(完整版)16.2最简二次根式教案

合集下载

数学最简二次根式教案(精选7篇)

数学最简二次根式教案(精选7篇)

数学最简二次根式教案(精选7篇)最简二次根式篇一教学建议1.教材分析本节是在前两节的基础上,从实际运算的客观需要出发,引出的概念,然后通过一组例题介绍了化简二次根式的方法。

本小节内容比较少(求学生了解的概念并掌握化简二次根式的方法),但是本节知识在全章中却起着承上启下的重要枢纽作用,二次根式性质的应用、二次根式的化简以及二次根式的运算都需要来联接。

(1)知识结构(2)重难点分析①本节的重点Ⅰ.概念Ⅰ.利用二次根式的性质把二次根式化简为。

重点分析本章的主要内容是二次根式的性质和运算,但自始至终围绕着二次根式的化简和运算。

二次根式化简的最终目标就是;而二次根式的运算则是合并同类二次根式,怎样判定同类二次根式,是在化简为的基础上进行的。

因此本节以二次根式的概念和二次根式的性质为基础,内容虽然简单,在本章中却起着穿针引线的作用,教师在教学中应给于极度重视,不可因为内容简单而采取弱化处理;同时初二学生代数成绩的分化一般是由本节开始的,分化的根本原因就是对概念理解不够深刻,遇到相关问题不知怎样操作,具体操作到哪一步。

②本节的难点是化简二次根式的方法与技巧。

难点分析化简二次根式,实际上是二次根式性质的综合运用。

化简二次根式的过程,一般按以下步骤:把根号下的带分数或绝对值大于1的小数化成假分数,把绝对值小于1的小数化成分数;被开方数是多项式的要因式分解;使被开放数不含分母;将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面;化去分母中的根号;约分。

所以对初学者来说,这一过程容易出现符号和计算出错的问题。

熟练掌握化简二次根式的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。

③重难点的解决办法是对于这一概念,并不要求学生能否背出定义,关键是遇到实际式子能够加以判断。

因此建议在教学过程中对概念本身采取弱化处理,让学生在反复练习中熟悉这个概念;同时教学中应充分对概念理解后应用具体的实例归纳总结出把一个二次根式化为的方法,在观察对比中引导学生总结具体解决问题的方法技巧。

16.2最简二次根式教案

16.2最简二次根式教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了最简二次根式的定义、性质、判断和化简方法,以及它在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对最简二次根式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在实践活动和小组讨论环节,我发现学生们表现得非常积极。他们分பைடு நூலகம்讨论问题,进行实验操作,展示成果,这些都让我看到了他们的探究精神和合作能力。不过,我也注意到有些小组在讨论过程中,对于如何将最简二次根式应用于实际问题还显得有些迷茫。在接下来的教学中,我需要针对这一点进行强化,提供更多实际案例,让学生更好地理解。
在教学过程中,教师应围绕这些重点和难点内容,通过讲解、举例、练习和讨论等多种教学手段,确保学生能够透彻理解并掌握最简二次根式的核心知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《最简二次根式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解面积或长度的情况?”(如:计算正方形面积时需要用到√2)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索最简二次根式的奥秘。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“最简二次根式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

最简二次根式教案

最简二次根式教案

最简二次根式教案
教案:
目标:能够化简最简二次根式。

教学内容:
1. 回顾二次根式的定义:二次根式是指形如√a的表达式,其中a为一个非负实数。

2. 引入最简二次根式的概念:最简二次根式是指分子和分母互质的二次根式。

3. 给出化简最简二次根式的方法:
a) 对根号下的数进行因式分解。

b) 将分解后的数提取出来,化成最简形式。

c) 将分子分母互除,得到最终的最简二次根式。

4. 通过例题进行实践练习。

教学步骤:
1. 引入二次根式的定义,让学生回忆并举例。

2. 引入最简二次根式的概念,解释其意义和重要性。

3. 示范化简最简二次根式的方法,步骤如上所述。

4. 给出例题,让学生跟随步骤进行化简练习。

5. 检查学生的答案,解答他们的疑问。

6. 练习更多例题,让学生独立进行化简,培养他们的独立思考能力。

7. 总结与归纳,强调最简二次根式的重要性,并再次强调化简的步骤。

扩展练习:
给出复杂一些的二次根式,让学生自行进行化简实践,提高他们的运算能力和解决问题的能力。

教学反思:
本节课主要讲解了最简二次根式的概念和化简方法,通过例题练习,学生对于化简的步骤有了更加清晰的理解。

在扩展练习中,可以根据学生的能力调整题目的难度,使每个学生都能得到适当的挑战。

同时,教师需要注意提供足够的练习时间,并及时纠正学生的错误,确保他们正确掌握最简二次根式的化简方法。

同时,可以引导学生思考,在实际生活中,最简二次根式有哪些应用,以提高学生的应用能力。

16.2二次根式的乘除法(教案)

