中考数学一轮复习提高题专题复习二次根式练习题及答案
中考数学总复习《二次根式》练习题附带答案
中考数学总复习《二次根式》练习题附带答案一、单选题1.√123÷√213×√125值为()A.1B.3C.√33D.√7 2.若√(a−b)2=b﹣a,则()A.a>b B.a<b C.a≥b D.a≤b 3.与√a3b不是同类次根式的是()A.1√abB.√baC.√ab2D.√ba34.下列运算正确的是()A.√3+3=3√3B.4√2−√2=4C.√2+√3=√5D.3√3−√3=2√35.若代数式1x−1+√x有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1 6.a、b在数轴上的位置如图所示,那么化简√(b−a)2的结果是()A.a-b B.a+b C.b-a D.-a-b7.设实数a,b在数轴上对应的位置如图所示,化简√a2+|a+b|的结果是()A.-2a+b B.2a+b C.-b D.b8.若√3−m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>39.下列运算正确的是()A.(x−y)2=x2−y2B.|√3−2|=2−√3C.√8−√3=√5D.﹣(﹣a+1)=a+110.已知2<a<4,则化简√1−2a+a2+√a2−8a+16的结果是() A.2a﹣5B.5﹣2a C.﹣3D.311.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±4 12.下列计算正确的是()A.(m−n)2=m2−n2B.(2ab3)2=2a2b6C.√8a3=2a√a D.2xy+3xy=5xy 二、填空题13.计算:√45﹣√25× √50=.14.若√12x是一个整数,则x可取的最小正整数是3.(判断对错)15.计算:√24−√12√3=.16.如果x2﹣3x+1=0,则√x2+1x2−2的值是.17.化简:√75=.18.已知实数a,b,c在数轴上的位置如图所示,化简代数式√a2−|a+c|+√(b−c)2−|−b|三、综合题19.完成下列问题:(1)若n(n≠0)是关于x的方程x2+mx+2n=0的根,求m+n的值;(2)已知x,y为实数,且y= √2x−5+√5−2x﹣3,求2xy的值.20.阅读材料,解答问题:(1)计算下列各式:①√4×9=,√4×√9=;②√16×25=,√16×√25=.通过计算,我们可以发现√a×b=(a>0,b>0)从上面的结果可以得到:√8=√2×√4=2√2,√12=√3×√4=2√3(2)根据上面的运算,完成下列问题①化简:√24②计算:√27+√48③化简:√a2b(a>0,b>0)21.在数学课外学习活动中,小明和他的同学遇到一道题:已知a=12+√3,求2a2−8a+1的值.他是这样解答的:∵a=2+√3=√3(2+√3)(2−√3)=2−√3,∴a−2=−√3∴(a−2)2=3,a2−4a+4=3∴a2−4a=−1∴2a2−8a+1=2(a2−4a)+1=2×(−1)+1=−1.请你根据小明的解析过程,解决如下问题:(1)1√3+√2=;(2)化简 √2+1+√3+√2√4+√3⋯+√256+√255 ; (3)若 a =√10−3,求 a 4−6a 3+a 2−12a +3 的值. 22.已知 x =√3+12 , y =√3−12与 m =xy 和 n =x 2−y 2 . (1)求m ,n 的值;(2)若 √a −√b =m +72, √ab =n 2 求 √a +√b 的值. 23.计算: (1)√135•2 √3 •(﹣ 12 √10 ); (2)√3a 2b •( √b a ÷2 √1b). 24.计算下列各题 (1)计算:( 12 )﹣2﹣6sin30°﹣( √7−√5)0+ √2 +| √2 ﹣ √3 | (2)化简:( x+2x 2−2x ﹣ x−1x 2−4x+4 )÷ x−4x ,然后请自选一个你喜欢的x 值,再求原式的值.参考答案1.【答案】A2.【答案】D3.【答案】C4.【答案】D5.【答案】D6.【答案】A7.【答案】D8.【答案】A9.【答案】B10.【答案】D11.【答案】B12.【答案】D13.【答案】√514.【答案】对15.【答案】2√2−216.【答案】√517.【答案】5√318.【答案】019.【答案】(1)将x=n 代入方程x 2+mx+2n=0得n 2+mn+2n=0,则n(n+m+2)=0 因为n≠0,所以n+m+2=0即m+n=-2.(2)因为y=√2x −5+√5−2x -3有意义,则{2x −5≥05−2x ⩾0解得{x ⩾52x ≤52则x=52 所以y=0+0-3=-3即2xy=2×52×(-3)=-15. 20.【答案】(1)6;6;20;20;√a ×√b(2)解:①√24=√4×6=√4×√6=2√6;②√27+√48=√3×9+√3×16=√3×√9+√3×√16=3√3+4√3=7√3 ;③√a 2b =√a 2⋅√b =a √b (a >0,b >0).21.【答案】(1)√3−√2(2)解:原式 =√2−1+√3−√2+√4−√3+⋯+√256−√255=−1+√2−√2+√3−√3+√4−⋯−√255+√256=√256−1=16−1=15 ;(3)解: ∵ a =√10−3 =√10+3 ∴a −3=√10∴(a −3)2=10即 a 2−6a +9=10 .∴a 2−6a =1 .∴a 4−6a 3=a 2∴a 4−6a 3+a 2−12a +3=2a 2−12a +3=2(a 2−6a)+3=2+3=5 .22.【答案】(1)解:由题意得, m =xy =√3+12×√3−12=12 n =(x +y)(x −y)=(√3+12+√3−12)(√3+12−√3−12)=√3 (2)解:由(1)得, √a −√b =4 √ab =3 ∴(√a +√b)2=(√a −√b)2+4√ab =42+4×3=28∵√a +√b >0∴√a +√b =2√723.【答案】(1)解: √135 •2 √3 •(﹣ 12 √10 ) =2×(﹣ 12 ) √135×3×10 =﹣ √16×3=﹣4 √3(2)解: √3a 2b •( √b a ÷2 √1b)= √3a2b × √ba× 12× √b= √3424.【答案】(1)解:原式=4﹣6× 12﹣1+ √2+ √3﹣√2 = √3;(2)解:原式=[x+2x(x−2)﹣x−1(x−2)2]•xx−4= (x+2)(x−2)−x(x−1)x(x−2)2•xx−4=x−4x(x−2)2•xx−4=1 (x−2)2当x=10时,原式= 1 64.。
中考数学复习专题综合过关检测—二次根式(含解析)
中考数学复习专题综合过关检测—二次根式(含解析)(考试时间:90分钟,试卷满分:100分)一、选择题(本题共10小题,每小题3分,共30分)。
1.(2023•盐城一模)使式子有意义,x的取值范围是()A.x>1B.x=1C.x≥1D.x≤1【答案】C【解答】解:由题意得,x﹣1≥0,解得x≥1.故选:C.2.(2023•长沙县二模)下列根式中与是同类二次根式的是()A.B.C.D.【答案】D【解答】解:A、与不是同类二次根式,不符合题意;B、与不是同类二次根式,不符合题意;C、与不是同类二次根式,不符合题意;D、==2,与是同类二次根式,符合题意;故选:D.3.(2023•钟楼区校级模拟)已知ab<0,则化简后为()A.﹣a B.﹣a C.a D.a【答案】D【解答】解:∵ab<0,﹣a2b≥0,∴b<0∴原式=|a|,=a,故选:D.4.(2023•平罗县一模)计算的结果为()A.﹣11B.11C.±11D.121【答案】B【解答】解:∵∴故选:B.5.(2023•襄阳模拟)下列各数中与3互为相反数的是()A.|﹣3|B.C.D.【答案】C【解答】解:A、3和3的绝对值是同一个数,故A错误,不符合题意.B、3和,是互为倒数,故B错误,不符合题意.C、=﹣3,故C正确;符合题意;D、=3,不是相反数,故D错误.故选:C.6.(2023•德兴市一模)下列各等式中,正确的是()A.=﹣3B.±=3C.﹣=﹣3D.=±3【解答】解:A、没有意义,故A不符合题意;B、,故B不符合题意;C、,故C符合题意;D、,故D不符合题意;故选:C.7.(2023•未央区校级三模)按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14B.C.16D.【答案】B【解答】解:∵n=时,n(n+1)=×(+1)=2+,且2+<15,∴将n=2+再次输入,n(n+1)=(2+)(2++1)=(2+)(3+)=6+5+2=8+5,∵8+5>15,∴输出结果是8+5,故选:B.8.(2023•邢台二模)有甲、乙两个算式:甲:;乙:.说法正确的是()A.甲对B.乙对C.甲、乙均对D.甲、乙均不对【答案】D【解答】解:∵==≠2,2+3≠5,∴甲、乙均不对.故选:D.9.(2023•大同模拟)从高空中自由下落的物体,其落到地面所需的时间与物体的质量无关,只与该物体受到的重力加速度有关,若物体从离地面为h(单位:m)的高处自由下落,落到地面所用的时间t(单位:s)与h的关系式为t=(k为常数)表示,并且当h=80时,t=4,则从高度为100m的空中自由下落的物体,其落到地面所需的时间为()A.s B.s C.s D.s【答案】D【解答】解:由题意得=4,解得k=5,∴当h=100时,t===2(s),∴从高度为100m的空中自由下落的物体,其落到地面所需的时间为2s,故选:D.10.(2023•蚌山区模拟)如果f(x)=并且f()表示当x=时的值,即f()==,f()表示当x=时的值,即f()=,那么f()+f()+f()+f()+的值是()A.n B.n C.n D.n+【答案】A【解答】解:代入计算可得,f()+f()=1,f()+f()=1,…,f()+f()=1,所以,原式=+(n﹣1)=n﹣.故选:A.二、填空题(本题共6题,每小题2分,共12分)11.(2024•辽宁模拟)计算:=.【答案】.【解答】解:=,故答案为:.12.(2023•遵义模拟)计算的结果是2.【答案】2.【解答】解:原式=2.故答案为:2.13.(2023•榕城区二模)已知实数a在数轴上的位置如图所示,则化简的结果是1.【答案】1.【解答】解:由题意得,0<a<1,∴a﹣1<0,∴,故答案为:1.14.(2023•道外区二模)计算﹣3的结果是3.【答案】见试题解答内容【解答】解:原式=4﹣3×=4﹣=3.故答案为:3.15.(2023•南通二模)如图,从一个大正方形中恰好可以裁去面积为2cm2和8cm2的两个小正方形,余下两个全等的矩形(图中阴影部分),则大正方形的边长为3cm.【答案】3.【解答】解:从一个大正方形中裁去面积为2cm2和8cm2的两个小正方形,则大正方形的边长是+=+2=3(cm).故答案为:3.16.(2023•绥化模拟)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记,那么三角形的面积为.如果在△ABC中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为.【答案】6.【解答】解:∵a=5,b=6,c=7,∴p==9,则S===6.故答案为:6.三、解答题(本题共7题,共58分)。
2022年春北师大版九年级数学中考一轮复习《二次根式的应用》专题达标测试(附答案)
2022年春北师大版九年级数学中考一轮复习《二次根式的应用》专题达标测试(附答案)一.选择题(共8小题,满分40分)1.已知一个长方形面积是,宽是,则它的长是()A.3B.C.2D.42.一个长方体纸盒的体积为4dm3,若这个纸盒的长为2dm,宽为dm,则它的高为()A.1dm B.2dm C.2dm D.48dm3.如图,从一个大正方形中裁去面积为18cm2和32cm2的两个小正方形,则剩余部分(阴影部分)的面积等于()A.98cm2B.60cm2C.48cm2D.38cm24.如图,矩形内两个相邻正方形的面积分别为9和3,则阴影部分的面积为()A.8﹣3B.9﹣3C.3﹣3D.3﹣25.在数学课上,老师将一长方形纸片的长增加,宽增加,就成为了一个面积为192cm2的正方形,则原长方形纸片的面积为()A.18cm2B.20cm2C.36cm2D.48cm26.如图,在正方形ABCD中,正方形AEPF和正方形PHCG的面积分别为12和3,则正方形ABCD的边长为()A.9B.15C.2D.37.如图,已知钓鱼竿AC的长为6m,露在水面上的鱼线BC长为3m,某钓者想看看鱼钩上的情况,把鱼竿AC转动到AC′的位置,此时露在水面上的鱼线B′C′为m,则BB′的长为()A.m B.2m C.m D.2m8.已知a、b、c是△ABC三边的长,则+|a+b﹣c|的值为()A.2a B.2b C.2c D.2(a一c)二.填空题(共8小题,满分40分)9.如图,在长方形ABCD内,两个小正方形的面积分别为2,18,则图中阴影部分的面积等于.10.若矩形的长为(3+)cm,宽为(3﹣)cm,则长方形的面积为cm2.11.已知△ABC中,AC=,BC=2,AB=5,以AB为一边作等腰直角三角形ABD,且D、C两点分别在边AB的两侧,则线段CD的长为.12.如图,两个正方形Ⅰ,Ⅱ和两个矩形Ⅲ,Ⅳ拼成一个大正方形,已知正方形Ⅰ,Ⅱ的面积分别为6和3,那么大正方形的面积是.13.如图,从一个大正方形中裁去面积为8cm2和18cm2的两个小正方形,则留下的阴影部分面积和为.14.一个直角三角形的两直角边长分别为cm和cm,则这个直角三角形的面积是cm2.15.已知三角形三边长分别为,,,则此三角形的最大边上的高等于.16.如图,四边形ABCD和CEFG是两个相邻的正方形,其中B,C,E在同一条直线上,点D在CG上,它们的面积分别为27平方米和48平方米,则BE的长为米.三.解答题(共6小题,满分40分)17.如图,在△ABC中,CD、CE分别是AB上的高和中线,S△ABC=12cm2,AE=2cm,求CD的长.18.三角形的周长为(5+2)cm,面积为(20+4)cm2,已知两边的长分别为cm和cm,求:(1)第三边的长;(2)第三边上的高.19.阅读下列材料,并解决有关问题:观察发现:∵,∴,∵=6+8+2=14+2=14+8,∴====,∵,∴.…建立模型:形如的化简(其中m,n为正整数),只要我们找到两个正整数a、b(a>b),使a+b=m,ab=n,那么=.问题解决:(1)根据观察说明“建立模型”是正确的.(2)化简:①=;②=.(3)已知正方形的边长为a,它的面积与长为、宽为的长方形面积相等,求正方形的边长.20.我国宋代的数学家秦九韶发现:若一个三角形的三边长分别为a,b,c,则这个三角形的面积为s=,其中p=(a+b+c).如图1,在△ABC中,已知AB=9,AC=8,BC=7.(1)求△ABC的面积;(2)如图2,AD,BE为△ABC的两条角平分线,它们的交点为点I,求I到边BC的距离.21.若矩形的长a=,宽b=.(1)求矩形的面积和周长;(2)求a2+b2﹣20+2ab的值.22.某居民小区有块形状为长方形ABCD的绿地,长方形绿地的长BC为8米,宽AB为米,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为+1米,宽为﹣1米.(1)长方形ABCD的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其它地方全修建成通道,通道上要铺上造价为6元/m2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果化为最简二次根式)参考答案一.选择题(共8小题,满分40分)1.解:∵一个长方形面积是,宽是,∴它的长是:÷==2.故选:C.2.解:设它的高为xdm,根据题意得:2××x=4,解得:x=1.故选:A.3.解:如图.由题意知:,.∴BC=(cm),HG=(cm).∵四边形BCDM是正方形,四边形HMFG是正方形,∴BC=BM=MD=cm,HM=HG=MF=cm.∴S阴影部分=S矩形ABMH+S矩形MDEF=BM•HM+MD•MF==48(cm2).故选:C.4.解:∵两个相邻的正方形,面积分别为3和9,∴两个正方形的边长分别为,3,∴阴影部分的面积=×(3﹣)=3﹣3.故选:C.5.解:∵一个面积为192cm2的正方形纸片,边长为:8cm,∴原矩形的长为:8﹣2=6(cm),宽为:8﹣7=(cm),∴原长方形纸片的面积为:(cm2).故选:A.6.解:∵正方形AEPF和正方形PHCG的面积分别为12和3,∴正方形AEPF和正方形PHCG的边长分别为2和,∴AB=2+=3.故选:D.7.解:∵AC=6m,BC=3m,∴AB===3m,∵AC′=6m,B′C′=m,∴AB′===m,∴BB′=AB﹣AB′=3﹣=2m;故选:B.8.解:∵三角形两边之和大于第三边,两边之差小于第三边,∴a﹣b﹣c<0,a+b﹣c>0∴+|a+b﹣c|=b+c﹣a+a+b﹣c=2b.故选:B.二.填空题(共8小题,满分40分)9.解:∵两个小正方形的面积分别为2,18,∴小正方形的边长为,大正方形边长为3,∴阴影部分的长为3﹣=2,宽为,∴阴影部分的面积=2×=4,故答案为:4.10.解:长方形的面积为(3+)×(3﹣)=9﹣7=2(cm2),故答案为:2.11.解:∵AC=,BC=2,AB=5,∴AB2=AC2+BC2,∴△ABC是直角三角形,∴∠C=90°,①如图1,当∠DAB=90°时,过点D作DG⊥AC交于CA延长线于点G,∵AB=AD,∴∠GAD+∠GDA=90°,∠GAD+∠CAB=90°,∴∠GDA=∠CAB,∴△AGD≌△BCA(AAS),∴GD=AC,AG=BC,∴GD=,AG=2,∴CG=3,在Rt△CDG中,CD===5;②如图2,当∠ABD=90°时,过点D作DF⊥BC交CB延长线于点F,∵∠ABC+∠CAB=90°,∠ABC+∠DBF=90°,∴∠CAB=∠FBD,∵AB=BD,∴△ABC≌△BDF(AAS),∴BF=AC=,DF=BC=2,∴CF=3,在Rt△CDF中,CD===;③如图3,当∠ACB=90°时,过点D作DM⊥AC交CA延长线于点M,过点D作DN⊥BC交于点N,∵∠CAD+∠DBC=180°,∠CAD+∠MAD=180°,∴∠MAD=∠DBN,∵AD=BD,∴△ADM≌△BDN(AAS),∴AM=BN,MD=DN,∴四边形MCND是正方形,∴AC+AM=BC﹣BN=BC﹣AM,∴2AM=BC﹣AC=,∴AM=,∴CM=,∴CD=×=;综上所述:CD的长为或5或,故答案为:或5或.12.解:∵正方形Ⅰ的面积为6,∴正方形Ⅰ的边长为,∵正方形Ⅱ的面积为3,∴正方形Ⅱ的边长为,∴大正方形的边长为+,∴大正方形的面积为()2=9+6,故答案为:9+6.13.解:∵两个小正方形面积为8cm2和18cm2,∴大正方形边长为:+=2+3=5(cm),∴大正方形面积为(5)2=50(cm2),∴留下的阴影部分面积和为:50﹣8﹣18=24(cm2).故答案为:24cm2.14.解:这个直角三角形的面积=cm2,故答案为:215.解:∵2+2=(2)2,∴根据勾股定理的逆定理,△ABC是直角三角形,最长边是2,设斜边上的高为h,则S△ABC=××=×h,解得:h=,故答案为.16.∵正方形ABCD的面积为27,∴BC=.∵正方形CEFG的面积为48,∴CE=.∴BE=BC+CE=.故答案为:.三.解答题(共6小题,满分40分)17.解:在△ABC中,CE是AB上的中线,S△ABC=12cm2,∴S△AEC=S△ABC=6cm2,∵AE=2cm,∴AE•CD=6,即×2•CD=6,∴CD=6.18.解:(1)∵三角形周长为cm,两边长分别为cm和cm,∴第三边的长是:cm;(2)∵面积为(20+4)cm2,∴第三边上的高为==()cm.19.解:(1)将上述式子代入模型进行验证,发现都是正确的即可.(2)①由题意得,解得或,∴=1+.故答案为:1+.②∵=,∴,∴或.∴=﹣=4﹣.故答案为:4﹣.(3)由题意得a2=(+4)×2=18+8,∴a===+=+2.答:正方形的边长是+2.20.解:(1)由题意得:p===12,∴S△ABC===12;(2)连接IC,过点I分别作AB、BC、AC边的垂线交AB、BC、AC于点M、Q、N,由角平分线的性质定理可知:IM=IQ=IN,观察图形易知:S△ABC=S△ABI+S△BCI+S△ACI===12,∴=12,解得:IQ=,故I到边BC的距离为:.21.解:(1)∵矩形的长a=,宽b=.∴矩形的面积为:(+)(﹣)=6﹣5=1;矩形的周长为:2(++﹣)=4;(2)a2+b2﹣20+2ab=(a+b)2﹣20=(++﹣)2﹣20=(2)2﹣20=24﹣20=4.22.解:(1)长方形ABCD的周长=2×()=2(8+7)=16+14(米),答:长方形ABCD的周长是16+14(米),(2)通道的面积==56﹣(13﹣1)=56(平方米),购买地砖需要花费=6×(56)=336﹣72(元).答:购买地砖需要花费336﹣72元;。
