AB a === ⊥5CQ AB a ==25a ∴=25514CR CJ JR a ∴=+=+= 故选:A .【点睛】本题考查了正方形的性质、相似三角形的判定及性质、平行四边形的判定及性质、勾股定理的应用及等面积法,作出正确的辅助线并灵活运用相关图形的性质与判定是解决本题的关键.4.(2020·浙江台州)把一张宽为1cm 的长方形纸片ABCD 折叠成如图所示的阴影图案,顶点A ,D 互相重合,中间空白部分是以E 为直角顶点,腰长为2cm 的等腰直角三角形,则纸片的长AD (单位:cm )为( )A .732+B .742+C .832+D .842+【答案】D【解析】【分析】 如图,过点M 作MH ⊥A 'R 于H ,过点N 作NJ ⊥A 'W 于J .想办法求出AR ,RM ,MN ,NW ,WD 即可解决问题.【详解】解:如图,过点M 作MH ⊥A 'R 于H ,过点N 作NJ ⊥A 'W 于J .由题意⊥EMN 是等腰直角三角形,EM =EN =2,MN =22⊥四边形EMHK 是矩形,⊥EK = A 'K =MH =1,KH =EM =2,⊥⊥RMH 是等腰直角三角形,⊥RH =MH =1,RM 2NW 2题意AR =R A '= A 'W =WD =4,⊥AD =AR +RM +MN +NW +DW 2222842+故答案为:D.【点睛】本题考查翻折变换,等腰直角三角形的判定和性质,矩形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形或特殊四边形解决问题.二、填空题5.(2022·浙江绍兴)如图,10AB =,点C 在射线BQ 上的动点,连接AC ,作CD AC ⊥,CD AC =,动点E 在AB 延长线上,tan 3QBE ∠=,连接CE ,DE ,当CE DE =,CE DE ⊥时,BE 的长是______.【答案】5或354【解析】【分析】 过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =3x ,由⊥ACN ⊥⊥CDM可得AN =CM =10+x ,CN =DM =3x ,由点C 、M 、D 、E 四点共圆可得⊥NME 是等腰直角三角形,于是NE =10-2x ,由勾股定理求得AC 可得CE ,在Rt ⊥CNE 中由勾股定理建立方程求得x ,进而可得BE ;【详解】解:如图,过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =BN •tan⊥CBN =3x ,⊥⊥CAD ,⊥ECD 都是等腰直角三角形,⊥CA =CD ,EC =ED ,⊥EDC =45°,⊥CAN +⊥ACN =90°,⊥DCM +⊥ACN =90°,则⊥CAN =⊥DCM ,在⊥ACN 和⊥CDM 中:⊥CAN =⊥DCM ,⊥ANC =⊥CMD =90°,AC =CD ,⊥⊥ACN ⊥⊥CDM (AAS ),⊥AN =CM =10+x ,CN =DM =3x ,⊥⊥CMD =⊥CED =90°,⊥点C 、M 、D 、E 四点共圆,⊥⊥CME =⊥CDE =45°,⊥⊥ENM =90°,⊥⊥NME 是等腰直角三角形,⊥NE =NM =CM -CN =10-2x ,Rt ⊥AN C 中,AC ()()2222103AN CN x x +++ Rt ⊥EC D 中,CD =AC ,CE =22CD , Rt ⊥CNE 中,CE 2=CN 2+NE 2,⊥()()()()2222110331022x x x x ⎡⎤++=+-⎣⎦, 2425250x x -+=,()()4550x x --=,x =5或x =54, ⊥BE =BN +NE =x +10-2x =10-x ,⊥BE =5或BE =354; 故答案为:5或354; 【点睛】本题考查了三角函数,全等三角形的判定和性质,圆内接四边形的性质,勾股定理,一元二次方程等知识;此题综合性较强,正确作出辅助线是解题关键.6.(2021·浙江绍兴)如图,在平面直角坐标系中,正方形ABCD 的顶点A 在x 轴正半轴上,顶点B ,C 在第一象限,顶点D 的坐标5(,2)2. 反比例函数k y x=(常数0k >,0x >)的图象恰好经过正方形ABCD 的两个顶点,则k 的值是_______.【答案】5或22.5【解析】【分析】先设一个未知数用来表示出B 、C 两点的坐标,再利用反比例函数图像恰好经过B 、C 、D 的其中两个点进行分类讨论,建立方程求出未知数的值,符合题意时进一步求出k 的值即可.【详解】解:如图所示,分别过B 、D 两点向x 轴作垂线,垂足分别为F 、E 点,并过C 点向BF 作垂线,垂足为点G ;⊥正方形ABCD ,⊥⊥DAB =90°,AB =BC =CD =DA ,⊥⊥DAE +⊥BAF =90°,又⊥⊥DAE +⊥ADE =90°,⊥BAF +⊥ABF =90°,⊥⊥DAE =⊥ABF ,⊥ADE =⊥BAF ,⊥ADE ⊥BAF ,同理可证⊥ADE ⊥⊥BAF ⊥⊥CBG ;⊥DE =AF =BG ,AE =BF =CG ;设AE =m ,⊥点D 的坐标 (52,2) , ⊥OE =52,DE =AF =BG =2, ⊥B (92m +,m ),C (92,2m +), ⊥5252⨯=, 当()9252m +=时,809m =-<,不符题意,舍去;当952m m ⎛⎫+= ⎪⎝⎭时,由0m ≥解得1619m -=,符合题意;故该情况成立,此时 5k =; 当()99222m m m ⎛⎫+=+ ⎪⎝⎭时,由 0m ≥解得3m =,符合题意,故该情况成立,此时()93222.52k =⨯+=; 故答案为:5或22.5.【点睛】本题综合考查了全等三角形的判定与性质、正方形的性质、反比例函数的图像与性质、解一元二次方程等内容,解题的关键是牢记相关概念与性质,能根据题意建立相等关系列出方程等,本题涉及到了分类讨论和数形结合的思想方法等.7.(2021·浙江杭州)如图是一张矩形纸片ABCD ,点M 是对角线AC 的中点,点E 在BC 边上,把DCE 沿直线DE 折叠,使点C 落在对角线AC 上的点F 处,连接DF ,EF .若MF AB =,则DAF ∠=_____度.【答案】18【解析】【分析】连接MD ,设⊥DAF =x ,利用折叠与等腰三角形的性质,用x 的代数式表示出⊥ADC =90°,列出方程解方程即可.