16.2二次根式的乘除法(教案)
三、教学难点与重点
1.教学重点
本节课的教学重点主要包括以下内容:
a.掌握二次根式乘法的运算法则,特别是\( \sqrt{a} \times \sqrt{b} = \sqrt{ab} \)的形式,以及如何将其他形式的二次根式乘法转化为这一形式;
b.理解并应用二次根式除法的运算法则,特别是\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)和\( \frac{\sqrt{a}}{b} = \frac{\sqrt{a}}{\sqrt{b^2}} \)的形式,以及如何处理分母中含有二次根式的情况;
(3)\( \sqrt{a^2} \times \sqrt{b^2} = |a||b| \)(a、b为任意实数)
2.掌握二次根式除法的运算法则,能够正确计算以下形式的除法:
(1)\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)(a≥0,b>0)
2.培养学生的逻辑思维能力,使其能够理解并运用二次根式乘除法的性质,解决实际问题;
3.培养学生的数学建模能力,通过解决实际情境中的问题,让学生体会数学知识在实际生活中的应用;
4.培养学生的数学抽象能力,让学生从具体的二次根式乘除运算中抽象出一般性规律,形成数学认知结构;
5.培养学生的合作交流意识,鼓励学生在小组讨论和交流中,共同探索二次根式乘除法的运算规律,提高解决问题的能力。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式乘除法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示二次根式乘除法的基本原理,如使用尺子和直角三角形模型来计算对角线长度。

数学教案-最简二次根式

数学教案-最简二次根式

数学教案-最简二次根式教学目标学生在本节课结束时,能够:•理解最简二次根式的概念和性质;•掌握最简二次根式的化简方法;•运用最简二次根式进行数学问题的解决。

教学重点最简二次根式的性质和化简方法。

教学难点最简二次根式的运用。

教学准备•教师:黑板和粉笔;•学生:笔记本和铅笔。

教学过程Step 1:导入新知教师在黑板上写下一个二次根式,并提问学生是否可以进行化简。

引出最简二次根式的概念。

Step 2:最简二次根式的概念通过示例解释最简二次根式是什么。

最简二次根式是形如√a(a为正整数)的根式,其中a不能被任何平方数整除。

Step 3:最简二次根式的性质•最简二次根式是一个无理数;•两个最简二次根式的和(或差)仍然是最简二次根式;•两个最简二次根式的乘积(或商)也是最简二次根式。

Step 4:最简二次根式的化简方法4.1 因式分解法当二次根式中的根号内含有平方数时,可以利用因式分解的方法进行化简。

例如,√12 = √(4 × 3)= √4 × √3 = 2√34.2 合并同类项法当二次根式中含有多项的时候,可以利用合并同类项的方法进行化简。

例如,√5 + 2√5 = 3√54.3 有理化法当二次根式的分母有根号时,可以利用有理化的方法进行化简。

例如,1 / √3 = (1 / √3)* (√3 / √3) = √3 / 3Step 5:练习演练教师给学生提供一些最简二次根式的练习题,让学生在课堂上进行解答,并与同学互相讨论。

Step 6:拓展应用教师提供一些拓展应用题,让学生运用最简二次根式的知识来解决实际问题。

Step 7:总结反思教师和学生一起总结最简二次根式的概念、性质和化简方法,并让学生自主思考学到了什么,还有哪些需要进一步加强。

课堂作业请学生自主选择一些最简二次根式的化简题目,并在下节课上进行讲解和讨论。

教学反思本节课的教学过程比较简单,重点在于学生的实际操作和拓展应用。

在课堂上,学生对最简二次根式的概念和性质理解较为深刻,化简方法也能够灵活运用。

人教版数学八年级下册16.2《二次根式的乘除》教学设计3

人教版数学八年级下册16.2《二次根式的乘除》教学设计3

人教版数学八年级下册16.2《二次根式的乘除》教学设计3一. 教材分析《二次根式的乘除》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行学习的。

二次根式的乘除法运算是初中数学中的重要内容,也是后续学习高中数学的基础。

本节内容主要让学生掌握二次根式的乘除法运算规则,理解并掌握二次根式乘除法运算的性质和规律,提高学生的数学运算能力。

二. 学情分析学生在学习本节内容之前,已经掌握了二次根式的性质和加减法运算,但对于二次根式的乘除法运算可能还存在一定的困难。

因此,在教学过程中,需要教师引导学生理解二次根式的乘除法运算规则,通过大量的练习,让学生熟练掌握二次根式的乘除法运算。

三. 教学目标1.让学生掌握二次根式的乘除法运算规则。

2.提高学生的数学运算能力。

3.培养学生的逻辑思维能力。

四. 教学重难点1.二次根式的乘除法运算规则。

2.二次根式的混合运算。

五. 教学方法1.讲解法:教师通过讲解,让学生理解二次根式的乘除法运算规则。

2.练习法:让学生通过大量的练习,熟练掌握二次根式的乘除法运算。

3.小组合作法:让学生通过小组合作,共同探讨二次根式的乘除法运算,培养学生的团队协作能力。

六. 教学准备1.PPT课件:教师需要准备PPT课件,用于展示二次根式的乘除法运算规则。

2.练习题:教师需要准备适量的练习题,用于让学生进行练习。

七. 教学过程1.导入(5分钟)教师通过复习二次根式的性质和加减法运算,引导学生进入二次根式的乘除法运算学习。

2.呈现(10分钟)教师通过PPT课件,呈现二次根式的乘除法运算规则,让学生初步了解二次根式的乘除法运算。

3.操练(10分钟)教师让学生进行二次根式的乘除法运算练习,引导学生掌握二次根式的乘除法运算规则。

4.巩固(10分钟)教师通过讲解和练习,让学生巩固二次根式的乘除法运算规则。

5.拓展(10分钟)教师引导学生进行二次根式的混合运算,提高学生的数学运算能力。

16.2 (2)最简二次根式和同类二次根式(1)