河北省中考数学一轮复习专题4——二次根式
河北省中考数学一轮复习专题 4——二次根式姓名:________班级:________成绩:________一、 单选题 (共 13 题;共 52 分)1. (4 分) (2021 八下·乐清期末) 下列各式中,能与 合并的是( )A.B.C.D. 2. (4 分) (2020 八下·八步期末) 下列根式是最简二次根式的是( )A.B.C.D.3. (4 分) (2017 八下·通辽期末) 化简: A.8 B . ﹣8 C . ﹣4 D.4=( )4. (4 分) 若|x+2|+ =0,则 xy 的值为( ) A . -8 B . -6 C.5 D.6 5. (4 分) 在实数范围内,下列各式一定不成立的有( )① A . 1个 B . 2个 C . 3个;②;③;④.第 1 页 共 18 页D . 4个6. (4 分) (2019 八下·谢家集期末) 下列二次根式中,化简后能与 合并的是A.B.C.D. 7. (4 分) (2020 九下·重庆月考) 已知二次函数 y=﹣x2+(a﹣2)x+3,当 x>2 时,y 随 x 的增大而减小, 并且关于 x 的方程 ax2﹣2x+1=0 无实数解.那么符合条件的所有整数 a 的和是( ) A . 120 B . 20 C.0 D . 无法确定 8. (4 分) (2019 九上·官渡期末) 二次函数 y=ax2+bx+c(a,b,c 为常数,且 a≠0)中的 x 与 y 的部分对 应值如下表给出了以下结论: x … ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 … y … 12 5 0 ﹣3 ﹣4 ﹣3 0 5 12 …①二次函数 y=ax2+bx+c 有最小值,最小值为﹣3;②当﹣ <x<2 时,y<0;③二次函数 y=ax2+bx+c 的 图象与 x 轴有两个交点,且它们分别在 y 轴的两侧;④当 x<1 时,y 随 x 的增大而减小.则其中正确结论有( )A . 4个 B . 3个 C . 2个 D . 1个 9. (4 分) 下列计算错误的是( )A. + =B. · =C.D. 10. (4 分) 下列说法中正确的是( A . 实数-a2 是负数)第 2 页 共 18 页B . =|a| C . |-a|一定是正数 D . 实数-a 的绝对值是 a11. (4 分) (2020 八上·浙江月考) 如图,在平面直角坐标系中, 平行于 轴,点 坐标为,在 点的左侧,,若 点在第二象限,则 的取值范围是( )A. B. C. D.12. (4 分) (2017 八下·湖州期中) 若代数式有意义,则实数 x 的取值范围是( )A . x≥﹣1B . x≥﹣1 且 x≠3C . x>﹣1D . x>﹣1 且 x≠313. (4 分) (2019 八上·罗湖期中) 下列各式的计算中,正确的是( )A.B.C.D.二、 填空题 (共 8 题;共 32 分)14. (4 分) (2020 八上·松江期末) 计算:________.15. (4 分) 当 a=2,b=﹣8,c=5 时,代数式的值为________.第 3 页 共 18 页16. (4 分) (2020 八上·遵化月考) 当 a=________时,最简二次根式 17. (4 分) 若|x﹣3|+|y+2|=0,则|x|+|y|= ________和可以合并.18. (4 分) (2019 八下·沙雅期中) 已知 a、b、c 是三角形的三边长,如果满足,则三角形的形状是________.19. (4 分) (2020 七上·呼和浩特月考) 关于 的一元二次方程的一个根为 0,则 ________. 20. (4 分) (2020 八下·长兴期末) 如图,以正方形 ABCD 的一边 AD 为边向外作等边△ADE,则∠BED 的度数是________。
中考数学专题《二次根式》复习试卷含答案解析
2018年中考数学专题复习卷: 二次根式一、选择题1.下列计算正确的是()A. B. C. D.2.下列四个数中,是负数的是( )A. B. C. D.3.函数y= 中自变量x的取值范围是()A. x≥-1且x≠1B. x≥-1C. x≠1D. -1≤x<14.下列各式化简后的结果为3 的是()A. B. C. D.5.下列计算正确的是()A. a5+a2=a7B. × =C. 2-2=-4D. x2·x3=x66.计算|2﹣|+|4﹣|的值是()A. ﹣2B. 2C. 2 ﹣6D. 6﹣27.计算之值为何()A. 5B. 33C. 3D. 98.下列运算正确的是()A. B. C. D.9.已知,则代数式的值是()A. 0B.C.D.10.如果(0<x<150)是一个整数,那么整数x可取得的值共有()A. 3个B. 4个C. 5个D. 6个11.化简为()A. 5﹣4B. 4 ﹣lC. 2D. 112.下列计算:①;②;③;④.其中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题13.函数y=的自变量x的取值范围是________.14.计算:=________.15.计算:________。
16.当x=2时,二次根式的值为________.17.计算的结果是________.18.计算(+1)2016(﹣1)2017=________.19.已知实数a在数轴上的位置如图所示,化简的结果是________.20.若实数a、b满足|a+2|+ =0,则=________.21.计算:=________.22.观察下列等式:第1个等式:a1= = ﹣1,第2个等式:a2= = ﹣,第3个等式:a3= =2﹣,第4个等式:a4= = ﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=________;(2)a1+a2+a3+…+a n=________.三、解答题23.24.计算:()﹣1﹣6cos30°﹣()0+ .25.在平面直角坐标系中,点P(- ,-1)到原点的距离是多少?26.若b为实数,化简|2b-1|- 。
初中数学 中考复习二次根式专题练习(含答案)
二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。
(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。
满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。
(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。
中考数学一轮复习数学二次根式的专项培优练习题(及解析
一、选择题1.5﹣x ,则x 的取值范围是( ) A .为任意实数 B .0≤x≤5 C .x≥5 D .x≤5 2.下列式子中,是二次根式的是( )A B CD .x3.下列各式计算正确的是( )A .6232126()b a b a b a---⋅=B .(3xy )2÷(xy )=3xyC =D .2x •3x 5=6x 64.有意义,则x 的取值范围是( ) A .x≠2B .x >-2C .x <-2D .x≠-25.已知226a b ab +=,且a>b>0,则a ba b+-的值为( )A B C .2D .±26. )A .30 B .C .30D .7.化简二次根式 )A B C D 8.若化简1682+-x x -1x -的结果为5-2x ,则x 的取值范围是( ) A .为任意实数 B .1≤x≤4C .x≥1D .x≤49.下列各式计算正确的是( )A B .C .D10.230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对二、填空题11.使函数212y x x=+有意义的自变量x 的取值范围为_____________12.已知112a b +=,求535a ab b a ab b++=-+_____.13.化简并计算:...+=________.(结果中分母不含根式)14.2==________.15.甲容器中装有浓度为a ,乙容器中装有浓度为b ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.16.已知函数1x f xx,那么1f _____.17.10=,则222516x y +=______.18.若实数x ,y ,m 满足等式()223x y m +-=m+4的算术平方根为________. 19.若实数a =,则代数式244a a -+的值为___.20. (a ≥0)的结果是_________.三、解答题21.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1== (1= ,= ; (2⋅⋅⋅+的值.【答案】(12)9 【分析】(1)仿照例子,由1+=的值;由1+=的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案.【详解】 解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.22.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==25384532++====-进行分母有理化. (3)利用所需知识判断:若a =,2b =a b,的关系是 . (4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019 【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(22243743--==--(3)∵2a===,2b=-,∴a和b互为相反数;(4))1 ++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.23.已知m,n满足m4n=3+.【答案】12015【解析】【分析】由43m n+=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n+=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.24.小明在解决问题:已知2a2﹣8a+1的值,他是这样分析与解的:∵=2∴a﹣2=∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a -=-= , ∴2212a a -+= ,即221a a -=∴原式=24(2)14115a a -+=⨯+= 解法二∴ 原式=24(211)1a a -+-+24(1)3a =--211)3=--4235=⨯-=点睛:(1得22=-=-a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.25.先化简,再求值:a ,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可. 【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.26.先化简,再求值:2443(1)11m m m m m -+÷----,其中2m =.【答案】22mm-+ 1. 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --)=221m m --()÷241m m --=221m m --()•122m m m --+-()() =﹣22m m -+=22m m-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.27.先化简,再求值:221()a ba b a b b a-÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案. 【详解】 解:原式1()()a b a b aa b a b b a b b--=⨯-⨯+-+()()a b a b a b b a b -=--++()b bb a =-+1a b=-+,当a =2b =原式12==-.【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.28.计算:(1)-(2)【答案】(1)21【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的乘除法则运算,再合并即可.【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的性质得出5-x≥0,求出即可.【详解】==-=-,|5|5x x∴5-x≥0,解得:x≤5,故选D.【点睛】本题考查了二次根式的性质的应用,注意:当a≥0,当a≤0.2.A解析:A【分析】a≥0)的式子叫做二次根式,据此可得结论.【详解】解:A 是二次根式,符合题意; B是三次根式,不合题意;C 、当x <0D 、x 属于整式,不合题意; 故选:A . 【点睛】此题考查二次根式的定义,关键是根据二次根式的定义理解被开方数是非负数.3.D解析:D 【分析】依据单项式乘以单项式、单项式除以单项式以及二次根式的加法法则对各项分别计算出结果,再进行判断即可得到结果. 【详解】A. 2321526()b a b a b a---⋅=,故选项A 错误;B. (3xy )2÷(xy )=9xy ,故选项B 错误;C 错误; D. 2x •3x 5=6x 6,正确. 故选:D . 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.B解析:B 【分析】根据二次根式的被开方数是非负数,且分母不能为零,可得答案. 【详解】有意义,得: 20x +>,解得:2x >-. 故选:B . 【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.5.A解析:A【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案. 【详解】∵a 2+b 2=6ab , ∴(a+b )2=8ab ,(a-b )2=4ab , ∵a >b >0,∴∴a b a b +-= 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.6.C解析:C 【解析】故选C .点睛:此题主要考查了二次根式的化简,解题关键是利用分数的通分求和,然后把其分母有理化即可求解,比较简单,但是易出错,是常考题.7.B解析:B 【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可 【详解】2202a a aa a +-∴+<∴<-a a ∴==•=-故选B【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.8.B解析:B【解析】【分析】先把多项式化简为|x-4|-|1-x|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】-=|x-4|-|1-x|,解:原式1x当x≤1时,此时1-x≥0,x-4<0,∴(4-x)-(1-x)=3,不符合题意,当1≤x≤4时,此时1-x≤0,x-4≤0,∴(4-x)-(x-1)=5-2x,符合题意,当x≥4时,此时x-4≥0,1-x<0,∴(x-4)-(x-1)=-3,不符合题意,∴x的取值范围为:1≤x≤4故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.9.D解析:D【解析】不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知,故不正确;根据二次根式的性质,可知,故不正确;==,故正确.3故选D.10.B解析:B【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案.【详解】-=,x30=,=0∴x=-2或x=3,又∵2030x x +≥⎧⎨-≥⎩, ∴x=3,故选B.【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键.二、填空题11.