【详解】连接MD ,设⊥DAF =x根据矩形的基本性质可知AM =MD ,AD ⊥BC ,⊥BCD =⊥ADC =90°⊥⊥MDA =⊥DAF =x ,⊥ACB =⊥DAC =x⊥⊥DMF =2x⊥⊥DCE 折叠得到⊥DFE⊥DF =CD =AB ,DE ⊥FC ,⊥FDE =⊥CDE又MF =AB⊥MF =DF⊥⊥MDF =2x⊥⊥BCD =⊥ACB +⊥ACD =90°,⊥EDC +⊥FCD =90°⊥⊥CDE =⊥ACD =x⊥⊥FDE =⊥CDE =x⊥⊥ADC =⊥ADM +⊥MDF +⊥FDE +⊥CDE =x +2x +x +x =5x =90°⊥x =18°故⊥DAF =18°故答案为18.【点睛】本题考查了矩形的折叠问题,能够做出合适的辅助线用⊥DAF 表示出⊥ADC 是解题关键.8.(2021·浙江金华)如图1是一种利用镜面反射,放大微小变化的装置.木条BC 上的点P 处安装一平面镜,BC 与刻度尺边MN 的交点为D ,从A 点发出的光束经平面镜P 反射后,在MN 上形成一个光点E .已知,, 6.5AB BC MN BC AB ⊥⊥=,4,8BP PD ==.(1)ED 的长为____________.(2)将木条BC 绕点B 按顺时针方向旋转一定角度得到BC '(如图2),点P 的对应点为P ',BC '与MN 的交点为D′,从A 点发出的光束经平面镜P '反射后,在MN 上的光点为E '.若5DD '=,则EE '的长为____________.【答案】 13232【解析】【分析】(1)由题意,证明△ABP ⊥⊥EDP ,根据相似三角形的性质,即可求出ED 的长度;(2)过A 作AH ⊥BN 交NB 延长线于H ,过E′作E′F ⊥BN 于F ,设E′D =x,E′D′=5+x,在Rt △BDN 中,由勾股定理D′B 12=,可证△ABH ⊥⊥BD′D ⊥⊥E′D′F ,=6=2.5AH BH ,,6012255,1313x x E F FD ++''==,从A 点发出的光束经平面镜P′反射后,在MN 上形成一个光点E′.△AHP′⊥⊥E′FP′,6 6.560+1225591313x x =+-,解得x =1.5. 【详解】解:(1)由题意,⊥,AB BC MN BC ⊥⊥,⊥90ABP EDP ∠=∠=︒,⊥从A 点发出的光束经平面镜P 反射后,在MN 上形成一个光点E .⊥APB EPD ∠=∠,⊥⊥ABP ⊥⊥EDP ,⊥AB BP ED DP =, 即6.548ED =, ⊥13ED =;故答案为:13.(2)过A 作AH ⊥BN 交NB 延长线于H ,过E′作E′F ⊥BN 于F ,设E′D =x,E′D′=5+x,在Rt △BDN 中,⊥BD =12,DD′=5,由勾股定理D′B 2222+12+513BD DD ',⊥⊥AHB =⊥ABD =⊥E′FN =⊥BDD′=90°,⊥⊥ABH +⊥DBD′=⊥DBD′+⊥DD′B =FE D ''∠+⊥E′D′F ,⊥⊥ABH =⊥BD′D =⊥E′D′F ,⊥⊥ABH ⊥⊥BD′D ⊥⊥E′D′F ,⊥AB AH BH BD BD DD =='',ED E F FD BD BD DD ''''=='',⊥6.513125AH BH ==,513125x E F FD ''+==,⊥=6=2.5AH BH ,,6012255,1313xxE F FD ++''==,⊥从A 点发出的光束经平面镜P′反射后,在MN 上形成一个光点E′.⊥AP H E P F '''∠=∠,⊥⊥AHP′⊥⊥E′FP′,HP′=HB +BP =2.5+4=6.5,P′D′=BD′-BP′=13-4=9,P′F = P′D′-FD′=9-25513x +,⊥AH P H E F P F '=''即6 6.560+1225591313x x =+-,解得x =1.5,经检验x =1.5是方程的解,EE′=DE -DE′=13-1.5=11.5=232.故答案为232.【点睛】本题考查相似三角形性质与判定,勾股定理,光束经平面镜P性质,掌握相似三角形性质与判定,勾股定理,光束经平面镜P性质,利用相似三角形的性质构造方程6 6.560+1225591313x x=+-是解题关键.9.(2020·21的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的_____(填序号).2,⊥1,2﹣1,33【答案】①②⊥⊥.【解析】【分析】首先作出图形,再根据矩形的性质和等腰三角形的判定即可求解.【详解】解:如下图所示:在BC上截取BE=1,连接AE⊥⊥ABE为等腰直角三角形,AB=BE=1,AE222AB BE+CE=BC-BE21⊥⊥BAE=45°,⊥EAD=90°-⊥BAE=45°在AE上截取AF=1,连接DF、CF⊥EF=AE-AF21=CE⊥⊥EFC21过点F作FG⊥AD于G⊥AG=AF·cos⊥F AG2⊥DG=AD-AG2⊥FG垂直平分AD⊥AF=FD=1⊥⊥AFD为等腰三角形,腰长为1⊥DFC为等腰三角形,腰长为1;如下图所示:在AD上截取DF=1,连接BF⊥⊥DFC为等腰直角三角形,腰长为1,AF=AD-DF21根据勾股定理可得CF222DF DC+⊥⊥CBF2在AB上截取AE21=AF⊥⊥AEF21,BE=AB-AE=22根据勾股定理可得EF2222AE AF+==BE⊥⊥EBF为等腰三角形,腰长为22如下图所示:连接AC、BD交于点E易知⊥EAB、⊥EBC、⊥ECD和⊥EAD均为等腰三角形利用勾股定理AC223AB BC+⊥AE=BE=CE=DE=132AC=综上:其中一个等腰三角形的腰长可以是2⊥1,21,33故答案为:①⊥⊥⊥.【点睛】此题考查的是矩形的性质、等腰三角形的判定及性质和锐角三角函数,掌握矩形的性质、等腰三角形的判定及性质和锐角三角函数是解决此题的关键.10.(2021·浙江宁波)在平面直角坐标系中,对于不在坐标轴上的任意一点(),A x y ,我们把点11,B x y ⎛⎫ ⎪⎝⎭称为点A 的“倒数点”.如图,矩形OCDE 的顶点C 为()3,0,顶点E 在y 轴上,函数()20=>y x x的图象与DE 交于点A .若点B 是点A 的“倒数点”,且点B 在矩形OCDE 的一边上,则OBC 的面积为_________.【答案】14或32 【解析】【分析】根据题意,点B 不可能在坐标轴上,可对点B 进行讨论分析:⊥当点B 在边DE 上时;⊥当点B 在边CD 上时;分别求出点B 的坐标,然后求出OBC 的面积即可.【详解】 解:根据题意,⊥点11,B x y ⎛⎫ ⎪⎝⎭称为点(),A x y 的“倒数点”, ⊥0x ≠,0y ≠,⊥点B 不可能在坐标轴上; ⊥点A 在函数()20=>y x x的图像上, 设点A 为2(,)x x ,则点B 为1(,)2x x , ⊥点C 为()3,0,⊥3OC =,⊥当点B 在边DE 上时;点A 与点B 都在边DE 上,⊥点A 与点B 的纵坐标相同,即22xx=,解得:2x=,经检验,2x=是原分式方程的解;⊥点B为1(,1)2,⊥OBC的面积为:133122S=⨯⨯=;⊥当点B在边CD上时;点B与点C的横坐标相同,⊥13x=,解得:13x=,经检验,13x=是原分式方程的解;⊥点B为1 (3,)6,⊥OBC的面积为:1113264S=⨯⨯=;故答案为:14或32.