16.2 (2)最简二次根式和同类二次根式(1)

叫做最简二次根式, 这是我们今天要探究 的问题(揭示课题). 二、 新知学习
指出化简 后的结果就是 最简二次根式, 激发兴趣,点 题.
1、观察思考 观察上述 3 题中的二次根式及其化 简所得结果: (1) 比较化简前后的两个二次根式里 的 被 开 方 数 前 后 发 生了什 么 变 化? (2) 化简后的被开方数是由那些共同 的特征? (若学生回答困难, 教师可引导学生观察 被开方数所含因式的指数和分母两方面) 2、归纳:同时满足上述两个条件的二次 根式叫做最简二次根式. 注: 这里的因式是指因式分解和素因 数分解后的因式和因数.因式可以为单项 强调条件 1 中的因式指什 预设: (1) 被开方数中各因式的指数 都为 1. (2)被开方数不含分母. 引导学生 观察、 比较和分 析认识最简二 次根式的特征, 再概括最简二 次根式的概念.
5a ; 3
(2) 42a ;
例题 1 是 概念的辨析, 让 学生理解并掌 握最简二次根 式必须满足的 条件.
2 (3) 24x 3 ; (4) 3( a 2a 1) ;
先判断是否是二次根式, 再说明为什么? 4、小结:出现以下情况的二次根式都不 是最简二次根式. (1) 被开方数中含有分母. (2) 被开方数(能分解因式或分解素 因式的,将其分解)所含各因式 的指数不是 1. 5、提问:能把(1) (3) (4)中的二次根 式化成最简二次根式吗? 问: (1)怎么化成最简二次根式?
5a 5a 3 15a . 2 3 3 3
问: (3)如何化成最简二次根式?
预设:将 2 , x 移到根号外. 问: x 移到根号外是等于什么?
2 3 预设: 由 24x 0 可得 x 0 ,
2
2
所以 x 移到根号外是等于 x.

16.2 最简二次根式(第1课时)(教学课件)-2024-2025学年八年级数学上册同步精品课堂(沪

16.2 最简二次根式(第1课时)(教学课件)-2024-2025学年八年级数学上册同步精品课堂(沪
原式=
>0
22 ⋅ 2 ⋅ ⋅ 2
= 2
得x≥0
解原式 =
=
( − )( + )( + )
( − )( + )2
= ( + ) − ( ≥ ≥ 0)
将被开方数中
用它的正平方根代替后移到根号外面 .
把被开方数(或式)化成积的形式,即分解因式
例2.将下列二次根式化成最简二次根式.
a a a
a a
2
2
2
随堂检测
1.在下列各式中,哪些是最简二次根式?哪些不是?对不是最简二
次根式的进行化简.
(1) 45;
(2)
1
;
3
(3)
5
;
2
4
(5) 1 .
5
(4) 0.5;
解:只有(3)是最简二次根式;
(1) 45 3 5;
(4) 0.5
1
1
1 2
2



;
2
2
2
2 2
(2)
1
3 a 2 2a 1) 3(a 1) 2
其中因式(a 1)的指数为2,所以 (
3 a 2 2a 1)不是
最简二次根式。
典例精练
1.判断下列各式是否为最简二次根式?
×
(3) 30 x( √ );(4)
(1)
12

);(2)
45a b ( × );
y ( ×);
x 3
x
2
1
所以 42a 是最简二次根式.
注:被开方数比较复杂时,应先进行因式分解再观察
例1、判断下列二次根式是不是最简二次根式?