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x 的取值范围为【点睛】 解析:11,022x x -≤≤≠ 【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤①当0x <时,120x +≥解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】 本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 12.13【解析】【分析】由得a+b=2ab ,然后再变形,最后代入求解即可.【详解】解:∵∴a+b=2ab∴故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找解析:13【解析】【分析】 由112a b +=得a+b=2ab ,然后再变形535a ab b a ab b++-+,最后代入求解即可. 【详解】 解:∵112a b+= ∴a+b=2ab ∴()5353510ab 3===132ab a b ab a ab b ab a ab b a b ab ab+++++-++-- 故答案为13.【点睛】 本题考查了已知等式求代数式的值,解答的关键是通过变形找到等式和代数式的联系. 13.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观【分析】-,将原式进行拆分,然后合并可得出答案.【详解】解:原式===【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.14.【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m=,n=,那么m−n=2①,m2+n2=()2+()2=34②.由①得,m=2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m n那么m−n =2①,m 2+n 2=2+2=34②.由①得,m =2+n ③,将③代入②得:n 2+2n−15=0,解得:n =−5(舍去)或n =3,因此可得出,m =5,n =3(m≥0,n≥0).n +2m =13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.15.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m 即可.【详解】解:根据题意,甲容器中纯果汁含量为akg ,乙容器【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利=,求出m 即可.【详解】, 甲容器倒出mkg 果汁中含有纯果汁makg ,乙容器倒出mkg 果汁中含有纯果汁mbkg ,,=,整理得,-6b =5ma -5mb ,∴(a -b )=5m (a -b ),∴m =5.故答案为:5【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键.16.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时,.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x=,代入原函数即可解答.【详解】因为函数1xf xx,所以当1x=时,211()2221f x.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 17.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.18.3【解析】【分析】先根据二次根式有意义的条件得出x+y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m =5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x +y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:35302302x y m x y m x y +--=⎧⎪+-=⎨⎪+=⎩,解得:x =1,y =1,m =5,∴==3.故答案为3.【点睛】 本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.19.3∵ =,∴=(a-2)2==3,故答案为3.解析:3【解析】∵a =∴244a a -+=(a-2)2=()222+=3, 故答案为3.20.4a【解析】【分析】根据二次根式乘法法则进行计算即可得.【详解】===4a ,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.解析:4a【解析】【分析】根据二次根式乘法法则进行计算即可得.)0a ≥===4a ,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
2022年中考数学一轮复习:二次根式 专项练习题中考试题汇编(Word版,含答案)
2022年中考数学一轮复习:二次根式 专项练习题中考试题汇编一、选择题1. (2021•甘肃省定西市)下列运算正确的是( ) A .+=3B .4﹣=4C .×=D .÷=42. (2021•湖南省常德市)计算:5151122⎛⎫++-⋅=⎪⎝⎭( ) A. 0B. 1C. D.512- 3. (2021•湖南省衡阳市)下列计算正确的是( ) A .=±4B .(﹣2)0=1C .+=D .=34. (2021•株洲市) 计算:142-⨯=( ) A. 22-B. -2C. 2-D. 225. (2021•江苏省苏州市)计算()2的结果是( )A .B .3C .2D .96. (2021•河北省)与结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣17. (2021•广东省)若22391240a a ab b -+-+=,则ab =() A .3B .92C .43D .98. (2021•广东省)设610-的整数部分为a ,小数部分为b ,则()210a b +的值是()A .6B .210C .12D .9109(2021•湖北省恩施州)从,﹣,﹣这三个实数中任选两数相乘,所有积中小于2的有( )个. A .0B .1C .2D .310. (2021•青海省)已知a ,b 是等腰三角形的两边长,且a ,b 满足+(2a +3b﹣13)2=0,则此等腰三角形的周长为( )A .8B .6或8C .7D .7或811. (2021•浙江省杭州)下列计算正确的是( ) A .=2B .=﹣2C .=±2D .=±212. (2021•浙江省湖州市)化简8的正确结果是.A .4B .±4C .22D .22±13. (2021•浙江省嘉兴市)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是( ) A .x =﹣1B .x =+1C .x =3D .x =﹣14. (2021•湖北省荆门市)下列运算正确的是( ) A .(﹣x 3)2=x 5 B .=xC .(﹣x )2+x =x 3D .(﹣1+x )2=x 2﹣2x +115. (2021•重庆市B )下列计算中,正确的是( ) A .5﹣2=21 B .2+=2C .×=3D .÷=316. (2021•重庆市A )1472 ) A. 7B. 62C. 72D. 2717. (2021•襄阳市)3x +x 的取值范围是( ) A. 3x ≥-B. 3x ≥C. 3x ≤-D. 3x >-18. (2021•绥化市)01x +x 的取值范围是( )A. –1x >B. 1x ≥-且0x ≠C. 1x >-且0x ≠D. 0x ≠19. (2021•湖南省娄底市)2,5,m 22(3)(7)m m --( ) A. 210m - B. 102m -C. 10D. 4二.填空题1.(2021·安徽省)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等51,它介于整数n 和1n +之间,则n 的值是______. 2. (2021•湖北省黄冈市)式子在实数范围内有意义,则a 的取值范围是 a ≥﹣2 .3. (2021•江苏省连云港) 计算()25-=__________.4. (2021•江苏省南京市) 计算982-的结果是________. 5. (2021•宿迁市)若代数式22x +有意义,则x 的取值范围是____________. 6. (2021•山东省聊城市)计算:121882⎛⎫-⎪⎝⎭=_______. 7. (2021•上海市)已知43x +=,则x =___________.8. (2021•湖北省随州市)2021年5月7日,《科学》杂志发布了我国成功研制出可编程超导量子计算机“祖冲之”号的相关研究成果.祖冲之是我国南北朝时期杰出的数学家,他是第一个将圆周率π精确到小数点后第七位的人,他给出π的两个分数形式:227(约率)和355113(密率).同时期数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和d c (即有b dx a c<<,其中a ,b ,c ,d 为正整数),则b d a c ++是x 的更为精确的近似值.例如:已知15722507π<<,则利用一次“调日法”后可得到π的一个更为精确的近似分数为:1572217950757+=+;由于179 3.140457π≈<,再由17922577π<<,可以再次使用“调日法”得到π的更为精确的近似分数……现已知73252<<,则使用两次“调日法”可得到2的近似分数为______.9. (2021•四川省达州市)已知a ,b 满足等式a 2+6a +9+=0,则a 2021b 2020= .10. (2021•四川省眉山市)观察下列等式:x 1===1+;x 2===1+;x 3===1+;…根据以上规律,计算x 1+x 2+x 3+…+x 2020﹣2021= . 11. (2021•遂宁市)若20a a b -++=,则b a =_____. 12. (2021•天津市)计算(101)(101)+-的结果等于_____. 13. (2021•青海省)观察下列各等式: ①; ②; ③;…根据以上规律,请写出第5个等式: . 14. (2021•山东省威海市)计算624455-⨯的结果是____________________. 15. (2021•贵州省铜仁市)计算()()271832+-=______________;三、解答题1. (2021•湖北省江汉油田)计算:03(32)4(236)812-⨯--+-+2. (2021•海南省)计算:23+|﹣3|÷3﹣×5﹣1;3. (2021•内蒙古通辽市)计算:()﹣1+(π﹣3)0﹣2cos30°+|3﹣|.答案一、选择题1.(2021•甘肃省定西市)下列运算正确的是()A.+=3B.4﹣=4C.×=D.÷=4【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=2,所以A选项的计算错误;B、原式=3,所以B选项的计算错误;C、原式==,所以C选项的计算正确;D、原式===2,所以D选项的计算错误.故选:C.2.(2021•湖南省常德市)计算:5151122⎛⎫++-⋅=⎪⎝⎭()A. 0B. 1C.D. 51 2 -【答案】C【解析】【分析】先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.【详解】解:5151122⎛⎫++-⋅⎪⎪⎝⎭=5151 22 -+⋅=51 2 -=2.故选:C.3.(2021•湖南省衡阳市)下列计算正确的是()A.=±4B.(﹣2)0=1C.+=D.=3【分析】根据相关概念和公式求解,选出正确答案即可.【解答】解:16的算术平方根为4,即,故A不符合题意;根据公式a0=1(a≠0)可得(﹣2)0=1,故B符合题意;、无法运用加法运算化简,故,故C 不符合题意;,故D 不符合题意;故选:B .4. (2021•株洲市) 计算:142-⨯=( ) A. 22- B. -2C. 2-D. 22【答案】A5. (2021•江苏省苏州市)计算()2的结果是( )A .B .3C .2D .9【分析】按照二次根式的乘法法则求解. 【解答】解:()2=4.故选:B . 6. (2021•河北省)与结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣1【分析】化简===2,再逐个选项判断即可. 【解答】解:===2,∵3﹣2+1=2,故A 符合题意; ∵3+2﹣1=4,故B 不符合题意; ∵3+2+1=6,故C 不符合题意; ∵3﹣2﹣1=0,故D 不符合题意. 故选:A .7. (2021•广东省)若22391240a a ab b -+,则ab =() A 3B .92C .43D .9【答案】B【解析】因为22391240a a ab b -+,且30a 2291240a ab b -+ 所以3=0a ()222912432320a ab b a b a b -+--=所以3a 3332a b ==33932ab ==,考查绝对值、二次根式的非负性。
中考数学总复习《分式与二次根式》专项练习题-附带参考答案
中考数学总复习《分式与二次根式》专项练习题-附带参考答案一、选择题:(本题共8小题,共40分.)1.计算(﹣ 13 )﹣2的值,正确的是( )A .19B .﹣ 19C .9D .﹣92.下列各数中,化为最简二次根式后能与√3合并的是( )A .√18B .√12C .√23D .√293.使代数式√x−3x−4有意义的x 的取值范围是( )A .x >3B .x ≥3C .x >4D .x ≥3 且x ≠44.下列运算中错误的是( )A .√2 + √3 = √5B .√2 × √3 = √6C .√8 ÷ √2 =2D .(−√3)2 =35.若分式 |x|−1x 2−3x+2 的值为0,则x 的值为( )A .-1B .0C .1D .±16.如果分式xy 2x−3y 中的x ,y 都扩大为原来的2倍,那么分式的值( )A .扩大为原来的2倍B .扩大为原来的4倍C .不变D .不能确定7.若先化简 (1+2p−2)÷p 2−pp 2−4 ,再求值,且 p 是满足 −3<p <3 的整数,则化简求值的结果为()A .0或 −12 或-2或4B .-2或 −12C .-2D .−128.若√x −1+√x +y =0 ,则x 2005+y 2005 的值为: ( )A .0B .1C .-1D .2二、填空题:(本题共5小题,共15分.)9.化简: 4a−4b 3ab ⋅15ab 2a −2b 2÷1a = .10.若分式 x 2−x−2x 2+2x+1 的值为 0 ,则 x 的值等于 .11.计算 √48−√27 的结果等于 .12.已知 1a −1b =12 ,则 ab a−b 的值是13.对于分式 ,当x= 时,分式 x 2−2x−3x−3 无意义;当x= 时,分式值为零.三、解答题:(本题共4题,共45分.)14.化简:(a ﹣1+1a−3)÷a2−4a−3;15.先化简,再求值:222414816a a a a a ---÷+++,其中2a =.16.(1)计算:(12)﹣2﹣|√2−3|+2tan45°﹣(2020﹣π)0;(2)先化简,再求值:(3a+1−a +1)÷a 2−4a 2+2a+1,其中a 从﹣1,2,3中取一个你认为合适的数代入求值.17. 先化简,再求值:(1x -y +2x 2-xy )÷x +22x ,其中实数x ,y 满足y =x -2-4-2x +1.参考答案:1.C2.B3.D4.A5.A6.A7.D8.A9.20ab a+b10.211.√312.﹣213.3;-114.原式=[(a−1)(a−3)a−3+1a−3]÷(a+2)(a−2)a−3 =(a 2−4a+3a−3+1a−3)•a−3(a+2)(a−2) =(a−2)2a−3•a−3(a+2)(a−2) =a−2a+2;15.解:原式=()()()242421142222a a a a a a a a +-+-+-⨯=-=-+++; 把22a 代入得:原式=2222=--+ 16.(1)(12)﹣2﹣|√2−3|+2tan45°﹣(2020﹣π)0=4+√2−3+2×1﹣1=4+√2−3+2﹣1=2+√2;(2)(3a+1−a +1)÷a 2−4a 2+2a+1=3−(a−1)(a+1)a+1×(a+1)2(a+2)(a−2) =−(a+2)(a−2)a+1=﹣a ﹣1要使原式有意义,只能a =3则当a =3时,原式=﹣3﹣1=﹣4.17.略。
中考数学总复习《二次根式》练习题附有答案