【点睛】本题考查了反比例函数的图像和性质,矩形的性质,解分式方程,坐标与图形等知识,解题的关键是熟练掌握反比例函数的性质,运用分类讨论的思想进行分析.三、解答题11.(2022·浙江湖州)已知在Rt⊥AB C中,⊥ACB=90°,a,b分别表示⊥A,⊥B的对边,a b>.记⊥ABC 的面积为S.(1)如图1,分别以AC ,CB 为边向形外作正方形ACDE 和正方形BGF C .记正方形ACDE 的面积为1S ,正方形BGFC 的面积为2S .⊥若19S =,216S =,求S 的值;⊥延长EA 交GB 的延长线于点N ,连结FN ,交BC 于点M ,交AB 于点H .若FH ⊥AB (如图2所示),求证:212S S S -=.(2)如图3,分别以AC ,CB 为边向形外作等边三角形ACD 和等边三角形CBE ,记等边三角形ACD 的面积为1S ,等边三角形CBE 的面积为2S .以AB 为边向上作等边三角形ABF (点C 在⊥ABF 内),连结EF ,CF .若EF ⊥CF ,试探索21S S -与S 之间的等量关系,并说明理由.【答案】(1)⊥6;⊥见解析(2)2114S S S -=,理由见解析 【解析】【分析】(1)⊥将面积用a ,b 的代数式表示出来,计算,即可⊥利用AN 公共边,发现⊥F AN ⊥⊥ANB ,利用FA AN AN NB =,得到a ,b 的关系式,化简,变形,即可得结论 (2)等边ABF 与等边CBE △共顶点B ,形成手拉手模型,⊥ABC ⊥⊥FBE ,利用全等的对应边,对应角,得到:AC =FE =b ,⊥FEB =⊥ACB =90°,从而得到⊥FEC =30°,再利用Rt CFE △,3cos30FE b CE a ︒===,得到a 与b 的关系,从而得到结论(1)⊥19S =,216S =⊥b =3,a =4⊥⊥ACB =90°⊥11S ab 34622==⨯⨯=⊥由题意得:⊥F AN =⊥ANB =90°,⊥FH ⊥AB⊥⊥AFN =90°-⊥F AH =⊥NAB⊥⊥F AN ⊥⊥ANB⊥FAANAN NB =⊥a baa b +=,得:22ab b a +=⊥122S S S +=.即212S S S -=(2)2114S S S -=,理由如下:⊥⊥ABF 和⊥BEC 都是等边三角形⊥AB =FB ,⊥ABC =60°-⊥FBC =⊥FBE ,CB =EB⊥⊥ABC ⊥⊥FBE (SAS )⊥AC =FE =b⊥FEB =⊥ACB =90°⊥⊥FEC =30°⊥EF ⊥CF ,CE =BC =a ⊥3cos30b FE a CE ==︒ ⊥3b = ⊥2132S ab == 由题意得:213S =,223S ⊥22221333S S -==⊥2114S S S -=【点睛】 本题考查勾股定理,相似,手拉手模型,代数运算,本题难点是图二中的相似和图三中的手拉手全等 12.(2022·浙江宁波)(1)如图1,在ABC 中,D ,E ,F 分别为,,AB AC BC 上的点,,,DE BC BF CF AF =∥交DE 于点G ,求证:DG EG =.(2)如图2,在(1)的条件下,连接,CD CG .若,6,3⊥==CG DE CD AE ,求DE BC的值. (3)如图3,在ABCD 中,45,︒∠=ADC AC 与BD 交于点O ,E 为AO 上一点,EG BD ∥交AD 于点G ,⊥EF EG 交BC 于点F .若40,︒∠=EGF FG 平分,10∠=EFC FG ,求BF 的长.【答案】(1)证明见详解(2)13(3)553+【解析】【分析】(1)利用∥DE BC ,证明,ADG ABF AEG ACF △△△△,利用相似比即可证明此问;(2)由(1)得DG EG =,CG DE ⊥,得出DCE 是等腰三角形,利用三角形相似即可求出 DE BC 的值; (3)遵循第(1)、(2)小问的思路,延长GE 交AB 于点M ,连接FM ,作MN BC ⊥,垂足为N .构造出等腰三角形、含30°、45°角的特殊直角三角形,求出BN 、FN 的值,即可得出BF 的长.(1)解:⊥DE BC ∥,⊥,ADG ABF AEG ACF △△△△, ⊥,==DGAGEGAGBF AF CF AF ,⊥DG EGBF CF =.⊥BF CF =,⊥DG EG =.(2)解:由(1)得DG EG =,⊥CG DE ⊥,⊥6CE CD ==.⊥3AE =,⊥9AC AE CE =+=.⊥DE BC ∥,⊥ADE ABC .⊥13DEAEBC AC ==.(3)解:如图,延长GE 交AB 于点M ,连接FM ,作MN BC ⊥,垂足为N .在ABCD 中,,45=∠=∠=︒BO DO ABC ADC .⊥EG BD ∥,⊥由(1)得=ME GE ,⊥⊥EF EG ,⊥10==FM FG ,⊥∠=∠EFM EFG .⊥40∠︒=EGF ,⊥40EMF ∠=︒,⊥50EFG ∠=︒.⊥FG 平分EFC ∠,⊥50∠=∠=︒EFG CFG ,⊥18030∠=︒-∠-∠-∠=︒BFM EFM EFG CFG . ⊥.在Rt FMN 中,sin 305,cos3053=︒==︒=MN FM FN FM⊥45,∠=︒⊥MBN MN BN ,⊥5==BN MN , ⊥553=+=+BF BN FN【点睛】本题考查了相似三角形的性质及判定、等腰三角形的性质及判定、解特殊的直角三角形等知识,遵循构第(1)、(2)小问的思路,构造出等腰三角形和特殊的直角三角形是解决本题的关键.13.(2021·浙江宁波)【证明体验】(1)如图1,AD 为ABC 的角平分线,60ADC ∠=︒,点E 在AB 上,AE AC =.求证:DE 平分ADB ∠.【思考探究】(2)如图2,在(1)的条件下,F 为AB 上一点,连结FC 交AD 于点G .若FB FC =,2DG =,3CD =,求BD 的长.【拓展延伸】(3)如图3,在四边形ABCD 中,对角线AC 平分,2BAD BCA DCA ∠∠=∠,点E 在AC 上,EDC ABC ∠=∠.若5,25,2BC CD AD AE ===,求AC 的长.【答案】(1)见解析;(2)92;(3)163 【解析】【分析】(1)根据SAS 证明EAD CAD ≌△△,进而即可得到结论; (2)先证明EBD GCD ∽,得BD DE CD DG=,进而即可求解; (3)在AB 上取一点F ,使得AF AD =,连结CF ,可得AFC ADC ≌,从而得DCE BCF ∽,可得,CDCECED BFC BC CF =∠=∠,4CE =,最后证明EAD DAC ∽,即可求解.