【人教版八年级下册】《16.2 二次根式的乘除(第2课时)》教案教学设计

【人教版八年级下册】《16.2 二次根式的乘除(第2课时)》教案教学设计

16.2 二次根式的乘除第2课时一、教学目标【知识与技能】1.会进行简单的二次根式的除法运算.2.使学生能利用商的算术平方根的性质进行二次根式的化简与运算.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】1.在学习了二次根式乘法的基础上进行总结对比,得出除法的运算法则.2.引导学生用从特殊到一般的方法及类比的方法,解决数学问题.【情感态度与价值观】在经历探索二次根式除法运算法则的过程中,认识到事物之间的相互联系,获得成就感,建立学习数学的信心和兴趣.二、课型新授课三、课时第2课时共2课时四、教学重难点【教学重点】会进行简单的二次根式的除法运算,会用商的算术平方根的性质进行二次根式的化简与运算.【教学难点】二次根式的除法与商的算术平方根的关系及应用.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2-3)站在水平高度为h米的地方看到可见的水平距离为d米,它们近似地符合公式为d=8√ℎ5.问题1 某一登山者爬到海拔100米处,即ℎ5=20时,他看到的水平线的距离d1是多少?学生答:d1=8√20=16√5问题2 该登山者接着爬到海拔200米的山顶,即ℎ5=40时,此时他看到的水平线的距离d2是多少?学生答:d1=8√40=16√10问题3 他从海拔100米处登上海拔200米高的山顶,那么他看到的水平线的距离是原来的多少倍?解:d2d1=√1016√5教师提出问题:乘法法则是如何得出的?二次根式的除法该怎样算呢?除法有没有类似的法则?(二)探索新知1.探究二次根式的除法(出示课件5) 教师依次出示下列问题: 计算下列各式:(1)√4√9=___÷___=__;√49=_____;(2)√16√25=___÷___=__;√1625=______;(3)√36√49=___÷___=__;√3649=_______;学生依次解答如下:学生1答:(1)√4√9=2÷3=23;√49=23;学生2答:(2)√16√25=4÷5=45;√1625=45;学生3答:(3)√36√49=6÷7=67;√3649=67;教师问: 观察两者有什么关系?出示课件6: 观察三组式子的结果,我们得到下面三个等式: 依次展示学生答案: 学生1答:(1)√4√9=√49;学生2答:(2)√16√25=√1625;学生3答:(3)√36√49=√3649.教师问:通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你能说出二次根式√a√b的结果吗?(出示课件7)学生回答:√a√b =√ab.教师问:在前面发现的规律√a√b =√ab中,a,b的取值范围有没有限制呢?学生讨论回答:a≥0,b>0师生一起归纳总结:(出示课件8)二次根式的除法法则:√a √b =√ab(a≥0,b>0)教师问:你能利用文字描述二次根式的除法法则吗?学生答:算术平方根的商等于被开方数商的算术平方根.教师追问:当二次根式根号外的因数(式)不为1时,如何处理呢?学生答:类比单项式除以单项式法则进行化简.教师总结如下:文字叙述:算术平方根的商等于被开方数商的算术平方根.当二次根式根号外的因数(式)不为1时,可类比单项式除以单项式法则,易得√an√b =mn√ab(a≥0,b>0,n≠0)考点1:利用二次根式的除法法则计算根号外因数是1的二次根式计算:(出示课件9) (1)√24√3;(2)√32÷√118;师生共同讨论解答如下: 解:(1)√24√3=√243=√8=2√2;(2)√32÷√118=√32÷118=√32×18=√3×9=3√3;教师追问:像(2)除式中有分数或分式时,如何化简呢? 学生答:先要转化为乘法再进行运算.出示课件10,学生自主练习后口答,教师订正.考点2:利用二次根式的除法法则计算根号外因数不是1的二次根式计算: (出示课件11)(1)√425√6;(2)2√112÷12√16;学生独立思考后,师生共同解答. 解:(1)√425√6 =35√426=35√7;(2)2√112÷12√16=(2÷12)√32÷16=(2×2)√32×6=4√9=12;教师问:类似(2)中被开方数中含有带分数的怎样计算呢? 学生答:应先将带分数化成假分数,再运用二次根式除法法则进行运算.出示课件12,学生自主练习后口答,教师订正.2.探究商的算术平方根的性质从前面知识点1的题目我们可以得到下面三个等式:(1)√49=√4√9;(2)√1625=√16√25;(3)√3649=√36√49.教师问:通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你能说出二次根式√ab的结果吗?学生回答:√ab =√a√b.教师问:在前面发现的规律√ab =√a√b中,a,b的取值范围有没有限制呢?学生回答:a≥0,b>0师生一起归纳总结:(出示课件13)二次根式的商的算术平方根的性质:√a b =√a√b(a≥0,b>0)教师问:你能利用语言描述商的算术平方根的性质吗?学生答:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.考点1:商的算术平方根的性质的应用 化简:(出示课件14-15) (1)√3100 ;(2)√7527; (3)√279;(4)√8125x2(x>0); (5)√0.09×1690.64×196.学生独立思考后,师生共同解答. 展示学生答案如下: 学生1解:(1)√3100=√3√100 =√310; 学生2解:(2)√7527=√52×3√32×3=√52√32=53;学生3补充解法:√7527=√75√27 =√33√3=53.学生4解:(3)√279=√259=√25√9=53; 学生5解:(4)√8125x2==√92√(5x )=95x;学生6解:(5)√0.09×1690.64×196=√0.32× 132√0.82×142=0.3×130.8×14=39112.教师问:像(5)可以如何计算的呢?学生答:可以先用商的算术平方根的性质,再运用积的算术平方根性质.出示课件16,学生自主练习,教师给出答案。