中考数学总复习《二次根式》练习题附有答案一、单选题(共12题;共24分)1.若最简二次根式√a+2与√2a−3是可以合并的二次根式,则a的值为()A.5B.13C.-2D.322.使式子√x+1x−1有意义的x的取值范围是()A.x>1B.x≠1C.x≥1且x≠1D.x≥−1且x≠13.若等式√m2−4=√m+2⋅√m−2成立,则m的取值范围是()A.m≥−2B.m≥2C.−2≤m≤2D.m≥44.在函数y=1√x+3中,自变量x的取值范围是()A.x≥−3B.x≥−3且x≠0 C.x≠0D.x>−35.下列计算正确的一项是()A.√36=±6B.√0.49=0.7C.√919=313D.√(3−23)2=3−1136.计算正确的是()A.√114=112B.7a-5a=2C.(-3a)3=-9a3D.2a(a-1)=2a2-2a7.下列运算正确的是()A.2√2-√2=2B.a3·a2=a5C.a8÷a2=a4D.(﹣2a2)3=﹣6a68.下面是二次根式的是()A.12B.−3C.√3D.0 9.若式子√x−3有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x=3 10.有下列说法:①一元二次方程x2+px-1=0不论p为何值必定有两个不相同的实数根;②若b=2a+12c,则一元二次方程ax2+bx+c=0必有一根为-2;③代数式x2+√x+1+1有最小值1;④有两边和第三边上的高对应相等的两个三角形全等;其中正确的是()A.①④B.①②C.①②③D.①②③④运算结果在哪两个整数之间()11.估计(√24−√12)⋅√13A.0和1B.1和2C.2和3D.3和4 12.下列运算正确的是()A.√3+√4=√7B.(−√3)2=−3C.2√3−√3=2D.√3×√2=√6二、填空题(共6题;共7分)13.式子√x−1中x的取值范围是14.计算:(√3−√2)2012(√3+√2)2013=.15.若√x−5不是二次根式,则x的取值范围是16.若|a-b+1|与√a+2b+4互为相反数,则a=,b=.17.若x,y为实数,且y=2022+√x−4+√4−x,则x+y=.18.已知√24n是整数,则正整数n的最小值是.三、综合题(共6题;共86分)19.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且(a+2)2+ =0,(1)求a,b的值;(2)在坐标轴上存在一点M,使△COM的面积是△ABC的面积的一半,求出点M 的坐标.(3)如图2,过点C做CD△y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分角△AOP,OF△OE,当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.20.有这样一类题目:将√a±2√b化简,如果你能找到两个数m、n,使m2+n2=a 且mn=√b,a±2√b将变成m2+n2±2mn,即变成(m±n)2,从而使√a±2√b得以化简.(1)例如,∵5+2√6=3+2+2√6=(√3)2+(√2)2+2√2×√3=(√3+√2)2 ∴√5+2√6=√(√3+√2)2= ,请完成填空. (2)仿照上面的例子,请化简√4−2√3;(3)利用上面的方法,设A =√6+4√2,B =√3−√5,求A +B 的值.21.计算:(1)(√12−3)0+√24−(−12)−1 ; (2)已知 y =√2−x +√x −2−3 ,求 (x +y)2021 的立方根;(3)如图,一次函数 y =kx +b 的图像分别与x 轴、y 轴交于点A 、B ,且经过点 (−1,32) ,求 △AOB 的面积.22.阅读下列计算过程:√2+1=√2(√2+1)(√2−1)=√2−1√3+√2=√3√2)(√3+√2)(√3−√2)=√3−√2√5+2=√5(√5+2)(√5−2)=√5−2试求: (1)1√11+√10的值;(2)1√n+√n−1的值;(3)求1+√2√2+√3√3+√4+⋅⋅⋅√199+√200 的值.23.计算:(1)√8+2 √3﹣(√27+ √2)(2)√23÷ √223× √25(3)(7+4 √3)(7﹣4 √3)24.(1)一个正数的平方根是a+3与2a﹣15,求a的值.(2)已知√a−16+(b+2)2=0,求ab的立方根.(3)已知x、y为实数,且y=√x−9−√9−x+√4.求√x+√y的值.参考答案1.【答案】A2.【答案】D3.【答案】B4.【答案】D5.【答案】B6.【答案】D7.【答案】B8.【答案】C9.【答案】A10.【答案】B11.【答案】A12.【答案】D13.【答案】x≥114.【答案】√3+√215.【答案】x<516.【答案】-2;-117.【答案】202618.【答案】619.【答案】(1)解:∵(a+2)2+ =0∴a+2=0,b-3=0∴a=﹣2,b=3;(2)解:如图1,过点C作CT△x轴,CS△y轴,垂足分别为T、S.∵A(﹣2,0),B(3,0)∴AB=5∵C(﹣1,2)∴CT=2,CS=1∴△ABC的面积=AB•CT=5∵△COM的面积=△ABC的面积∴△COM的面积=若点M在x轴上,即OM•CT=∴OM=2.5.∴M的坐标为(2.5,0)(﹣2.5,0)若点M在y轴上,即OM•CS=∴OM=5∴点M坐标(0,5)或(0,﹣5)综上所述:点M的坐标为(0,5)或(﹣2.5,0)或(0,﹣5)或(2.5,0);(3)解:如图2,的值不变,理由如下:∵CD△y轴,AB△y轴∴△CDO=△DOB=90°∴AB△CD∴△OPD=△POB.∵OF△OE∴△POF+△POE=90°,△BOF+△AOE=90°∵OE平分△AOP∴△POE=△AOE∴△POF=△BOF∴△OPD=△POB=2△BOF.∵△DOE+△DOF=△BOF+△DOF=90°∴△DOE=△BOF∴△OPD=2△BOF=2△DOE∴=2.20.【答案】(1)√3+√2(2)解:∵4−2√3=3+1−2√3=(√3)2+1−2√3=(√3−1)2∴√4−2√3=√(√3−1)2=√3−1.(3)解:∵A=6+4√2=4+2+4√2=(√4)2+(√2)2+2×√4×√2=(2+√2)2∴A=√6+4√2=2+√2∵B=3−√5=6−2√52=5+1−2√52=(√5)2+12−2×1×√52=(√5−1)22∴B=√3−√5=√(√5−1)22=√5−1√2=√10−√22=12√10−12√2∴把A式和B式的值代入A+B中,得:A+B=2+√2+12√10−12√2=2+12√10+√2221.【答案】(1)解: 原式= 1+2√6+2=3+2√6;(2)解: ∵y=√2−x+√x−2−3∴2−x≥0,x−2≥0∴x≤2∴x=2∴y=−3∴(x+y)2021=(2−3)2021=−1;∴(x+y)2021的立方根为−1;(3)解: 由图像可得点B的坐标为(0,3),然后把点B(0,3)和点(−1,32)代入一次函数y=kx+b得:{b=3−k+b=32,解得:{k=32b=3∴一次函数的解析式为y=32x+3令y=0时,则有0=32x+3,解得:x=−2∴OA=2,OB=3∴S△AOB=12×2×3=3.22.【答案】(1)解:√11+√10=√11−√10(√11+√10)(√11−√10)=√11−√10(2)解:1√n+√n−1=√n−√n−1(√n+√n+1)(√n−√n−1)=√n−√n−1n−(n−1)=√n−√n−1(3)解:11+√21√2+√3+1√3+√41√199+√200=√2−1+√3−√2+√4−√3+···+√199−√198+√200−√199=√200−1=10√2−1. 23.【答案】(1)解:原式=2 √2+2 √3﹣3 √3﹣√2 = √2﹣√3(2)解:原式= √23×38×25= √1010(3)解:原式=49﹣48=124.【答案】(1)解:∵一个正数的平方根是a+3与2a﹣15∴(a+3)+(2a﹣15)=0∴a=4;(2)解:∵√a−16+(b+2)2=0∴a﹣16=0,b+2=0∴a=16,b=﹣2∴√a b3=√16−23=﹣2;(3)解:∵y=√x−9−√9−x+√4∴x=9,y=2∴√x+√y=√9+√2=3+√2。
2023年浙江省中考数学第一轮复习卷:分式与二次根式(含解析)
2023年浙江省中考数学第一轮复习卷:3分式与二次根式一.选择题(共13小题)1.(2022•衢州)计算结果等于2的是( ) A .|﹣2|B .﹣|2|C .2﹣1D .(﹣2)02.(2022•杭州)照相机成像应用了一个重要原理,用公式1f=1u +1v(v ≠f )表示,其中f表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f ,v ,则u =( ) A .fv f−vB .f−v fvC .fvv−fD .v−f fv3.(2022•西湖区校级二模)要使式子√x−53有意义,x 的取值范围是( ) A .x ≤5B .x ≠5C .x >5D .x ≥54.(2022•萧山区校级二模)下列计算结果正确的是( ) A .√2+√3=√5 B .(﹣2)2=−14C .(a ﹣2)2=a 2﹣4D .a 6÷a 3=a 35.(2022•滨江区二模)下列等式成立的是( ) A .2+3√2=5√2B .√2×√3=√5C .√3÷√6=2√3 D .√(−2)2=26.(2022•吴兴区一模)下列运算正确的是( ) A .2+√2=2√2 B .4x 2y ﹣x 2y =3C .(a +b )2=a 2+b 2D .(ab )3=a 3b 37.(2022•海曙区校级一模)要使分式√x−5√18−2x有意义,x 的取值范围是( )A .x ≥5B .x ≠9C .5≤x ≤9D .5≤x <98.(2022•拱墅区模拟)下列计算正确的是( ) A .√8−√2=√2B .√(−2)2=−2C .√6÷√3=√3D .√2×√3=√59.(2022•奉化区二模)若二次根式√3−x 在实数范围内有意义,则实数x 的取值范围是( ) A .x <3B .x >3C .x ≠3D .x ≤310.(2022•鄞州区一模)二次根式√x −3中字母x 的取值范围是( ) A .x <3B .x ≤3C .x >3D .x ≥311.(2022•宁波模拟)要使分式x−7x+2有意义,x 的取值范围是( )A .x ≠﹣2B .x ≠2C .x ≥7D .x ≥﹣212.(2022•洞头区模拟)计算2a a+2−a−22+a的结果为( )A .a +2B .a ﹣2C .1D .a−2a+213.(2022•玉环市一模)小明和小亮期中考试的语文、数学成绩分别都是80分,m 分,到了期末考时,小明期末考试的语文、数学两科成绩依次比期中考试增长了20%,10%.两科总成绩比期中增长的百分数为a .小亮期末考试的语文、数学两科成绩依次比期中考试增长了15%,10%.两科总成绩比期中增长的百分数为b .则( ) A .a =bB .a >bC .a <bD .4a =3b二.填空题(共13小题)14.(2022•台州)如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是 . 先化简,再求值:3−x x−4+1,其中x =★.解:原式=3−xx−4•(x ﹣4)+(x ﹣4)…① =3﹣x +x ﹣4 =﹣115.(2022•湖州)当a =1时,分式a+1a的值是 .16.(2022•衢州)计算 (√2)2= .17.(2022•杭州)计算:√4= ;(﹣2)2= .18.(2022•瑞安市校级三模)当a =√3+1时,代数式(a ﹣1)2﹣2a +2的值为 . 19.(2022•衢江区一模)二次根式√x −4中字母x 的取值范围是 . 20.(2022•钱塘区二模)已知√(3+a)2=−3−a ,则a 的取值范围 . 21.(2022•金华模拟)如果代数式√x −4有意义,那么实数x 的取值范围是 . 22.(2022•景宁县模拟)若分式x+12−x 的值为0,则x = .23.(2022•常山县模拟)计算1+2a = . 24.(2022•柯城区二模)计算:a+b a−b+2a−b a−b= .25.(2022•温岭市一模)化简:(1+1x+1)•x+1x+2= . 26.(2022•定海区校级模拟)已知√x 1√x =2,那么√x 2+1x 2−2−√x x 2+2x+1的值等于 . 三.解答题(共6小题)27.(2022•舟山)观察下面的等式:12=13+16,13=14+112,14=15+120,……(1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数). (2)请运用分式的有关知识,推理说明这个结论是正确的. 28.(2022•仙居县二模)计算:(−2)−2+(√3+12)(√3−12). 29.(2022•常山县模拟)计算: (1)(2022)0+2sin30°﹣|﹣1|. (2)√27−√2×√6.30.(2022•婺城区校级模拟)先化简,再求值:(1−3x+2)÷x 2−1x 2+2x,从﹣2,0,2中取一个合适的数作为x 的值代入求值.31.(2022•金华模拟)已知a 2+2a ﹣1=0,求代数式(a 2−1a 2−2a+1−11−a )÷1a 2−a的值.32.(2022•萧山区校级二模)以下是圆圆同学进行分式化简的过程.a+bab ÷(1b −1a)=a+b ab ×(b ﹣a )=a+b ab •b −a+b ab •a =a+b a −a+b b =b 2+a 2ab .圆圆的解答过程是否有错误?若存在错误,请写出正确的解答过程.2023年浙江省中考数学第一轮复习卷:3分式与二次根式参考答案与试题解析一.选择题(共13小题)1.(2022•衢州)计算结果等于2的是( ) A .|﹣2|B .﹣|2|C .2﹣1D .(﹣2)0【解答】解:A .根据绝对值的定义,|﹣2|=2,那么A 符合题意. B .根据绝对值的定义,﹣|2|=﹣2,那么B 不符合题意. C .根据负整数指数幂,2−1=12,那么C 不符合题意. D .根据零指数幂,(﹣2)0=1,那么D 不符合题意. 故选:A .2.(2022•杭州)照相机成像应用了一个重要原理,用公式1f =1u+1v(v ≠f )表示,其中f表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f ,v ,则u =( ) A .fv f−vB .f−v fvC .fvv−fD .v−f fv【解答】解:1f=1u +1v(v ≠f ),1f =1u +1v ,1u =1f−1v, 1u=v−f fv ,u =fvv−f . 故选:C .3.(2022•西湖区校级二模)要使式子√x−53有意义,x 的取值范围是( )A .x ≤5B .x ≠5C .x >5D .x ≥5【解答】解:依题意有:x ﹣5≥0, 解得x ≥5. 故选:D .4.(2022•萧山区校级二模)下列计算结果正确的是( )A .√2+√3=√5B .(﹣2)2=−14C .(a ﹣2)2=a 2﹣4D .a 6÷a 3=a 3【解答】解:A 、√2与√3不是同类二次根式,故A 不符合题意. B 、原式=4,故B 不符合题意. C 、原式=a 2﹣4a +4,故C 不符合题意. D 、原式=a 3,故D 符合题意. 故选:D .5.(2022•滨江区二模)下列等式成立的是( ) A .2+3√2=5√2B .√2×√3=√5C .√3÷1√6=2√3 D .√(−2)2=2【解答】解:A 、2与3√2不能合并,故A 不符合题意; B 、√2×√3=√6,故B 不符合题意; C 、√31√6=3√2,故C 不符合题意; D 、√(−2)2=2,故D 符合题意; 故选:D .6.(2022•吴兴区一模)下列运算正确的是( ) A .2+√2=2√2 B .4x 2y ﹣x 2y =3C .(a +b )2=a 2+b 2D .(ab )3=a 3b 3【解答】解:A 、2与√2不是同类二次根式,不能合并计算,故此选项不符合题意; B 、原式=3x 2y ,故此选项不符合题意; C 、原式=a 2+2ab +b 2,故此选项不符合题意; D 、原式=a 3b 3,故此选项符合题意; 故选:D .7.(2022•海曙区校级一模)要使分式√x−5√18−2x有意义,x 的取值范围是( )A .x ≥5B .x ≠9C .5≤x ≤9D .5≤x <9【解答】解:根据题意,{x −5≥018−2x >0.解得5≤x <9. 故选:D .8.(2022•拱墅区模拟)下列计算正确的是( )A .√8−√2=√2B .√(−2)2=−2C .√6÷√3=√3D .√2×√3=√5【解答】解:√8−√2=2√2−√2=√2,故选项A 正确,符合题意; √(−2)2=2,故选项B 错误,不符合题意; √6÷√3=√2,故选项C 错误,不符合题意; √2×√3=√6,故选项D 错误,不符合题意; 故选:A .9.(2022•奉化区二模)若二次根式√3−x 在实数范围内有意义,则实数x 的取值范围是( ) A .x <3B .x >3C .x ≠3D .x ≤3【解答】解:若二次根式√3−x 在实数范围内有意义, 故3﹣x ≥0, 解得:x ≤3. 故选:D .10.(2022•鄞州区一模)二次根式√x −3中字母x 的取值范围是( ) A .x <3B .x ≤3C .x >3D .x ≥3【解答】解∵二次根式√x −3有意义, ∴x ﹣3≥0,解得:x ≥3. 故选:D .11.(2022•宁波模拟)要使分式x−7x+2有意义,x 的取值范围是( )A .x ≠﹣2B .x ≠2C .x ≥7D .x ≥﹣2【解答】解:分式有意义应满足分母不为0,即x +2≠0, 解得:x ≠﹣2. 故选:A .12.(2022•洞头区模拟)计算2a a+2−a−22+a的结果为( )A .a +2B .a ﹣2C .1D .a−2a+2【解答】解:2aa+2−a−22+a=2a−(a−2)a+2=2a−a+2a+2=a+2a+2=1;故答案为:C .13.(2022•玉环市一模)小明和小亮期中考试的语文、数学成绩分别都是80分,m 分,到了期末考时,小明期末考试的语文、数学两科成绩依次比期中考试增长了20%,10%.两科总成绩比期中增长的百分数为a .小亮期末考试的语文、数学两科成绩依次比期中考试增长了15%,10%.两科总成绩比期中增长的百分数为b .则( ) A .a =bB .a >bC .a <bD .4a =3b【解答】解:依题意得:a =80×20%+10%m 80+m =16+0.1m80+m;b =80×15%+10%m 80+m=12+0.1m80+m ; ∵a ﹣b =16+0.1m80+m −12+0.1m80+m =4+0.1m80+m >0, ∴a >b . 故选:B .二.填空题(共13小题)14.(2022•台州)如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是 5 . 先化简,再求值:3−x x−4+1,其中x =★.解:原式=3−xx−4•(x ﹣4)+(x ﹣4)…① =3﹣x +x ﹣4 =﹣1 【解答】解:3−x x−4+1=3−x+x−4x−4 =14−x , 当14−x=−1时,可得x =5,检验:当x =5时,4﹣x ≠0, ∴图中被污染的x 的值是5, 故答案为:5.15.(2022•湖州)当a =1时,分式a+1a的值是 2 .【解答】解:当a =1时, 原式=1+11=2.故答案为:2.16.(2022•衢州)计算 (√2)2= 2 . 【解答】解:原式=2. 故答案是2.17.(2022•杭州)计算:√4= 2 ;(﹣2)2= 4 . 【解答】解:√4=2,(﹣2)2=4, 故答案为:2,4.18.(2022•瑞安市校级三模)当a =√3+1时,代数式(a ﹣1)2﹣2a +2的值为 3﹣2√3 .【解答】解:∵a =√3+1, ∴a ﹣1=√3, ∴(a ﹣1)2﹣2a +2 =(√3)2﹣2(√3+1)+2 =3﹣2√3−2+2 =3﹣2√3, 故答案为:3﹣2√3.19.(2022•衢江区一模)二次根式√x −4中字母x 的取值范围是 x ≥4 . 【解答】解:由题意,得x ﹣4≥0, 解得x ≥4. 故答案是:x ≥4.20.(2022•钱塘区二模)已知√(3+a)2=−3−a ,则a 的取值范围 a ≤﹣3 . 【解答】解:∵√(3+a)2=|3+a|=−3−a , ∴3+a ≤0, ∴a ≤﹣3, 故答案为:a ≤﹣3.21.