【详解】解:(1)⊥AD 平分BAC ∠,⊥EAD CAD ∠=∠,⊥,==AE AC AD AD ,⊥()EAD CAD SAS ≌,⊥60ADE ADC ∠=∠=︒,⊥18060EDB ADE ADC ∠=︒-∠-∠=︒,⊥BDE ADE =∠∠,即DE 平分ADB ∠;(2)⊥FB FC =,⊥EBD GCD ∠=∠,⊥60BDE GDC ∠=∠=︒,⊥EBD GCD ∽,⊥BDDECD DG =.⊥EAD CAD ≌△△,⊥3DE DC ==.⊥2DG =,⊥92BD =;(3)如图,在AB 上取一点F ,使得AF AD =,连结CF .⊥AC 平分BAD ∠,⊥FAC DAC ∠=∠⊥AC AC =,⊥()AFC ADC SAS ≌,⊥,,CF CD ACF ACD AFC ADC =∠=∠∠=∠.⊥2ACF BCF ACB ACD ∠+∠=∠=∠,⊥DCE BCF ∠=∠.⊥EDC FBC ∠=∠,⊥DCE BCF ∽,⊥,CD CE CED BFC BC CF=∠=∠. ⊥5,25BC CF CD ===⊥4CE =.⊥180180AED CED BFC AFC ADC ∠=︒-∠=︒-∠=∠=∠,又⊥EAD DAC ∠=∠,⊥EAD DAC ∽⊥12EA AD AD AC ==, ⊥4AC AE =,⊥41633AC CE ==. 【点睛】本题主要考查全等三角形的判定和性质,相似三角形的判定和性质,添加辅助线,构造全等三角形和相似三角形,是解题的关键.14.(2021·浙江湖州)已知在ACD △中,Р是CD 的中点,B 是AD 延长线上的一点,连结,BC AP .(1)如图1,若90,60,,3ACB CAD BD AC AP ︒∠=︒∠===BC 的长.(2)过点D 作//DE AC ,交AP 延长线于点E ,如图2所示.若60,CAD BD AC ∠︒==,求证:2BC AP =.(3)如图3,若45CAD ∠=︒,是否存在实数m ,当BD mAC =时,2BC AP =?若存在,请直接写出m 的值;若不存在,请说明理由.【答案】(1)3(2)见解析;(3)存在,2m 【解析】【分析】(1)先解直角三角形ABC 得出2AB AC =,从而得出ADC 是等边三角形,再解直角三角形ACP 即可求出AC 的长,进而得出BC 的长;(2)连结BE ,先利用AAS 证出≌CPA DPE ,得出AE =2PE ,AC =DE ,再得出ADC 是等边三角形,然后由SAS 得出≌CAB EBA ,得出AE =BC 即可得出结论;(3)过点D 作//DE AC ,交AP 延长线于点E ,连接BE ,过C 作CG ⊥AB 于G ,过E 作EN ⊥AB 于N ,由(2)得AE =2AP ,DE =AC ,再证明≌AEN BCG ,从而得出≌CAB EBA 得出DE =BE ,然后利用勾股定理即可得出m 的值.【详解】(1)解 90,60ACB CAD ∠=∠=︒︒,2cos60AC AB AC ︒==, BD AC =,AD AC =∴,ADC ∴是等边三角形,60ACD ∴∠=︒Р是CD 的中点,AP CD ∴⊥,在Rt APC 中,3AP =2sin 60AP AC ∴==︒, tan 6023BC AC =︒=∴(2)证明:连结BE , //DE AC ,CAP DEP ∴∠=∠,,CP DP CPA DPE =∠=∠,()CPA DPE AAS ∴≌,1,2AP EP AE DE AC ∴===, BD AC =,BD DE ∴=,又//DE AC ,60BDE CAD ∴∠=∠=︒,BDE ∴是等边三角形,,60BD BE EBD ∴=∠=︒BD AC =,AC BE ∴=,又60,CAB EBA AB BA ∠=∠=︒=,()CAB EBA SAS ∴≌,AE BC ∴=,2BC AP ∴=.(3)存在这样的,2m m =过点D 作//DE AC ,交AP 延长线于点E ,连接BE ,过C 作CG ⊥AB 于G ,过E 作EN ⊥AB 于N ,则45∠=∠=︒BDE CAD ,sin 45∴=⨯CG AC ,sin 45=⨯EN DE由(2)得AE =2AP ,DE =AC ,⊥CG =EN ,⊥2BC AP =,⊥AE =BC ,⊥⊥ANE =⊥BGC =90°,≌∴AEN BCG ,⊥⊥EAN =⊥CBG⊥AE=BC,AB=BA,⊥≌CAB EBA⊥AC=BE,⊥DE=BE,⊥⊥EDB=⊥EBD=45°,⊥⊥DEB=90°,⊥2=BD,⊥BD mAC=⊥2m【点睛】本题属于三角形综合题,考查了解直角三角形,全等三角形的性质与判定,等边三角形和等腰三角形的性质、勾股定理,解题的关键是合理添加辅助线,有一定的难度.15.(2020·浙江绍兴)问题:如图,在⊥AB D中,BA=B D.在BD的延长线上取点E,C,作⊥AEC,使EA =EC,若⊥BAE=90°,⊥B=45°,求⊥DAC的度数.答案:∠D AC=45°思考:(1)如果把以上“问题”中的条件“⊥B=45°”去掉,其余条件不变,那么⊥DAC的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“⊥B=45°”去掉,再将“⊥BAE=90°”改为“⊥BAE=n°”,其余条件不变,求⊥DAC的度数.n°.【答案】(1)⊥DAC的度数不会改变,理由见解析;(2)12【解析】【分析】(1)根据等腰三角形的性质得到⊥AED=2⊥C,⊥求得⊥DAE=90°-⊥BAD=90°-(45°+⊥C)=45°﹣⊥C,⊥由⊥,⊥即可得到结论;(2)设⊥ABC=m°,根据三角形的内角和定理和等腰三角形的性质即可得到结论.【详解】解:(1)⊥DAC的度数不会改变,理由如下:⊥EA=EC,⊥⊥AED=2⊥C,⊥⊥⊥BAE=90°,⊥⊥BAD=12[180°﹣(90°﹣2⊥C)]=45°+⊥C,⊥⊥DAE=90°﹣⊥BAD=90°﹣(45°+⊥C)=45°﹣⊥C,⊥由⊥,⊥得,⊥DAC=⊥DAE+⊥CAE=45°;(2)设⊥ABC=m°,则⊥BAD=12(180°﹣m°)=90°﹣12m°,⊥AEB=180°﹣n°﹣m°,⊥⊥DAE=n°﹣⊥BAD=n°﹣90°+12m°,⊥EA=EC,⊥⊥CAE=12⊥AEB=90°﹣12n°﹣12m°,⊥⊥DAC=⊥DAE+⊥CAE=n°﹣90°+12m°+90°﹣12n°﹣12m°=12n°.【点睛】本题考查了等腰三角形的性质,三角形的内角和定理,正确的识别图形是解题的关键.16.