(完整版)八年级数学下册电子版教案

(完整版)八年级数学下册电子版教案

老师结合学生的回答 , 强调二次根式的非负性.
当 a> 0 时, a表示 a 的算术平方根 ,因此 a> 0;
当 a= 0 时, a表示 0 的算术平方根 , 因此 a= 0.
也就是说 ,当 a≥ 0 时 , a≥ 0.
三、例题讲解
【例】 当 x 是怎样的实数时 , x- 2在实数范围内有意义? 解:由 x-2≥ 0, 得 x≥ 2.
8= 2a
2 a
a;
(4)
xx23y=
xy y.
教师点评:上面这些式子的结果具有如下两个特点:
1. 被开方数不含分母.
2. 被开方数中不含能开得尽方的因数或因式.
师:我们把满足上述两个条件的二次根式 , 叫做最简二次根式. (教师板书 )
教师强调:在二次根式的运算中 , 一般要把最后结果化为最简二次根式.
重点 最简二次根式的运用. 难点 会判断这个二次根式是否是最简二次根式.
一、复习导入
( 学习活动 )请同学们完成下列各题. ( 请四位同学上台板书 )
计算: (1)
2; (2)2 6;(3)
3
18
8 ; (4) 2a
x3
x2
. y
教师点评:
(1)
2= 3
36;
2 (2)
6= 18
2
3 3; (3)
二、新课教授
所以当 x≥2 时 , x- 2在实数范围内有意义.
四、巩固练习
1. 已知 a- 2+
b+
1= 2
0,
求-
a2b
的值.
【答案】 a- 2≥ 0, b+21≥0, 又∵它们的和为 1
2, b=- 2. ∴- a2b=- 22× (-12)=2.

最简二次根式教案

最简二次根式教案

最简二次根式教案一、前置知识在学习最简二次根式之前,需要掌握以下知识:1. 平方根的概念和性质;2. 二次根式的概念和性质;3. 分解质因数的方法。

二、最简二次根式的定义最简二次根式是指一个二次根式,它的根号内不含有平方数因子,且分母中不含有根号。

例如,√2、√3、√5、√6、√7、√10、√11、√13、√14、√15、√17、√19、√21、√22、√23、√26、√29、√30、√31等都是最简二次根式。

三、最简二次根式的求法1. 分解质因数法对于一个二次根式,如果它的根号内含有平方数因子,可以先将这个因子提出来,然后再进行分解质因数,最后化简。

例如,√72可以先分解为√36⋅√2,再将√36化简为6,得到6√2。

2. 有理化分母法对于一个二次根式,如果它的分母中含有根号,可以采用有理化分母的方法进行化简。

有理化分母的方法是将分母有理化,即将分母中的根号去掉。

例如,√3可以有理化分母得到√33。

3. 综合运用法对于一个复杂的二次根式,可以综合运用分解质因数法和有理化分母法进行化简。

例如,√2+√3√2−√3可以先将分母有理化得到(√2+√3)(√2+√3)2−3,然后将分子展开得到2√2+2√3+3−1,最后化简得到−2√2−2√3−3。

四、最简二次根式的练习练习1将下列二次根式化为最简二次根式:1. √502. √273. √804. √985. √72练习2将下列分式化为最简二次根式:1. √22. √33. √54. √65. √7 练习3将下列复杂的二次根式化为最简二次根式:1.√3+√2√3−√2 2. √5−√3√5+√33. √7+√2√7−√2 4. √10−√6√10+√65. √13+√5√13−√5五、总结最简二次根式是一种特殊的二次根式,它的根号内不含有平方数因子,且分母中不含有根号。

求最简二次根式的方法有分解质因数法、有理化分母法和综合运用法。

在实际运用中,需要根据具体情况选择合适的方法进行化简。

《16.2 二次根式的乘除(第1课时)》教学设计

《16.2 二次根式的乘除(第1课时)》教学设计

《16.2 二次根式的乘除(第1课时)》教学设计《16.2 二次根式的乘除(第1课时)》教学设计一、内容和内容解析1.内容二次根式的乘法法则和积的算术平方根的性质,化简二次根式.2.内容解析二次根式是初中阶段“数与式”内容的最后一章,因此承担着整理“数与式”的内容、方法和基本思想的任务.本节研究二次根式的乘法运算.运算法则是运算的依据,因此教材通过“探究”栏目,引导学生利用二次根式的性质,从具体数字运算中发现规律,进而归纳得出二次根式的乘法法则.基于以上分析,确定本节课的教学重点:探究二次根式的乘法法则和积的算术平方根的性质.二、目标和目标解析1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。