(2022•金华模拟)如果代数式√x −4有意义,那么实数x 的取值范围是 x ≥4 . 【解答】解:由题意可知:x ﹣4≥0, ∴x ≥4, 故答案为:x ≥4.22.(2022•景宁县模拟)若分式x+12−x的值为0,则x = ﹣1 .【解答】解:根据题意,得x +1=0. 解得x =﹣1.当x =﹣1时,2﹣x =3≠0. 故x =﹣1符合题意. 故答案为:﹣1.23.(2022•常山县模拟)计算1+2a = a+2a.【解答】解:原式=a+2a , 故答案为:a+2a.24.(2022•柯城区二模)计算:a+b a−b+2a−b a−b=3a a−b.【解答】解:原式=a+ba−b +2a−ba−b =a+b+2a−ba−b =3aa−b. 故答案为:3a a−b.25.(2022•温岭市一模)化简:(1+1x+1)•x+1x+2= 1 . 【解答】解:原式=(x+1x+1+1x+1)•x+1x+2=x+1+1x+1•x+1x+2=1, 故答案为:1.26.(2022•定海区校级模拟)已知√x 1√x =2,那么√x 2+1x 2−2−√xx 2+2x+1的值等于15√24. 【解答】解:∵√x 1√x=2, ∴两边平方得:x +1x −2√x •√x=4,∴x +1x =4+2=6, 两边平方得:x 2+1x 2+2=36,∴x 2+1x 2=34, ∵要使分式x +1x有意义,x ≠0, 又∵x +1x =6, ∴x x 2+2x+1=1x+2+1x=16+2=18,∴√x 2+1x 2−2−√x x 2+2x+1=√34−2−√18=4√2−14√2 =15√24, 故答案为:15√24.三.解答题(共6小题)27.(2022•舟山)观察下面的等式:12=13+16,13=14+112,14=15+120,……(1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数). (2)请运用分式的有关知识,推理说明这个结论是正确的. 【解答】解:(1)观察规律可得:1n =1n+1+1n(n+1);(2)∵1n+1+1n(n+1)=nn(n+1)+1n(n+1) =n+1n(n+1) =1n , ∴1n =1n+1+1n(n+1).28.(2022•仙居县二模)计算:(−2)−2+(√3+12)(√3−12). 【解答】解:原式=14+3−14 =3.29.(2022•常山县模拟)计算: (1)(2022)0+2sin30°﹣|﹣1|.(2)√27−√2×√6.【解答】解:(1)原式=1+2×12−1=1+1﹣1=1;(2)原式=3√3−2√3=√3.30.(2022•婺城区校级模拟)先化简,再求值:(1−3x+2)÷x 2−1x 2+2x ,从﹣2,0,2中取一个合适的数作为x 的值代入求值.【解答】解:(1−3x+2)÷x 2−1x 2+2x =x+2−3x+2•x(x+2)(x+1)(x−1)=x−1x+2•x(x+2)(x+1)(x−1) =x x+1, ∵x =﹣2,0时原式无意义,∴x =2,当x =2时,原式=22+1=23. 31.(2022•金华模拟)已知a 2+2a ﹣1=0,求代数式(a 2−1a 2−2a+1−11−a )÷1a 2−a 的值. 【解答】解:原式=[(a+1)(a−1)(a−1)2+1a−1]•a (a ﹣1) =(a+1a−1+1a−1)•a (a ﹣1) =a+1+1a−1•a (a ﹣1) =a 2+2a ,∵a 2+2a ﹣1=0,∴a 2+2a =1,∴原式=1.32.(2022•萧山区校级二模)以下是圆圆同学进行分式化简的过程. a+b ab ÷(1b −1a )=a+b ab ×(b ﹣a )=a+b ab •b −a+b ab •a =a+b a −a+b b =b 2+a 2ab . 圆圆的解答过程是否有错误?若存在错误,请写出正确的解答过程.【解答】解:圆圆的解答过程有错误,正确的解答过程如下:a+b ab ÷(1b−1a)=a+bab ÷a−bab=a+bab•ab a−b=a+b a−b.。
中考数学复习《二次根式》专项练习题-附带答案
中考数学复习《二次根式》专项练习题-附带答案一、选择题1.下列式子,一定是二次根式的共有()√28,1,√−1,√m,,√x2+1A.5个B.4个C.3个D.2个2.下列根式是最简二次根式的是()A.√3B.√12C.√3D.√503.要使二次根式√6x+12有意义,则x的取值范围是()A.x≤-2 B.x≥-2 C.x⩾−12D.x⩽−124.计算2√5×3√10等于()A.6√15B.6√30C.30√2D.30√5 5.计算√52−42−32的结果是()A.6 B.0 C.√6D.46.使式子√x+3√4−3x在实数范围内有意义的整数x有()A.5个B.3个C.4个D.2个7.下列计算错误的是()A.√43+√121=2√7B.(√8+√3)×√3=2√6+3C.(4√2−3√6)÷2√2=2−32√3D.(√5+√7)(√5−√7)=5−7=−28.如图,在长方形ABCD中无重叠放入面积分别为12cm2和16cm2的两张正方形纸片,则图中空白部分的面积为()A.8−4√3B.16−8√3C.8√3−12D.4−2√3二、填空题9.计算:3√2−√8=.10.若代数式√2−xx−2有意义,则x的取值范围是.11.已知:x=√13+1,y=√13−1,则xy的值为.12.若a <2,化简√(a −2)2+a ﹣1= .13.已知x =√3+1,y =√3−1,则代数式y x +x y 的值是 .三、解答题14.计算:(181832;(221268(13)-15.先化简,再求值:已知x =3+2√2,求(2−x)2x−2+√x 2+9−6x x−3的值 16.已知23x =+23y =(1)试求22x y +的值; (2)试求x y y x-的值. 17.某居民小区有块形状为长方形的绿地ABCD ,长BC 为√128米,宽AB 为√50米,现在要长方形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部分),每个长方形花坛的长为(√13+1)米,宽为(√13−1)米.(1)求长方形ABCD 的周长.(结果化为最简二次根式)(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为30元/平方米的地砖,要铺完整个通道,则购买地砖需要花费多少元?18.在数学课外学习活动中,小明和他的同学遇到一道题:已知a =,求2a 2﹣8a+1的值.他是这样解答的: ∵a ===2﹣,∴a ﹣2=﹣ ∴(a ﹣2)2=3,a 2﹣4a+4=3∴a 2﹣4a =﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1.请你根据小明的解析过程,解决如下问题:(1)= ;(2)化简;(3)若a=,求a4﹣10a3+a2﹣20a+5的值.参考答案1.D2.C3.B4.C5.B6.C7.A8.C9.√210.x <211.1212.113.414.(1)原式2222(2)原式333315.解: x =3+2√2=√2(3+2√2)(3−2√2)=3−2√2∴x −3=−2√2<0.原式=x −2+|x−3|x−3 =x −2+3−x x−3=x −2−1=x −3.当x =3+2√2时,原式==3+2√2−3=3−2√2−3=−2√2.16.(1)解:∵23x =和 23y =∴x+y=2323+,xy=(2323+=1 ∴()2222242114x y x y xy +=+-=-⨯= ;(2)解:∵23x =+和 23y =-∴x+y=2323+x-y=((2323232323--=+=xy=(2323=1 ∴()()2242383x y x y x y x y y x xy xy +--⨯-====17.(1)解:2×(√128+√50)=2×(8√2+5√2)=26√2(米)∴长方形ABCD 的周长为26√2米.(2)解:√128×√50−2×(√13+1)×(√13−1)=80−2×12=56(平方米)则56×30=1680(元)∴要铺完整个通道,则购买地砖需要花费1680元.18.解:(1)故答案为:﹣1; (2)==12﹣1=11;(3)∵a =∴a ﹣5=∴(a ﹣5)2=26,即a 2﹣10a+25=26.∴a 2﹣10a =1∴a 4﹣10a 3+a 2﹣20a+5=a 2(a 2﹣10a+1)﹣20a+5=a 2×(1+1)﹣20a+5=2(a 2﹣10a )+5=2+5=7. 答:a 4﹣10a 3+a 2﹣20a+5的值为7.。
中考备考数学一轮复习 二次根式 练习题
中考备考数学一轮复习 二次根式 练习题一、单选题1.(2022·湖北武汉·统考中考真题)下列各式计算正确的是( ) A 235B .3331=C 236=D 1226=2.(2021·湖北荆门·统考中考真题)下列运算正确的是( ) A .235x xB 2()x x -=C .23()x x x -+=D .22(1)21x x x -+=-+3.(2021·湖北襄阳·3x +x 的取值范围是( ) A .3x ≥-B .3x ≥C .3x ≤-D .3x >-4.(2021·湖北恩施·232-这三个实数中任选两数相乘,所有积中小于2的有( )个. A .0B .1C .2D .3二、填空题5.(2022·湖北武汉·统考中考真题)计算()22-的结果是_________.6.(2022·湖北荆州·统考中考真题)若32的整数部分为a ,小数部分为b ,则代数式()22a b ⋅的值是______.7.(2021·湖北黄冈·51-这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设51a -=51b +=则1ab =,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b=+++.则1210S S S +++=____.8.(2021·湖北荆州·统考中考真题)已知:(10132a -⎛⎫=+ ⎪⎝⎭,)(3232b =a b +_____________.9.(2021·湖北黄冈·2x +x 的取值范围是______. 10.(2022·湖北武汉·2(-4)_______________11.(2022·湖北黄冈·统考二模)若y =xy =_____.12.(2022·湖北随州·x 的取值范围是______.13.(2022·湖北孝感·统考模拟预测)那么x 的值可以是_________(只需写出一个)三、解答题14.(2022·湖北十堰·统考中考真题)计算:1202212(1)3-⎛⎫+- ⎪⎝⎭.15.(2022·湖北襄阳·统考中考真题)先化简,再求值:(a +2b )2+(a +2b )(a -2b )+2a (b -a ),其中a,b16.(2022·湖北恩施·统考中考真题)先化简,再求值:22111x x x x --÷-,其中x =17.(2021·湖北荆门·统考中考真题)先化简,再求值:22214244x x x x x x x x +-⎛⎫⋅- ⎪---+⎝⎭,其中3x = 18.(2021·湖北恩施·统考中考真题)先化简,再求值:222414816a a a a a ---÷+++,其中2a =.19.(2021·湖北荆州·统考中考真题)先化简,再求值:2221211a a a a a ++⎛⎫÷+ ⎪--⎝⎭,其中a =20.(2021·湖北黄石·统考中考真题)先化简,再求值:2111a a a -⎛⎫÷ ⎪⎝⎭-,其中31a.21.(2021·湖北襄阳·统考中考真题)先化简,再求值:2211x x x x x ++⎛⎫÷- ⎪⎝⎭,其中1x =.22.(2022·湖北咸宁·统考一模)计算:21|3|()2---23.(2022·湖北襄阳·统考二模)先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中1,1x y ==.24.(2022·湖北襄阳·统考一模)先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =.25.(2022·湖北随州·统考一模)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中3=a .26.(2022·湖北恩施·统考一模)先化简,再求值:22491369x x x x ⎛⎫÷--++ ⎝⎭+⎪,其中3x =.27.(2022·湖北十堰·统考一模)计算:1122-⎛⎫⎪⎝⎭.28.(2022·湖北宜昌·统考一模)计算:01282⎛⎫- ⎪⎝⎭参考答案:1.C【分析】由合并同类二次根式判断A ,B ,由二次根式的乘除法判断C ,D .【详解】解:A ≠B 、原计算错误,该选项不符合题意;C =D 22= 故选:C .【点睛】本题考查合并同类二次根式,二次根式的乘法,二次根式的乘方运算,掌握以上知识是解题关键. 2.D【分析】根据相应运算的基本法则逐一计算判断即可 【详解】∵()236x x -=,∵A 计算错误;||x =, ∵B 计算错误; ∵2()x -+x 无法运算, ∵C 计算错误; ∵22(1)21x x x -+=-+, ∵D 计算正确; 故选D .【点睛】本题考查了幂的乘方,二次根式的化简,完全平方公式,熟练掌握各类公式的计算法则是解题的关键. 3.A【分析】根据二次根式有意义的条件,列出不等式,即可求解.【详解】∵ ∵x +3≥0,即:3x ≥-, 故选A .【点睛】本题主要考查二次根式有意义的条件,掌握二次根式的被开方式是非负数,是解题的关键. 4.C【分析】根据题意分别求出这三个实数中任意两数的积,进而问题可求解. 【详解】解:由题意得:(326,222,326-=-=---=∵所有积中小于2的有6,2--两个; 故选C .【点睛】本题主要考查二次根式的乘法运算,熟练掌握二次根式的乘法运算是解题的关键. 5.2【分析】根据二次根式的性质进行化简即可. 2(2)2-. 故答案为:2.()()2(0000a a a a a a a ⎧⎪==⎨⎪-⎩>)<.6.2【分析】先由122<得到1322<,进而得出a 和b ,代入()22a b ⋅求解即可. 【详解】解:∵ 122<, ∵1322<<,∵ 32的整数部分为a ,小数部分为b , ∵1a =,32122b ==∵()((222222242a b ⋅=⨯=-=, 故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 7.10【分析】先根据1ab =求出1111n n nS a b =+++(n 为正整数)的值,从而可得1210,,,S S S 的值,再求和即可得. 【详解】解:1ab =,111111()1n n n n n n n a S a b a a b ∴=+=+++++(n 为正整数),11()n n n n a a a ab =+++, 111n n n a a a =+++, 1=,12101S S S ===∴=, 则121010S S S +++=,故答案为:10.【点睛】本题考查了二次根式的运算、分式的运算,正确发现一般规律是解题关键. 8.2【分析】利用负整数指数幂和零指数幂求出a 的值,利用平方差公式,求出b 的值,进而即可求解.【详解】解:∵(112213a -⎛⎫=+ =⎪+⎝=⎭,221b ==-=,2, 故答案是:2.【点睛】本题主要考查二次根式求值,熟练掌握负整数指数幂和零指数幂以及平方差公式,是解题的关键. 9.x ≥-2【分析】根据二次根式有意义的条件:被开方数为非负数,列不等式求解即可. 【详解】由题意可知x +2≥0, ∵x ≥-2.故答案为:x ≥-2.【点睛】此题主要考查了二次根式有意义的条件,明确被开方数为非负数是解题关键. 10.4【分析】根据二次根式的性质进行求解即可.44-=,故答案为:4.a =是解题的关键. 11.【分析】根据二次根式有意义的条件得到x 和y 的值后可以得到解答. 【详解】解:由题意可得:x -2=2-x=0, ∵x=2,=∵xy=故答案为【点睛】本题考查二次根式的应用,熟练掌握二次根式有意义的条件是解题关键. 12.2x ≤且1x ≠【分析】根据二次根式和分式有意义的条件即可得出答案.【详解】解:根据题意得:2-x≥0,且x+1≠0,∵x≤2且x≠1,故答案为:x≤2且x≠1.【点睛】本题考查了二次根式和分式有意义的条件,掌握二次根式中的被开方数是非负数和分母≠0是解题的关键.13.3-(答案不唯一)5x+2x+5=2,解得x即可.5x+25x+x+5=2,解得,x=-3,故答案为:-3(答案不唯一).【点睛】本题考查了同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式,此题是开放题,只要满足题意即可.145【分析】根据负整数指数幂、乘方、绝对值的性质化简后计算即可.【详解】解:12022 125(1)3-⎛⎫+--⎪⎝⎭3521=-5【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、绝对值的性质化简.15.6,6ab【分析】直接利用完全平方公式、平方差公式化简,进而合并同类项,再把已知数据代入得出答案.【详解】解:原式=2222244422a b ab a b ab a+++-+-6ab=;a32b32,∵原式63232=6=【点睛】此题主要考查了二次根式的混合运算与整式的混合运算——化简求值,正确掌握整式的混合运算法则是解题关键.16.1x 【分析】先将除法转化为乘法,根据分式的性质约分,然后根据分式的减法进行化简,最后代入字母的值即可求解. 【详解】解:原式=()()21111x x xx x +-⋅-- 11x x=+- 1x xx +-= 1x=;当x ===. 【点睛】本题考查了分式的化简求值,分母有理化,正确的计算是解题的关键.17.21(2)x -;3+【分析】根据分式的减法和乘法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题. 【详解】2221()4244x x x x x x x x +-⋅----+ 22221(2)(2)(1)4(2)(2)4(2)(2)x x x x x x x x x x x x x x x x x ⎡⎤⎡⎤+-+--=⋅-=-⎢⎥⎢⎥------⎣⎦⎣⎦22414(2)(2)x x x x x x -=⋅=---将3x =3===+ 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18.22-+a , 【分析】先对分式进行化简,然后再代入进行求解即可.