(2020·浙江舟山)为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A处测得河北岸的树H恰好在A的正北方向.测量方案与数据如下表:课题测量河流宽度测量工具测量角度的仪器,皮尺等测量小组第一小组第二小组第三小组测量方案示意图说明点B,C在点A的正东方向点B,D在点A的正东方向点B在点A的正东方向,点C在点A的正西方向.测量数据BC=60m,⊥ABH=70°,⊥ACH=35°.BD=20m,⊥ABH=70°,⊥BCD=35°.BC=101m,⊥ABH=70°,⊥ACH=35°.(1)哪个小组的数据无法计算出河宽?(2)请选择其中一个方案及其数据求出河宽(精确到0.1m).(参考数据:sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)【答案】(1)第二个小组的数据无法计算河宽;(2)河宽为56.4m【解析】【分析】(1)第二个小组的数据无法计算出河宽;(2)第一个小组:证明BC=BH=60m,解直角三角形求出AH即可.第三个小组:设AH=xm,则CA=AHtan35︒,AB=AHtan70︒,根据CA+AB=CB,构建方程求解即可.【详解】解:(1)第二个小组的数据无法计算河宽;(2)第一个小组的解法:⊥⊥ABH =⊥ACH +⊥BHC ,⊥ABH =70°,⊥ACH =35°, ⊥⊥BHC =⊥BCH =35°, ⊥BC =BH =60m ,⊥AH =BH •sin70°=60×0.94≈56.4(m ). 第三个小组的解法: 设AH =xm ,则CA =AHtan 35︒,AB =AH tan 70︒,⊥CA +AB =CB , ⊥0.70 2.75x x+=101, 解得x ≈56.4. 答:河宽为56.4m . 【点睛】本题考查解直角三角形的应用、等腰三角形的判定和性质等知识,弄清题意、列出方程是解答本题的关键. 17.(2020·浙江衢州)如图1,在平面直角坐标系中,⊥ABC 的顶点A ,C 分别是直线y =﹣83x +4与坐标轴的交点,点B 的坐标为(﹣2,0),点D 是边AC 上的一点,DE ⊥BC 于点E ,点F 在边AB 上,且D ,F 两点关于y 轴上的某点成中心对称,连结DF ,EF .设点D 的横坐标为m ,EF 2为l ,请探究: ⊥线段EF 长度是否有最小值. ⊥⊥BEF 能否成为直角三角形.小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.(1)小明利用“几何画板”软件进行观察,测量,得到l 随m 变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l 与m 可能满足的函数类别. (2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l 关于m 的函数表达式及自变量的取值范围,并求出线段EF 长度的最小值.(3)小明通过观察,推理,发现⊥BEF 能成为直角三角形,请你求出当⊥BEF 为直角三角形时m 的值.【答案】(1)连线见解析,二次函数;(2)22(3)m=0或m=4 3【解析】【分析】(1)根据描点法画图即可;(2)过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,证明Rt⊥FGK⊥Rt⊥DHK(AAS),由全等三角形的性质得出FG=DH,可求出F(﹣m,﹣2m+4),根据勾股定理得出l=EF2=8m2﹣16m+16=8(m﹣1)2+8,由二次函数的性质可得出答案;(3)分三种不同情况,根据直角三角形的性质得出m的方程,解方程求出m的值,则可求出答案.【详解】解:(1)用描点法画出图形如图1,由图象可知函数类别为二次函数.(2)如图2,过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,则⊥FGK=⊥DHK=90°,记FD交y轴于点K,⊥D点与F点关于y轴上的K点成中心对称,⊥KF=KD,⊥⊥FKG=⊥DKH,⊥Rt⊥FGK⊥Rt⊥DHK(AAS),⊥FG=DH,⊥直线AC的解析式为y=﹣83x+4,⊥x=0时,y=4,⊥A(0,4),又⊥B(﹣2,0),设直线AB的解析式为y=kx+b,⊥204k bb⎧-+=⎨=⎩,解得24kb,⊥直线AB的解析式为y=2x+4,过点F作FR⊥x轴于点R,⊥D点的横坐标为m,⊥F(﹣m,﹣2m+4),⊥ER=2m,FR=﹣2m+4,⊥EF2=FR2+ER2,⊥l=EF2=8m2﹣16m+16=8(m﹣1)2+8,令﹣83x+4=0,得x=32,⊥0≤m≤32.⊥当m=1时,l的最小值为8,⊥EF的最小值为2.(3)⊥⊥FBE为定角,不可能为直角.⊥⊥BEF=90°时,E点与O点重合,D点与A点,F点重合,此时m=0.⊥如图3,⊥BFE=90°时,有BF2+EF2=BE2.由(2)得EF2=8m2﹣16m+16,又⊥BR=﹣m+2,FR=﹣2m+4,⊥BF2=BR2+FR2=(﹣m+2)2+(﹣2m+4)2=5m2﹣20m+20,又⊥BE2=(m+2)2,⊥(5m2﹣20m+8)+(8m2﹣16m+16)2=(m+2)2,化简得,3m2﹣10m+8=0,解得m1=43,m2=2(不合题意,舍去),⊥m=43.综合以上可得,当⊥BEF为直角三角形时,m=0或m=43.【点睛】本题考查了二次函数的综合应用,考查了描点法画函数图象,待定系数法,全等三角形的判定与性质,坐标与图形的性质,二次函数的性质,勾股定理,中心对称的性质,直角三角形的性质等知识.准确分析给出的条件,结合一次函数的图象进行求解,熟练掌握方程思想及分类讨论思想是解题的关键..18.(2020·浙江湖州)已知在△AB C中,AC=BC=m,D是AB边上的一点,将⊥B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知 如图1,若⊥C =60°,D 是AB 的中点,求证:AP =12AC ;(2)变式求异 如图2,若⊥C =90°,m =2,AD =7,过点D 作DH ⊥AC 于点H ,求DH 和AP 的长; (3)化归探究 如图3,若m =10,AB =12,且当AD =a 时,存在两次不同的折叠,使点B 落在AC 边上两个不同的位置,请直接写出a 的取值范围.【答案】(1)证明见解析;(272,22;(3)6≤a <203.【解析】 【分析】(1)根据等边三角形的性质,运用等边三角形内角都为60°以及三边相等进行求解. (2)根据相似三角形的性质,运用对应边成比例以及勾股定理进行求解. (3)根据三角函数以及三线合一性质,运用勾股定理以及比例关系进行求解. 