【设计意图】乘法运算和二次根式的化简需要用到二次根式的性质.问题2 教材第6页“探究”栏目,计算结果如何?有何规律?师生活动学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容.【设计意图】学生在自主探究的过程中发现规律,运用类比思想,由特殊到一般地,采用不完全归纳的方法得出二次根式的乘法法则.要求学生用数学语言和文字分别描述法则,以培养学生的符号意识.2.观察比较,理解法则问题3 简单的根式运算.师生活动学生动手操作,教师检验.问题4成立的条件是什么?等式反过来有什么价值?师生活动学生回答,给出正确答案后,教师给出积的算术平方根的性质.【设计意图】让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况.乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力.3.例题示范,学会应用例1 化简:(1); (2).师生活动提问:你是怎么理解例(1)的?如果学生回答不完善,再追问:这个问题中,就直接将结果算成可以吗?你认为本题怎样才达到了化简的效果?师生合作回答上述问题.对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质将其移出根号外.再提问:你能仿照第(1)题的解答,能自己解决(2)吗?【设计意图】通过运算,培养学生的运算能力,明确二次根式化简的方向.积的算术平方根的性质可以进行二次根式的化简.例2 计算:(1); (2); (3)师生活动学生计算,教师检验.(1)在被开方数相乘的时候,就可以考虑因数或因式分解,由直接可得而不必先写成再分解;(2)二次根式的乘法运算类似于整式的乘法运算,交换律、结合律都是适用的.对于根号外有系数的根式在相乘时,可以将系数先相乘作为积的系数,再对根式进行运算;(3)例(3)的运算是选学内容.让学有余力的学生学到“根号下为字母的二次根式”的运算.本题先利用积的算术平方根的性质,得到,然后利用二次根式的乘法法则,变成,由于可以判断,因此直接将x移出根号外.【设计意图】引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算.让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用.教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号.可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题.4.巩固概念,学以致用练习:教科书第7页练习第1题. 第10页习题16.2第1题.【设计意图】巩固性练习,同时检验乘法法则的掌握情况.5.归纳小结,反思提高师生共同回顾本节课所学内容,并请学生回答以下问题:(1)你能说明二次根式的乘法法则是如何得出的吗?(2)你能说明乘法法则逆用的意义吗?(3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?6.布置作业:教科书第7页第2、3题.习题16.2第1,6题.五、目标检测设计1.下列各式中,一定能成立的是( )A.B.C.D.【设计意图】考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础.2.化简______________________________。

人教版数学八年级下册16.2《二次根式的乘除》教案

人教版数学八年级下册16.2《二次根式的乘除》教案
人教版数学八年级下册16.2《二次根式的乘除》教案
一、教学内容
人教版数学八年级下册16.2《二次根式的乘除》教案:
1.章节内容:本节课主要学习二次根式的乘除运算。
2.教学内容:
a.理解二次根式的乘法法则,并能正确运用;
b.掌握二次根式的除法法则,并能熟练进行混合运算;
c.能够将二次根式乘除运算与其他数学知识相结合,解决实际问题;
3.重点难点解析:在讲授过程中,我会特别强调乘法法则和除法法则这两个重点。对于难点部分,如根号内同类项的合并和化简,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式乘除相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量并计算正方形对角线长度,演示二次根式乘除的基本原理。
(3)熟练进行二次根式的混合运算,解决实际问题;
举例:计算\( \frac{\sqrt{45} \times \sqrt{20}}{\sqrt{5} \times \sqrt{9}} \),并应用于实际情境。
2.教学难点
(1)理解并运用二次根式乘法法则时,根号内同类项的识别与合并;
难点举例:\( \sqrt{12} \times \sqrt{8} = \sqrt{12 \times 8} \)转化为\( 2\sqrt{3} \times 2\sqrt{2} = 4\sqrt{6} \)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式的乘除》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积或长度的问题?”(如计算正方形对角线长度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式乘除的奥秘。

人教版数学八年级下册16.2二次根式的乘除(教案)

人教版数学八年级下册16.2二次根式的乘除(教案)
2.教学难点
(1)根号内乘除运算的简化:在二次根式乘除运算过程中,学生往往难以把握根号内乘除运算后的简化步骤。
-难点解释:如\(\sqrt{2} \times \sqrt{8} = \sqrt{2 \times 8}\),需简化根号内的结果为\(\sqrt{16}\),进而得到最终答案4。
(2)混合运算中乘除法则的运用:在二次根式乘除混合运算中,学生容易混淆乘除法则,导致计算错误。
-练习:计算\(\sqrt{18} \times \sqrt{2}\)、\(\sqrt{12} \times \sqrt{27}\)等。
2.二次根式的除法法则:理解二次根式除法的运算规律,能够熟练进行除法运算。
-例子:\(\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}\)(其中\(b \neq 0\),\(a \geq 0\),\(b > 0\))
人教版数学八年级下册16.2二次根式的乘除(教案)
一、教学内容
本节课选自人教版数学八年级下册16.2节,主要内容包括:
1.二次根式的乘法法则:掌握二次根式乘法的运算规律,能够正确进行乘法运算。
-例子:\(\sqrt{a} \times \sqrt{b} = \sqrt{ab}\)(其中\(a \geq 0\),\(b \geq 0\))
-练习:计算\(\frac{\sqrt{48}}{\sqrt{3}}\)、\(\frac{\sqrt{54}}{\sqrt{9}}\)等。
3.二次根式的乘除混合运算:学会运用乘除法则,解决二次根式的乘除混合运算问题。
-例子:\(\sqrt{18} \div \sqrt{2} \times \sqrt{12}\)
5.设计不同难度的练习题,帮助学生巩固所学知识,逐步突破难点。