【详解】解:原式=()()()242421142222a a a a a a a a +-+-+-⨯=-=-+++;把2a 代入得:原式==【点睛】本题主要考查二次根式的运算及分式的化简求值,熟练掌握分式的运算及二次根式的运算是解题的关键. 19.1a a +6+3【分析】先计算括号内的加法,然后化除法为乘法进行化简,继而把23a =【详解】解:原式=()()21111a a a a a ++⎛⎫÷ ⎪--⎝⎭ ()()211=1+1a a a a a +-⎛⎫ ⎪-⎝⎭1=a a+ 当3a =232316+3+【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则. 20.11a +3【分析】先算括号内的减法,再把除法化为乘法,然后因式分解,约分化简,代入求值,再将结果化为最简二次根式即可. 【详解】解:原式=1(1)(1)()aa a a a a1(1)(1)a aa a a1=1a +, 将31a 代入,原式33113==-+【点睛】本题主要考查分式的化简求值,掌握因式分解,分式的通分,约分,二次根式的化简是解题的关键. 21.11x x +-;12【分析】将被除数中分子因式分解,括号里先通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,然后约分,得到最简结果,代入x 的值计算即可. 【详解】解:原式()2211x x xx x +⎛⎫=÷- ⎪⎝⎭, ()2211x x xx+-=÷,()()()2111x xx x x +=⋅+-,11x x +=-.当1x =时,原式1===【点睛】此题主要考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应先将多项式因式分解后再约分. 22.1-【分析】由21|3|3)2-=--==【详解】解:21|3|()2---34=-+1=-【点睛】本题考查实数的混合运算,涉及绝对值、负整指数幂、算术平方根等知识,是重要考点,掌握相关知识是解题关键. 23.9xy ,9.【分析】先按照完全平方公式、平方差公式、多项式乘以多项式计算整式的乘法,再合并同类项即可.【详解】解:2(2)()()5()x y x y x y x x y ++-+-- 222224455x xy y x y x xy =+++--+9.xy =当1,1x y ==上式)9119.==【点睛】本题考查的是整式的化简求值,同时考查了二次根式的混合运算,掌握完全平方公式与平方差公式进行简便运算是解题的关键.24【分析】根据分式的运算法则进行化简,再代入求解.【详解】解:原式=21(1)32(3)x x x x --⎛⎫÷⎪++⎝⎭212(3)3(1)x x x x -+⎛⎫=⋅ ⎪+-⎝⎭21x =- 将21x =22=. 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.25.13a +3【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值. 【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭ 212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭ 2311(3)a a a a ++=⋅++ 13a =+, 当33=a 时,原式33333==-+ 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.26323+【分析】先通分,再约分化简成最简形式,然后代入已知数值计算即可.【详解】(1﹣43x +)÷22969x x x -++ =234(3)3(3)(3)x x x x x +-+⋅++- =13x x -- 当33x =331323233333+-++=+- 【点睛】本题主要考查了分式化简求值,将分式化简成最简形式是解题的关键. 27.3【分析】先计算负整数指数幂、化最简二次根式、去绝对值,再进行加减计算即可. 【详解】解:原式=22323-=3-【点睛】本题考查二次根式的混合运算,涉及负整数指数幂、化最简二次根式和去绝对值.掌握二次根式的混合运算法则是解题关键.28.1-【分析】根据零指数幂,二次根式以及绝对值的性质,求解即可.【详解】解:1 22⎛⎫- ⎪⎝⎭21=-1=-【点睛】此题考查了实数的有关运算,涉及了零指数幂,二次根式的化简以及绝对值的性质,解题的关键是熟练掌握相关运算法则.。
中考数学总复习《二次根式》专项测试卷有答案
中考数学总复习《二次根式》专项测试卷有答案学校:___________班级:___________姓名:___________考号:___________A 层·基础过关1.如果二次根式√a 有意义,那么a 的值可以是( ) A .-3 B .-2.5 C .-1 D .12.(2024·广东)完全相同的4个正方形面积之和是100,则正方形的边长是( ) A .2 B .5 C .10 D .203.计算√92−62所得结果是( ) A .3 B .√6C .3√5D .±3√54.估计√6的值在( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间5.(2024·呼伦贝尔)实数a ,b 在数轴上的对应位置如图所示,则√(a −b)2-(b -a -2)的化简结果是( )A .2B .2a -2C .2-2bD .-26.(2024·雅安)使式子√x −1有意义的x 的取值范围是 .7.计算:√18-√8= √2 .8.计算:(√6+√3)(√6-√3)的结果为 .9.(2024·广东)计算:20×|-13|+√4-3-1.10.(2024·雅安)计算:√9-12-1+(-5)×|-15|.B层·能力提升=( )11.若a=√2,b=√7,则√14a2b2A.2B.4C.√7D.√212.估计√2(√8+√10)的值应在( )A.7和8之间B.8和9之间C.9和10之间D.10和11之间13.(2024·滨州)写出一个比√3大且比√10小的整数.14.(2024·上海)已知√2x−1=1,则.15.(2024·深圳)如图所示,四边形ABCD,DEFG,GHIJ均为正方形,且S正方形=10,S正方形GHIJ=1,则正方形DEFG的边长可以是.(写出一个答案即可) ABCD16.阅读材料:希腊几何学家海伦和我国南宋数学家秦九韶曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是,那么三角形的面积为S=√p(p−a)(p−b)(p−c).如图,在△ABC a,b,c,记p=a+b+c2中,a=7,b=5,c=6,则BC边上的高为.17.(2024·赤峰)计算:√9+(π+1)0+2sin 60°+|2-√3|.18.(2024·广元)先化简,再求值;(3x+yx2−y2+2xy2−x2)÷2x2y−xy2,其中x=√3+1,y=√3.C层·挑战冲A+19.阅读下面材料:将边长分别为a,a+√b,a+2√b,a+3√b的正方形面积分别记为S1,S2,S3,S4.则S2-S1=(a+√b)2-a2=[(a+√b)+a]·[(a+√b)-a]=(2a+√b)·√b=b+2a√b.例如:当a=1,b=3时,S2-S1=3+2√3.根据以上材料解答下列问题:(1)当a=1,b=3时,S3-S2=,S4-S3=;(2)当a=1,b=3时,把边长为a+n√b的正方形面积记作S n+1,其中n是正整数,从(1)中的计算结果,你能猜出S n+1-S n等于多少吗?并证明你的猜想.参考答案A层·基础过关1.(2024·南宁模拟)如果二次根式√a有意义,那么a的值可以是(D)A.-3B.-2.5C.-1D.12.(2024·广东)完全相同的4个正方形面积之和是100,则正方形的边长是(B) A .2 B .5 C .10 D .203.(2024·包头)计算√92−62所得结果是(C) A .3 B .√6C .3√5D .±3√54.估计√6的值在(B)A .1和2之间B .2和3之间C .3和4之间D .4和5之间5.(2024·呼伦贝尔)实数a ,b 在数轴上的对应位置如图所示,则√(a −b)2-(b -a -2)的化简结果是(A)A .2B .2a -2C .2-2bD .-26.(2024·雅安)使式子√x −1有意义的x 的取值范围是 x ≥1 .7.计算:√18-√8= √2 .8.计算:(√6+√3)(√6-√3)的结果为 3 . 9.(2024·广东)计算:20×|-13|+√4-3-1.【解析】原式=20×13+2-4=203-2=143.10.(2024·雅安)计算:√9-12-1+(-5)×|-15|.【解析】原式=3-32+(-5)×15=3-32-1=12.B 层·能力提升11.若a =√2,b =√7,则√14a 2b 2=(A)A.2B.4C.√7D.√212.估计√2(√8+√10)的值应在(B)A.7和8之间B.8和9之间C.9和10之间D.10和11之间13.(2024·滨州)写出一个比√3大且比√10小的整数2(或3).14.(2024·上海)已知√2x−1=1,则x=1.15.(2024·深圳)如图所示,四边形ABCD,DEFG,GHIJ均为正方形,且S正方形ABCD=10,S正方形GHIJ=1,则正方形DEFG的边长可以是2(答案不唯一).(写出一个答案即可)16.阅读材料:希腊几何学家海伦和我国南宋数学家秦九韶曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=a+b+c2,那么三角形的面积为S=√p(p−a)(p−b)(p−c).如图,在△ABC中,a=7,b=5,c=6,则BC边上的高为12√67.17.(2024·赤峰)计算:√9+(π+1)0+2sin 60°+|2-√3|.【解析】原式=3+1+2×√32+2-√3=4+√3+2-√3=6.18.(2024·广元)先化简,再求值;(3x+yx2−y2+2xy2−x2)÷2x2y−xy2,其中x=√3+1,y=√3.【解析】原式=(3x+yx 2−y 2-2xx 2−y 2)÷2x 2y−xy 2=3x+y−2x (x−y)(x+y)·xy(x−y)2 =x+y (x−y)(x+y)·xy(x−y)2=xy 2当x =√3+1,y =√3时 原式=√3(√3+1)2=3+√32. C 层·挑战冲A +19.阅读下面材料:将边长分别为a ,a +√b ,a +2√b ,a +3√b 的正方形面积分别记为S 1,S 2,S 3,S 4. 则S 2-S 1=(a +√b )2-a 2 =[(a +√b )+a ]·[(a +√b )-a ] =(2a +√b )·√b =b +2a √b .例如:当a =1,b =3时,S 2-S 1=3+2√3. 根据以上材料解答下列问题:(1)当a =1,b =3时,S 3-S 2= 9+2√3 ,S 4-S 3= 15+2√3 ; 【解析】(1)S 3-S 2=(a +2√b )2-(a +√b )2 =a 2+4a √b +4b -a 2-2a √b -b =2a √b +3b当a =1,b =3时,S 3-S 2=9+2√3;S 4-S 3=(a +3√b )2-(a +2√b )2=a 2+6a √b +9b -a 2-4a √b -4b =2a √b +5b当a=1,b=3时,S4-S3=15+2√3.(2)当a=1,b=3时,把边长为a+n√b的正方形面积记作S n+1,其中n是正整数,从(1)中的计算结果,你能猜出S n+1-S n等于多少吗?并证明你的猜想.【解析】(2)S n+1-S n=6n-3+2√3;证明:S n+1-S n=(1+√3n)2-[1+(n-1)√3]2=[2+(2n-1)√3]×√3=3(2n-1)+2√3=6n-3+2√3.。
九年级 中考数学 一轮训练:数的开方与二次根式(含答案)
2020-2021 中考数学 一轮训练:数的开方与二次根式一、选择题1. 下列二次根式是最简二次根式的是( ) A .B .C .D .2. 下列运算正确的是( ) A.2+3= 6B.3×2= 6C.()3-12=3-1D.52-32=5-33. (2020台州)无理数在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间4. 实数a ,b 在数轴上对应的点的位置如图所示,化简|a|+的结果是( )A .-2a+bB .2a -bC .-bD .b5. (2020·22 )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间6. 若a =2 2+3,b =2 2-3,则下列等式成立的是( )A .ab =1B .ab =-1C .a =bD .a =-b7.如图,数轴上A ,B 两点对应的实数分别是1和3,若点A 关于点B 的对称点为点C ,则点C 所对应的实数为( )A .2 3-1B .1+ 3C .2+ 3D .2 3+1 8. 已知k ,m ,n 为三个整数,若135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系正确的是( )A .k <m =nB .m =n <kC .m <n <kD .m <k <n二、填空题9. 观察下列等式:①3-2=(-1)2, ②5-2=()2, ③7-2=()2, …请你根据以上规律,写出第6个等式 .10. (2020自贡)与2最接近的自然数是 .11. (2020·江苏徐州)若3x -在实数范围内有意义,则x 的取值范围是 .12. (2020·南京)计算3312+的结果是______.13. 计算:8-2(3-2)0+⎝ ⎛⎭⎪⎫12-1=________________________________________.14. (2020·广西北部湾经济区)计算: .15. (2020·青岛)计算:3)3412(-= .16. (2020·邵阳)在如图的方格中,若要使横,竖,斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为 .三、解答题17. (1)计算:×+(3+1)(3-1);(2)先化简,再求值:(x+y )(x -y )+y (x+2y )-(x -y )2,其中x=2+,y=2-.18. 计算: (1)20+55-13×12; (2)512÷1550×1532; (3)(3 2-1)(1+3 2)-(3 2-1)2.19. (10分)已知x =7+4 3,y =-7+4 3,求下列各式的值:(1)1x +1y ;(2)x y +y x .20. 拦河坝的横断面是梯形,如图,其上底是8 m ,下底是32 m ,高是 3 m.(1)求横断面的面积;(2)用300 m 3的土可修多长的拦河坝?21. (2020·通辽)用※定义一种新运算:对于任意实数m 和n ,规定m ※n =m 2n ﹣mn ﹣3n ,如:1※2=12×2﹣1×2﹣3×2=﹣6.(1)求(﹣2)※3;(2)若3※m ≥﹣6,求m 的取值范围,并在所给的数轴上表示出解集.43210-1-2-3-422.若无理数A 的整数部分是a ,则它的小数部分可表示为A -a .例如:π的整数部分是3,因此其小数部分可表示为π-3.若x 表示47的整数部分,y 表示它的小数部分,求代数式(47+x )y 的值.2020-2021 中考数学 一轮训练:数的开方与二次根式-答案一、选择题1. 【答案】D2. 【答案】[解析] B A 项,2+3已是最简形式,不能再合并,故错误;B 项,3×2=6,故正确; C 项,()3-12=(3)2-2×3×1+1=3-2 3+1=4-2 3,故错误;D 项,52-32=16=42=4,故错误. 故选B. 3. 【答案】由可以得到答案. 【解析】解:∵34,故选:B .4. 【答案】A [解析]由实数a ,b 在数轴上对应点的位置可知a<0,b>0,a -b<0,则|a|+=-a -(a -b )=-2a +b.故选A .5. 【答案】B 【解析】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.因为224225<<,所以22在4到5之间,由此可得出答案. 故选:B6. 【答案】[解析] B ab =(2 2+3)(2 2-3)=(2 2)2-32=8-9=-1. 故选B.7. 【答案】[解析] A 设点C 所对应的实数是x ,则x -3=3-1,解得x =2 3-1.故答案为2 3-1.8. 【答案】[解析] D 135=k 15=15×9=3 15,所以k =3;450=15m=15×15×2=152,所以m =2;180=6n =36×5=6 5,所以n =5.所以m <k <n .二、填空题9. 【答案】13-2=()2 [解析]∵3-2=(-1)2,5-2=()2,7-2=()2, …∴第n 个等式为:(2n +1)-2=()2,∴当n=6时,可以得到第6个等式为:13-2=()2.10. 【答案】故答案为:2.【解析】本题考查了算术平方根的近似值,通过夹值法求出接近的自然数.解:∵3.54,∴1.52<2,∴与2最接近的自然数是2.因此本题答案为:2.11. 【答案】 x ≥3【解析】根据二次根式有意义的条件,有:x -3≥0,解得x ≥3.12. 【答案】13 【解析】原式=()3314+=112+=13.13. 【答案】[答案] 2+2[解析] 8-2(3-2)0+⎝ ⎛⎭⎪⎫12-1=2 2-2+2=2+2.14. 【答案】【解析】.,因此本题答案是.15. 【答案】4【解析】本题考查了实数的混合运算、二次根式的化简,解答过程如下:3)3412(⨯-=334312⨯-⨯=334312⨯-⨯=436-=6-2=4. 因此本题答案为4.16. 【答案】62【解析】本题考查了二次根数的乘法运算法则,熟练掌握二次根式的加减乘除运算法则是解决此类题的关键.解:由题意可知,第一行三个数的乘积为:322366⨯⨯=, 设第二行中间数为x ,则1666⨯⨯=x ,解得6x =,设第三行第一个数为y ,则3266⨯⨯=y ,解得23y =,∴2个空格的实数之积为21862xy ==.因此本题答案为62.三、解答题17. 【答案】解:(1)原式=+(3)2-12=2+18-1=19. (2)原式=x 2-y 2+xy +2y 2-x 2+2xy -y 2=3xy ,当x=2+,y=2-时, 原式=3×(2+)×(2-)=3.18. 【答案】解:(1)原式=2 5+55-33×2 3 =3-2=1. (2)原式=⎝ ⎛⎭⎪⎫5×5×15 12×150×32=5 36100=3. (3)方法一:原式=(3 2)2-12-[(3 2)2-2×3 2+12]=(3 2)2-1-(3 2)2+6 2-1=6 2-2.方法二:原式=(3 2-1)[(1+3 2)-(3 2-1)]=(3 2-1)×2=6 2-2.19. 【答案】解:因为x =7+4 3,y =-7+4 3,所以x +y =(7+4 3)+(-7+4 3) =7+4 3-7+4 3=8 3,xy =(7+4 3)(-7+4 3)=(4 3)2-72=48-49=-1.(1)1x +1y =x +y xy =8 3-1=-8 3.(2)x y +y x =x 2+y 2xy =(x +y )2-2xy xy=(8 3)2-2×(-1)-1=-194.20. 【答案】解:(1)S =12(8+32)×3=12(2 2+4 2)×3=12×6 2×3=3 6(m 2).答:横断面的面积为3 6 m 2. (2)3003 6=1006=100 66×6=100 66=50 63(m). 答:可修50 63 m 长的拦河坝.21. 【答案】解:(1)(-2)(-2)2(-2)(2)∵3※m =32 m -3 m -3 m =3 m ,又∵3※m ≥﹣6,∴3 m ≥﹣6,得m ≥﹣2.在数轴上表示如下:【解析】(1)根据定义进行列式计算;(2)根据定义列出不等式,再进行求解,然后把解集在数轴上表示出来.22. 【答案】 [解析] 解决该问题的关键在于确定出47的整数部分,然后再表示出它的小数部分,最后代入代数式求值.解:因为6<47<7, 所以47的整数部分为6,即x =6, 则47的小数部分y =47-6,所以(47+x )y =(47+6)(47-6)=(47)2-62=47-36=11.。