【详解】(1)证明:⊥AC =BC ,⊥C =60°, ⊥⊥ABC 是等边三角形, ⊥AC =AB ,⊥A =60°,由题意,得DB =DP ,DA =DB , ⊥DA =DP ,⊥⊥ADP 使得等边三角形, ⊥AP =AD =12AB =12A C .(2)解:⊥AC =BC =2⊥C =90°, ⊥AB 22AC BC +22(62)(62)+=12, ⊥DH ⊥AC , ⊥DH ⊥BC ,⊥⊥ADH ⊥⊥ABC , ⊥DH BC=AD AB , ⊥AD =7, 62=712, ⊥DH =22, 将⊥B 沿过点D 的直线折叠,情形一:当点B 落在线段CH 上的点P 1处时,如图2﹣1中,⊥AB =12,⊥DP 1=DB =AB ﹣AD =5,⊥HP 1221DP DH -227252⎛⎫- ⎪ ⎪⎝⎭2, ⊥AP 1=AH +HP 1=2,情形二:当点B 落在线段AH 上的点P 2处时,如图2﹣2中,同法可证HP 22 ⊥AP 2=AH ﹣HP 2=2,综上所述,满足条件的AP 的值为22.(3)如图3中,过点C 作CH ⊥AB 于H ,过点D 作DP ⊥AC 于P .⊥CA =CB ,CH ⊥AB , ⊥AH =HB =6,⊥CH 22AC AH -22106-8,当DB =DP 时,设BD =PD =x ,则AD =12﹣x , ⊥tan A =CH AC =PDAD, ⊥810=12x x -, ⊥x =163, ⊥AD =AB ﹣BD =203, 观察图形可知当6≤a <203时,存在两次不同的折叠,使点B 落在AC 边上两个不同的位置. 【点睛】本题考查等边三角形性质,勾股定理,相似三角形性质以及三角形函数的知识点,知识点的灵活运用,以及通过对图形的理解分析出结果的所以可能性是解决此类问题的关键所在. 19.(2020·浙江金华)如图,在⊥AB C 中,AB =42⊥B =45°,⊥C =60°. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将⊥AEF 折叠得到⊥PEF . ⊥如图2,当点P 落在BC 上时,求⊥AEP 的度数. ⊥如图3,连结AP ,当PF ⊥AC 时,求AP 的长.【答案】(1)4;(2)⊥90°;⊥26【解析】 【分析】(1)如图1中,过点A 作AD ⊥BC 于D .解直角三角形求出AD 即可. (2)⊥证明BE =EP ,可得⊥EPB =⊥B =45°解决问题. ⊥如图3中,由(1)可知:AC =83sin 60AD =︒⊥AEF ⊥⊥ACB ,推出AF AE AB AC =,由此求出AF 即可解决问题. 【详解】解:(1)如图1,过点A 作AD ⊥BC 于点D , 在Rt ⊥AB D 中,sin 45AD AB =⋅︒=242(2)⊥如图2,⊥⊥AEF ⊥⊥PEF , ⊥AE =EP . 又⊥AE =BE , ⊥BE =EP , ⊥⊥EPB =⊥B =45°, ⊥⊥AEP =90°.⊥如图3,由(1)可知:在Rt ⊥AD C 中,83sin 60AD AC =︒. ⊥PF ⊥AC , ⊥⊥PF A =90°. ⊥⊥AEF ⊥⊥PEF ,⊥⊥AFE =⊥PFE =45°,则⊥AFE =⊥B. 又⊥⊥EAF =⊥CAB , ⊥⊥EAF ⊥⊥CAB ,⊥AF AB=AE AC 422283 ⊥AF =23在Rt ⊥AFP 中,AF =PF ,则AP 2=26【点睛】本题属于三角形综合题,考查了解直角三角形的应用,翻折变换,全等三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.20.(2022·浙江绍兴)如图,在矩形ABCD 中,6AB =,8BC =,动点E 从点A 出发,沿边AD ,DC 向点C 运动,A ,D 关于直线BE 的对称点分别为M ,N ,连结MN .(1)如图,当E在边AD上且2DE=时,求AEM∠的度数.(2)当N在BC延长线上时,求DE的长,并判断直线MN与直线BD的位置关系,说明理由.(3)当直线MN恰好经过点C时,求DE的长.【答案】(1)⊥AEM=90°;(2)DE=103;MN⊥BD,证明见解析;(3)DE的长为278714-【解析】【分析】(1)由DE=2知,AE=AB=6,可知⊥AEB=⊥MEB=45°,从而得出答案;(2)根据对称性得,⊥ENC=⊥BDC,则cos⊥ENC=2610EN=,得EN=103,利用SSS证明△BMN⊥△DCB,得⊥DBC=⊥BNM,则MN⊥BD;(3)当点E在边AD上时,若直线MN过点C,利用AAS证明△BCM⊥⊥CED,得DE=MC;当点E在边CD上时,证明△BMC⊥⊥CNE,可得BM MCCN EN=,从而解决问题.(1)解:⊥DE=2,⊥AE=AB=6,⊥四边形ABCD是矩形,⊥⊥A=90°,⊥⊥AEB=⊥ABE=45°,由对称性知⊥BEM=45°,⊥⊥AEM=⊥AEB+⊥BEM=90°;(2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

类比探究解决类比探究问题的一般方法:1、根据题设条件,结合各问条件,先解决第一问;2、用解决第一问的方法类比解决下一问,如果不能,两问综合进行分析,找出不能类比的原因和不变特征,依据不变的特征,探索新的方法。

类比探究:图形结构类似、问题类似、常含探究、类比等关键词。

类比探究解题方法和思路1、找特征(中点、特殊角、折叠等),找模型:相似(母子型、A型、非A型、X型、非X型)三线合一、面积、全等三角形等;2、借助几问之间的联系,寻找条件和思路。

3、照搬上一问的方法思路,解决问题,照搬辅助线、照搬全等、照搬相似等。

4、找结构:寻找不变的结构,利用不变结构的特征解决问题。

常见不变结构及方法:①直角:作横平竖直的线,找全等或相似;②中点:作倍长、通过全等转移边和角;③平行:找相似、转比例。

5、哪些是不变的,哪些是变化的。

哪些条件没有用,如何进行转化,寻找能够类比的方法和思路。