人教版八年级数学下册第十六章 二次根式(全章)教案

人教版八年级数学下册第十六章  二次根式(全章)教案

16.1 二次根式[学习目标]理解二次根式的概念,并利用(a≥0)的意义解答具体题目.教学重点:形如(a≥0)的式子叫做二次根式的概念教学难点:利用“(a≥0)”解决具体问题.教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法、2、阅读的方法、3、分组讨论法4、练习法[学习过程]一、板书课题(一)讲述:同学们,我们来学习 16.1 二次根式二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影:(二)屏幕显示学习目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.三、指导自学(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导自学指导认真看课本P2全部内容:1.思考“思考1、2”中的问题,完成思考1中的问题,理解二次根式的概念及二次根式有无意义的条件。

2.注意例题1的格式和步骤。

3.讨论回答思考2中的问题。

.如有疑问,可请教同桌或举手问老师.5分钟后,比谁能做对与例题类似的题.四、先学(一)学生看书,教师巡视,师督促每一位学生认真、紧张的自学,鼓励学生质疑问难.(二)过渡语:同学们,看完的请举手?懂了的请举手?好,下面就比一比,看谁能正确做出检测题.(三)检测 : P.3 练习1、2题。

学生练习,教师巡视。

(收集错误进行二次备课)五、后教教师引导学生评议、订正。

归纳小结:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.五、当堂训练:一、选择题1.下列各式中①;②;③;④;⑤;⑥一定是二次根式的有()个。

A . 1 个 B. 2个 C. 3个 D. 4个2. 若,则b的值为()A.0 B.0或1 C.b≤3 D.b≥33.已知一个正方形的面积是5,那么它的边长是()A .5BC D.以上皆不对二、填空题1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根.三、综合提高题1.若+有意义,则=_______.2.使式子有意义的未知数x有()个.A.0 B.1 C.2 D.无数3.当x是多少时,+在实数范围内有意义?4. 已知y=++5,求的值.教学反思:16.1 二次根式(2)[学习目标]理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.教学重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.教学难点:导出(a≥0)是一个非负数;•用探究()2=a(a≥0).教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法[学习过程]一、板书课题:16.1 二次根式(2)讲述:同学们,我们来学习16.1 二次根式(2)二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影:(二)屏幕显示学习目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.三、指导自学(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导自学指导认真看课本P.3“探究”至例2结束。

16.2.2二次根式的除法与最简二次根式(教案)

16.2.2二次根式的除法与最简二次根式(教案)
其次,关于最简二次根式的概念,学生们在判断上还存在一定的困惑。我观察到,他们在处理一些较为复杂的二次根式时,往往不能迅速识别出哪些是平方数因子,哪些需要保留。这说明在讲解最简二次根式时,我需要通过更多的例题和练习,帮助他们熟练掌握提取平方数因子的技巧。
此外,在实践活动和小组讨论环节,我发现学生们在讨论和应用二次根式除法解决实际问题时,思路还是比较局限。这可能是因为他们对这个知识点的理解还不够深入,或者是我引导得不够到位。在接下来的教学中,我会尝试提供更多实际情境,让学生们更好地将所学知识应用到生活实践中。
1.讨论主题:学生将围绕“二次根式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
-例子:\(\sqrt{18}\)不是最简二次根式,而\(\sqrt{2}\)是最简二次根式。
3.求最简二次根式的方法:通过实际操作,让学生掌握将一个二次根式化为最简二次根式的方法。
-方法:先将二次根式分解质因数,然后提取平方数因子,最后进行合并简化。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
还有一个值得注意的问题是,在小组讨论时,有些同学参与度不高,可能是因为他们对这个话题不感兴趣,或者在小组中缺乏表达的机会。为了提高他们的参与度,我打算在下次的讨论中,尝试采用一些互动性更强的形式,鼓励每个同学都积极参与进来。
1.强化对被开方数和除数的分解与化简训练。
2.通过丰富的例题和练习,提高学生对于最简二次根式概念的掌握。

分式乘除教学设计

分式乘除教学设计

分式乘除教学设计第1篇:分式乘除教学设计《16.2 二次根式的乘除》教学设计一.教材分析二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.二、学情分析本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.三、目标和目标解析1.教学目标(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;(2)会进行简单的二次根式的除法运算;(3)理解最简二次根式的概念.2.目标解析(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.四、教学过程设计1.复习提问,探究规律问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?师生活动学生回答。

【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.2.观察思考,理解法则问题2 教材第8页“探究”栏目,计算结果如何?有何规律?师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:.问题3 对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?师生活动学生思考,回答。