2023年中考苏科版数学一轮复习专题练习-二次根式
2023年中考数学一轮复习专题练习八下 第12章 二次根式一、 选择题1. 9的平方根是A .±3B .3C .±4.5D .4.5 2. 使代数式12-x x 有意义的x 的取值范围是( ) A .x≥0 B .x≠21 C .x≥0且x≠21 D .一切实数 3. 下列计算正确的是( )A .a 6÷a 2=a 3B .(a 3)2=a 2C .25=±5D .38-=-24. 若5=a ,17=b ,则85.0的值用a. b 可表示为( ) A .10b a + B .10a b - C .10ab D .ab 5. 能使等式22-=-x x x x 成立的x 的取值范围是 ( ) A .x≠2 B .x≥0 C .x >2 D .x≥2 6. 下列计算正确的是( )A .0(2)0-=B .239-=-C 3=D =7. 已知实数x ,y 满足8|4|-+-y x =0,则以x ,y 的值为两边长的等腰三角形的周长是( )A .20或16B .20C .16D .以上答案均不对8. 如果ab>0,a+b<0,给出下列各式:①b a b a =,②1=•a b b a ,③b b a ab -=÷,那么其中正确的是( )A .①②B .②③C .①③D .①②③二、填空题9. x 应满足的条件是 _______ 。
10. 若y =22-+-x x +4,则xy 的平方根为_______。
11. 当x 满足______时,0)3(11--++x x x 有意义。
12. 式子2x x -有意义的x 取值范围是________。
13. 若|x +y +4|+2)2(-x =0,则3x +2y =_____。
14. 若y =x x x 21)1(122-+-+-,则(x +y )2008=_____。
15. 实数a. b 在数轴上的位置如图所示,则化简a b a ++2)(的结果为____。
中考数学一轮复习二次根式知识点及练习题及答案
一、选择题1.下列计算正确的是( ) A .()25-=﹣5 B .4y =2y C .822aaa=D .235+=2.二次根式1x -中字母x 的取值可以是( ) A .2B .0C .12-D .-13.若实数m 、n 满足等式402n m -+=-,且m 、n 恰好是等腰ABC 的两条边的边长,则ABC 的周长( ) A .12B .10C .8D .6 4.下列计算正确的是( )A .325+=B .2222+=C .2651-=D .822-=5.计算:()555+=( )A .55+B .555+C .525+D .105 6.式子2x -在实数范围内有意义,则x 的取值范围是( ) A .0x <B .0xC .2xD .2x7.“分母有理化”是我们常用的一种化简的方法,如:23(23)(23)74323(23)(23)+++==+--+,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于3535+--,设3535x =+--,易知3535+>-,故0x >,由22(3535)35352(35)(35)2x =+--=++--+-=,解得2x =,即35352+--=.根据以上方法,化简3263363332-+--++后的结果为( ) A .536+ B .56+ C .56- D .536- 8.若实数a ,b 满足+=3,﹣=3k ,则k 的取值范围是( )A .﹣3≤k ≤2B .﹣3≤k ≤3C .﹣1≤k ≤1D .k ≥﹣19.下列二次根式中,最简二次根式是( ) A 23a B 13C 2.5D 22a b -10.使式子2124x x ++-成立的x 的取值范围是( ) A .x≥﹣2B .x >﹣2C .x >﹣2,且x ≠2D .x≥﹣2,且x ≠2二、填空题11.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.12.已知a 73+a 3+5a 2﹣4a ﹣6的值为_____. 13.下面是一个按某种规律排列的数阵:11第行325 62第行7223 10 11 233第行 13154 1732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示). 14.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--+-=+---m+4的算术平方根为________.15.已知|a ﹣20072008a -=a ,则a ﹣20072的值是_____. 16.11882. 17.若a 、b 为实数,且b 2211a a -+-+4,则a+b =_____. 18.3a ,小数部分是b 3a b -=______. 191262_____.20.12a 1-能合并成一项,则a =______.三、解答题21.1123124231372831-+-1【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法.【详解】22-+=1)2(3+⨯=121.【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.若x,y为实数,且y12.求xyyx++2-xyyx+-2的值.【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x≥0且4x﹣1≥0,解得x=14,此时y=12.即可代入求解.【详解】解:要使y有意义,必须140410xx-≥⎧⎨-≤⎩,即1414xx⎧≤⎪⎪⎨⎪≥⎪⎩∴x=14.当x=14时,y=12.又∵xyyx++2-xyyx+-2=-|∵x=14,y=12,∴xy<yx.∴+当x=14,y=12时,原式=.【点睛】(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23.计算:21)3)(3--【答案】.【解析】【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算.【详解】解:原式2222]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.24.阅读下面的解答过程,然后作答:m和n,使m2+n2=a 且,则a可变为m2+n2+2mn,即变成(m+n)2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==25.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.26.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得 【分析】根据整式的运算公式进行化简即可求解. 【详解】(()69x x x x +--+=22369x x x --++ =6x+6把1x=代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.27.一样的式子,其实我==3==,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n+++【答案】(1-2.【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式2n+++=12.考点:分母有理化.28.计算(1))(12112-⨯--⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值.【答案】(1)28-;(2)17. 【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得. 【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y==,1122x y ∴+=+=,()11119112224xy =⨯=⨯-=,则()222x xy y x y xy ++=+-,22=-,192=-, 17=. 【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】根据二次根式的性质对A 、B 进行判断;利用分母有理化对C 进行判断;利用二次根式的加减法对D 进行判断. 【详解】解:A 、原式=5,所以A 选项错误;B 、原式=,所以B 选项错误;Ca =,所以C 选项正确;D D 选项错误. 故选:C . 【点睛】本题主要考查了二次根式的性质以及合并同类项法则,正确化简各式是解题的关键.2.A解析:A 【分析】根据二次根式有意义,被开方数非负列出不等式,求解,再依此选择合适的选项. 【详解】 解:由题意得: x-1≥0 解之:x≥1.1>. 故选:A . 【点睛】本题考查二次根式有意义的条件.理解二次根式有意义,被开方数非负是解题关键.3.B解析:B 【分析】先根据绝对值的非负性、二次根式的非负性求出m 、n 的值,再根据三角形的三边关系、等腰三角形的定义求出第三边长,然后根据三角形的周长公式即可得. 【详解】由题意得:20,40m n -=-=, 解得2,4m n ==,设等腰ABC 的第三边长为a ,,m n 恰好是等腰ABC 的两条边的边长,n m a n m ∴-<<+,即26a <<,又ABC 是等腰三角形, 4a n ∴==,++=,则ABC的周长为24410故选:B.【点睛】本题考查了绝对值的非负性、二次根式的非负性、三角形的三边关系、等腰三角形的定义等知识点,根据三角形的三边关系和等腰三角形的定义求出第三边长是解题关键.4.D解析:D【分析】直接利用二次根式的加减运算法则计算得出答案.【详解】解:AB、无法计算,故此选项错误;C、D,正确.故选:D.【点睛】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.5.B解析:B【分析】根据乘法分配律可以解答本题.【详解】)5=5+故选:B.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.6.D解析:D【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】x-≥,即:20x,解得:2故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键.7.D解析:D 【分析】根据题中给的方法分别对633633--+和3232-+进行化简,然后再进行合并即可. 【详解】设633633x =--+,且633633-<+, ∴0x <,∴26332(633)(633)633x =---+++, ∴212236x =-⨯=, ∴6x =-, ∵3252632-=-+, ∴原式5266=--536=-, 故选D . 【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.8.C解析:C 【解析】依据二次根式有意义的条件即可求得k 的范围. 解:若实数a ,b 满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤-≤0 ②+②可得﹣3≤﹣≤3,又有﹣=3k ,即﹣3≤3k ≤3,化简可得﹣1≤k ≤1.故选C .点睛:本题主要考查了二次根式的意义和性质.解题的关键在于二次根式具有双非负性,即≥0(a ≥0),利用其非负性即可得到0≤≤3,0≤≤3,并对0≤≤3变形得到﹣3≤-≤0,进而即可转化为关于k 的不等式组,求出k 的取值范围.9.A解析:A 【解析】试题分析:最简二次根式是指不能继续化简的二次根式,A 、原式=;B 、是最简二次根式,不能化简;C 、原式=;D 、原式=. 考点:最简二次根式 10.C解析:C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】解:由题意得:2x -40≠,2x ∴≠±,又∵20x +≥,∴x ≥-2.∴x 的取值范围是:x>-2且2x ≠.故选C.【点睛】本题考查了分式和二次根式有意义的条件,解不等式,是基础题.二、填空题11.﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣b|+=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b . 故答案为﹣2b .点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣()2a b +=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a .b 都是数轴上的实数,注意符号的变换. 12.-4【分析】先将a 进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a=-=-=-3时,原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(解析:-4【分析】先将a进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】-3时,解:当a原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(a+3)2-7a+3=7a-7-7a+3=-4.故答案为:-4.【点睛】本题综合运用了二次根式的化简,提公因式及完全平方公式法分解因式,熟练掌握分母有理化的方法及因式分解的方法是解题的关键.13.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.14.3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m=5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:35302302x y mx y mx y+--=⎧⎪+-=⎨⎪+=⎩,解得:x=1,y=1,m=5,∴==3.故答案为3.【点睛】本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.15.2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007|+=a,∴a≥2008,解析:2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007=a,∴a≥2008,∴a﹣2007=a,=2007,两边同平方,得:a﹣2008=20072,∴a﹣20072=2008.故答案为:2008.点睛:解决此题的关键是能够得到a的取值范围,从而化简绝对值并变形.16.【解析】【详解】根据二次根式的性质和二次根式的化简,可知==.故答案为.【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.【解析】【详解】22.故答案为2. 【点睛】 此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.17.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.18.【详解】若的整数部分为a,小数部分为b,∴a=1,b=,∴a-b==1.故答案为1.解析:【详解】a,小数部分为b,∴a=1,b1,∴-b1)=1.故答案为1.19.6【分析】利用二次根式乘除法法则进行计算即可.【详解】===6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.解析:6【分析】==进行计算即可.【详解】=6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
中考数学复习《二次根式》专项训练(含答案)