1.如图所示,在正方形上连接等腰直角三角形和正方形,无限重复同一过程,第一个正方形的边长为1,第一个正方形与第一个等腰直角三角形的面积和为S1,第二个正方形与第二个等腰直角三角形的面积和为S2,…,第n个正方形与第n个等腰直角三角形的面积和为S n.(1)计算S1、S2、S3、S4.(2)总结出S n与S n﹣1的关系,并猜想出S1+S2+S3+S4+…+S n与n的关系.2.(淄博)分别以▱ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形,△ABE,△CDG,△ADF.(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF.请判断GF 与EF的关系(只写结论,不需证明);(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.3.将两个用钢丝设计成的能够完全重合的直角三角形模型ABC和直角三角形DEF按如图所示的位置摆放,使点B、F、C、D在同一条直线上,且AB和DE、EF分别相交于点P、M,AC和DE相交于点N.(1)试判断线段AB和DE的位置关系,并说明理由;(2)若PD=AC,线段PE和BF有什么数量关系,请说明你的理由.4.如图,四边形ABCD为正方形,△BEF为等腰直角三角形(∠BFE=90°,点B、E、F按逆时针排列),点P为DE的中点,连PC,PF(1)如图①,点E在BC上,则线段PC、PF的数量关系为________,位置关系为_________(不证明).(2)如图②,将△BEF绕点B顺时针旋转a(O<a<45°),则线段PC,PF有何数量关系和位置关系?请写出你的结论,并证明.(3)如图③,△AEF为等腰直角三角形,且∠AEF=90°,△AEF绕点A逆时针旋转过程中,能使点F落在BC上,且AB平分EF,直接写出AE的值是_________ .5.如图,在△ABC中,AB=AC,点E为BC边上一动点(不与点B、C重合),过点E作射线EF交AC于点F,使∠AEF=∠B.(1)判断∠BAE与∠CEF的大小关系,并说明理由;(2)请你探索:当△AEF为直角三角形时,求∠AEF与∠BAE的数量关系.6.如图,△ABC为等腰直角三角形,∠BAC=90°,BC=2,E为AB上任意一动点,以CE 为斜边作等腰直角△CDE,连接AD,(1)当点E运动过程中∠BCE与∠ACD的关系是________.(2)AD与BC有什么位置关系?说明理由.(3)四边形ABCD的面积是否有最大值?如果有,最大值是多少?如果没有,说明理由.7.直角三角形ABC中,∠C=90°,AC=BC,点P是三角形ABC内一点,且满足∠PAB=∠PBC=∠PCA,(1)判断PC与PB的位置关系,并对你的判断加以说明.(2)△ABP与△APC的面积比.8.(内江)如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.9.如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B 作BF∥AC交DE的延长线于点F,连接CF.(1)证明:△BDF是等腰直角三角形.(2)猜想线段AD与CF之间的关系并证明.10.如图,等腰直角三角形ABC中,AC=BC,将△ABC绕斜边AB的中点O旋转至△DEF 的位置,DF交AB于点P,DE交BC于点Q.请猜想OQ与OP有怎样的数量关系?并证明你的结论.11.(1)如图甲,直角三角形ABC中,∠C=90°,分别以AB,AC,BC为边作正方形ABEF,ACMN,BCGH,面积分别设为S,P,Q,则S,P,Q满足怎样的等量关系?(直接写出结果,不需证明)(2)如图乙,直角三角形ABC中,∠C=90°,分别以AB,AC,BC为边作等边三角形ABE,ACM,BCH,面积分别设为S,P,Q,则S,P,Q满足怎样的等量关系?并证明;(3)如图丙,锐角三角形ABC中,分别以AC,BC为边作任意平行四边形ACMN,BCGH,面积分别设为P,Q,NM和HG的延长线相交于点D,连接CD,在AB外侧作平行四边形ABEF,使得BE,AF平行且等于CD,面积设为S,则S,P,Q满足怎样的等量关系?并证明.12.如图所示,四边形ABCD为正方形,△BEF为等腰直角三角形(∠BFE=90°,点B、E、F按逆时针顺序),P为DE的中点,连接PC、PF.(1)如图(1),E点在边BC上,则线段PC、PF的数量关系为________,位置关系为_________(不需要证明).(2)如图(2),将△BEF绕B点顺时针旋转α°(0<α<45),则线段PC、PF有何数量关系和位置关系?请写出你的结论并证明.(3)如图(3),E点旋转到图中的位置,其它条件不变,完成图(3),则线段PC、PF有何数量关系和位置关系?直接写出你的结论,不需要证明.13.(富宁县)将两个全等的直角三角形ABC和DBE如图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的直角三角形ABC绕点B顺时针方向旋转,且∠ABD=30°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图①中的直角三角形DBE绕点B顺时针方向旋转,且∠ABD=65°,其它条件不变,如图③,你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.14.(营口)如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF 改为矩形CDEF,如图4,且AC=4,BC=3,CD=,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.15.(石家庄)在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂直于直线AB于点E,PN垂直于直线BC于点F.(1)如图1,当点P与点O重合时,OE与OF的数量关系为_________ ;(2)如图2,当P在线段OC上时,猜想OE与OF有怎样的数量关系与位置关系?并对你的猜想结果给予证明;(3)如图3,当点P在AC的延长线上时,OE与OF的数量关系为_________ ;位置关系为_________ .16.己知:正方形ABCD.(1)如图①,点E、点F分别在边AB和AD上,且AE=AF.此时,线段BE、DF的数量关系和位置关系分别是什么?请直接写出结论.(2)如图②,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当0°<α<90°时,连接BE、DF,此时(1)中的结论是否成立,如果成立,请证明;如果不成立,请说明理由.(3)如图③,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当90°<α<180°时,连接BD、DE、EF、FB,得到四边形BDEF,则顺次连接四边形BDEF各边中点所组成的四边形是什么特殊四边形?请直接写出结论.17.(葫芦岛)已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是CE的中点,连接BM.