8下初中人教版数学精品教案16.2 最简二次根式 教案

8下初中人教版数学精品教案16.2 最简二次根式  教案

课型: 新授课 上课时间:课时: 1学习内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.学习目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.学习过程一、 自主学习(一)复习引入1.计算(1)35==,(2)3227==,(3)82a == 2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h 1km ,h 2km ,•那么它们的传播半径的比是_________.(二)、探索新知观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式. 1222Rh Rh ==121122222h h Rh h Rh h h ==. 例 1.化简:(1) 5312; (2) 2442x y x y +; (3) 238x y== == ==例2.如图,在Rt △ABC 中,∠C=90°,AC=2.5cm ,BC=6cm ,求AB 的长.二、巩固练习教材练习三、学生小组交流解疑,教师点拨、拓展1、观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121+=1(21)2121(21)(21)⨯--=-+-=2-1, 132+=1(32)3232(32)(32)⨯--=-+-=3-2, 同理可得:143+=4-3,……从计算结果中找出规律,并利用这一规律计算(121++132++143++……120022001+)(2002+1)的值. ==2、归纳小结(1).重点:最简二次根式的运用.(2).难点关键:会判断这个二次根式是否是最简二次根式.四、课堂检测(一)、选择题1.将x y(y>0)化为最简二次根式是( ). A .x y(y>0) B .xy (y>0) C .xy y (y>0) D .以上都不对 2.把(a-1)11a --中根号外的(a-1)移入根号内得( ). A .1a - B .1a - C .-1a - D .-1a -3.化简3227-的结果是( ) A .-23 B .-23 C .-63 D .-2 二、填空题 1.化简422x x y +=_________.(x ≥0) 2.a 21a a+-化简二次根式号后的结果是_________. 三、综合提高题 若x 、y 为实数,且y=224412x x x -+-++,求x y x y +-的值.。

(完整版)16.2最简二次根式教案.doc

(完整版)16.2最简二次根式教案.doc

课型 :新授课上课时间:课时: 1学习内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.学习目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.学习过程一、自主学习(一)复习引入1.计算( 1) 3 ,( 2)32 ,( 3)85 == 27 == 2a ==2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,?那么它们的传播半径的比是_________ .(二)、探索新知观察上面计算题 1 的最后结果,可以发现这些式子中的二次根式有如下两个特点:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式.2Rh1==2Rh1 h1 h1h22Rh2 h2 .2Rh2 h2例 1.化简: (1) 3 5 ; (2) x2 y4 x4 y2 ; (3) 8x2y312== == ==例2.如图,在 Rt △ ABC中,∠ C=90°, AC=2. 5cm, BC=6cm,求 AB 的长.二、巩固练习教材练习三、学生小组交流解疑,教师点拨、拓展1、察下列各式,通分母有理数,把不是最二次根式的化成最二次根式:1 = 1 (2 1)1) 2 1= 2 -1 ,2 1 ( 2 1)( 2 2 11= 1 ( 3 2) 3 23 -2,3 ( 3 2)( 3 2) 3 =2 2 同理可得:1 = 4 - 3 ,⋯⋯4 3从算果中找出律,并利用一律算1+ 1+1+⋯⋯1)(2002 +1)的.(3 24 20022 13 2001 ==2、小(1).重点:最二次根式的运用.(2).点关:会判断个二次根式是否是最二次根式.四、堂(一)、1.将x(y>0)化最二次根式是().yA.x(y>0)B.xy(y>0)C.xyy y( y>0) D .以上都不2 .把( a-1 )1中根号外的( a-1 )移入根号内得().a 1A . a 1B . 1 aC .- a 1D . - 1 a3.化 3 2的果是() A . - 2 B . - 2 C. - 6 D. - 227 3 3 3二、填空 1 .化x4 x2 y2=_________.(x≥0)2a 1_________.. a 化二次根式号后的果是a2三、合提高若 x、 y 为实数,且 y= x2 4 4 x2 1,求x y g x y 的值.x 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课型: 新授课 上课时间:
课时: 1
学习内容
最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.
学习目标
理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.
学习过程
一、 自主学习
(一)复习引入
1.计算(1)35==
,(2)3227==,(3)82a == 2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h 1km ,h 2km ,•那么它们的
传播半径的比是_________.
(二)、探索新知
观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:
1.被开方数不含分母;
2.被开方数中不含能开得尽方的因数或因式.
我们把满足上述两个条件的二次根式,叫做最简二次根式.
那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式.
1
222Rh Rh ==1211222
22h h Rh h Rh h h ==. 例 1.化简:(1) 5312; (2) 2442x y x y +; (3) 23
8x y
== == ==
例2.如图,在Rt △ABC 中,∠C=90°,AC=2.5cm ,BC=6cm ,求AB 的长.
二、巩固练习
教材练习
三、学生小组交流解疑,教师点拨、拓展
1、观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式: 121+=1(21)2121(21)(21)
⨯--=-+-=2-1, 132+=1(32)3232(32)(32)
⨯--=-+-=3-2, 同理可得:143
+=4-3,…… 从计算结果中找出规律,并利用这一规律计算

121++132++143++……120022001+)(2002+1)的值. ==
2、归纳小结
(1).重点:最简二次根式的运用.
(2).难点关键:会判断这个二次根式是否是最简二次根式.
四、课堂检测
(一)、选择题
1.将x y
(y>0)化为最简二次根式是( ). A .x y
(y>0) B xy y>0) C xy y>0) D .以上都不对 2.把(a-111
a --中根号外的(a-1)移入根号内得( ). A 1a -1a -.1a -.1a - 33227
-的结果是( ) A .-23 B .3 C .-63 D .2 二、填空题 1422x x y +.(x ≥0) 2.21a a
+-
化简二次根式号后的结果是_________. 三、综合提高题
若x 、y 为实数,且y=224412
x x x --+x y x y +-的值.。

相关文档
最新文档