~数学中考专项:二次根式【沙盘预演】1.函数y=自变量的取值范围是()A.x≠﹣3 B.x>﹣3 C.x≥﹣3 D.x≤﹣3【解析】解:根据题意得到:x+3>0,解得x>﹣3,故选B.2.下列运算正确的是()A.﹣=13 B.=﹣6C.﹣=﹣5 D.=±3【解析】解:A、=﹣13,故错误;B、=6,故错误;C、=﹣5,正确;D、=3,故错误;故选:C.3.与是同类二次根式的是()A.B.C.D.【解析】解:A、与﹣的被开方数不同,故A错误;B、与﹣的被开方数不同,故B错误;C、与﹣的被开方数相同,故C正确;D、与﹣的被开方数不同,故D错误;故选:C4.下列运算正确的是()A.﹣a•a3=a3B.﹣(a2)2=a4C.x﹣x=D.(﹣2)(+2)=﹣1【解析】解:A、﹣a•a3=﹣a4,故选项错误;B、﹣(a2)2=﹣a4,选项错误;C、x﹣x=x,选项错误;D、(﹣2)(+2)=()2﹣22=3﹣4=﹣1,选项正确.故选D.5.若二次根式有意义,则a的取值范围是()A.a≥2B.a≤2C.a>2 D.a≠2【解析】解:∵二次根式有意义,∴a﹣2≥0,即a≥2,则a的范围是a≥2,故选A6.在函数y=34xx--中,自变量x的取值范围是( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4【解析】欲使根式有意义,则需x-3≥0;欲使分式有意义,则需x-4≠0.∴x的取值范围是30,40.xx-⎧⎨-⎩≥≠解得x≥3且x≠4.故选D.7.要使式子有意义,则x的取值范围是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1 【解析】解:要使式子有意义,故x﹣1≥0,解得:x≥1.则x的取值范围是:x≥1.故选:C.8.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b 【解析】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.9.若式子1-x在实数范围内有意义,则x的取值范围是x≥1.【解析】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.10.下列算式①=±3;②=9;③26÷23=4;④=;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.【解析】解:①=3,故此选项错误;②==9,正确;③26÷23=23=8,故此选项错误;④=,正确;⑤a+a=2a,故此选项错误,故运算结果正确的概率是:.故选:B.11.若式子1x在实数范围内有意义,则x的取值范围是x≥1.-【解析】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.12.若二次根式有意义,则x的取值范围是x≥1.【解析】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【真题演练】1.(•张家界)下列运算正确的是()A.a2+a=2a3B.=aC.(a+1)2=a2+1 D.(a3)2=a6【解析】解:A、a2和a不是同类项,不能合并,故原题计算错误;B、=|a|,故原题计算错误;C、(a+1)2=a2+2a+1,故原题计算错误;D、(a3)2=a6,故原题计算正确;故选:D.2.(•聊城)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【解析】解:A、3与﹣2不是同类二次根式,不能合并,此选项错误;B、•(÷)=•==,此选项正确;C、(﹣)÷=(5﹣)÷=5﹣,此选项错误;D、﹣3=﹣2=﹣,此选项错误;故选:B.3.(•扬州)使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3D.x≠3【解析】解:由题意,得x﹣3≥0,解得x≥3,故选:C.4.(•孝感)下列计算正确的是()A.a﹣2÷a5=B.(a+b)2=a2+b2C.2+=2D.(a3)2=a5【解析】解:A、a﹣2÷a5=,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.5.(•郴州)下列运算正确的是()A.a3•a2=a6B.a﹣2=﹣C.3﹣2=D.(a+2)(a﹣2)=a2+4【解析】解:A、a3•a2=a5,故此选项错误;B、a﹣2=,故此选项错误;C、3﹣2=,故此选项正确;D、(a+2)(a﹣2)=a2﹣4,故此选项错误.6.(•泰州)下列运算正确的是()A.+=B.=2C.•=D.÷=2【解析】解:A、与不能合并,所以A选项错误;B、原式=3,所以B选项错误;C、原式==,所以C选项错误;D、原式==2,所以D选项正确.故选:D.7.(•郴州)计算:=3.【解析】解:原式=3.故答案为:38.(•泸州)若二次根式在实数范围内有意义,则x的取值范围是x≥1.【解析】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.下列二次根式中是最简二次根式的为( )A .12B .30C .8D .122.下列计算正确的是( )A .2×3=6B .2+3=5C .8=42D .4﹣2=23.下列各式中,正确的是( )A .42=±B .822-=C .()233-=-D .342=4.下列式子中,是二次根式的是( )A .2B .32C .xD .x 5.在函数y=23x x +-中,自变量x 的取值范围是( ) A .x≥-2且x≠3B .x≤2且x≠3C .x≠3D .x≤-26.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( ) A .1999 B .2000 C .2001 D .不能确定7.下列计算正确的是( )A 235=B 236=C 2434=D ()233-=-8.下列运算正确的是( )A 235=B .(228-=C 112222=D ()21313-=9.下列根式中是最简二次根式的是( )A 23B 10C 9D 3a 10.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,那么三角形的面积为()()()S p p a p b p c =---ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .66B .3C .18D .192二、填空题11.使函数21122y x x x=-+有意义的自变量x 的取值范围为_____________ 12.能力拓展: 12121A =+23232A =+;3:4343A =+;454A =________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A 322132+21+3221()343-3276541n n +1n n -13.实数a 、b 22a -4a 436-12a a 10-b 4-b-2++=+,则22a b +的最大值为_________.14.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--+-=+---m+4的算术平方根为 ________.15.已知2,n=1222m n mn +-的值________.16.已知x 51-,y 51+,则x 2+xy +y 2的值为______. 17.若实数23a =-,则代数式244a a -+的值为___. 18.2m 1-1343m --mn =________.19.下列各式:③4是最简二次根式的是:_____(填序号)20.已知2x =243x x --的值为_______.三、解答题21.已知x=2,求代数式(7+x 2+(2)x【答案】2【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.试题解析:x 2=(2)2=7﹣则原式=(7﹣+(2=49﹣22.-10【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10.【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.23.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.24.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x -【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案.【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x -∴ 3,4x y ==当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.25.计算:(1)11(233÷【答案】(12+;(2)【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】11解:)-=312÷33==【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.26.观察下列一组等式,然后解答后面的问题=,1)1=,1=,1=⋯⋯1(1)观察以上规律,请写出第n个等式:(n为正整数).(2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小.【详解】解:(1)根据题意得:第n个等式为1=;故答案为1=;(2)原式111019==-=;-==,(3<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.27.计算:(1)-(2)【答案】(1)21【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的乘除法则运算,再合并即可.【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.28.计算下列各题:(1-.(2)2【答案】(1)2)2--【分析】(1)根据二次根式的运算顺序和运算法则计算即可;(2)利用平方差、完全平方公式进行计算.【详解】解:(1)原式==;=--+(2)原式22(5=---525=--2【点睛】本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用最简二次根式定义判断即可.【详解】解:A=不是最简二次根式,本选项错误;BC=不是最简二次根式,本选项错误;=D2故选:B.【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.2.A解析:A【解析】分析:根据二次根式的加、减、乘、除的法则计算逐一验证即可.详解: , 此选项正确;≠此选项错误;, 此选项错误;,此选项错误.故选A.点睛:本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.3.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A、B、C选项;利用立方根性质判断D选项.【详解】A,故该选项错误;B==C 选项:()233-=,故该选项错误;D 选项:1122333344=(2)2==,故该选项错误;故选:B .【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.4.A解析:A【分析】一般地,我们把形如a (a ≥0)的式子叫做二次根式,据此可得结论.【详解】解:A 、2是二次根式,符合题意;B 、32是三次根式,不合题意;C 、当x <0时,x 无意义,不合题意;D 、x 属于整式,不合题意;故选:A .【点睛】此题考查二次根式的定义,关键是根据二次根式的定义理解被开方数是非负数.5.A解析:A【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式组求解.【详解】解:根据题意,有2030x x +≥⎧⎨-≠⎩, 解得:x ≥-2且x ≠3;故选:A .【点睛】当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数为非负数.6.B解析:B【解析】因=,所以a =0,b =1,c =1,即可得2a +999b +1001c =999+1001=2000,故选B.点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.7.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;D3=,故D错误;故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.8.B解析:B【分析】根据二次根式的性质及运算法则依次计算各项后即可解答.【详解】选项A A错误;选项B,(2428-=⨯=,选项B正确;选项C124==,选项C错误;选项D1,选项D错误.综上,符合题意的只有选项B.故选B.【点睛】本题考查了二次根式的性质及运算法则,熟练运用二次根式的性质及运算法则是解决问题的关键.9.B解析:B【分析】根据最简二次根式的条件:①根号下不含能开得尽方的因数或因式;②根号下不含分母,据此逐项判断即可.【详解】解:A、被开方数含分母,故A不符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式.,故B符合题意;C被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:B.【点睛】本题考查了最简二次根式,解题的关键是掌握最简二次根式的两个条件.10.A解析:A【分析】利用阅读材料,先计算出p的值,然后根据海伦公式计算ABC∆的面积;【详解】7a=,5b=,6c=.∴56792p++==,∴ABC∆的面积S==故选A.【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.二、填空题11.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成. 【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x的取值范围为【点睛】解析:11,022x x -≤≤≠ 【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤ ①当0x <时,120x +≥ 解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 12.(1)、;(2);(3)【解析】【分析】(1)观察A1,A2,A3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等解析:(1)=;(2),,><<;(3) ,,<<< 【解析】【分析】(1)观察A 1,A 2,A 3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等式仍成立,求得>1)的结论解答;(3)利用(2)的结论进行填空.【详解】解:(1)观察A 1,A 2,A 3的规律可知,将等式右边的分式分母有理化,即得等式左边的代数式,所以=,(2>1>>,<<(3)由(1)、(2<,故答案为:=;(2),,><<;(3),,<<< 【点睛】 主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.13.【分析】首先化简,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a ,b 的取值范围,即可求出的最大值.【详解】 解析:【分析】10-b 4-b-2=+,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a ,b 的取值范围,即可求出22a b +的最大值. 【详解】10-b 4-b-2=+,1042b b =-+--,∴261042a a b b -+-=-+--,∴264210a a b b -+-+++-=, ∵264a a -+-≥,426b b ++-≥,∴ 264a a -+-=,42=6b b ++-,∴2≤a≤6,-4≤b≤2,∴22a b +的最大值为()226452+-=,故答案为52.【点睛】本题考查了二次根式的性质与化简,绝对值的意义,算术平方根的性质.解题的关键是要明确化简二次根式的步骤:①把被开方数分解因式;②利用算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2. 14.3【解析】【分析】先根据二次根式有意义的条件得出x+y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m =5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x +y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:35302302x y m x y m x y +--=⎧⎪+-=⎨⎪+=⎩,解得:x =1,y =1,m =5,∴==3.故答案为3.【点睛】 本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.15.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得====. 故答案是:.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得.16.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y +-xy=21515151)2222=5-1=4. 17.3【解析】∵ =,∴=(a-2)2==3,故答案为3.解析:3 【解析】∵a =∴244a a -+=(a-2)2=()222+=3, 故答案为3.18.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴ ,解得,,∴故答案为21.解析:21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴7321.mn=⨯=故答案为21.19.②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】②③是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,解析:②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】③4是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.20.-4【分析】把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题解析:-4【分析】把2x =243x x --计算即可求解.【详解】解:当2x =243x x --((22423=---4383=--+=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。