(1)如图①,点D在AB上,连接DM,并延长DM交BC于点N,可探究得出BD与BM 的数量关系为_________ ;(2)如图②,点D不在AB上,(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由.18.(南通)如图1,O为正方形ABCD的中心,分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针旋转α角得到△E1OF1(如图2).(1)探究AE1与BF1的数量关系,并给予证明;(2)当α=30°时,求证:△AOE1为直角三角形.19.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为多少?20.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△EGM为等腰三角形;(2)判断线段BG、AF与FG的数量关系并证明你的结论.21.(辽阳)已知直角梯形ABCD,AB∥CD,∠C=90°,AB=BC=CD,E为CD的中点.(1)如图(1)当点M在线段DE上时,以AM为腰作等腰直角三角形AMN,判断NE 与MB的位置关系和数量关系,请直接写出你的结论;(2)如图(2)当点M在线段EC上时,其他条件不变,(1)中的结论是否成立?请说明理由.22.如图,△ABC与△DEC是两个全等的直角三角形,∠ACB=∠CDE=90°,∠CAB=∠DCE,AB=4,BC=2,△DEC绕点C旋转,CD、CE分别与AB相交于点F、G(都不与A、B点重合),设BG=x.回答下列问题:(1)设CG=y1,请探究y1与x的函数关系,并直接写出y1的最小值;(2)设AF=y2,请探究y2与x的函数关系.23.(丰台区)已知:△ABC和△ADE是两个不全等的等腰直角三角形,其中BA=BC,DA=DE,连接EC,取EC的中点M,连接BM和DM.(1)如图1,如果点D、E分别在边AC、AB上,那么BM、DM的数量关系与位置关系是_________ ;(2)将图1中的△ADE绕点A旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.24.若直角三角形三边长为正整数,且周长与面积数值相等,则称此三角形为“完美直角三角形”,求“完美直角三角形”的三边长.25.以△ABC的两边AB、AC为腰分别向外作等腰Rt△ABD和等腰Rt△ACE,∠BAD=∠CAE=90°,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.(1)如图①当△ABC为直角三角形时,AM与DE的位置关系是_________ ,线段AM 与DE的数量关系是_________ ;(2)将图①中的等腰Rt△ABD绕点A沿逆时针方向旋转θ°(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.26.(邯郸)(1)如图1,四边形ACDG与四边形ECBH都是正方形,且B,C,D在一条直线上,连接DE并延长交线段AB于点F.求证:AB=DE,AB⊥DE;(2)如果将(1)中的两个正方形换成两个矩形,如图2,且==,则AB与DE 的数量关系与位置关系会发生什么变化?请说明你的看法和理由.(3)如果将(1)中的两个正方形换成两个直角三角形,如图3,∠BCE=∠ACD=90°,且=k,且请直接写出AB与DE的数量关系与位置关系.27.锐角为45°的直角三角形的两直角边长也相等,这样的三角形称为等腰直角三角形.我们常用的三角板中有一块就是这样的三角形,也可称它为等腰直角三角板.把两块全等的等腰直角三角板按如图1放置,其中边BC、FP均在直线l上,边EF与边AC重合.(1)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(2)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(1)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.28.如图1,E是等腰Rt△ABC边AC上的一个动点(点E与A、C不重合),以CE为一边在Rt△ABC作等腰Rt△CDE,连接AD,BE.我们探究下列图中线段AD、线段BE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段AD、线段BE的长度关系及所在直线的位置关系;②将图1中的等腰Rt△CDE绕着点C按顺时针方向旋转任意角度a,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中等腰直角三角形改为直角三角形(如图6),且AC=a,BC=b,CD=ka,CE=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.(3)在第(2)题图5中,连接BD、AE,且a=4,b=3,k=,求BD2+AE2的值.29.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边且在AD的上方作等腰直角三角形ADF.(1)若AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),试探讨CF与BD的数量关系和位置关系;②当点D在线段BC的延长线上时,①中的结论是否仍然成立,请在图2中画出相应图形并说明理由;(2)如图3,若AB≠AC,∠BAC≠90°,∠BCA=45°点D在线段BC上运动,试探究CF与BC位置关系.30.已知△ABC和△ADE分别是以AB.AE为底的等腰直角三角形,以CE,CB为边作平行四边形CEHB,连DC,CH.(1)如图1,当D点在AB上时,则∠DEH的度数为_________ ;CH与CD的数量关系是_________ ,并说明理由;(2)将图1中的△ADE绕A点逆时针旋转45°得图2:则∠DEH的度数为_________ ,CH与CD之间的数量关系为_________ ;(3)将图1中的△ADE绕A点顺时针旋转α(O°<α<45°)得图3,请探究CH与CD之间的数量关系,并给予证明.类比找规律专题训练题1、如下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去;(1)填表:剪的次数 1 2 3 4 5正方形个数(2)如果剪n次,共剪出多少个小正方形?(3)如果剪了100次,共剪出多少个小正方形?(4)观察图形,你还能得出什么规律?2、现有黑色三角形“▲”和“△”共200个,按照一定规律排列如下:▲▲△△▲△▲▲△△▲△▲▲……则黑色三角形有个,白色三角形有个。

相关文档
最新文档